en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

肖丽芳,女,1992年生。博士,动物学专业。E-mail:xiaolifangjxau@163.com。

通讯作者:

任东,男,1963年生。教授,动物学专业。E-mail:rendong@mail.cnu.edu.cn。

参考文献
Adami-Rodrigues K, Iannuzzi R, Pinto I D. 2004. Permian plant-insect interactions from a Gondwana flora of southern Brazil. Fossils and Strata, 51(51): 106~125.
参考文献
Adams J M, Zhang Y, Basri M, Shukor N. 2009a. Do tropical forest leaves suffer more insect herbivory? a comparison of tropical versus temperate herbivory, estimated from leaf litter. Ecological Research, 24(6): 1381~1392.
参考文献
Adams J M, Zhang Y. 2009b. Is there more insect folivory in warmer temperate climates? a latitudinal comparison of insect folivory in eastern North America. Journal of Ecology, 97(5): 933~940.
参考文献
Adroit B, Girard, V, Kunzmann L, Terral J F, Wappler T. 2018. Plant-insect interactions patterns in three European paleoforests of the Late-Neogene—Early-Quaternary. PeerJ, 6: e5075.
参考文献
Adroit B, Teodoridis V, Güner T H, Denk T. 2021. Patterns of insect damage types reflect complex environmental signal in Miocene forest biomes of Central Europe and the Mediterranean. Global and Planetary Change, 199: 103451.
参考文献
Andruchow-Colombo A, Gandolfo M A, Cúneo N R, Escapa I H. 2022. Ginkgoites villardeseoanii sp. nov. , a ginkgophyte with insect damage from the Upper Cretaceous (Maastrichtian) Lefipán Formation (Chubut, Patagonia, Argentina). Cretaceous Research, 133: 105124.
参考文献
Banerjee M, Bera S. 1998. Record of zoocecidia on leaves of Glossopteris browniana Brongn. from Mohuda Basin, Upper Permian, Indian Lower Gondwana. Indian Biologist, 30: 58~61.
参考文献
Banks H P, Colthart B J. 1993. Plant-animal-fungal interactions in Early Devonian Trimerophytes from Gaspé, Canadal. American Journal of Botany, 80(9): 992~1001.
参考文献
Bashkuev A S. 2011. Nedubroviidae, a new family of Mecoptera: the first Paleozoic long-proboscid scorpionflies. Zootaxa, 2895(1): 47~57.
参考文献
Basinger J, Dilcher D L. 1984. Ancient bisexual flowers. Science, 224(4648): 511~513.
参考文献
Beck A L, Labandeira C C. 1998. Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 142(3-4): 139~173.
参考文献
Beckemeyer R J. 2000. The Permian insect fossils of Elmo, Kansas. Kansas School Naturalist, 16: 1~46.
参考文献
Bergen P F, Collinson M E, Scott A C, de Leeuw J W. 1995. Unusual resin chemistry from Upper Carboniferous pteridosperm resin rodlets. In: Anderson K B, Crelling J C, eds. American Chemical Society Symposium Based on Amber, Resinite and Fossil Resin. American Chemical Society, Washington: ACS Publications, 149~169.
参考文献
Berry E W. 1931. An insect-cut leaf from the Lower Eocoene. American Journal of Science, 21(124): 301~304.
参考文献
Bodnaryk R P. 1992. Distinctive leaf feeding patterns on oilseed rapes and related Brassicaceae by flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Canadian Journal of Plant Science, 72: 575~581.
参考文献
Brooks H K. 1955. Healed wounds and galls on fossil leaves from the Wdcox deposits (Eocene) of western Tennessee. Psyche: A Journal of Entomology, 62(1): 1~9.
参考文献
Cariglino B. 2018. Patterns of insect-mediated damage in a Permian Glossopteris Flora from Patagonia (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology, 507(15): 39~51.
参考文献
Carvalho M R, Wilf P, Barrios H, Windsor D M, Currano E D, Labandeira C C, Jaramillo C A. 2014. Insect leaf-chewing damage tracks herbivore richness in modern and ancient forests. PloS ONE, 9(5): e94950.
参考文献
Carvalho M R, Jaramillo C, de la Parra F, Caballero-Rodríguez D, Herrera F, Wing S, Turner B L, D'ApolitoC, Romero-Báez M, Narváez P, Martínez C, Gutierrez M, Labandeira C, Bayona G, Rueda M, Paez-Reyes M, Cárdenas D, DuqueÁ, Crowley J L, Santos C, Silvestro D. 2021. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science, 372(6537): 63~68.
参考文献
Chen L J, Hou Y M, Yin P F, Wang X. 2020. An edible fruit from the Jurassic of China. China Geology, 3(1): 8~15.
参考文献
Cichan M A, Taylor T N. 1982. Wood-brings in Premnoxylon : plant-animal interactions in the Carboniferous. Palaeogeography, Palaeoclimatology, Palaeoecology, 39(1-2): 123~127.
参考文献
Clapham M E, Karr J A. 2012. Environmental and biotic controls on the evolutionary history of insect body size. Proceedings of the National Academy of Sciences USA, 109: 10927~10930.
参考文献
Coley P D, Barone J A. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27(1): 305~335.
参考文献
Correia P, Bashforth A R, Š im ů nek Z, Cleal C J, Artur A Sá, Labandeira C C. 2020. The history of herbivory on sphenophytes: a new calamitalean with an insect gall from the Upper Pennsylvanian of Portugal and a review of arthropod herbivory on an ancient lineage. International Journal of Plant Sciences, 181(4): 387~418.
参考文献
Currano E D, Wilf P, Wing S L, Labandeira C C, Lovelock E C, Royer D L. 2008. Sharply increased insect herbivory during the Paleocene-Eocene thermal maximum. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 1960~1964.
参考文献
Currano E D, Labandeira C C, Wilf P. 2010. Fossil insect folivory tracks paleotemperature for six million years. Ecological Monographs, 80(4): 547~567.
参考文献
Currano E D, Laker R, Flynn A G, Fogt K K, Stradtman H, Wing S L. 2016. Consequences of elevated temperature and pCO2 on insect folivory at the ecosystem level: perspectives from the fossil record. Ecology and Evolution, 6(13): 4318~4331.
参考文献
Currano E D, Pinheiro E R S, Buchwaldt R, William C, Miller Ian M. 2019. Endemism in Wyoming plant and insect herbivore communities during the Early Eocene hothouse. Paleobiology, 45 (3): 421~439.
参考文献
Currano E D, Azevedo-Schmidt L E, Maccracken S A, Swain A. 2021a. Scars on fossil leaves: an exploration of ecological patterns in plant-insect herbivore associations during the age of Angiosperms. Palaeogeography, Palaeoclimatology, Palaeoecology, 582: 110636.
参考文献
Currano E D, Jacobs B F. 2021b. Bug-bitten leaves from the early Miocene of Ethiopia elucidate the impacts of plant nutrient concentrations and climate on insect herbivore communities. Global and Planetary Change, 207: 103655.
参考文献
de Souza Pinheiro E R, Iannuzzi R, Tybusch G P. 2012. Specificity of leaf damage in the Permian “Glossopteris Flora”: a quantitative approach. Review of Palaeobotany and Palynology, 174(15): 113~121.
参考文献
Deng W, Su T, Wappler T, Liu J, Li S, Huang J, Tang H, Low S L, Wang T X, Xu H, Xu X T, Liu P, Zhou, Z. 2020. Sharp changes in plant diversity and plant-herbivore interactions during the Eocene—Oligocene transition on the southeastern Qinghai-Tibetan Plateau. Global and Planetary Change, 194, 103293.
参考文献
Dilcher D L. 1963. Eocene epiphyllous fungi. Science, 142(3593): 667~669.
参考文献
Dilcher D L. 1965. Epiphyllous fungi from Eocene deposits in western Tennessee, USA. Palaeontographica Abteilung B, 116: 1~54.
参考文献
Ding Q L, Labandeira C C, Ren D. 2014. Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of northeastern China and the leaf-mining biology of possible insect culprit clades. Arthropod Systematics and Phylogeny, 72(3): 281~308.
参考文献
Ding Q L, Labandeira C C, Meng Q, Ren D. 2015. Insect herbivory, plant-host specialization and tissue partitioning on mid Mesozoic broadleaved conifers of northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 440(15): 259~273.
参考文献
Dong Junling. 2019. The Miocene plant fossils, paleoatmospheric CO2 and plant-insect interations from Fujian Province. Doctoral dissertation of Lanzhou University (in Chinese with English abstract).
参考文献
Donovan M P, Wilf P, Labandeira C C, Johnson K R, Peppe D J. 2014. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains, USA. PloS ONE, 9(7): 1~35.
参考文献
Donovan M P, Iglesias A, Wilf P, Labandeira C C, Cúneo N R. 2016. Rapid recovery of Patagonian plant-insect associations after the end-Cretaceous extinction. Nature Ecology & Evolution, 1(1): 1~5.
参考文献
Donovan M P, Iglesias A, Wilf P, Labandeira C C, Cúneo N R. 2018. Diverse plant-insect associations from the latest Cretaceous and Early Paleocene of Patagonia, Argentina. Ameghiniana, 55(3): 303~338.
参考文献
Dos Santos T B, Pinheiro E R S, Iannuzzi R. 2020. First evidence of seed predation by arthropods from Gondwana and its Early Paleozoic history (Rio Bonito Formation, Paraná Basin, Brazil). Palaios, 35(7): 292~301.
参考文献
Duncan I J. 1997. The taphonomy of insects. Doctoral dissertation of University of Bristol, UK, 1~328.
参考文献
Dunn M T, Rothwell G W, Mapes G. 2003. On Paleozoic plants from marine strata: Trivena arkansana (Lyginopteridaceae) gen. et sp. nov. , a lyginopterid from the Fayetteville Formation (middle Chesterian/Upper Mississippian) of Arkansas, USA. American Journal of Botany, 90(8): 1239~1252.
参考文献
Dunne J A, Labandeira C C, Williams R J. 2014. Highly resolved Early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proceedings of the Royal Society B: Biological Sciences, 281(1782): 20133280.
参考文献
Edwards D. 1996. New insights into early land ecosystems: a glimpse of a Lilliputian world. Review of Palaeobotany and Palynology, 90(3-4): 159~174.
参考文献
Enushchenko I V, Frolov А O. 2020. Revision of existing classification of fossil insect feeding traces and description of new ichnotaxa from Middle Jurassic sediments of Eastern Siberia (Russia). Zootaxa, 4758(2): 347~359.
参考文献
Fang H, Labandeira C C, Ma Y M, Zheng B Y, Ren D, Wei X L, Liu J X, Wang Y. 2020. Lichen mimesis in Mid-Mesozoic lacewings. Elife, 9: e59007.
参考文献
Feng Z, Su T, Yang J Y, Chen Y X, Wei H B, Dai J, Guo Y, Liu J R, Ding J H. 2014. Evidence for insect-mediated skeletonization on an extant fern family from the Upper Triassic of China. Geology, 42(5): 407~410.
参考文献
Feng Z, Wang J, Röβler R, Slipinski A, Labandeira C C. 2017. Late Permian wood-borings reveal an intricate network of ecological relationships. Nature Communications, 8(1): 1~6.
参考文献
Fernandes G W, Santos J C. 2014. NeotropicalInsect Galls. New York: Springer, 1~550.
参考文献
Fernández J A, Chiesa J O. 2020. Plant-insect interactions in the fossil flora of the Bajo de Veliz Formation (Gzhelian-Asselian): San Luis, Argentina. Ichnos, 27(2): 156~166.
参考文献
Filho E B S, Adami-Rodrigues K, Lima F J, Bantim R A M, Wappler T, Saraiva A Á F. 2019. Evidence of plant-insect interaction in the Early Cretaceous flora from the Crato Formation, Araripe basin, Northeast Brazil. Historical Biology, 31(7): 926~937.
参考文献
Fisk L H, Fritz W J. 1984 Pseudoborings in petrified wood from the Yellowstone “fossil forests”. Journal of Paleontology, 58(1): 58~62.
参考文献
Fürstenberg-Hägg J, Zagrobelny M, Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences, 14(5): 10242~10297.
参考文献
Gallego J, Cúneo R, Escapa I. 2014. Plant-arthropod interactions in gymnosperm leaves from the Early Permian of Patagonia, Argentina. Geobios, 47(3): 101~110.
参考文献
Gangwere S K. 1966. Relationships between the mandibles, feeding behavior, and damage inflicted on plants by the feeding of certain acridids (Orthoptera). Michigan Entomologist, 1(1): 13~16.
参考文献
Gao T P, Shih C K, Xu X, Wang S, Ren D. 2012. Mid-Mesozoic flea-like ectoparasites of feathered or haired vertebrates. Current Biology, 22(8): 732~735.
参考文献
Gao T P, Shih C K, Rasnitsyn A P, Xu X, Wang S, Ren D. 2014. The first flea with fully distended abdomen from the Early Cretaceous of China. BMC Evolutionary Biology, 14(1): 1~7.
参考文献
Gao T P, Shih C K, Ren D. 2021. Behaviors and interactions of insects in Mid-Mesozoic ecosystems of northeastern China. Annual Review of Entomology, 66: 337~354.
参考文献
Gaston K J, Spicer J I. 2004. Biodiversity: An Introduction. 2nd Edition. Massachusetts: Blackwell Publishers.
参考文献
Giraldo L A, Labandeira C C, Herrera F, Carvalho M. 2021. Rich and specialized plant-insect associations in a Middle-Late Paleocene (58~60 Ma) neotropical rainforest (Bogotá Formation, Colombia). Ameghiniana, 58(2): 75~99.
参考文献
Gnaedinger S C, Adami-Rodrigues K, Gallego O F. 2014. Endophytic oviposition on leaves from the Late Triassic of northern Chile: ichnotaxonomic, palaeobiogeographic and palaeoenvironment considerations. Geobios, 47(4): 221~236.
参考文献
Grimaldi D A. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden, 86(2): 373~406.
参考文献
Grimaldi D A, Engel M S. 2005. Evolution of the Insects. UK, Cambridge: Cambridge University Press, 1~772.
参考文献
Habgood K S, Hass H, Kerp H. 2003. Evidence for an early terrestrial food web: coprolites from the Early Devonian Rhynie chert. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 94(4): 371~389.
参考文献
Han G, Liu Z, Liu X, Mao L, Jacques F M B, Wang X, 2016. A whole plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geologica Sinica (English Edition), 90(1): 19~29.
参考文献
Hazra T, Adroit B, Hazra M, Spicer R A, Spicer T E, Bera S, Khan M A. 2021. New discovery of rare insect damage in the Pliocene of India reinforces the biogeographic history of Eurasian ecosystems. Review of Palaeobotany and Palynology, 298: 104589.
参考文献
Heron H D C. 2003. Tortoise beetles (Chrysomelidae: Cassidinae) and their feeding patterns from the North Park Nature Reserve, Durban, KwaZulu-Natal, South Africa. Durban Museum Novitates, 28(1): 31~44.
参考文献
Hochuli P A, Vigran J O. 2010. Climate variations in the Boreal Triassic—inferred from palynological records from the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 20~42.
参考文献
Hu S S, Dilcher D L, Jarzen M J, Taylor D W. 2008. Early steps of angiosperm pollinator coevolution. Proceedings of the National Academy of Sciences of the United States of America, 105(1): 240~245.
参考文献
Iannuzzi R, Labandeira C C. 2008. The oldest record of external foliage feeding and the expansion of insect folivory on land. Annals of the Entomological Society of America, 101(1): 79~94.
参考文献
Imada Y, Oyama N, Shinoda K, Takahashi H, Yukawa H. 2022. Oldest leaf mine trace fossil from East Asia provides insight into ancient nutritional flow in a plant-herbivore interaction. Scientific Reports, 12(1): 1~12.
参考文献
Jennings J R. 1974. Lower Pennsylvanian plants of Illinois. I: a flora from the Pounds Sandstone Member of the Caseyville Formation. Journal of Paleontology, 48(3): 459~473.
参考文献
Kergoat G J, Condamine F L, Toussaint E F A, Capdevielle-Dulac C, Clamens A L, Barbut J, Goldstein P Z, Le Ru B. 2018. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nature Communications, 9(1): 1~9.
参考文献
Khan M A, Spicer R A, Spicer T E V, Bera S. 2014. Fossil evidence of insect folivory in the eastern Himalayan Neogene Siwalik forests. Palaeogeography, Palaeoclimatology, Palaeoecology, 410(15): 264~277.
参考文献
Khan M A, Bera S, Spicer R A, Spicer T E. 2015. Plant-arthropod associations from the Siwalik forests (Middle Miocene) of Darjeeling sub-Himalaya, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 438(15): 191~202.
参考文献
Knor S, Prokop J, Kvaček Z, Janovský Z, Wappler T. 2012. Plant-arthropod associations from the Early Miocene of the Most Basin in North Bohemia—palaeoecological and palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 321: 102~112.
参考文献
Krassilov V, Silantieva N, Hellmund M, Hellmund W. 2007. Insect egg sets on angiosperm leaves from the Lower Cretaceous of Negev, Israel. Cretaceous Research, 28(5): 803~811.
参考文献
Krassilov V A, Rasnitsyn A P. 2008. Plant-arthropod Interactions in the Early Angiosperm History: Evidence from the Cretaceous of Israel. Moscow, Sofia: Pensoft Publishers, 1~229.
参考文献
Krings M, Taylor T N, Kellogg D W. 2002. Touch-sensitive glandular trichomes: a mode of defence against herbivorous arthropods in the Carboniferous. Evolutionary Ecology Research, 4: 779~786.
参考文献
Kunzmann L, Moraweck K, Müller C, Schröder I, Wappler T, Grein M, Roth-Nebelsick A. 2019. A Paleogene leaf flora (Profen, Sachsen-Anhalt, Germany) and its potentials for palaeoecological and palaeoclimate reconstructions. Flora, 254: 71~87.
参考文献
Labandeira C C. 1986. Mouthpart design and basic ways that insects have partitioned recent food resource: implication for the macroevolutionary history of a morphologically diverse group. Geological Society of America, Abstracts with Programs, 18(6): 663.
参考文献
Labandeira C C. 1990. Rethinking the diets of Carboniferous terrestrial arthropods: evidence for a nexus of arthropod/vascular plant interactions. Geological Society of America Abstract Programs, 22(7): A265.
参考文献
Labandeira C C. 1997. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics, 28: 153~193.
参考文献
Labandeira C C. 1998a. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences, 26: 329~377.
参考文献
Labandeira C C. 1998b. The role of insect in Late Jurassic Middle Cretaceous ecoststems. Lower and Middle Cretaceous Terrestrial Ecosystems: Bulletin 14(1): 105~124.
参考文献
Labandeira C C. 1998c. Plant-insect associations from the fossil record. Geotimes, 43(9): 18~24.
参考文献
Labandeira C C. 1999. Insects and other hexapods. In: Singer R, ed. Encyclopedia of Paleontology. London: Fitzroy-Dearborn Publishers, 603~624.
参考文献
Labandeira C C. 2001. The rise and diversification of insects. In: Briggs D E G, Crowther P R, eds. Palaeobiology II. UK, Oxford: Blackwell Science Publishers, 82~88.
参考文献
Labandeira C C. 2002a. The history of associations between plants and animals. In: Herrera C M, Pellmyr O M, eds. Plant-Animal Interactions: An Evolutionary Approach. Oxford, UK, Malden, MA: Blackwell Science.
参考文献
Labandeira C C. 2002b. Plant-insect associations from Middle Eocene floras of the Pacific Northwest: a preliminary report. Rocky Mountain Geology, 37: 31~59.
参考文献
Labandeira C C. 2002c. The paleobiology of predators, parasitoids, and parasites: accommodation and death in the fossil record of terrestrial invertebrates. In: Kowalewski M, Kelley P H, eds. The Fossil Record of Predation. Cambridge: Paleontological Society Publisher, 8: 211~250.
参考文献
Labandeira C C. 2006a. The four phases of plant-arthropod associations in deep time. Geologica Acta, 4(4): 409~438.
参考文献
Labandeira C C. 2006b. Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Systematics & Phylogeny, 64(1): 53~94.
参考文献
Labandeira C C. 2007. The origin of herbivory on land: initial patterns of plan tissue consumption by arthropods. Insect Science, 14(4): 259~275.
参考文献
Labandeira C C. 2011. Evidence for an earliest Late Carboniferous divergence time and the early larval ecology and diversification of major Holometabola lineages. Entomologica Americana, 117(1): 9~21.
参考文献
Labandeira C C. 2013a. A paleobiologic perspective on plant-insect interactions. Current Opinion in Plant Biology, 16(4): 414~421.
参考文献
Labandeira C C. 2013b. Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften, 100(4): 355~364.
参考文献
Labandeira C C. 2014a. Amber. In: Laflamme M, Schiffbauer J D, Darroch S A F, eds. Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. Ithaca: Paleontological Society.
参考文献
Labandeira C C. 2014b. Why did terrestrial insect diversity not increase during the angiosperm radiation? Mid-Mesozoic, plant-associated insect lineages harbor clues. In: Pontarotti P, ed. Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. Switzerland: Springer, 261~299.
参考文献
Labandeira C C. 2018. The fossil history of insect diversity. In: Foottit R G, Adler P H, eds. Insect Biodiversity: Science and Society. New York: John Wiley & Sons Ltd. , 2: 723~788.
参考文献
Labandeira C C. 2019. Thefossil record of insect mouthparts: innovation, functional convergence, and associations with other organisms. In: Krenn H W, ed. Insect Mouthparts Zoological Monographs 5. Switzerland: Springer, 567~671.
参考文献
Labandeira C C. 2021. Ecology andevolution of gall-inducing arthropods: the pattern from the terrestrial fossil record. Frontiers in Ecology and Evolution, 9(303): 1~30.
参考文献
Labandeira C C, Beall B S, Hueber F M. 1988. Early insect diversification: evidence from a Lower Devonian bristletail from Québec. Science, 242(4880): 913~916.
参考文献
Labandeira C C, Sepkoski J J. 1993. Insect diversity in the fossil record. Science, 261(5119): 310~315.
参考文献
Labandeira C C, Dilcher D L, Davis D R, Wagner D L. 1994. Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. Proceedings of the National Academy of Sciences USA, 91(25): 12278~12282.
参考文献
Labandeira C C, Phillips T L. 1996a. Insect fluid-feeding on Upper Pennsylvanian tree ferns (Palaeodictyoptera, Marattiales) and the early history of the piercing-and-sucking functional feeding group. Annals of the Entomological Society of America, 89(2): 157~183.
参考文献
Labandeira C C, Phillips T L. 1996b. A Carboniferous petiole gall: insight into early ecologic history of the Holometabola. Proceedings of the National Academy of Sciences USA, 93: 8470~8474.
参考文献
Labandeira C C, Phillips T L, Norton R A. 1997. Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12(4): 319~353.
参考文献
Labandeira C C, Smith D M. 1999. Forging a future for fossil insects: thoughts on the First International Congress of Paleoentomology. Paleobiology, 25(2): 154~157.
参考文献
Labandeira C C, Johnson K R, Lang P. 2002a. Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: major extinction and minimum rebound. In: Hartman J H, Johnson K R, Nichols D J, eds. The Hell Creek Formation of the Northern Great Plains. Washington DC: Geological Society of America Special Paper, 361: 297~327.
参考文献
Labandeira C C, Johnson K R, Wilf P. 2002b. Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences USA, 99(4): 2061~2066.
参考文献
Labandeira C C, Phillips T L. 2002c. Stem borings and petiole galls from Pennsylvanian tree ferns of Illinois, USA: implications for the origin of the borer and galler functional-feeding-groups and holometabolous insects. Palaeontographica (A), 264(1): 1~84.
参考文献
Labandeira C C, Allen E G. 2007a. Minimal insect herbivory for the Lower Permian Coprolite Bone Bed site of north-central Texas, USA, and comparison to other Late Paleozoic Floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3-4): 197~210.
参考文献
Labandeira C C, Wilf P, Johnson K R, Marsh F. 2007b. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils (version 3. 0). Smithsonian Institution (http: // paleobiology. si. edu/pdfs/insect Damage Guide 3. 01. pdf).
参考文献
Labandeira C C, Currano E D. 2013. The fossil record of plant-insect dynamics. Annual Review of Earth and Planetary Sciences, 41(1): 287~311.
参考文献
Labandeira C C, Prevec R. 2014a. Plant paleopathology and the roles of pathogens and insects. International Journal of Paleopathology, 4: 1~16.
参考文献
