地热水开发采灌井热突破距离计算影响因素研究——以雄安新区为例
作者:
  • 戴明刚

    戴明刚

    1) 中国石化集团新星石油有限责任公司,北京,100083;2) 中石化新星(北京)新能源有限公司,北京,102206;3) 中石化(北京)新能源技术研究院,北京,102206;4) 国家地热能源开发利用研究及应用技术推广中心,北京,100083;5) 中国石化地热资源开发利用重点实验室, 北京,100083
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

本文为国家重点研发计划“深地资源勘查开采”专项项目(编号2018YFC0604300)和中国石化集团公司科技项目(编号JR22011)联合资助的成果


Analysis on influencing factors for calculation of thermal breakthrough spacing between pumping well and recharging well: A case study in Xiong' an New Area
Author:
  • DAI Minggang

    DAI Minggang

    1) Sinopec Star Petroleum Co.Ltd., Beijing 100083, China;2) Sinopec Star (Beijing) New Energy Co., Ltd, Beijing 102206, China;3) Sinopec (Beijing) New Energy Technology Research Institute, Beijing 102206, China;4) China National Center for Geothermal Energy Development Research and Applied Technology Promotion, Beijing 100083, China;5) Sinopec Key Laboratory of Geothermal Resource Development and Utilization, Beijing 100083, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了拓展Gringarten采灌井热突破安全距离计算公式的适用范围,使该公式计算结果有实用意义,在分析公式特征基础上化简该公式,分类研究计算了表征热储非均质性的热储有效厚度、孔隙度、渗透率等地质参数对简化公式结果的影响差异,并在雄安新区开展初步应用。结果表明:简化公式简洁易算,在热储有效厚度大于90 m或采灌时间小于25生产年时,计算结果与原公式相比差异一般小于2%,最大小于13%;影响结果精度最大参数为热储有效厚度,在公式计算热突破距离结果有意义范围内,即结果相对误差不超过20%时,有效孔隙度因素造成误差一般小于1. 4%,少数极端条件下不超过6%,其余误差由热储有效厚度因素造成,变化相同的倍数,热储有效厚度对热突破井距值的影响比有效孔隙度值的影响大;渗透率的影响蕴涵在有效孔隙度影响中;热储其他地质因素是更次要因素。一般可选用平均热储有效厚度、平均孔隙度作为公式计算参数。在近距离内存在多井情况下,考虑干扰井影响后再等效为对井模型计算,可显著降低误差。在雄安热储有效厚度大都在40~300 m之间的情况下,要保证千年大计,回灌井单井流量长期不大于80 m3/h且采灌井距最好大于1300 m。采灌井热突破距离计算公式,除在热储条件为均质地区应用有效外,还在采灌井处热储有效厚度比在0. 5~2之间的非均质地区具备实用价值,可以在雄安新区及其他符合该条件的地热水规模化开发地区,应用该公式研究井网部署,提供技术参数建议。

    Abstract:

    It is more important to expand the applicability of the Gringarten formula for calculating the safe spacing to prevent thermal breakthrough between pumping and recharging wells, and to ensure the practical utility of the formula' s results. Initially, the formula was simplified by analyzing its characteristics, and the differences in the influence of geological parameters such as the effective thickness, porosity, and permeability of the thermal reservoir, which reflect its heterogeneity, on the simplified formula' s results were studied. Subsequently, a preliminary application of the formula was carried out in the Xiong' an New Area. The results show that the simplified formula is concise and easy to calculate. When the effective thickness of the thermal reservoir is greater than 90 m or the production time is less than 25 years, the calculation results difference between the simplified formula and the original formula is generally less than 2%, and the maximum difference is less than 13%. Effective thickness emerged as the most influential parameter affecting accuracy. Within the formula' s practical range, defined as a relative error below 20%, the error caused by the effective porosity factor remained below 1. 4%, reaching a maximum of 6% only under extreme conditions. Remaining errors are attributed to the effective thickness factor of the thermal reservoir. Changes in the effective thickness of the thermal reservoir have a more pronounced impact on the thermal breakthrough well spacing value than equivalent changes in effective porosity. The influence of permeability is encapsulated within that of effective porosity. Other geological factors of the thermal reservoir are of secondary importance. Generally, the average effective thickness and average porosity of the thermal reservoir can be selected as parameters for the formula' s calculations. In scenarios involving multiple wells in close proximity, accounting for the influence of interfering wells and then equating them to the well model calculation can significantly reduce errors. In the Xiong' an New Area, where the effective thickness of the thermal reservoir predominantly ranges between 40 m and 300 m, it is essential to ensure that the longterm flow rate of a single recharge well does not exceed 80 m3/h, and the spacing between pumping and recharging wells should preferably be more than 1300 m. The simplified formula for calculating the thermal breakthrough well spacing is not only effective in areas with homogeneous thermal reservoir conditions but also holds practical value in heterogeneous areas where the effective thickness ratio of the thermal reservoir at pumping and recharging wells is between 0. 5 and 2. This formula can be applied to study well network deployment and provide technical parameter suggestions in the Xiong' an New Area and other areas that meet the conditions for largescale development of geothermal water.

    参考文献
    相似文献
    引证文献
引用本文

戴明刚.2025.地热水开发采灌井热突破距离计算影响因素研究——以雄安新区为例[J].地质学报,99(4):1409-1426.
DAI Minggang.2025. Analysis on influencing factors for calculation of thermal breakthrough spacing between pumping well and recharging well: A case study in Xiong' an New Area[J]. Acta Geologica Sinica,99(4):1409-1426.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 在线发布日期: 2025-04-27