基于激光诱导击穿光谱技术的岩石表面指纹图谱分析及分类方法
作者:
  • 张蕊

    张蕊

    1) 中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳,110016; 2) 东北大学信息科学与工程学院,沈阳,110819
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 孙兰香

    孙兰香

    1) 中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳,110016;3) 中国科学院网络化控制系统重点实验室,沈阳,110016;4) 中国科学院机器人与智能制造创新研究院,沈阳,110169
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈彤

    陈彤

    1) 中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳,110016;3) 中国科学院网络化控制系统重点实验室,沈阳,110016;4) 中国科学院机器人与智能制造创新研究院,沈阳,110169;5) 中国科学院大学,北京,100049
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王国栋

    王国栋

    1) 中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳,110016;3) 中国科学院网络化控制系统重点实验室,沈阳,110016;4) 中国科学院机器人与智能制造创新研究院,沈阳,110169;5) 中国科学院大学,北京,100049
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张鹏

    张鹏

    1) 中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳,110016;3) 中国科学院网络化控制系统重点实验室,沈阳,110016;4) 中国科学院机器人与智能制造创新研究院,沈阳,110169
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 汪为

    汪为

    1) 中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳,110016;3) 中国科学院网络化控制系统重点实验室,沈阳,110016;4) 中国科学院机器人与智能制造创新研究院,沈阳,110169;5) 中国科学院大学,北京,100049
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

本文为中国科学院前沿科学重点研究计划(编号QYZDJ- SSW- JSC037)和中国科学院青年创新促进会联合资助成果。


Fingerprint analysis and classification of rock surface based on laser- induced breakdown spectroscopy
Author:
  • ZHANG Rui

    ZHANG Rui

    1) State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016;2) School of Information Science and Engineering, Northeastern University, Shenyang, 110819
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SUN Lanxiang

    SUN Lanxiang

    1) State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016;3) Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang, 110016;4) Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Tong

    CHEN Tong

    1) State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016;3) Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang, 110016;4) Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169;5) University of Chinese Academy of Sciences, Beijing, 100049
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Guodong

    WANG Guodong

    1) State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016;3) Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang, 110016;4) Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169;5) University of Chinese Academy of Sciences, Beijing, 100049
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Peng

    ZHANG Peng

    1) State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016;3) Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang, 110016;4) Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Wei

    WANG Wei

    1) State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016;3) Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang, 110016;4) Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169;5) University of Chinese Academy of Sciences, Beijing, 100049
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    岩石岩性识别在油气田探测开发、研究地球成因及演化发展、地质灾害分析预测等众多方面起着不可替代的导向作用,因此岩石的识别分类对于地质勘探分析来说至关重要。为了提高岩石的分类准确率,提出了一种基于激光诱导击穿光谱技术(LIBS)的岩石表面指纹图谱分析及分类方法。通过LIBS对岩石表面不同位置进行激发,获取原始光谱数据。对收集到的光谱数据进行去除异常点、归一化等预处理操作,根据岩石矿物成分确定五种含量差异较大元素(硅、铝、钾、钠、镁)的特征谱线并得到元素指纹图谱。然后选择支持向量机(SVM)作为分类器进行分类,分别建立利用光谱均值的分类模型和多维指纹图谱融合的分类模型,并对两种分类结果进行比较。利用光谱均值的分类模型准确率为59. 4%,多维指纹图谱融合的模型分类准确率为96. 5%。实验结果表明,元素指纹图谱展示了岩石表面元素分布,可以充分利用不同种类岩石本身的不均匀性结构信息,极大地提高了岩石的分类准确率。

    Abstract:

    Rock lithology identification plays an irreplaceable guiding role in many aspects, such as exploration and development of oil and gas fields, study of the origin and evolution of the earth, analysis and prediction of geological hazards etc. Therefore, rock identification and classification are very important for geological exploration and analysis. In order to improve the classification accuracy of rocks, a method of rock surface fingerprint analysis and classification based on laser- induced breakdown spectroscopy (LIBS) was proposed. In the experiment, six rock samples were placed on a three- dimensional displacement platform, and different positions of the rock surface were excited by LIBS to obtain the original spectral data. After removing abnormal points, normalization and other pretreatment operations on the collected spectral data, the characteristic spectral lines of five elements (silicon, aluminum, potassium, sodium and magnesium) with large content differences were determined according to the rock mineral composition, and the element fingerprint was obtained. Then, the support vector machine (SVM) was selected as the classifier for classification. The classification model using the spectral mean and the classification model of multi- dimensional fingerprint fusion were established respectively, and the two classification results were compared. The accuracy of traditional classification model based on spectral mean is 59. 4%, while that of multi- dimensional fingerprint fusion model can reach 96.5%. The experimental results show that the element fingerprint shows the element distribution on the rock surface, which can make full use of the heterogeneous structure information of different kinds of rocks, thus greatly improving the classification accuracy of rocks.

    参考文献
    相似文献
    引证文献
引用本文

张蕊,孙兰香,陈彤,王国栋,张鹏,汪为.2020.基于激光诱导击穿光谱技术的岩石表面指纹图谱分析及分类方法[J].地质学报,94(3):991-998.
ZHANG Rui, SUN Lanxiang, CHEN Tong, WANG Guodong, ZHANG Peng, WANG Wei.2020. Fingerprint analysis and classification of rock surface based on laser- induced breakdown spectroscopy[J]. Acta Geologica Sinica,94(3):991-998.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-05-13
  • 最后修改日期:2019-11-10
  • 录用日期:2019-11-11
  • 在线发布日期: 2020-01-07