Labandeira C C, Tremblay S L, Bartowski K E, VanAller H L. 2014b. Middle Devonian liverwort herbivory and antiherbivore defence. New Phytologist, 202(1): 247~258.
参考文献
Labandeira C C, Kustatscher E, Wappler T. 2016a. Floral assemblages and patterns of herbivory during the Permian to Triassic of Northeastern Italy. PLoS ONE, 11(11): e0165205.
参考文献
Labandeira C C, Yang Q, Santiago-Blay J A, Hotton C L, Monteiro A, Wang Y J, Goreva Y L, Shih C K, Sijeström S, Rose T R, Dilcher D L, Ren D. 2016b. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proceedings of the Royal Society B: Biological Sciences, 283(1824): 20152893.
参考文献
Labandeira C C, Anderson J M, Anderson H M. 2018. Expansion of arthropod herbivory in Late Triassic south Africa: the Molteno biota, Aasvoëlberg 411 site and developmental biology of a gall. (Chapter 14). In: Tanner L H, ed. The Late Triassic World: Earth in a Time of Transition. Switzerland: Springer, 1~805.
参考文献
Labandeira C C, Li L F. 2021. The history of insect parasitism and the Mid-Mesozoic Parasitoid Revolution. In: Baets K De, Huntley J, eds. The Evolution and Fossil Record of Parasitism—Identification and Macroevolution of Parasites. Switzerland: Springer, 377~533.
参考文献
Li Q, Deng W, Wappler T, Utescher T, Maslova N, Liu Y C, Jia H, Song C Y, Su T, Quan C. 2022. High frequency of arthropod herbivore damage in the Miocene Huaitoutala flora from the Qaidam basin, northern Tibetan Plateau. Review of Palaeobotany and Palynology, 297: 104569.
参考文献
Lin X D, Labandeira C C, Ding Q L, Meng Q M, Ren D. 2019a. Exploiting nondietary resources in deep time: Patterns of oviposition on Mid-Mesozoic plants from northeastern China. International Journal of Plant Sciences, 180(5): 411~457.
参考文献
Lin X D, Shih C, Li S, Ren D. 2019b. Mecoptera-Scorpionflies and hangingflies. In: Ren D, Shih C K, Gao T P, Yao Y Z, Wang Y J, eds. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China. New York: John Wiley & Sons Ltd. , 555~595.
参考文献
Liu H Y, Wei H B, Chen J, Guo Y, Zhou Y, Gou X D, Yang S L, Labandeira C C, Feng Z. 2020. A latitudinal gradient of plant-insect interactions during the Late Permian in terrestrial ecosystems? new evidence from Southwest China. Global and Planetary Change, 192: 103248.
参考文献
Ma F J, Ling C C, Ou-Yang M S, Yang G M, Shen X P, Wang Q J. 2020. Plant-insect interactions from the Miocene (Burdigalian-Langhian) of Jiangxi, China. Review of Palaeobotany and Palynology, 275: 104176.
参考文献
Maccracken S A, Miller I M, Labandeira C C. 2019. Late Cretaceous domatia reveal the antiquity of plant-mite mutualisms in flowering plants. Biology Letters, 15(11): 20190657.
参考文献
Maccracken S A, Labandeira C C. 2020. The Middle Permian South Ash Pasture assemblage of north-central Texas: coniferophyte and gigantopterid herbivory and longer-term herbivory trends. International Journal of Plant Sciences, 181(3): 342~362.
参考文献
Maccracken S A, Sohn J C, Miller I M, Labandeira C C. 2021. A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: Lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. Journal of Systematic Palaeontology, 19(2): 131~144.
参考文献
Maccracken S A, Miller I M, Johnson K R, Sertich J M, Labandeira C C. 2022. Insect herbivory onCatula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA). Plos ONE, 17(1): e0261397.
参考文献
Manchester S R, Dilcher D L, Judd W S, Corder B, Basinger J F. 2018. Early Eudicot flower and fruit: Dakotanthus gen. nov. from the Cretaceous Dakota Formation of Kansas and Nebraska, USA. Acta Palaeobotany, 58(1): 27~40.
参考文献
McCall A C, Irwin R E. 2006. Florivory: the intersection of pollination and herbivory. EcologyLetters, 9(12): 1351~1365.
参考文献
McCoy V E, Gee C T, Michalski J M, Wings O. 2022. Oldest fossil evidence of latex sabotaging behavior by herbivorous insects. Review of Palaeobotany and Palynology, 300: 104631.
参考文献
McDonald C M. 2009. Herbivory in Antartic fossil forests and comparisons with modern analogues in Chile. Doctoral thesis of University of Leeds.
参考文献
McLoughlin S, Martin S K, Beattie R. 2015. The record of Australian Jurassic plant-arthropod interactions. Gondwana Research, 27(3): 940~959.
参考文献
Meng Q M, Ding Q L, Labandeira C C, Ren D. 2017. The natural history of oviposition on a ginkgophyte fruit from the Middle Jurassic of northeastern China. Insect Science, 26(1): 171~179.
参考文献
Möller A L, Kaulfuss U, Lee D E, Wappler T. 2017. High richness of insect herbivory from the Early Miocene Hindon Maar crater, Otago, New Zealand. PeerJ, 5: e2985.
参考文献
Moreno-Domínguez R, Maccracken S A, Santos A A, Wappler T. 2022. Plant-insect interactions from the Late Oligocene of Spain (La Val fossil site, Estadilla, Huesca) and their palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 586: 110782.
参考文献
Müller C, Wappler T, Kunzmann L. 2018. Insect herbivory patterns in Late Eocene coastal lowland riparian associations from central Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 491: 170~184.
参考文献
Na Y L, Sun C L, Wang H S, Dilcher D L, Li Y F, Li T. 2017. A brief introduction to the Middle Jurassic Daohugou Flora from Inner Mongolia, China. Review of Palaeobotany and Palynology, 247: 53~67.
参考文献
Na Y L, Sun C L, Wang H S, Dilcher D L, Yang Z Y, Li T, Li Y F. 2018. Insect herbivory and plant defense on ginkgoalean and bennettitalean leaves of the Middle Jurassic Daohugou Flora from Northeast China and their paleoclimatic implications. Palaeoworld, 27(2): 202~210.
参考文献
Poinar G O, Chambers K L, Buckley R. 2008. An Early Cretaceous angiosperm fossil of possible significance in rosid floral diversification. Journal of the Botanical Research Institute of Texas, 2(2): 1183~1192.
参考文献
Poinar G O, Chambers K L, Wunderlich J. 2013. Micropetasos, A new genus of angiosperms from Mid-Cretaceous Burmese amber. Journal of the Botanical Research Institute of Texas, 7(2): 745~750.
参考文献
Poinar G O, Buckley R, Chen H. 2016. A primitive Mid-cretaceous angiosperm flower, antiquifloris latifibris Gen. & Sp. Nov. , in Myanmar amber. Journal of the Botanical Research Institute of Texas, 10(1): 155~162.
参考文献
Poinar G O, Chambers K L. 2017. Tropidogyne pentaptera sp. nov. , a new Mid-Cretaceous fossil angiosperm flower in Burmese amber. Palaeodiversity, 10(1): 134~140.
参考文献
Poinar G O, Chambers K L. 2018a. Fossil flowers of Lachnociona camptostylus sp. Nov. , a second record for the genus in Mid-Cretaceous Myanmar amber. Journal of the Botanical Research Institute of Texas, 12(2): 655~666.
参考文献
Poinar G O, Chambers K L. 2018b. Endobeuthos paleosum GEN. et SP. NOV. , fossil flowers of uncertain affinity from Mid-cretaceouS Myanmar amber. Journal of the Botanical Research Institute of Texas, 12(1): 133~139.
参考文献
Poinar G O, Chambers K L, 2018c. Setitheca lativalva gen. Et sp. Nov. , a fossil flower of laurales from Mid-Cretaceous Myanmar amber. Journal of the Botanical Research Institute of Texas, 12(2): 643~653.
参考文献
Poinar G O, Chambers K L. 2020. Phantophlebia dicycla gen. et sp. nov. , a five-merous fossil flower in Mid-Cretaceous Myanmar amber. Journal of the Botanical Research Institute of Texas, 14(1): 73~80.
参考文献
Popa M E, Zaharia A. 2011. Early Jurassic ovipositories on bennettitalean leaves from Romania. Acta Palaeontologica Romaniae, 7: 285~290.
参考文献
Pott C, McLoughlin S, Wu S Q, Friis E M. 2012. Trichomes on the leaves of Anomozamites villosus sp. nov. (Bennettitales) from the Daohugou beds (Middle Jurassic), Inner Mongolia, China: mechanical defense against herbivorous arthropods? Review of Palaeobotany and Palynology, 169: 48~60.
参考文献
Prevec R, Labandeira C C, Neveling J, Gastaldo R A, Looy C V, Bamford M. 2009. Portrait of a Gondwanan ecosystem: a new Late Permian fossil locality from KwaZulu-Natal, South Africa. Review of Palaeobotany and Palynology, 156(3-4): 454~493.
参考文献
Reichgelt T, Jones W A, Jones D T, Conran J G, Lee D E. 2016. Diverse and abundant insect herbivory on Miocene Nothofagaceae of the Dunedin Volcano, Otago, New Zealand. Palaeobio Palaeoenv, 96(2): 265~279.
参考文献
R Core Team. 2018. R: a language and environment for statistical computing. Vienna: the R Foundation for Statistical Computing. Available at https: //www. r-project. org/.
参考文献
Ren D. 1998. Flower-associated Brachycera flies as fossil evidence for Jurassic angiosperm origins. Science, 280(5360): 85~88.
参考文献
Ren D, Labandeira C C, Santiago-Blay J A, Rasnitsyn A, Shih C K, Bashkuev A, Logan M A, Hotton C L, Dilcher D L. 2009. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science, 326(5954): 840~847.
参考文献
Ren D, Shih C K, Gao T P, Wang Y J, Yao Y Z. 2019. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China. New York: John Wiley & Sons Ltd. , 1~723.
参考文献
Robledo J M, Pinheiro E R, Gnaedinger S C, Wappler T. 2018. Plant-insect interactions on dicots and ferns from the Miocene of Argentina. Palaios, 33(7): 338~352.
参考文献
Rong Jiayu, Yuan Xunlai, Zhan Renbin, Deng Tao. 2018. Evolution of Biology and Environment. Hefei: University of Science and Technology of China Press, 1~421 (in Chinese).
参考文献
Royer D L, Sack L, Wilf P, Lusk C H, Jordan G J, Niinemets Ü, Wright I J, Westoby M, Cariglino B, Coley P D, Cutter A D, Johnson K R, Labandeira C C, Moles A T, Palmer M B, Valladares F. 2007. Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 33(4): 574~589.
参考文献
Santos A, Sender L M, Wappler T, Engel M S, Diez J B. 2021. A Robinson Crusoe story in the fossil record: plant-insect interactions from a Middle Jurassic ephemeral volcanic island (Eastern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 583: 110655.
参考文献
Santos A, Hernández-Orúe A, Wappler T, Diez J B. 2022. Plant-insect interactions from the Late Pennsylvanian of the Iberian Peninsula (León, northern Spain). Review of Palaeobotany and Palynology, 301: 104658.
参考文献
Sarzetti L C, Labandeira C C, Genise J F. 2008. A leafcutter bee trace fossil from the Middle Eocene of Patagonia, Argentina, and a review of megachilid (Hymenoptera) ichnology. Palaeontology, 51(4): 933~941.
参考文献
Schachat S R, Labandeira C C, Gordon J, Chaney D, Levi S, Halthore M N, Alvarez J. 2014. Plant-insect interactions from early Permian (Kungurian) Colwell Creek Pond, north-central Texas: the early spread of herbivory in riparian environments. International Journal of Plant Sciences, 175(8): 855~890.
参考文献
Schachat S R, Labandeira C C. 2015a. Evolution of a complex behavior in early ecosystems: the origin and initial diversification of foliar galling by insects during the Permian Period. The Science of Nature, 102: 1~14.
参考文献
Schachat S R, Labandeira C C, Chaney D S. 2015b. Insect herbivory from early Permian Mitchell Creek Flats of north-central Texas: opportunism in a balanced component community. Palaeogeography, Palaeoclimatology, Palaeoecology, 440(1): 830~847.
参考文献
Schachat S R, Labandeira C C, Maccracken S A. 2018. The importance of sampling standardization for comparisons of insect herbivory in deep time: a case study from the Late Palaeozoic. Royal Society Open Science, 5(3): 171991.
参考文献
Schachat S R, Maccracken S A, Labandeira C C. 2020. Sampling fossil floras for the study of insect herbivory: how many leaves is enough?. Mitteilungen aus dem Museum für Naturkunde in Berlin. Fossil Record, 23(1): 15~32.
参考文献
Schachat S R, Payne J L, Boyce C K. 2021. Linking host plants to damage types in the fossil record of insect herbivory. https: //www. biorxiv. org/.
参考文献
Schachat S R, Payne J L, Boyce C K, Labandeira C C. 2022. Generating and testing hypotheses about the fossil record of insect herbivory with a theoretical ecospace. Review of Palaeobotany and Palynology, 297: 104564.
参考文献
Schmidt L E A, Dunn R E, Mercer J, Dechesne M, Currano E D. 2019. Plant and insect herbivore community variation across the Paleocene-Eocene boundary in the Hanna basin, southeastern Wyoming. PeerJ, 7: e7798.
参考文献
Schoonhoven L M, Van Loon B, van Loon J J A, Dicke M. 2005. Insect-Plant Biology. 2nd Edition. Demand: Oxford University Press, 1~421.
参考文献
Shi G L, Herrera F, Herendeen P S, Clark E G, Crane P R. 2021. Mesozoic cupules and the origin of the angiosperm second integument. Nature, 594(7862): 223~226.
参考文献
Skog J E, Dilcher D L. 1994. Lower vascular plants of the Dakota Formation in Kansas and Nebraska, USA. Review of Palaeobotany and Palynology, 80(1): 1~18.
参考文献
Smith D M, Marcot J D. 2015. The fossil record and macroevolutionary history of the beetles. Proceedings of the Royal Society of London B, 282(1805): 20150060.
参考文献
Sohn J C, Labandeira C C, Davis D R. 2015. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evolutionary Biology, 15(1): 1~12.
参考文献
Srivastava A K. 1987. Lower Barakar flora of Raniganj Coalfield and insect-plant relationship. Palaeobotanist, 36: 138~142.
参考文献
Stephenson J, Scott A C. 1992. The geological history of insect-related plant damage. Terra Nova, 4(5): 542~552.
参考文献
Stiles E, Wilf P, Iglesias A, Gandolfo M A, Cúneo N R. 2020. Cretaceous-Paleogene plant extinction and recovery in Patagonia. Paleobiology, 46(4): 445~469.
参考文献
Strömberg C A E. 2011. Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39: 517~544.
参考文献
Su T, Adams J M, Wappler T, Huang Y J, Jacques F M, Liu Y S C, Zhou Z K. 2015. Resilience of plant-insect interactions in an oak lineage through Quaternary climate change. Paleobiology, 41(1): 174~186.
参考文献
Sun C L, Na Y L, Dilcher D L, Wang H S, Li T, Li Y F. 2015. Anew species of Phoenicopsis subgenus Windwardia (Florin) Samylina (Czekanowskiales) from the Middle Jurassic of Inner Mongolia, China. Acta Geologica Sinica (English Edition), 89(1): 55~69.
参考文献
Sun G, Dilcher D L, Zheng S L, Zhou Z. 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science, 282(5394): 1692~1695.
参考文献
Sun G, Zheng S L, Dilcher D. 2001. Early Angiosperms and Associated Flora in Western Liaoning. Shanghai: Shanghai Science and Technology Education Press, 1~227 (in Chinese).
参考文献
Sun G, Ji Q, Dilcher D L, Zheng S L, Nixon K C, Wang X F. 2002. Archaefructaceae, a new Basal angiosperm family. Science, 296(5569): 899~904.
参考文献
Swain A, Maccracken S A, Fagan W F, Labandeira C C. 2021. Understanding the ecology of host plant-insect herbivore interactions in the fossil record through bipartite networks. Paleobiology, 1~22.
参考文献
Taylor T N, Osborn J M. 1996. The importance of fungi in shaping the paleoecosystem. Review of Palaeobotany and Palynology, 90(34): 249~262.
参考文献
Turcotte M M, Davies T J, Thomsen C J, Johnson M T. 2014. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants. Proceedings of the Royal Society B: Biological Sciences, 281(1787): 20140555.
参考文献
Upchurch G R, Dilcher D L. 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, southeastern Nebraska. Denver Department of the Interior U. S. Geological Survey Bulletin, 1915: 1~55.
参考文献
Vasilenko D V. 2008. Insect ovipositions on aquatic plant leaves Quereuxia from the Upper Cretaceous of the Amur region. Paleontological Journal, 42(5): 514~521.
参考文献
Walker J, Peet R K. 1984. Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina. Vegetatio, 55(3): 163~179.
参考文献
Wang X, Ding Q L, Santos A A, Wappler T. 2021. Nilssoniopteris longifolius Chang from the Middle-Late Jurassic of China: implications for Bennettitales-insect interactions. Review of Palaeobotany and Palynology, 297: 104582.
参考文献
Wang Y J, Ren D, Liu Z Q, Engel M S. 2010. Bellinymphia filicifolia, in Ancient pinnate leaf mimesis among lacewings. Proceedings of the National Academy of Sciences, 107(37): 16212~16215.
参考文献
Wang Y J, Labandeira C C, Shih C, Ding Q L, Wang C, Yao Y Z, Ren D. 2012. Jurassic mimicry between a hangingfly and a ginkgo from China. Proceedings of the National Academy of Sciences, 109(50): 20514~20519.
参考文献
Wappler T. 2010. Insect herbivory close to the Oligocene-Miocene transition—a quantitative analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(3-4): 540~550.
参考文献
Wappler T, Currano E D, Wilf P, Rust J, Labandeira C C. 2009. No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverseMiddle Palaeocene plants, Menat, France. Proceedings of the Royal Society B: Biological Sciences, 276(1677): 4271~4277.
参考文献
Wappler T, Denk T. 2011. Herbivory in early Tertiary Arctic forests. Palaeogeography, Palaeoclimatology, Palaeoecology, 310(3-4): 283~295.
参考文献
Wappler T, Labandeira C C, Rust J, Frankenhauser H, Wilde V. 2012. Testing for the effects and consequences of Mid-Paleogene climate change on insect herbivory. PLoS ONE, 7(7): e40744.
参考文献
Wappler T, Grímsson F. 2016. Before the ‘Big Chill': patterns of plant-insect associations from the Neogene of Iceland. Global and Planetary Change, 142(1): 73~86.
参考文献
Ward P, Labandeira C C, Laurin M, Berner R A. 2006. Confirmation of Romer's Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proceedings of the National Academy of Sciences USA, 103(45): 16818~16822.
参考文献
Weiss F E. 1904. A probable parasite of stigmarian rootlets. New Phytologist, 3(3): 63~68.
参考文献
Weisser W W, Siemann E. 2013. Insects and Ecosystem Function (Vol. 173). Heidelberg: Springer Science & Business Media, 1~415.
参考文献
Wilf P, Labandeira C C. 1999. Response of plant-insect associations to Paleocene-Eocene warming. Science, 284(5423): 2153~2156.
参考文献
Wilf P, Labandeira C C, Kress W J, Staines C L, Windsor D M, Allen A L, Johnson K R. 2000. Timing the radiations of leaf beetles: hispines on gingers from latest Cretaceous to recent. Science, 289(5477): 291~294.
参考文献
Wilf P, Labandeira C C, Johnson K R, Coley P D, Cutter A D. 2001. Insect herbivory, plant defense, and Early Cenozoic climate change. Proceedings of the National Academy of Sciences, 98(11): 6221~6226.
参考文献
Wilf P, Johnson K R. 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology, 30(3): 347~368.
参考文献
Wilf P, Labandeira C C, Johnson K R, Cunéo R. 2005. Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proceedings of the National Academy of Sciences, 102(25): 8944~8948.
参考文献
Wilf P, Labandeira C C, Johnson K R, Ellis B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science, 313(5790): 1112~1115.
参考文献
Wilf P, Wing S L, Meyer H W, Rose J A, Saha R, Serre T, Cunéo R, Donovan M P, Erwin D M, Gandolfo M A, González-Akre E, Herrera F, Hu S S, Iglesias A, Johnson K, Karim T S, Zou X Y. 2021. An image dataset of cleared, x-rayed, and fossil leaves vetted to plant family for human and machine learning. PhytoKeys, 187: 93~128.
参考文献
Wing S L, Harrington G J, Smith F A, Bloch J I, Boyer D A, Freeman K H. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310(5750): 993~996.
参考文献
Wing S L, Herrera F, Jaramillo C A, Gomez-Navarro C, Wilf P, Labandeira C C. 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences, 106(44): 18627~18632.
参考文献
Winkler I S, Labandeira C C, Wappler T, Wilf P. 2010. Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: new taxa from the Paleogene of North America and Germany and their evolutionary implications. Journal of Paleontology, 84(5): 935~954.
参考文献
Xiao L F, Labandeira C C, Dilcher D L, Ren D. 2021a. Florivory of Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination. Proceedings of the Royal Society B: Biological Sciences, 288: 20210320. https: //doi. org/10. 1098/rspb. 2021. 0320.
参考文献
Xiao L F, Labandeira C C, Ben-Dov Y, Maccracken G, Shih C K, Dilcher D L, Ren D. 2021b. Early Cretaceous mealybug herbivory on a laurel highlights the deep history of angiosperm-scale insect associations. New Phytologist, 232: 1414~1423.
参考文献
Xiao L F, Labandeira C C, Dilcher D L, Ren D. 2021c. Insect and fungal herbivory at the dawn of angiosperm diversification: the Rose Creek Flora of Nebraska, U. S. A. Cretaceous Research, 131: 105088, https: //doi. org/10. 1016/j. cretres. 2021. 105088.
参考文献
Xiao L F, Labandeira C C, Ren D. 2022a. Insect herbivory immediately before the eclipse of the gymnosperms: the Dawangzhangzi Flora of northeastern China. Insect Science, 108, https: //doi. org/1111/1744-7917. 12988.
参考文献
Xiao L F, Schachat S, Labandeira C C, Ren D. 2022b. A functional perspective on the diversification history of herbivorous insects. Proceedings of the National Academy of Sciences of the United States of America. Under review.
参考文献
Xu Q, Jin J, Labandeira C C. 2018. Williamson Drive: herbivory from a north-central Texas flora of latest Pennsylvanian age shows discrete component community structure, expansion of piercing and sucking, and plant counterdefenses. Review of Palaeobotany and Palynology, 251(1): 28~72.
参考文献
Yang H R, Shi C F, Engel M S, Zhao Z P, Ren D. 2020. Early specializations for mimicry and defense in a Jurassic stick insect. National Science Review, 8(1): 1~10.
参考文献
Yin Suxin, Wu Xieting, Wang Zixi, Shi Gongle. 2021. A preliminary study on the plant-insect ecological relationship of the Miocene Tropical Forest in Zhangpu Biota, Fujian. The 2021 Academic Annual Meeting of the Paleontology Branch of the Chinese Palaeontological Society and the Jiangsu Paleontological Society (in Chinese).
参考文献
Zaspel J M, Zahiri R, Hoy M A, Janzen D, Weller S J, Wahlberg N. 2012. A molecular phylogenetic analysis of the vampire moths and their fruit-piercing relatives (Lepidoptera: Erebidae: Calpinae). Molecular Phylogenetics and Evolution, 65(2): 786~791.
参考文献
Zhang S H, Chen T Y, Zeng X, Yu Y, Zhang Y, Xie S P. 2018. Plant-insect associations from the upper Miocene of Lincang, Yunnan, China. Review of Palaeobotany and Palynology, 259(1): 55~62.
参考文献
Zhang Y J, Adams J. 2011. Top-down control of herbivores varies with ecosystem types. Journal of Ecology, 99(2): 370~372.
参考文献
Zhao X D, Wang B, Bashkuev A S, Aria C, Zhang Q, Zhang H C, Tang W T, Engel M S. 2020. Mouthpart homologies and life habits of Mesozoic long-proboscid scorpionflies. Science Advances, 6(10): eaay1259.
参考文献
Zhou Z Y, Zhang B L. 1989. A sederitic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Review of Palaeobotany and Palynology, 56: 133~143.
参考文献
Zidianakis G, Kovar-Eder J, Zelilidis A, Iliopoulos G. 2020. Evidence of plant-arthropod interaction in the fossil assemblage from Pitsidia (Messara Basin, Crete, Greece; Upper Miocene). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 295(2): 101~115.
参考文献
董俊玲. 2019. 福建中新世植物化石、古大气CO2及植物-昆虫关系. 兰州大学博士学位论文. 戎嘉余, 袁训来, 詹仁斌, 邓涛. 2018. 生物演化与环境, 合肥: 中国科学技术大学出版社, 1~421.
参考文献
孙革, 郑少林, D. 迪尔切. 2001. 辽西早期被子植物及伴生植物群. 上海: 上海科技教育出版社, 1~227.
参考文献
尹素心, 吴谐婷, 王姿晰, 史恭乐. 2021. 福建漳浦生物群中新世热带季雨林植物-昆虫生态关系初步研究. 中国古生物学会古植物学分会、江苏省古生物学会2021年学术年会.
目录contents

    摘要

    昆虫植食是昆虫与植物相互作用关系中最重要的组成部分。探索地史时期陆地生态系统中昆虫植食行为的起源与演化是探究古环境重建及古气候变化的重要切入点,其结果将更好地揭示现生昆虫取食行为背后的生物学及生态学意义。本文梳理了昆虫植食的研究历史;阐述了植物化石上的生物损伤与非生物损伤的主要区别;介绍了昆虫植食研究的化石证据以及功能性取食组-损伤类型研究体系(Functional feeding group-damage type, FFG-DT)。昆虫植食多样性在地质历史时期的演化过程分为8个阶段:① 志留纪—泥盆纪(444~359 Ma)为昆虫植食的起源时期;② 石炭纪(359~299 Ma)为昆虫植食的扩张时期;③ 二叠纪(299~252 Ma)为昆虫植食的稳定时期;④ 三叠纪(252~201 Ma)晚期,昆虫植食再次多样化;⑤ 侏罗纪(201~145 Ma)昆虫植食程度进一步加强;⑥ 白垩纪(145~66 Ma)裸子植物逐渐为被子植物所替代,昆虫植食大幅度增加;白垩纪末期,昆虫植食水平下降;⑦ 古近纪(66~23 Ma)昆虫植食水平提高;⑧ 新近纪(23~2.6 Ma)昆虫植食与现代基本相似。影响昆虫植食的主要因素包括气候环境、昆虫和植被多样性、昆虫口器类型、植物群落组成和微生物等。目前,统一昆虫植食研究体系和方法、填补各历史阶段的缺失信息等问题在昆虫植食研究中亟待解决。

    Abstract

    Insect herbivory is the fundamental component of the plant-insect associations (PIAs). The origin and evolution of insect herbivory in terrestrial ecosystems reflects major changes in the paleoenvironment such as climate change, which plays an important role on the evolution of plant-insect interactions, and the ecological behavior of past (and modern) insects. We classified the research history of insect herbivory into the initial exploration, development and prosperity, three stages. The specific difference between the plant chemical damage and physical damage of insect herbivory was introduced. The fossil evidence and FFG-DT system of insect herbivory were illustrated. The major developments for the origin and evolution of insect herbivory on palaeofloras were: ① Silurian-Devonian (444~359 Ma), the origin of herbivory; ② Carboniferous (359~299 Ma), the expansion of herbivory; ③ Permian (299~252 Ma) the colonization of herbivory with new habitats; ④ Triassic (252~201 Ma) the rediversification of herbivory, with plants and insects recovery; ⑤ Jurassic (201~145 Ma) the elevation of herbivory; ⑥ Cretaceous (145~66 Ma), terrestrial evolution of gymnosperms transit to angiosperms with obviously diverse insect herbivory; at the end-Cretaceous, insect herbivory levels declined with unbalanced damage types in herbivory; ⑦ Paleogene (66~23 Ma), herbivory rehabilitation from unbalance; ⑧ Neogene (23~2.6 Ma) the herbivory basically modernized. The main factors that affecting insect herbivory, including climate environment, insect and plant diversity, insect mouthpart structures, plant component community and microorganisms. The problems existing in current insect herbivory research, which includes unifying the research system and methods, and filling the missing links of the herbivory during the past ca.430 million years, are need to be consider and solve carefully.

  • 在陆地生态系统中,昆虫和植物是种类最丰富的两大类群,也是生产者和消费者的主要组成部分(Schoonhoven et al.,2005; Weisser et al.,2013)。昆虫取食植物(昆虫植食)并栖息于植物上,同时,许多现生植物依赖于昆虫进行花粉或种子的传播(Labandeira,2013a)。昆虫与植物间的相互联系(Plant-insect associations,PIAs)是各物种间相互关系的重要研究内容,主要包括昆虫植食(Herbivory)、传粉(Pollination)和拟态(Mimicry)三方面,其中昆虫植食是最基础的组成部分(Labandeira et al.,2007b)。研究地质时期昆虫与植物间的相互作用可以为探索昆虫植食行为的起源与演化提供线索,有助于揭示现生昆虫植食行为的生物学及生态学意义,为农林害虫的科学防治提供理论依据(Coley et al.,1996; Turcotte et al.,2014)。

  • 昆虫植食指昆虫(包括成虫、幼虫或若虫)对植物各器官(如叶、花、果、茎、根等)的取食或利用。在生物演化历史中,昆虫的植食行为对寄主植物的生存带来危害:如降低植物叶片光合效率,中断植物组织营养输送,破坏植物防御系统,从而导致植物更容易受昆虫取食、真菌感染,甚至发生病害,进而降低植物的生存和繁殖率(Fürstenberg-Hägg et al.,2013)。与此同时,昆虫取食花朵或花蜜的过程起到了协助授粉的作用,有利于植物的异花授粉,从而扩大杂交优势(McCall et al.,2006)。此外,昆虫植食和植物防御的博弈过程促进了昆虫与植物的不断适应性演化,最终形成了现生复杂的昆虫植食模式及植物的理化防御机制(Coley et al.,1996; McCoy et al.,2022)。

  • 昆虫与植物的相互关系具有漫长的演化历史。从晚志留世至今的四亿多年间,不同时期的植物化石及各种昆虫口器结构均保存或反映了地质时期不同类型的昆虫植食关系和植食性昆虫多样性的信息(Labandeira,2013a; Carvalho et al.,2014)。昆虫植食损伤类型(Damage types,DTs)的多样性在一定程度上反映了昆虫口器结构类型的多样性(Labandeira,2019),其变化表明了不同时期昆虫取食(或利用)植物方式的不同,或昆虫对寄主植物的偏好性以及对资源的分配和利用方式的差异(Labandeira et al.,2007b)。因此,对于早期植食损伤类型和昆虫口器的研究有利于分析昆虫与植物相互关系的起源与演化。此外,不同气候环境条件下的昆虫植食关系也能够反映古环境及古气候的变化对陆地植物与节肢动物的影响(Wilf et al.,2001; Labandeira et al.,2002a2002b; Wing et al.,2009; Currano et al.,2016; Carvalho et al.,2021)。为更好地了解地质时期昆虫植食方式的多样性及演化趋势,本文梳理了昆虫植食研究的发展历史,分析了昆虫植食的化石材料来源和研究体系,并深入探讨了昆虫植食在不同地质时期的发展趋势以及影响昆虫植食的相关因素。

  • 1 昆虫植食研究的发展历史

  • 与古植物学或古昆虫学研究相比,古昆虫植食研究的起步较晚(Labandeira,2013a),直到20世纪后半叶才在古生物学领域中逐渐受到关注(Labandeira,1998a)。古昆虫植食研究可分为三个阶段:初步探索阶段、发展阶段和繁荣阶段。

  • 1.1 初步探索阶段(1930~1999年)

  • 早期古植物分类研究中,植物学家们在对植物叶片和茎化石进行形态分类的同时,发现了叶片上的昆虫咬食痕迹(Berry,1931; Brooks,1955; Cichan et al.,1982)、真菌痕迹(Dilcher,19631965)和木化石上的昆虫钻蛀孔洞和坑道(Fisk et al.,1984; Zhou et al.,1989),但当时并未对这些痕迹进行深入的研究。此后,在对大量植物化石材料的分析与总结,以及与现生植物叶片上昆虫植食痕迹的对比工作的基础上,Labandeira(19861990)对化石植物叶片上保留的昆虫取食痕迹进行初步分类、汇总,并加以描述,正式开启了化石昆虫植食的研究。1992年,Stephenson et al.(1992)也介绍化石上的各类取食方式,并进一步表明昆虫取食遗迹研究对分析昆虫与植物相互作用的重要意义。在进行昆虫植食类型研究的同时,Labandeira(1997)和Labandeira et al.(1993,1999)还对化石昆虫多样性以及昆虫口器结构的多样性与演化进行了相应的分析,为后期研究昆虫与植物的协同演化关系打下良好的基础。

  • 随着研究的不断深入,昆虫植食研究从简单的类型描述逐步发展到探索植食痕迹与昆虫和寄主植物间的系统发育关系。1994年,Labandeira et al.(1994)对早白垩世被子植物叶片上的潜叶痕迹与鳞翅目潜叶昆虫早期类群的演化关系进行了分析,随后进一步研究了昆虫造瘿、钻蛀、刺吸取食和外部取食等昆虫植食方式与昆虫类群和寄主植物的关系(Labandeira et al.,1996a1996b; Labandeira,1998a),同时对不同地质时期的节肢动物(主要包括昆虫、螨类)与维管植物的演化关系进行了系统性地梳理(Labandeira,1998a1998b1998c; Ren,1998; Grimaldi,1999; Wilf et al.,1999)。

  • 除了对昆虫植食进行定性描述外,Beck et al.(1998)利用定量分析方法研究美国早二叠世Taint植物群的昆虫植食方式多样性,包括统计不同植物种类的标本数、叶片总面积以及被昆虫取食的面积,并使用植食指数(Herbivory index,HI)(即被昆虫取食面积占叶片总面积的百分比)来评估植物群的昆虫植食强度,该研究证实了定量化昆虫植食的可行性。

  • 这一时期的昆虫植食研究主要是对昆虫植食类型进行定性描述,定量分析相对简单,昆虫植食研究系统尚未形成。尽管受限于当时的研究条件,对各种取食方式的分析也主要基于现生昆虫的取食特点,但这一时期的尝试性探索对后期的发展起着重要作用,描述功能性取食类型的基本框架也开始形成。

  • 1.2 发展阶段(2000~2009年)

  • 基于大量植物叶片化石的采集,以及对昆虫植食痕迹及相关昆虫类群的系统研究,Wilf et al.(2000)通过对比白垩纪末期姜科植物化石上的表面取食痕迹Cephaloleichnitesstrongi(后被描述为DT28,表面取食)与现生叶甲(Chelobasisperplexa)取食蝎尾蕉(Heliconia curtispatha)(姜科)遗留的痕迹,发现两者高度相似,进而对铁甲亚科昆虫与姜科植物关系进行了深入分析,研究结果表明了两者的相互关系至少可追溯到6600万年前,而且这一相互关系在白垩纪末期生物灭绝事件(Cretaceous-Paleogene,K-Pg)和古新世至始新世极热事件(Paleocene-Eocene thermal maximum,PETM)(约56 Ma)中依然延续下来。该研究首次证明了化石上保留的昆虫植食痕迹可用于揭示现生昆虫植食的起源与演化,以及昆虫与植物的协同演化关系。2002年,Labandeira et al.(2002a)对白垩纪灭绝事件前后的北美Dakota组各植物群的功能性取食组(Functional feeding groups,FFGs)和损伤类型(Damage types,DTs)的多样性差异进行分析,结果显示灭绝事件导致昆虫植食多样性明显下降,仅有少部分取食类型遗留下来,直到灭绝事件后才出现新的植食类型,该研究揭示了昆虫植食在白垩纪灭绝事件前后的动态变化,也再次表明昆虫植食变化有助于反映陆地生态系统中植物和昆虫(节肢动物)对地质时期极端事件的响应。

  • 在大量的昆虫植食形态观察、分析和总结工作的基础上,Labandeira et al.(2007b)正式提出了功能性取食组-损伤类型(Functional feeding group-damage type,FFG-DT)分类系统,该DT指南中记录并描述了12类FFGs、150种DTs(目前已更新至410种DTs,将于2022年底出版),确立DTs寄主特异性(Host specificity),并推测了造成每种损伤类型的主要昆虫类群,完善了相关研究的定性分析(Qualitative analysis)和定量分析(Quantitative analyses)方法。至此,昆虫植食研究所依据的FFG-DT遗迹分类系统建立,因其具有较高的通用性,目前已广泛运用于不同地质时期植物群的昆虫植食研究。

  • 除了依据FFG-DT系统进行昆虫植食分析外,在同一时期也有研究使用建立遗迹属种的方式对植食损伤类型进行归类和定性描述。例如Krassilov et al.(2007,2008)对以色列Negev地区晚白垩世Gerofit组各植物群中的昆虫植食进行描述,建立了四大类遗迹类型(共74种),包括产卵(5属,12种)、虫瘿(10属,25种)、潜道(11属,28种)、外部取食(3属,8种)和其他取食遗迹。相关研究记录了晚白垩世以色列地区被子植物群落中的植物和昆虫种类,以及昆虫取食的相关证据,为之后该地区的古生物学研究提供良好基础。此外,Gnaedinger et al.(2014)对智利晚三叠世松柏植物的产卵痕迹进行遗迹属种描述,并推测为蜻蜓目昆虫产卵所造成的,同时尝试将其建立的遗迹属种同已发表的产卵痕迹或DT类型进行对比,并且分析不同产卵痕迹属种在不同地质时间、不同植物类群叶片上的延续性,研究结果显示依据遗迹属种方式也可以描述昆虫植食遗迹。该研究中Gnaedinger提倡的“新型产卵痕迹分类体系”对植物化石上昆虫产卵的遗迹属种描述很细致,但似乎也存在与相近产卵痕迹过度区分的问题。因此,与FFG-DT系统相比,遗迹属种的方式难以进行损伤类型的定量分析。

  • Labandeira et al.(2007a)利用FFG-DT系统对早二叠世美国德克萨斯Coprolite Bone Bed植物群进行了昆虫植食分析,鉴定了4类FFGs,分别是边缘取食、孔洞取食、骨架式取食(留脉式取食)和造瘿,共11种DTs,并统计了每种取食类型的出现频数,进而评估整个植物群的昆虫植食情况,该研究证明了定性和定量分析在植食研究中的适用性,而且增加了损伤类型频数(DT frequency)这一衡量指标,并在之后的昆虫植食研究中被一直沿用。这一阶段的昆虫植食研究主要关注于白垩纪末期K-Pg生物灭绝事件以及古新世—始新世PETM事件对昆虫植食的影响,中生代和古生代的昆虫植食研究相对较少(Wilf et al.,2001; 2005; Labandeira,2002b; Labandeira et al.,2002a; Currano et al.,2008; Wappler et al.,2009; Wing et al.,2009)。

  • 随着该时期昆虫植食研究的逐渐增加,Labandeira(2002a2002b2002c2006a2006b2007)对陆地生态系统中节肢动物(包括昆虫、螨类)与植物关系的起源、发展与演化做了大量的综述工作,并将不同地质时期昆虫植食的发展划分为四个主要阶段:① 晚志留世—晚泥盆世,寄主植物以原始的维管植物类群为主,植食性昆虫主要是早期原始昆虫类群、部分多足类和螨类; ② 早石炭世—晚二叠纪世,寄主植物以裸子植物为主,植食性昆虫为早期昆虫类群和部分昆虫的基干类群,以及部分植食性螨类; ③ 中三叠世—中侏罗世,寄主植物主要为裸子植物,植食性昆虫主要包括古直翅类、半翅类及完全变态类; ④ 早白垩世—至今,寄主植物以被子植物为主,植食性昆虫种类明显增加,与现生昆虫类群构成相似。

  • 这一时期的昆虫植食研究快速发展,昆虫植食的研究体系建立,定性和定量的分析方法进一步发展,衡量指标逐渐完善。随着研究的化石植物群的时间跨度增加,开始探讨影响昆虫植食的相关因素,包括气候环境、植被多样性、寄生类群等,也通过不同化石植物群的昆虫植食方式多样性间接反映不同地质时期植物群的昆虫、植物特征以及气候环境特征,但该时期对单一植物群的昆虫植食水平的衡量仍不够系统。

  • 1.3 繁荣阶段(2010年~至今)

  • 2010年以来,昆虫植食相关研究的数量迅速增加,且更加系统和深入。在研究对象方面,包括了不同地质时期单一群落(或者单个植物种类)的植食多样性和多个群落的单一植食方式,例如Labandeira et al.(2016a)系统对比分析意大利Dolomites二叠纪至三叠纪各时期植物群的昆虫植食类型,研究结果显示从空谷期至吴家坪期的各植物群的昆虫植食多样性降低,安尼期至拉丁期的各植物群的植食多样性增加,但仍低于早二叠世的植食程度,表明二叠纪末期的灭绝事件对陆地生态系统造成较大影响。与以整个Dolomites地区不同时期的植物群为研究对象相比,Maccracken et al.(2022)仅记录了晚白垩世犹他州Kaiparowits植物群中的樟科植物Catulagettyi上多样的昆虫植食类型,Ding et al.(2015)仅研究中国晚三叠世羊草沟组-中侏罗世道虎沟组-早白垩世义县组的阔叶松柏植物上的昆虫植食类型,而Lin et al.(2019a)仅关注中国中侏罗世燕辽植物群和早白垩世热河植物群中的昆虫产卵类型多样性; 在衡量指标方面,该阶段昆虫植食水平(Herbivory level)的评估指标进一步完善,从DT多样性、频数和植食指数这三个指标发展到包含植食多样性(Herbivory diversity)和植食强度(Herbivory intensity)两个方面的六项衡量指标,包括表示植食多样性的DT多样性、寄主特异性、复合结构,以及表示植食强度的DT频数、面积、取食事件发生总频数(Schachat et al.,2014,2015; Ding et al.,2015; Xu et al.,2018; Maccracken et al.,2020; Xiao et al.,2021a2021b2021c); 在学科交叉方面,结合多门学科的理论和方法进行分析,如数理统计学、系统发育学、孢粉学、昆虫学、植物学及微生物学等,利用生态理论及各类假说对不同植物群的昆虫植食进行综合对比和解释(Wappler,2010; Wappler et al.,2012; Labandeira et al.,2014a; Kunzmann et al.,2019; Carvalho et al.,2021; Currano et al.,2021a); 在数据分析方面,更加关注衡量各植物群所获取的数据的有效性、多样性和均匀度等方面,以此提高各植物群昆虫植食水平对比结果的可靠性,数据分析方法包括方差分析(ANOVA)、非度量多维尺度分析(NMDS)、食物网结构分析(Food webs)、热图分析(Hot map)、β多样性分析(Beta diversity)以及二分图分析(Bipartite network)等(Su et al.,2015; Schachat et al.,20182022; Swain et al.,2021); 在技术支持方面,除简单的图片成像和角质层分析实验外,开始涉及到Micro-CT扫描技术、X射线荧光(XRF)和机器学习等(Upchurch et al.,1990; 董俊玲,2019; Wilf et al.,2021; Xiao et al.,2021b; Imada et al.,2022); 在成果总结方面,大量系统性、区域性的研究相继展开,并完成昆虫植食的综述性工作,系统深入分析了不同环境下昆虫植食方式及其演化趋势。如Labandeira等综述了不同地质时期昆虫与植物的相互作用(Labandeira et al.,2013; Labandeira,2013b),为后期昆虫植食研究提供了思路; 同时,结合昆虫植食特性分析化石昆虫的多样性(Labandeira,2014a2018),并对各地质时期昆虫口器结构的演化历史进行了深入分析(Labandeira,2019),有利于探究昆虫取食不同植物并形成多样的痕迹; 此外,系统梳理了生态系统中诱导植物形成虫瘿的节肢动物及其演化历史(Schachat et al.,2015a; Labandeira,2021)和古植物上真菌病害与昆虫的相互作用(Labandeira et al.,2014a); 相关的区域性昆虫植食研究较多,如中国古新世—渐新世西藏植物群(Deng et al,2020)、中国云南晚二叠世卡以头植物群(Liu et al.,2020)和南非Molteno植物群晚三叠世昆虫植食(Labandeira et al.,2018)等; 在与现生植物群研究结合方面,开始尝试通过植食类型多样性(DT richness)反映植食性昆虫多样性(Insect richness)(Carvalho et al.,2014),研究结果显示,植食类型多样性在很大程度上受取食形成多样DTs的昆虫类群的影响,此外,外部取食类型多样性与植食性昆虫多样性存在正相关关系,表明昆虫植食不仅代表化石植物群的昆虫和植物种类多样性,也适用于现生植物群落,表明昆虫植食的系统研究有利于揭示热带和温带地区现生植物群落中的昆虫植食强度差异(Adams et al.,2009a2009b)、以及捕食性和寄生性类群对昆虫植食的自上而下的抑制效应(Zhang et al.,2011; Labandeira et al.,2021)。

  • 这一阶段开展昆虫植食研究的单位和学者众多,研究昆虫植食的植物化石材料来自于各大陆板块以及各纬度,呈全球性分布,地质时间几乎覆盖了各个阶段。昆虫植食研究在纵向上不断深入,进一步分析前两个阶段的部分研究问题,如热带雨林的起源问题(Carvalho et al.,2021)、白垩纪末期的生物灭绝事件(Stiles et al.,2020)以及古新世—始新世极热事件(PETM)(Dunne et al.,2014; Wappler et al.,2016)等; 在横向上逐渐拓宽,如对整个地质历史的昆虫植食进行比较(Labandeira,2013a; Schachat et al.,2022)。

  • 2 昆虫植食的化石证据

  • 一般情况下,昆虫虫体和植物的印痕化石可在湖相沉积化石层或琥珀中被保存下来(Duncan,1997; Labandeira,19992014a; Gaston et al.,2004),而化石除了可以保存昆虫和植物外,也可以保存两者间相互作用的证据,主要来自以下六方面:① 植物繁殖器官的形态结构; ② 植物损伤类型; ③ 昆虫粪化石; ④ 昆虫肠道内含物; ⑤ 昆虫口器结构; ⑥ 与现生昆虫植食相似的取食痕迹(Labandeira et al.,1997; Labandeira,2002a2013a2019; McDonald,2009; Carvalho et al.,2014)。不同化石层位中的植物、昆虫组合或两者间的相互关系证据代表了一定时间内植物与昆虫的生物学特性(Labandeira,1998c2001; Labandeira et al.,2002c),如在宾夕法尼亚时期的煤球沉积物中保存大量分散的昆虫粪化石(Labandeira et al.,1997; Labandeira,1998a),其中包含的未消化的孢子、维管组织或角质层等结构,可用于推测其为植食性昆虫; 如叶片上的特定取食痕迹(表面取食、潜叶和造瘿)反映了昆虫的植食特性(Labandeira et al.,2007b)。然而,仅依据植物化石上的损伤类型,往往无法判断确切的昆虫种类,通常需要补充与之相关的昆虫口器结构类型、同时期的昆虫种类或食性等多方面信息(Labandeira,2019)。

  • 昆虫的口器结构提供了昆虫食性及取食策略等重要线索(Labandeira,19972019),早泥盆世至今共演化出35类口器结构类型(Labandeira,2019)。不同时期演化出的口器结构不同,而同一类口器的具体结构在不同时期、不同昆虫类群中也存在差异,从而代表了昆虫的不同食性。例如咀嚼式口器(Mandibulate mouthparts)中的成虫外口式(Adult ectognathate)结构,最早出现于早泥盆世弹尾目昆虫中(Labandeira,2019),主要用于昆虫取食菌丝或腐物; 至石炭纪时期,直翅目、鞘翅目等昆虫都具有咀嚼式口器结构,主要用于取食植物,随着昆虫类群的逐渐分化,部分类群的外口式结构钝圆,利于磨碎植物纤维组织,为植食性类群,另一部分类群的外口式结构尖锐锋利,利于固定猎物,撕扯虫体,为捕食性类群(Labandeira,2019)。因此,依据昆虫口器结构特征能够推测昆虫的食性。

  • 3 早期昆虫植食的主要研究体系及方法

  • 昆虫植食的系统研究一般以一个完整的植物群及该植物群内所有昆虫取食类型为研究对象(Schachat et al.,20142015b; Xu et al.,2018; Maccracken et al.,2020; Xiao et al.,2021c2022a),而不仅是关注群落中部分植物的昆虫取食类型,如樟叶、银杏、松柏等单一寄主植物(Ding et al.,2015; Na et al.,2018; Maccracken et al.,2022),或只关注不同植物上某一特定的取食类型,如潜叶、产卵等特定取食类型(Labandeira et al.,1994; Ding et al.,2014; Lin et al.,2019a)。植食研究主要包括定性研究和定量研究两方面(Schachat et al.,20142015b20202022)。

  • 3.1 定性研究

  • 定性研究指对化石植物上的昆虫取食痕迹进行形态归类。不同取食类型与昆虫特定的口器结构、取食策略及植物结构密切相关(Labandeira et al.,2007b)。与现生昆虫取食寄主植物一样,早期昆虫植食方式亦是复杂多样,以叶片取食为例,通常包括昆虫取食叶表面、叶边缘和叶片内部(叶子上下表皮间),及昆虫刺吸取食叶片的汁液等。但与现生植食研究可依靠多方面的观察、实验以及检测不同,早期昆虫植食研究更多的是依靠植物化石的取食痕迹来判断昆虫的植食行为(Labandeira et al.,2007b)。依据昆虫对植物组织(或器官)取食(或利用)方式的不同(图1),将取食痕迹划分为若干功能性取食组(Functional feeding groups,FFGs):孔洞取食(Hole feeding)、边缘取食(Margin feeding)、骨架式取食(或留脉式取食)(Skeletonization)、表面取食(Surface feeding)、产卵(Oviposition)、刺吸取食(Piercing and sucking)、潜食(Mining)、造瘿(Galling)、种子取食(Seed predation)、钻蛀(Wood boring)、虫菌穴(Domatia)和真菌病害侵染(Pathogen); 依据取食痕迹的大小、位置、排列方式等,在各功能性取食组中划分出若干损伤类型(Damage types,DTs); 基于取食痕迹发生于植物部位的不同,将这12类功能性取食分为外部取食(Exophytic feeding group)、中间取食(Ectoendophytic feeding group)、内部取食(Endophytic feeding group)和病害四大类,其中外部取食包括孔洞取食、边缘取食、骨架式及表面取食; 中间取食包括产卵和刺吸式取食; 内部取食包括潜食、造瘿、种子取食及钻蛀。

  • 虽然产卵本身并不属于取食行为,是昆虫对植物组织的一种利用方式,但这一行为会对植物的光合作用、营养输送等方面造成损害(Gnaedinger et al.,2014)。通常部分昆虫产卵时会切开植物表皮,将卵产于植物组织中,而虫体主要部分位于植物组织外,因此将产卵作为一类FFG并划分为中间取食类型。相似地,刺吸取食也仅是昆虫口针等结构刺入植物内部,而虫体留在植物外部。昆虫潜食主要发生于植物叶片,即潜叶(Leaf mining),偶尔也会发生于花瓣、苞片或叶柄上(Labandeira et al.,2007b),因此文中统称为潜食。虫瘿虽表现为植物组织外部的畸形变异,但实际是植株内部结构的应激反应(Fernandes et al.,2014),因此将虫瘿划分为内部取食类型。真菌病害侵染指微生物侵染植物并导致植物呈现病斑的现象(Labandeira et al.,2014a),通常植物化石上的真菌病害侵染遗迹与昆虫取食叶片遗留的痕迹不同,如昆虫取食会造成叶片组织缺失或在取食处具有明显的反应物质(如愈伤组织、胼胝体等),但真菌病害侵染痕迹一般不会造成组织缺失,且存在明显的子实体结构。通常昆虫取食植物后,会使得植物更容易被病菌侵害,为了和虫害区分开来,因此也将真菌病害侵染作为一类FFG(Labandeira et al.,2007b)。

  • 图1 功能性取食组-损伤类型的昆虫植食研究系统(修改自Labandeira et al.,2016a

  • Fig.1 The system of functional feeding group-damage type (FFG-DT) for insect herbivory (modified from Labandeira et al., 2016a)

  • 种子取食、钻蛀、真菌病害侵染和虫菌穴见图2; 虚线框中的真菌病害侵染和虫菌穴,表示该痕迹虽不是由昆虫取食造成,但与昆虫取食密切相关

  • The seed predation, wood boring, pathogen and domatia see in the Fig.2; the dash frame includes the pathogen and domatia, which indicates those damages not caused by insect feeding, but related closely with insect herbivory

  • 在确定取食痕迹划分为某一类FFG后,依据取食痕迹的大小、分布位置、反应结构等不同特征,将取食痕迹鉴定为准确的损伤类型,并以DT加数字的方式进行编号和注释(Labandeira et al.,2007b),如DT293和DT294都是昆虫产卵类型:前者卵呈椭圆形,长约 1.5~3.0 mm,宽约1 mm,寄主植物为尼尔桑(Nilssonia)羽叶,卵近垂直于叶轴,线状排列于叶轴附近; 后者卵呈椭圆形,长约 0.5 mm,宽约0.3 mm,卵垂直于叶轴,且位于叶轴上。因此,卵的大小和分布位置是鉴别这两类产卵痕迹的主要依据。

  • 一种DT可出现于一种或多种寄主植物上,通常与昆虫的食性(寡食性或广食性)有关,因此,依据单个DT在植物上出现的频数(一般要求单个DT在单个植物上的取食事件发生频数大于3),将单一植物群落内所有DTs分为普通型(Generalized)、中间型(Intermediated)及特殊型(Specialized)。普通型指该DT在不同科甚至亲缘关系较远的植物上普遍出现; 特殊型指该DT仅在一种(或一属)植物上多次出现,表现出昆虫与寄主植物较强的相互关系,而中间型则介于两者之间,即该DT在亲缘关系较近的几个属植物上出现。需要注意的是不同时期植物群中,植物丰富度和昆虫植食类型各不相同,因此应结合该植物群中的植物组成和昆虫植食状况进行DT寄主特异性划分。如白垩纪末期Wyoming植物群中昆虫取食类型丰富,骨架式取食DT17广泛存在于亲缘关系较远的被子植物上,此时DT17即为普通型DT(Labandeira et al.,2002b); 而在二叠纪昆虫取食类型较少,通常以外部取食为主,DT17只少量分布于几种羊齿类植物上(取食事件发生频数大于3),此时DT17则为特殊型DT(Labandeira et al.,2007a)。已有研究表明,虽然寄主特异性与昆虫食性有关,但普通型DTs不等于昆虫的广食性,特殊型也不等于昆虫的寡食性或专食性,因此二者并不能简单地对应分析,而应结合特定植物群的昆虫植食类型和寄主植物的具体情况进行综合分析(Xiao et al.,2022a)。

  • 鉴定FFG或DT植食痕迹时,应将昆虫植食损伤与物理损伤区分开来。物理损伤通常是由于化石岩层的剥落或后期处理的刮蹭,导致植物部分结构缺失或损坏,而这些损伤不应鉴定为植食损伤。区分两者的主要依据有:① 损伤部位边缘是否存在增厚的胼胝或其他应激性增生组织(Labandeira et al.,2007b); ② 外部咀嚼或者内部取食是否有特殊的组织存在,如取食遗留下的维管或纤维组织(Gangwere,1966); ③ 是否存在特殊的昆虫取食模式,如仅沿叶脉或叶缘发生的取食现象(Bodnaryk,1992; Heron,2003); ④ 是否仅在植物特定的组织出现,如仅在果实、种子、根或叶柄等部位出现; ⑤ 是否与现生昆虫取食形成的损伤类型相似,如边缘取食中近圆形或半圆形的痕迹(DT81),与现生切叶蜂切取叶片遗留的痕迹近似(Sarzetti et al.,2008; Xiao et al.,2021b)。

  • 3.2 定量研究

  • 定量研究指对植物化石上的取食痕迹进行量化,用各项数值衡量植物群的昆虫植食水平(Herbivory level)。昆虫植食水平主要通过植食多样性(Herbivory diversity)和植食强度(Herbivory intensity)两个方面的六个指标来评估,昆虫植食的多样性包括DTs的多样性(DTs diversity)(该植物群内各种植物上分布的DT种类)、DT寄主特异性(Host specificity)(每种DT的特异性程度)、DT复合结构(Component community structure)(DT在该植物群内主要寄主植物上的分布情况),昆虫植食的强度包括DTs频数(DTs frequency)(每种DT在每个样品上出现的频数)、DTs的面积(Herbivorized surface area)(每种DT在每个化石叶片的上的面积)、取食事件发生总频数(Feeding event occurrences)(各种DT在每个化石叶片的发生次数总和)(Labandeira et al.,2018; Xiao et al.,2021c2022a)。

  • 为了分析植物群昆虫植食的各项指标特征、植食类型与植物种类或者与其他因素间的关系,可使用的分析方法和软件比较多样,选用不同方法需依据具体问题而定。常见的是生态学分析方法,例如主成分分析(Principal component analysis,PCA)和非度量多维尺度分析(Nonmetric multidimensional scaling,NMDS)可用于分析不同FFG与寄主植物之间的关系(Schachat et al.,2015b; Adroit et al.,2018; Xu et al.,2018); 方差分析(Analysis of variance,ANOVA)可用于检视不同寄主植物上DT种类或FFG类型之间的差异显著性(Giraldo et al.,2021),或者不同植物种类的单位面积叶片质量(Leaf mass per area,MA)的差异显著性(Currano et al.,20082016; Wappler et al.,2009); β多样性分析(Beta diversity)中的物种周转率(Turnover)和嵌套性指数(Nestedeness)可用于比较两个植物群或两个植物种类间的植食类型差异(Schachat et al.,2021; Xiao et al.,2022b); 二分图分析(Bipartite network)可用于展示不同种植物与各植食类型之间的网络关系(Swain et al.,2021)等,但化石植食数据的分析都需要对其进行预处理(Schachat et al.,20212022)。以上各分析方法主要依托基础数据分析软件Excel、Origin、Spss、Python或R运行平台(R Development Core Team,2018)加载各类数据包进行分析。

  • 4 昆虫植食方式多样化历史

  • 昆虫植食的发展历史漫长,自志留纪植物从水体向陆地进军及原始昆虫类群出现后,昆虫植食就开始出现,昆虫植食方式在不同地质时期的发展演化有所不同(图2)。依据各时期植物和昆虫类群的特征及发生的重大地质事件,将昆虫植食的自然历史划分为以下8个阶段(Labandeira,2013a):① 志留纪—泥盆纪(444~359 Ma)为昆虫植食的起源时期; ② 石炭纪(359~299 Ma)为昆虫植食的扩张时期; ③ 二叠纪(299~252 Ma)为昆虫植食的稳定时期; ④ 三叠纪(252~201 Ma)晚期,昆虫植食再次多样化; ⑤ 侏罗纪(201~145 Ma)昆虫植食程度进一步加强; ⑥ 白垩纪(145~66 Ma)裸子植物为被子植物所替代,昆虫植食大幅度增加; 白垩纪末期,昆虫植食水平下降; ⑦ 古近纪(66~23 Ma)昆虫植食水平提高; ⑧ 新近纪(23~2.6 Ma)昆虫植食与现代基本相似(Labandeira,2013a2013b; Labandeira et al.,2013; Xiao et al.,2021c2022a)。以下按地质历史时期及昆虫口器结构的演化对昆虫植食研究进行梳理。

  • 4.1 古生代

  • 古生代昆虫植食主要包含三个发展阶段:第一阶段为志留纪—泥盆纪(444~359 Ma),为昆虫植食的起源时期。该时期的昆虫为原始昆虫类群,主要包括弹尾目(Collembola)、石蛃目(Archaeognatha)、单尾目(Monura)和双尾目(Diplura)昆虫(Labandeira,2019)。昆虫口器结构大致分为4类,内口式(Entognathate)、内口刺吸式(Entognathous stylate)、下颚须的(Maxillopalpate)和成虫咀嚼式(Adult ectognathate),这些口器类型与早期昆虫取食真菌、孢子和叶状体有关(Labandeira,2019)。此外,具植食行为的还有早期节肢动物,如多足类(Myriapodan)和螨类(Acari)(Labandeira,1997)。寄主植物主要为早期维管植物,如低矮苔藓类,蕨类,如莱尼蕨类(Rhyniophytes)、三枝蕨类(Trimerophytes)以及高大的石松类(Lycophytes)等。

  • 图2 昆虫主要植食类型及口器结构的演化历史(修改自Ren et al.,2009; Labandeira et al.,2016a; Labandeira,2019; Lin et al.,2019b

  • Fig.2 The main evolution history of insect herbivory and insect mouthpart structures (modified from Ren et al., 2009; Labandeira et al., 2016a; Labandeira, 2019; Lin et al., 2019b)

  • 昆虫植食类型中的各种颜色代表每种FFG,见图4,虚线色块表示这类口器结构可能在中泥盆世已经演化,色块所处的位置为FFG类型的最早化石记录; 泥盆纪叶状苔类植物上的取食类型:(a)—孔洞取食,(b)—边缘取食,(c)—表面取食,(d)—造瘿,(e、f)—刺吸取食(据Labandeira et al.,2014b); 宾夕法尼亚时期,(g)—石松(Sigillaria brardii)茎杆上的产卵类型(据Xu et al.,2018); 早二叠世,(h~j)—Cordaicarpus sp.种子上的种子取食(据Dos Santos et al.,2020),(k、l)—大羽羊齿(Gigantopteridiumamericanum)羽叶上的留脉式取食(据Beck et al.,1998),(m)—晚二叠松柏茎杆内的鞘翅目昆虫钻蛀坑道痕迹(据Feng et al.,2017);(n、o)—晚三叠世松柏(Heidiphyllumelongatum)植物上的潜叶痕迹(据Labandeira et al.,2018); 早白垩世,(p、r)—被子植物(PabianiavarilobaCrassidenticulumdecurrens)叶片上普遍存在的真菌病害侵染(据Xiao et al.,2021c); 晚白垩世,(s~u)—被子植物上的虫菌穴痕迹(据Maccracken et al.,2019

  • Each color represents the each FFG in insect herbivory, also see in Fig.4; the dash frame represents those insect mouthpart structures evolved at Middle Devonian; the position of the color block indicates the first record of the FFG; FFGs on Devonian liverworts: (a) —hole feeding, (b) —margin feeding, (c) —surface feeding, (d) —galling, (e, f) —percing and sucking (after Labandeira et al., 2014b) ; (g) —the oviposition on the stem of lycophyte, Sigillaria brardii, host from the Pennsylvania (after Xu et al., 2018) ; (h~j) —the seed predation on the seeds of Cordaicarpus sp. from Early Permian (after Dos Santos et al., 2020) ; (k, l) —skeletonization on the pinnae of Gigantopteridiumamericanum (after Beck et al., 1998) ; (m) —conifer tunnels wood boring, embedded by Coleoptera insect from Late Permian (after Feng et al., 2017) ; (n, o) —leaf-mining on conifer Heidiphyllumelongatum leaf from Late Triassic (after Labandeira et al., 2018) ; (p, r) —common occurrences of pathogen on angiosperms of Pabianiavariloba and Crassidenticulumdecurrens from the Early Cretaceous (after Xiao et al., 2021c) ; (s~u) —the domatias on angiosperms from the Late Cretaceous (after Maccracken et al., 2019)

  • 该时期昆虫植食的方式包括孢粉(或孢子)取食、刺吸取食和外部取食(未进行外部取食的细致划分),还有发生于茎杆的钻蛀取食,以及菌类(Zygomycota)侵染昆虫取食痕迹的现象(Labandeira et al.,1988; Banks et al.,1993; Labandeira,1998a)。早泥盆世英国Dryden Flags地层中(约408 Ma)发现了含有孢粉的昆虫粪化石及植物茎杆上螺旋状排列的刺吸取食痕迹,表明了早期昆虫与陆地植物的植食关系(Labandeira,2006a2006b)。此外,莱尼蕨叶轴上保留的昆虫刺吸和钻蛀的痕迹,进一步反映了早期昆虫对蕨类植物的取食方式(Edwards,1996; Habgood et al.,2003)。中泥盆世美国Catskill Delta地层中(约385 Ma)发现了昆虫(螨类)取食苔类(Metzgeriothallussharonae)植物的最早记录,叶状体上记录了孔洞取食、边缘取食、表面取食、刺吸取食和造瘿遗迹,这些遗迹边缘具有的明显愈伤组织和虫瘿结构都揭示了早期苔类植物采用化学防御策略来应对昆虫取食(Labandeira et al.,2014b),也表明了该时期可能存在与这类取食痕迹相关的昆虫口器结构类型(图2)。泥盆纪时期,莱尼蕨上也发现了大量真菌的痕迹,但该时期真菌病害与昆虫植食的关系仍不清楚(Taylor et al.,1996)。晚泥盆世植物叶片、根和种子逐渐开始演化,但与之相关的昆虫植食遗迹化石证据仍不足(Labandeira,2006a)。

  • 第二阶段为石炭纪(359~299 Ma),包括密西西比(Mississippian)和宾夕法尼亚(Pennsylvanian)时期,为昆虫植食的扩张时期。宾夕法尼亚时期昆虫类群快速辐射,大部分现生昆虫科已经出现,包括古网翅目(Paleodictyoptera)、蜉蝣目(Ephemeroptera)、蜻蜓目(Odonatoptera)、巨古翅目(Megasecoptera)和透翅目(Diaphanopterodea)和全变态类(Holometabola)昆虫等。昆虫口器结构类型也大幅增加,较第一阶段增加了7种口器结构类型:幼虫咀嚼式(Larval ectognathate)、强颚咀嚼式(Raptorial ectognathate)、下唇罩(Labial mask)、吐丝器(Sericterate)、锯齿结构(Laciniate)、强壮喙结构(Robust beak)和分节状喙(Segmented beak)(Labandeira,20112019)。这些口器类型表明该时期昆虫除具有泥盆纪就已出现的真菌取食、孢粉取食和植食外,还出现了腐食和肉食两种非植食性取食方式(Labandeira,2019)。石炭纪植食性昆虫类群比泥盆纪更为多样,主要包括有翅昆虫(如半翅类)和部分完全变态昆虫(鞘翅目),主要植物类群包括石松类(石松Lycopodiales、鳞木Lepidodendrales等)、种子蕨Pteridosperm、真蕨类Pteridophyta、有节类(楔叶类Sphenoposida、芦木Calamites、木贼Equisetidae等)和种子植物(包括少数裸子植物),宾夕法尼亚晚期陆地四大植物区初步形成。

  • 密西西比时期节肢动物植食的化石记录较少,仅植物叶片和茎杆上保留的少量取食痕迹(Labandeira et al.,2002c)。宾夕法尼亚时期的昆虫植食类型大幅度增加,除潜叶外,外部取食(边缘取食、孔洞取食、表面取食和骨架式取食)、刺吸、钻蛀、产卵、造瘿和种子取食等9种取食类型皆已出现,植物病害的化石记录也被报道,但没有详细描述(Weiss,1904; Jennings,1974; Labandeira et al.,2002c; Dunn et al.,2003; Iannuzzi et al.,2008; Xu et al.,2018; Correia et al.,2020; Santos et al.,2022)。从FFG和DT类型多样性来看,宾夕法尼亚时期北半球地区,除西班牙Castillay León植物群以外,美国德克萨斯Williamsion植物群(约304 Ma)和葡萄牙波尔图So Pedro da Cova植物群(约315 Ma)的FFG和DT多样性皆高于南半球阿根廷Bajo de Veliz植物群(约299 Ma)(Xu et al.,2018; Fernández et al.,2020; Correia et al.,2020; Santos et al.,2022),而南半球较低的植食多样性可能与其较为单一的植物种类或较少的化石样本有关,其中Castillay León植物群昆虫植食类型仅依据216份化石标本进行记录(Schachat et al.,2020; Santos et al.,2022)。宾夕法尼亚时期植物已演化出物理或化学防御方式来应对昆虫或其他节肢动物的取食,如轮叶属(Annulariacarinata)和种子蕨(Macroneuropterisscheuchzeri)分别通过叶片被毛和释放化学物质来抵御节肢动物的取食(Bergen et al.,1995; Krings et al.,2002; Xu et al.,2018)。

  • 石炭纪时期昆虫植食的快速发展可能与当时较高的大气含氧量有关(图3; Ward et al.,2006)。从早泥盆世至密西西比时期,大气中氧浓度波动下降,因此该时期的节肢动物数量较少,导致植食程度也较低; 宾夕法尼亚时期的氧浓度大幅升高,节肢动物数量及新的类群大幅增加,植食方式多样性也大量增加。也有研究表明大气含氧量的增加有利于陆生昆虫类群的分化,从而促进了植食性昆虫对寄主植物的消耗(Labandeira,2006a2006b)。植物叶片是昆虫最主要的营养来源,因此昆虫对植物的利用其实主要是对叶片的消耗,这也使植物叶片化石成为记录植物与节肢动物相互作用的主要证据(Labandeira,2006a2006b)。

  • 第三阶段为二叠纪(Permian)(299~252 Ma),昆虫植食的稳定时期。受石炭纪末期冰期的影响,早二叠世昆虫多样性明显下降。随着气候逐渐变暖,中二叠世昆虫多样性快速增加,为古生代昆虫类群的繁盛时期,共有27个昆虫目,昆虫科级阶元增加至160个,占所有科数量的三分之一(Labandeira et al.,1993)。从口器结构类型来看,较石炭纪增加了7种:包括杵臼结构(Mortar and pestle)、具喙的(Rostrate)、栉齿(Pectinate)、捕吸式(Fossate complex)、虹吸式(Siphonate)、锉吸式(Mouthcone)和外口刺吸式(Ectognathous stylate),这些口器结构与昆虫取食真菌、植物组织、孢粉、动植物残骸及其他昆虫有关。此外,出现了成虫的退化口器结构(Reduced trophic),但该口器类型与取食无关。至二叠纪末期昆虫口器结构共有18种类型,占全部昆虫口器类型的48.6%,演化的昆虫口器结构数量约占总数的一半(Labandeira,2019)。

  • 二叠纪时期明显扩张的三大昆虫类群:① 副新翅类(Paraneoptera),包括半翅类(Hemipteran)、啮虫类(Psocoptera)及绝灭的Lophioneurida(与缨翅类亲缘关系较近)。其中,半翅目昆虫的口器具杵臼结构、口锥和分节喙结构,这些结构利于昆虫刺破植物表皮从而吸取植物叶肉、韧皮部或木质部的汁液(Grimaldi et al.,2005; Labandeira,2019); ② 鞘翅目,该时期甲虫演化出强壮的上颚结构,有利于成虫钻蛀茎杆、树木,和幼虫取食坑道内的真菌(Grimaldi et al.,2005; Feng et al.,2017; Labandeira,2019); ③ 长翅目和脉翅目昆虫,演化出吸收式口器,该结构与二叠纪种子植物的传粉有关(Ren et al.,2009; Bashkuev,2011; Labandeira,2019; Lin et al.,2019b; Zhao et al.,2020)。二叠纪末期的生物灭绝事件导致昆虫多样性大幅下降,27个昆虫目中的8目已灭绝,其中包括自泥盆纪就已出现的四个目,古网翅目、巨古翅目、透翅目和二叠蜓目(Permothemistida); 以及另四个目,复翅目(Dicliptera)、原鞘翅目(Protelytroptera)、华脉目(Caloneurodea)和Hypoperlida,另一部分昆虫类群(如原直翅目Protorthoptera、小翅目Miomoptera和舌鞘目Glosselytrodea)也逐渐衰落,许多科、属及种级阶元的类群相继消失(Labandeira et al.,1993)。

  • 图3 志留纪到早二叠世节肢动物多样性与大气氧含量关系(修改自Ward et al.,2006

  • Fig.3 Relationship between arthropod diversity and atmospheric oxygen content from Silurian to Early Permian (modified from Ward et al., 2006)

  • 罗默氏间隙(Romer's gap)期间氧气含量降低,节肢动物多样性也显著降低

  • Oxygen levels decrease during the Romer's gap, and the diversity of arthropod also decreases significantly

  • 早二叠世全球四大植物区(华夏植物区、欧美植物区、安加拉植物区和冈瓦纳植物区)的植物种类丰富,包括石松类、木贼类、楔叶类、科达(Cordaitales)、种子蕨及前裸子植物(Labandeira et al.,2016a; 戎嘉余等,2018); 至晚二叠世,鳞木类、芦木类、种子蕨及科达类植物逐渐衰弱,仅少数种类(如木贼、蕨类等)繁衍至今,裸子植物(松柏类conifers、苏铁类cycads等)因能更好地适应干旱气候条件而逐渐发展起来(Labandeira et al.,2016a; 戎嘉余等,2018)

  • 受二叠纪昆虫类群(尤其是昆虫口器结构类型)、植物种类及生态环境的影响,该时期全球不同化石植物群的昆虫植食都表现出不同的特点(附表1,http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202205098& flag=1),例如美国德克萨斯地层的早二叠世Coprolite Bone Bed(HI=0.27)、Taint(HI=2.58)、Mitchell Creek Flats(HI=1.98)和Colwell Creek Pond(HI=2.34)植物群的昆虫植食指数各不相同,中二叠世South Ash Pasture植物群的植食指数为1.07,可见早二叠世各植物群的植食指数呈逐渐增加趋势,但至中二叠世,植食指数降低; 植食方式多样性(FFGs和DTs)的变化趋势与昆虫植食指数变化趋势较为一致。从DTs寄主特异性来看,普通型DTs多样性变化较小,特殊型(如造瘿、种子取食和钻蛀)的DTs多样性明显增加(Beck et al.,1998; Labandeira et al.,2007a; Schachat et al.,20142015b; Xu et al.,2018; Maccracken et al.,2020)。此外,早二叠世德克萨斯Taint 植物群记载了较早的骨架式取食(Beck et al.,1998),Colwell Creek Pond植物群首次正式记录并描述了真菌病害侵染痕迹DT58(Schachat et al.,2014)。又如意大利Dolomites地区晚二叠世Bletterbach(HI=1.95)植物群比早二叠世Tregiovo(HI=3.6)植物群的植食程度低(附表1,http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202205098& flag=1)。与同时期美国德克萨斯各植物群的植食特征相比,意大利Dolomites空谷期Tregiovo植物群的昆虫植食指数则高于美国德克萨斯Colwell Creek Pond植物群,但Tregiovo植物群的昆虫植食DT类型远低于Colwell Creek Pond植物群(Labandeira et al.,2016a)。此外,晚二叠世华夏植物区中国云南卡以头植物群的植食DT类型比意大利Bletterbach植物群更高,昆虫植食DTs种类多达24种,共6类FFGs(Liu et al.,2020)。而冈瓦纳古陆二叠纪印度Miohuda、非洲南部KwaZulu Natal地区Clouston Farm和阿根廷La Golondrina等植物群皆以舌羊齿(Glossopteridales)植物为主,昆虫植食数据不完善。与同时期欧美植物群相比,巴西各植物群的昆虫植食指数皆低于同时期欧美植物群,已记录的非洲Clouston Farm和阿根廷La Golondrina植物群的FFG或DT多样性高于同时期欧美植物区(附表1,http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202205098& flag=1)(Srivastava,1987; Banerjee et al.,1998; Adami-Rodrigues et al.,2004; Prevec et al.,2009; de Souza Pinheiro et al.,2012; Gallego et al.,2014; Labandeira et al.,2016a; Cariglino,2018; Fernández et al.,2020)。

  • 影响二叠纪时期欧美、华夏和冈瓦纳植物群昆虫植食的因素可能包括植物群的植物种类多样性、气候和环境条件(安加拉植物群目前尚未有昆虫植食研究)。例如温暖潮湿环境的昆虫植食类型较干燥环境的更为丰富(Beckemeyer,2000; Labandeira et al.,2016a),非洲Clouston Farm和意大利Bletterbach植物群均处于较干燥的中高纬度地区,晚二叠世中国云南卡以头与阿根廷La Golondrina植物群皆位于近赤道温暖湿润的低纬度地区,对比两个区域的昆虫植食水平,结果表明温暖湿润气候条件下的植物群普遍具更高的昆虫植食水平。除气候因素外,环境条件也严重影响着昆虫植食水平,湖泊河流附近植物群的昆虫植食水平比干旱地区或无活水区域植物群的昆虫植食水平更高,美国德克萨斯州的6个植物群中,滨海或有河流的地理环境下昆虫植食水平较高,如Colwell Creek Pond和Taint植物群; 而季节性干旱地区的昆虫植食水平较低,如South Ash Pasture和Mitchell Creek Flats植物群; 无活水流动的湿地或泛洪区昆虫植食水平远低于具流水湖泊河流植物群的昆虫植食水平,如Coprolite Bone Bed和Williamson Drive植物群(Beck et al.,1998; Labandeira et al.,2007a; Schachat et al.,20142015b; Xu et al.,2018; Maccracken et al.,2020)。与之相似,环境条件也是影响现生植物群落中昆虫植食水平的重要因素(Walker et al.,1984; Maccracken et al.,2020)。

  • 4.2 中生代

  • 中生代昆虫植食包括三个发展阶段:第一阶段为三叠纪(Triassic)晚期(237~201 Ma),昆虫植食再次多样化。受二叠纪末期生物灭绝事件的影响,早三叠世昆虫多样性较低,与石炭纪水平相当(Labandeira,2006a; Labandeira et al.,2016a)。晚三叠世昆虫共22目,科级阶元数量增至约100个,其中约25%的昆虫科级阶元延续至今(Labandeira et al.,1993)。除已出现的半翅目(Hemiptera)和鞘翅目(Coleoptera)昆虫外,还包括革翅目(Dermaptera)、双翅目(Diptera)、竹节虫目(Phasmatodea)、膜翅目(Hymenoptera)及毛翅目(Trichoptera)等(Labandeira et al.,1993)。三叠纪昆虫口器结构类型较二叠纪增加7种:包括象鼻状喙(Rhynchophorate)、上颚刷(Mandibulobrustiate)、管状上颚(Tubulomandibulate)、吸器(Haustoriate)、舐吸式(Labellate)、六刺吸式(Hexastylate)及口刷(Mouthbrush),这些口器结构类型与昆虫取食菌类、植物汁液、传粉滴及孢粉、其他软体动物或动物血液相关。三叠纪昆虫口器结构的演化主要表现在:① 直翅类昆虫,部分类群具咀嚼式口器,前足未特化,为植食性昆虫,另一部分类群特化为具刺口器,前足特化,并且具有坚硬锯齿,为捕食性昆虫,如巨翅目(Titanoptera),与直翅目的灭绝科Geraridae的亲缘关系较近; ② 象甲类,咀嚼式口器特化为细长的喙,可穿透各类植物组织(如具有较厚薄壁组织的茎、种子和果实的内部胚胎组织),同时有助于雌虫于植物组织中产卵; ③ 脉翅目(Neuroptera)、长翅目(Mecoptera)、毛翅目和膜翅目等昆虫演化出具吸收式结构的口器类型,三叠纪时期,植物开始演化出延伸的封闭式蜜腺,而部分昆虫口器的下颚与下唇融合,形成延长的吸收式口器,此外,上颚刷结构有利于昆虫吸取传粉滴(或后期的被子植物花蜜)和其他分泌物(Ren et al.,2009; Labandeira,2019; Shi et al.,2021)。三叠纪中期维管植物类群(如石松类、苏铁类、银杏类、蕨类、木贼类及舌羊齿类)逐渐恢复(Hochuli et al.,2010)。至三叠纪后期松柏类、蕨类和本内苏铁类为北半球主要植物类群,而南半球主要为舌羊齿类(戎嘉余等,2018)。

  • 二叠纪末期的生物灭绝事件造成生态系统严重失衡,至三叠纪中期才逐渐恢复,从而导致三叠纪早期昆虫植食的记录较少(Clapham et al.,2012; 图4)。如意大利Dolomites地区二叠纪末期Bletterbach植物群的昆虫植食较低,有16种DTs,9类FFGs,至中三叠世安尼期Valle San Lucan(11种DTs,5类FFGs)、Furkelpass/Passo Furcia(15种DTs,6类FFGs)和Kühwie-senkopf(26种DTs,9类FFGs)植物群的昆虫植食多样性较二叠纪末期更高,至拉丁期Monte Cernera(2种DTs,2类FFGs)、Monte Agnello(19种DTs,7类FFGs)和Forcella da Cians(6种DTs,4类FFGs)植物群的昆虫植食多样性较中三叠世多样性低(Labandeira et al.,2016a)。另外,南非晚三叠世卡尼期Aasvoelberg41(44种DTs,11类FFGs)植物群的昆虫植食多样性远高于三叠纪意大利早期和中期的植物群(图4),且该植物群保存了完好的潜叶(图2)和造瘿痕迹(Labandeira et al.,2018)。晚三叠世中国羊草沟植物群的昆虫植食研究仅专注于阔叶松柏类植物,结果显示松柏类植物上发现四类FFGs共计10种DTs,昆虫植食类型以外部取食为主,且每类DT的发生频数较低(Ding et al.,2015)。因研究的植物类群不完整,尚不能反映出羊草沟真实的植食水平,因此检视的植物化石标本数量是影响各植物群昆虫植食多样性评估的重要原因之一(Schachat et al.,2020)。此外,在晚三叠世中国一平浪植物群双扇蕨科(Dipteridaceae)Dictyophyllumnathorstii羽叶上发现了中国最早的昆虫骨架式取食方式(Feng et al.,2014),该研究在国内首次报道了晚三叠世植食性昆虫与蕨类植物的相互关系。晚三叠世日本Okubata植物群枝脉蕨属(Cladophlebis)羽片上发现了最古老的潜道痕迹(Imada et al.,2022),文中作者采用X射线荧光分析方法检测了羽片不同位置的化学成分和含量信息,通过P、S和Si元素的含量变化判断羽片中的粪化石和叶脉,证明了羽叶上的昆虫取食痕迹为潜道,并推测该潜道是由早期鞘翅目或鳞翅目幼虫潜食形成,该研究也进一步表明三叠纪时期各植物群仍以外部取食为主,至晚三叠世昆虫潜食作为一种内寄生性取食方式开始普遍出现(Labandeira et al.,2018; Imada et al.,2022),表明昆虫演化出一种新的利用植物资源的方式,反映了昆虫对植物资源的取食和利用方式逐渐多样化(Labandeira et al.,2018)。

  • 图4 晚二叠世—晚三叠世各植物群昆虫植食多样性(数据综合自Ding et al.,2015; Labandeira et al.,2016a2018; Liu et al.,2020

  • Fig.4 Insect herbivory from Late Permian-Late Triassic floras (data from Ding et al., 2015; Labandeira et al., 2016a, 2018; Liu et al., 2020)

  • P3w —晚二叠吴家坪期; P3c —晚二叠长兴期; T3a —中三叠安尼期; T3l —中三叠拉丁期; T3c —晚三叠卡尼期; T3r —晚三叠瑞替期; *—羊草沟植物群昆虫植食研究的寄主植物仅为阔叶松柏,如苏铁杉; 横坐标为DTs的多样性各颜色代表不同的功能性取食组,依据DT指南(据Labandeira et al.,2007b及更新版本); 纵坐标从下到上代表各植物群的地质时期由老到新,括号内的数据为该植物群所在国家和所检视样本数; flora—植物群,本文中指植物组合(Plant assemblage); Fm.—Formation,化石组,代表文献中并未明确指示的植物组合

  • P3w —The Wuchiapingian of Late Permian; P3c —the Changhsingian of Late Permian; T3a —the Anisian of Middle Triassic; T3l —the Ladinian of Middle Triassic; T3c —the Carnian of Late Triassic; T3r —the Rhaetian of Late Triassic; *—the host plants from Yangcaogou flora are only focus on broad-leaved conifer, such as Podozamites sp.; the X-axis represents the diversity of DTs, each color represents different functional feeding group, follow the DT guide book (after Labandeira et al., 2007b and update version) ; the Y-axis from the bottom to the top represents the geological flora from old to new, and the data in brackets are the country and samples number that examined for individual flora; flora—the plant assemblage in this article; Fm.—Formation, when the literature doesn't illustrate the specific plant assemblage

  • 第二阶段为侏罗纪(Jurassic)(201~145 Ma)昆虫植食程度进一步加强。侏罗纪时期昆虫种类持续快速增加,至侏罗纪末期增至约320科,其中50%的科级阶元一直延续至今(Labandeira et al.,1993)。在三叠纪已有昆虫种类的基础上,蚤目(Siphonaptera)和鳞翅目(Lepidoptera)昆虫开始出现(Smith et al.,2015; Sohn et al.,2015)。昆虫口器方面,侏罗纪再新增了7种口器结构类型:下唇下颚融合式结构(Maxillolabiate)、口钩(Mouthhook)、中唇舌(Glossate)、单刺/双刺吸式(Monostylate/Distylate)、双刺/四刺吸式(Distylate/Tetrastylate)、三刺吸式(Tristylate)和无取食功能(Nontrophic),累计32种,占所有口器类型的88.9%(Labandeira,2019)。除无取食功能的口器结构外,其余口器结构类型与昆虫(成虫或幼虫)取食植物各组织、蜜露、孢粉、汁液及其他昆虫或动物血液有关(Gao et al.,2012; Labandeira,2019)。

  • 侏罗纪时期的植物类群以裸子植物为主,包括本内苏铁目(Bennettitiales)、苏铁目(Cycadales)、银杏目(Ginkgoales)、买麻藤目(Gnetales)、松柏目等,此外也存在少量低矮的苔藓类、蕨类和高大的种子蕨分布(孙革等,2001; Na et al.,2017; 戎嘉余等,2018; Ren et al.,2019)。劳亚大陆植物种类多样性高于冈瓦纳大陆植物种类,且两大古陆的主要植物类群也不尽相同(Sun et al.,2015; Na et al.,2017; 戎嘉余等,2018)。

  • 侏罗纪时期昆虫、植物种类的多样性研究比较丰富(Labandeira,2013a),也对植物与昆虫的相互作用关系进行了深入探讨,如中侏罗世建恩拟蝎蛉(Pseudopolycentropusjaneannae)(长翅目)和迷人山丽蛉(Oregrammaillecebrosa)(脉翅目)昆虫与裸子植物间的传粉关系研究(Ren et al.,2009; Labandeira et al.,2016b),以及中侏罗世半岛蝎蛉(Juracimbrophlebiaginkgofolia)与银杏叶、脉翅目昆虫(Bellinymphafilicifolia)与苏铁类、竹节虫(Aclistophasmaechinulatum)与蕨类以及地衣美玲(Lichenipolystoechotesramimaculatus)与地衣植物的拟态行为研究(Wang et al.,20102012; Fang et al.,2020; Yang et al.,2020)。相比之下,该时期昆虫植食的系统研究仍较少,且大部分植食研究仅根据少量的植物标本完成,或仅检视特定的植物种类或单一的植食方式,例如侏罗纪西班牙El Pedregal植物群(Santos et al.,2021)和澳大利亚(McLoughlin et al.,2015)地区的25个化石产地保存的少量植物化石样本,分别记录了5类FFGs(11种DTs)和8类FFGs(未鉴定DTs类型),其中El Pedregal植物群阔叶松柏叶片上记录了疑似昆虫潜道的痕迹(Santos et al.,2021)。另外,中侏罗世中国内蒙古道虎沟植物群的两个植食研究分别关注阔叶松柏类(Ding et al.,2015)、银杏类和本内苏铁类(Na et al.,2018; Wang et al.,2021)叶片上的昆虫取食痕迹,结果共统计6类FFGs(17种DTs)。此外,研究者记录了中侏罗世道虎沟地区的“渤大侏罗草”(Juraherbabodae)上的刺吸取食(Han et al.,2016)和“道虎沟侏罗果”(Jurafructusdaohugouensis)果实上昆虫取食的痕迹(Chen et al.,2020)。还有部分研究仅关注于侏罗纪时期单一的昆虫植食方式,如产卵、虫瘿或外部取食等(Vasilenko,2008; Popa et al.,2011; Pott et al.,2012; Meng et al.,2017; Lin et al.,2019a; Enushchenko et al.,2020),其中昆虫产卵类型在中侏罗世比较丰富(图5)。从图中可以发现,石炭纪至三叠纪期间昆虫产卵类型多样性都较低,仅宾夕法尼亚时期和早二叠世产卵类型多样性较高。不同时期昆虫产卵于不同寄主植物的不同结构上,如宾夕法尼亚时期Willision Driver植物群中的11种产卵DTs,主要发现于芦木类茎杆和髓木植物叶片上,少数分布于石松类裂片和根部(Xu et al.,2018); 而二叠纪产卵类型仅有7种,寄主植物主要为蕨类、羊齿类、苏铁和松柏类植物的叶片(或羽片)上(Labandeira et al.,2016a; Fernández et al.,2020); 中侏罗世道虎沟植物群中产卵类型共计14种,除发生于在此之前已报道的植物种类和结构外,还首次发现了义马银杏果实上的产卵痕迹DT272(Meng et al.,2017; Lin et al.,2019a)。此外,还存在新的产卵方式的出现和部分产卵类型的消失,如消失的产卵类型DT67和DT136,以及新出现的DT272、DT292和DT293,但DT272仅出现于中侏罗世银杏果上,而DT292和DT293仅发现于中侏罗世本内苏铁植物上,因此不同时期产卵类型出现与消失与该时期的植物、昆虫种类的出现与灭绝密切相关。植食研究表明,侏罗纪植物通过物理防御策略应对昆虫的取食,如蕨类被毛、本内苏铁叶轴被毛或具刺(Pott et al.,2012; Ding et al.,2015)。然而,侏罗纪时期昆虫与植物的相互作用关系仍不清楚,昆虫植食仍需进行系统的研究(Labandeira,2013a)。

  • 第三阶段为白垩纪(Cretaceous)时期(145~66 Ma),昆虫植食大幅度增加; 其中,受白垩纪末期灭绝事件的影响,昆虫植食水平明显下降,并呈现失衡情况。白垩纪捻翅目(Strepsiptera)、虱毛目(Phthiraptera)和缺翅目(Zoraptera)昆虫开始出现,但昆虫科级阶元的数量并没有大幅度增加(约370科),绝大部分现生昆虫科都已经出现且延续至今(Labandeira et al.,1993; Gao et al.,2021)。白垩纪新增加了两种昆虫口器结构:虹吸上颚式siphonomandibulate和颊锥buccal cone,这两种口器类型分别与鞘翅目昆虫吸食花蜜或取食朽木,以及虱毛目昆虫吸食动物血液或体液有关(Gao et al.,2014; Labandeira,2019)。至白垩纪末期昆虫口器结构共有34种,占全部昆虫口器类型的94.4%。

  • 早白垩世植物群仍以裸子植物为主,但被子植物已经开始出现,如中华古果(Archaefructus sinensis)或辽宁古果(Archaefructusliaoningensis)(Sun et al.,19982002); 晚白垩世是被子植物辐射的重要时期,地表植被由裸子植物为主逐渐过渡为由被子植物为主,同时有少量苔藓类、石松类、蕨类和木贼类伴生。自阿尔必期(113 Ma)以来,被子植物种类大量增加,主要包括无油樟类(Amborellales)、睡莲目(Nymphaeales)、金粟兰目(Chloranthales)、木兰藤类(Austrobaileyales)、木兰类(Magnoliids)和山龙眼类(Proteales)等(Upchurch et al.,1990; Skog et al.,1994; 孙革等,2001; Hu et al.,2008)。除植物叶片外,各地层也保存了数量丰富、种类多样的花朵类型,如樟科(Lauraceae)、莲叶桐科(Hernandiaceae)、火把树科(Cunoniaceae)的花型以及“Rose Creek flower”花型等(Basinger et al.,1984; Sun et al.,1998; Poinar et al.,200820132016; Poinar et al.,20172018a,b,c,2020; Manchester et al.,2018)。裸子植物如本内苏铁类和掌鳞杉科类群逐渐灭绝,银杏类、苏铁类和松柏类植物种类多样性明显降低(Wilf et al.,2004)。

  • Fig.5 The diversity of oviposition from Carboniferous-Early Cretaceous floras (data from Schachat et al., 2014; Ding et al., 2015; Labandeira et al., 2016a, 2018; Xu et al., 2018; Maccracken et al., 2020; Santos et al., 2022)

  • C2g —石炭纪晚宾夕法尼亚格舍尔期; P1k —早二叠空谷期; P2w —中二叠沃德期; P2c —中二叠卡匹敦期; P3w —晚二叠吴家坪期; P3c —晚二叠长兴期; T3a —中三叠安尼期; T3l —中三叠拉丁期; T3c —晚三叠卡尼期; T3r —晚三叠瑞替期; J2c —中侏罗卡洛夫期; K1a —早白垩阿普顿期; *—羊草沟植物群昆虫植食研究的寄主植物仅为阔叶松柏,如苏铁杉; 横坐标为DTs的多样性各颜色代表产卵的不同损伤类型; 纵坐标从下到上代表各植物群的地质时期由老到新; 括号内各植物群所在国家和研究的标本量; flora—植物群,本文中指植物组合(Plant assemblage); Fm.—Formation,化石组,代表文献中并未明确指示的植物组合

  • C2g —The Gzhelian of Pennsylvania Carboniferous; P1k —the Kungurian of Early Permian; P2w —the Wordian of Middle Permian; P2c —the Capitanian of Middle Permian; P3w —the Wuchiapingian of Late Permian; P3c —the Changhsingian of Late Permian; T3a —the Anisian of Middle Triassic; T3l —the Ladinian of Middle Triassic; T3c —the Carnian of Late Triassic; T3r —the Rhaetian of Late Triassic; J2c —the Callovian of Middle Jurassic; K1a —the Aptian of Early Cretaceous; *—the host plants from Yangcaogou flora are only focus on broad-leaved conifer, such as Podozamites sp.; the X-axis represents the diversity of DTs, each color represents different damage type of oviposition; the Y-axis from the bottom to the top represents the geological flora from old to new, and the data in brackets are the country and samples number that examined for individual flora; flora—the plant assemblage in this article; Fm.—Formation, when the literature doesn't illustrate the specific plant assemblage

  • 白垩纪昆虫植食的系统研究主要有中国辽宁义县组以裸子植物为主的大王杖子植物组合和美国内布拉斯加州Dakota组以被子植物为主的Rose Creek植物组合的昆虫植食(Xiao et al.,2021c2022a),研究结果表明大王杖子(HI=0.86)植物组合的昆虫植食主要发生于阔叶松柏类薄氏辽宁枝、窄型叶银杏和茨康叶片上,共记录9类FFGs和65 种DTs。Rose Creek(HI=3.14)植物组合的昆虫植食以及真菌侵染类型主要发生于木兰藤目、金粟兰目和樟目等阔叶植物上,共记录11类FFGs和114种DTs。与大王杖子植物组合的昆虫植食相比,Rose Creek植物组合的昆虫取食更加多样化,昆虫生态位扩张也更加明显。大王杖子植物组合较低的昆虫植食水平,与裸子植物的物理和化学防御以及寄生类群的抑制效应有关,这两项研究为分析早白垩世被子植物辐射影响下的昆虫植食响应提供了重要依据。同时期南半球巴西Crato组植物群记录了19种DTs,共5类FFGs(Filho et al.,2019),植食多样性低于大王杖子和Rose Creek植物组合,Crato植物群较低的植食多样性可能受少量的化石植物标本或较低的植物种类多样性的影响。除此之外,还有部分研究仅关注单一植食类型(如潜叶、产卵)(Ding et al.,20142015; Lin et al.,2019a),或以少数几种植物的昆虫植食为研究对象,如晚白垩世美国Kaiparowits植物群(约76.6~74.5 Ma)的植食研究,仅关注樟科Catulagettyi植物(Maccracken et al.,2022)叶片上的昆虫取食痕迹,结果共统计8类FFGs(40种DTs),该研究也进一步表明晚白垩世樟科植物是昆虫取食的主要寄主。此外,位于晚白垩世马斯特里赫特期到早古新世达宁期的阿根廷Lefipán植物群(约66 Ma)中的银杏植物上记录了少量孔洞取食痕迹,该研究首次记录了白垩纪灭绝事件时期南半球稀有的裸子植物上的昆虫植食,表明在K-Pg时期仍然有少量的银杏类植物存在,该研究为分析现生银杏类群与昆虫间持久的相互关系提供了化石证据(Andruchow-Colombo et al.,2022)。昆虫植食痕迹除了发现于植物叶片、茎杆外,也大量发现于花朵上。早白垩世美国Dakota组的花朵化石上保存了四类FFGs共11种DTs(Xiao et al.,2021a; 图6),表明早白垩世访花昆虫与早期被子植物之间已存在着相对稳定且持续的取食或传粉关系(Xiao et al.,2021a),体现了昆虫迅速适应新的寄主植物,并与之形成互利共生的关系,该研究为分析昆虫与早期花朵间的协同演化关系提供了重要证据。除依据FFG-DT系统外,早白垩世以色列Hatira植物群也通过建立遗迹属种的方式进行了昆虫植食研究,该研究建立昆虫产卵、造瘿、潜叶及外部取食(边缘取食、留脉式、洞食)的6个植食遗迹形态属,共74遗迹种(Krassilov et al.,2008)。

  • 白垩纪时期,昆虫与早期被子植物间的协同演化关系研究丰富,为分析现生昆虫类群的起源演化提供重要证据。例如Xiao et al.(2021b)深入分析了Rose Creek化石植物上的一种取食于灭绝的樟科植物叶脉上的粉蚧,以及两种固着于枝干上的介壳虫,该研究为雌性粉蚧成虫刺吸取食早期被子植物提供了最早的化石记录,表明粉蚧与樟科植物的植食关系历时久远(图6)。此外,Maccracken et al.(2021)首次报道了晚白垩世Kaiparowits植物群中的潜蛾科Leucopteropsaspiralae(鳞翅目)昆虫的潜道痕迹,该研究为鳞翅目巢蛾总科-细蛾总科(Yponomeutoidea-Gracillarioidea)的系统发育分析提供了时间标定。以及Wilf et al.(2000)对白垩纪末期铁甲Hispine昆虫与姜目(Zingiberales)植物间长期的相互关系进行了研究,为铁甲昆虫与姜科植物的协同演化关系提供化石依据,也为证明白垩纪末期北美洲西部内陆的温暖气候环境提供了间接证据。

  • 白垩纪末期生态危机(白垩纪—古近纪灭绝事件,即K-Pg事件)造成了陆地生态系统中各生物种类的大幅度减少,这也使得白垩纪末期昆虫植食或昆虫-植物协同演化得到更广泛的关注,昆虫植食研究更为丰富。已有研究表明K-Pg事件对昆虫类群的影响要远小于二叠纪—三叠纪灭绝事件(Permian-Triassic extinction event,P-Tr)对昆虫类群产生的近乎毁灭性的影响(Labandeira et al.,1993; Labandeira et al.,2016a),但K-Pg事件仍导致全球各地生态系统不同严重程度的失衡(Wilf et al.,2006; Labandeira,2018)。如美国K-Pg时期Dakota地区保存完好的化石植物群,Labandeira等研究了间隔2.2 Ma(界限前1.4 Ma和界限后0.8 Ma)的昆虫植食类型,结果显示K-Pg界限的DTs多样性明显下降,且73%的非普通型(即特殊型或中间型)DTs在界限前或界限处消失,如潜叶、造瘿及一些特殊的外部取食类型,而部分普通型DTs成功渡过边界线,如孔洞取食和边缘取食(Labandeira et al.,2002b)。这一结果可能表明,在灭绝事件期间,昆虫植食的特异性越高,可能遭遇灭绝的风险越大。此外,Wilf等对美国白垩纪末期—古新世—始新世(间隔13 Ma)Rocky山脉的14个植物群进行分析,结果表明白垩纪末期至早古新世时期昆虫植食的多样性较低,始新世时期多样性提高,并且植物种类多样性与昆虫植食多样性呈正相关关系(Wilf et al.,2001); 但在另一研究中,古新世美国Powder River(约64.4 Ma)植物群虽仅有16种植物,但昆虫取食丰富度很高(尤其是潜叶); 与之相反的是,Castle Rock(约63.8 Ma)植物群的植物种类最多(130种),却仅有少量的昆虫取食痕迹,而且几乎没有特殊型DTs。可见灭绝事件后的1~2 Ma间,北半球不同植被类型的各植物群,其部分昆虫植食类型消失,昆虫植食水平不均一,食物网中营养级出现断裂,导致生态系统严重失衡(Wilf et al.,2006)。

  • 同时期南半球阿根廷巴塔哥尼亚Chubut植物群的昆虫植食水平与美国Dakota植物群情况基本一致,灭绝事件也导致昆虫植食水平降低,但不同的是,美国Dakota植物群在灭绝事件后大约历时9 Ma才恢复到灭绝事件前的水平,而巴塔哥尼亚却只历时4 Ma左右(Donovan et al.,2018)。此外,白垩纪末期—早古新世,Chubut植物群的昆虫植食多样性明显高于Dakota植物群,且在达宁期(约66.0~61.6 Ma)出现了4种新的潜叶类型,表明陆地食物网中特殊型昆虫植食类型开始恢复(Donovan et al.,20142016)。在法国Menat地层中也保存了K-Pg时期的大量植物化石,研究结果显示白垩纪—古新世时期昆虫植食多样性降低,这与同时期美国和阿根廷植物群的昆虫植食特征一致; 但在古新世—始新世时期,潜叶类型多样性增加,且普通型和特殊型DTs皆占较高的比例,高于同时期的美国Dakota植物群和阿根廷Chubut植物群的植食水平,表明法国Menat植物群生态系统较北美和阿根廷植物群更为稳定(Wappler et al.,2009),同时认为Menat植物群受灭绝事件的影响比Dakota和Chubut植物群要小很多,并推测K-Pg灭绝事件中不同地区的昆虫植食强度及恢复速率不一致,这些植物群不同的昆虫植食强度和恢复速率可能与各植物群距离陨石坑的不同位置有关(Wappler et al.,2009; Labandeira,2018)。

  • 图6 美国达科塔组早白垩世植物群(距今约103 Ma)昆虫取食早期被子植物花朵的遗迹多样性及昆虫刺吸取食早期被子植物(修改自Xiao et al.,2021a2021b

  • Fig.6 Florivory on early angiosperm flowers and piercing and sucking on early angiosperms from the Early Cretaceous Dakota Formation, USA (about 103 Ma) (modified from Xiao et al., 2021a, 2021b)

  • (a)—Dakotanthuscordiformis花瓣边缘的“U”形取食痕迹(DT405);(b)—花型4花瓣上的边缘取食痕迹(DT12);(c)—早白垩世昆虫植食复原图,其中叶片为近似现生樟科植物的绝灭种Pandemophyllumkvacekii(但该花朵与叶片的对应关系还有待进一步研究),图中展示鞘翅目、膜翅目、直翅目和缨翅目昆虫取食花朵,P. kvacekii叶片上具有外部取食、造瘿、潜叶以及真菌侵染叶片的痕迹;(d)—P. kvacekii叶片上的介壳虫取食痕迹(DT384),并放大于(e);(f)—P. kvacekii叶片上的真菌侵染痕迹;(g)—早白垩世昆虫刺吸痕迹多样性复原图,包括聚集分布于叶片上的粉蚧和茎杆上的介壳虫

  • (a) —Margin feeding (DT405) , the U-shaped traces on the petal of Dakotanthuscordiformis; (b) —marginal feeding (DT12) on the petals of flower morphotype 4; (c) —the reconstruction picture of insect herbivory on Early Cretaceous plants Pandemophyllumkvacekii, which is the extinct plant species and close to the modern Lauraceae (but the affiliation between the flower type and the leaves is undetermined) ; the picture displays the Coleoptera, Hymenoptera, Orthoptera, and Thysanoptera insects feeding on flowers; and the external feeding, galling and leaf-mining, as well as pathogens damage types on leaves of P. kvacekii; (d) —scale insect piercing and sucking on leaves of P. kvacekii (DT384) , and magnified at (e) ; (f) —pathogens damage types on leaves of P. kvacekii; (g) —scale insects feeding on angiosperms, including clustered mealybugs on leaves and soft scales on stems

  • 4.3 新生代

  • 新生代昆虫植食发展包括两个阶段:第一阶段为古近纪(Paleogene)(66~23 Ma),昆虫植食水平提高,并恢复至平衡状态。古近纪昆虫科级阶元的数量恢复至约600科(Labandeira et al.,1993),新的口器类型管状刺(Tubulostylate)结构出现,但锯齿式(Laciniate)口器结构消失(Labandeira,2019)。古新世昆虫化石记录较少,至始新世,昆虫快速演化且分异度提高(戎嘉余等,2018)。渐新世昆虫呈现出与现生昆虫近似的分布格局,受渐新世寒冷气候环境的影响,北半球高纬度地区的热带昆虫类群退回到赤道附近(Grimaldi et al.,2005)。

  • 受古新世和始新世极热事件(PETM)(约56 Ma)的影响,始新世被子植物多样性提高(Wing et al.,2005)。维管植物覆盖绝大部分陆地,包括喜热的热带植被和适应较低温度的落叶林(Strömberg,2011; Dunne et al.,2014),以及仅少量分布于河岸和湖岸的草本植物(Strömberg,2011)。渐新世气温降低,落叶林或针阔混交林开始增加,分布于中高纬度大部分陆地,热带雨林退回到赤道附近,被子植物继续在世界范围内扩张,但草原仍不常见(Strömberg,2011)。

  • 古近纪时期,昆虫植食从白垩纪末期灭绝事件中逐渐恢复,例如古新世早期—始新世晚期—渐新世早期(61.6~33.9 Ma)三个时期的昆虫植食情况,古新世早期高纬度地区斯匹次卑尔根岛(Spitsbergen)Firkanten(35种DTs,6类FFGs)植物群的昆虫植食类型多样性较高,晚始新世Aspelintoppen(23种DTs,7类FFGs)植物群和早渐新世Renardodden(18种DTs,6类FFGs)植物群的昆虫植食类型多样性降低(附表2,http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202205098& flag=1),研究表明气温等环境因素对昆虫植食影响较大(Wappler et al.,2011)。与该研究结果相同的还包括古新世—始新世(59.4~33.9 Ma)时期北半球美国、法国、德国和中国各植物群的昆虫植食研究(附表2,http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202205098& flag=1)(Wilf et al.,2006; Currano et al.,2010; Wappler et al.,2012; Müller et al.,2018; Currano et al.,2019; Kunzmann et al.,2019; Deng et al.,2020)。除了受温度影响外,植物群落也是重要因素之一,例如美国古新世怀俄明Hanna Basin各地层(59~56 Ma)中植物种类多样性较低,但具有丰富的昆虫植食类型,与之相反,植物多样性较高的植物群却仅有较少的昆虫植食类型(附表2,http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202205098& flag=1),该研究认为昆虫植食方式多样性受植物群落的内部组成的影响,而非群落内植物种类的多样性(Schmidt et al.,2019)。此外,叶片性状或植物防御机制也是影响昆虫植食的重要因素(Wappler et al.,2012; Müller et al.,2018; Kunzmann et al.,2019),例如来自始新世德国Lagerstätte Geiseltal植物群的Apocynophyllumneriifolium叶片上发现了大量横向咬痕,推测该时期昆虫可能已演化出应对植物化学防御(乳胶)的植食行为(即昆虫先咬开植物的各叶脉,植物分泌出乳胶后,再取食叶片的行为; McCoy et al.,2022)。渐新世时期气温较低,昆虫植食类型多样性总体上也较始新世时期更低,但在渐新世末期气温回升,昆虫植食类型也逐渐增加,如西班牙、德国和中国的各植物群(附表2,http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202205098& flag=1)(Wappler,2010; Möller et al.,2017; Deng et al.,2020; Moreno-Domínguez et al.,2022)。

  • 第二阶段为新近纪(Neogene)(23~2.6 Ma)昆虫植食与现代基本相似。新近纪时期昆虫的形态和地理分布逐渐与现生昆虫类群分布格局接近(戎嘉余等,2018)。新近纪末期虹吸式口针(Siphonostylate)出现,这一口器结构同时具有虹吸式和刺吸式口器特征,为具有吸血习性的鳞翅目昆虫所特有(Zaspel et al.,2012)。至此,37种口器结构已全部出现(Labandeira,2019),昆虫类群增至约600个科。该时期生态群落逐渐演变为与现代相近的面貌(Wappler et al.,2016),中高纬度地区的温带落叶林逐渐取代了热带常绿阔叶林,草原开始扩张(Kergoat et al.,2018)。

  • 新近纪昆虫植食类型逐渐与现生生态系统中的昆虫植食相似(Wing et al.,2009; Zhang et al.,2018)。中新世早期至上新世各阶段植物群的昆虫植食多样性受气候环境影响较大,例如阿根廷Palo Pintado和San José植物群、新西兰Double Hilla和Kaikorai Valleya植物群、土耳其Beskonak、德国Willershausen和Berga以及法国Bernasso植物群(附表2,http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202205098& flag=1)(Reichgelt et al.,2016; Adroit et al.,20182021; Robledo et al.,2018),温暖潮湿的气候环境下的昆虫植食类型多样性较高,而干燥或气温较低的环境下的昆虫植食类型多样性较低。另外,捷克DSH、LCH、GUV植物群以及中国江西头坡、喜马拉雅山脉的Siwalik地层、云南临沧等植物群显示,昆虫植食多样性与最冷月的平均气温相关,即最冷月气温越高,昆虫植食类型越多样(附表2,http://www.geojournals.cn/dzxb/ch/reader/view_abstract.aspx?file_no=202205098& flag=1)(Knor et al.,2012; Khan et al.,20142015; Ma et al.,2020)。此外,植物群落组成(包括微生物组成)也会影响昆虫植食多样性(Currano et al.,2021a),如中新世埃塞俄比亚Mush Valley五个子植物群中,植物种类多样性、叶片单位面积质量以及固氮微生物对昆虫植食强度和多样性具有重要影响(Royer et al.,2007; Currano et al.,2021b)。另外,研究表明草原的扩张提高了冰岛地区昆虫植食的多样性(Wappler et al.,2016)。渐新世晚期至中新世中期(26~14 Ma)部分湿润地区的草地群落开始扩张(Strömberg,2011),草地群落中不同的昆虫植食类型也开始出现,如蚜虫刺吸草本植物叶片并传播病毒(Labandeira et al.,2014a),以及潜叶蝇(Agromyzid)潜食禾本科(Poaceae)植物叶片(Winkler et al.,2010),但草原扩张对昆虫植食多样化的影响仍需进一步研究。

  • 5 总结与展望

  • (1)本文梳理了昆虫植食的研究历史,详细介绍了植物化石上生物损伤与物理损伤的区别,以及昆虫植食研究依据的化石证据,介绍了昆虫植食在各地质历史时期的演化历史。

  • (2)昆虫植食方式的多样性及演化历史是揭示昆虫与植物协同演化的重要方法,也为阐释现生昆虫与植物相互作用提供重要的理论依据,有助于探索不同时期的生态学问题,如PETM事件及P-Tr或K-Pg生物灭绝事件对生态系统的影响等。从古今结合的角度分析昆虫植食特征,是理解现生昆虫植食行为起源和演化的重要基础,也为分析当前昆虫植食格局提供重要线索。

  • (3)自志留纪以来的昆虫与植物的演化历史中,虽然各地质时期都有昆虫植食的研究,但研究程度不一,各植物群使用的衡量指标、研究系统和分析方法都有所不同,使得各阶段的昆虫植食研究难以进行详细比较。此外,植物和昆虫化石是具有时空特性的珍贵材料,而各阶段数量不均的化石材料,使得昆虫植食的整个历史信息缺失。因此,完善研究方法体系和补充各阶段昆虫植食研究对探索昆虫植食的自然历史具有重要作用。

  • (4)昆虫植食方式的多样性与各阶段昆虫口器结构类型及寄主植物结构密切相关。口器结构的演化促进了昆虫对不同植物组织的利用,有利于昆虫对生态系统资源进行合理分配,以及对不同生态位进行快速占领。如早期出现的咀嚼式口器,在昆虫取食植物时会形成边缘取食、孔洞取食痕迹,后期出现的口针结构,促进了刺吸取食的形成。而寄主植物类群的演化,从早期的苔藓类、石松类、有节类、蕨类和种子蕨类,至后期的裸子植物和被子植物,促使昆虫先演化出取食孢子的行为,而取食种子和花朵则相对较晚; 钻蛀取食出现较早,而潜叶取食却出现较晚,但目前专性取食方式如潜叶、造瘿行为及其对应的昆虫类群的起源和演化仍不清楚。

  • (5)昆虫植食方式的多样性也受气候环境(温度、湿度等)、植物种类多样性、植物群落组成和微生物等的影响。如二叠纪流水区域的昆虫植食水平明显高于无流水区域; 新生代PETM时期,温暖湿润环境下昆虫植食水平明显高于干燥寒冷的低温时期。此外,微生物与昆虫、植物和环境密切相关:一方面,微生物可通过植物组织上的昆虫取食痕迹侵染植株,使得植物的防御能力降低,导致病原菌或其他微生物进一步侵染植物; 而另一方面,微生物也可以影响昆虫的取食行为。目前微生物与早期昆虫植食的关系尚不明确,因此昆虫植食中的真菌病害侵染类型仍需进一步深入研究。

  • (6)未来我国地质时期昆虫植食研究将主要关注以下方面:① 探究早期生态系统中关键气候转型期的昆虫植食变化,如石炭纪末期、侏罗纪、白垩纪末期和PETM时期的昆虫植食,可为分析当前气候变化(如全球气候变暖)对生态系统的影响提供理论依据; ② 关注地质时期植被更替(如被子植物逐渐取代裸子植物、裸子植物取代蕨类植物)过程中,昆虫与植物相互关系的变化,对分析当今陆地生态系统植物群落变化(或人类活动)影响下的昆虫多样性、群落组成及与植物的关系具有借鉴意义; ③ 探究如何在现生植物群落中,依据植食类型多样性估测植食性昆虫多样性,有助于深入了解各生态系统中的植食性昆虫多样性,进而评估生态系统的稳定程度或预测入侵生物的潜在危害; ④ 深入剖析昆虫专性植食行为的起源及其驱动因子,如植食昆虫与植物的一对一植食行为; ⑤ 全面分析森林生态系统中昆虫植食在各营养级中的作用,以及影响昆虫植食的多方面因素,如捕食和寄生类群对昆虫植食的抑制效应,微生物和真菌对昆虫植食的综合作用等。

  • 致谢:感谢匿名审稿人对本文提出的宝贵修改意见,感谢美国国家自然历史博物馆Smithsonian研究院Conrad C. Labandeira研究员对文章给予的指导。

  • 参考文献

    • Adami-Rodrigues K, Iannuzzi R, Pinto I D. 2004. Permian plant-insect interactions from a Gondwana flora of southern Brazil. Fossils and Strata, 51(51): 106~125.

    • Adams J M, Zhang Y, Basri M, Shukor N. 2009a. Do tropical forest leaves suffer more insect herbivory? a comparison of tropical versus temperate herbivory, estimated from leaf litter. Ecological Research, 24(6): 1381~1392.

    • Adams J M, Zhang Y. 2009b. Is there more insect folivory in warmer temperate climates? a latitudinal comparison of insect folivory in eastern North America. Journal of Ecology, 97(5): 933~940.

    • Adroit B, Girard, V, Kunzmann L, Terral J F, Wappler T. 2018. Plant-insect interactions patterns in three European paleoforests of the Late-Neogene—Early-Quaternary. PeerJ, 6: e5075.

    • Adroit B, Teodoridis V, Güner T H, Denk T. 2021. Patterns of insect damage types reflect complex environmental signal in Miocene forest biomes of Central Europe and the Mediterranean. Global and Planetary Change, 199: 103451.

    • Andruchow-Colombo A, Gandolfo M A, Cúneo N R, Escapa I H. 2022. Ginkgoites villardeseoanii sp. nov. , a ginkgophyte with insect damage from the Upper Cretaceous (Maastrichtian) Lefipán Formation (Chubut, Patagonia, Argentina). Cretaceous Research, 133: 105124.

    • Banerjee M, Bera S. 1998. Record of zoocecidia on leaves of Glossopteris browniana Brongn. from Mohuda Basin, Upper Permian, Indian Lower Gondwana. Indian Biologist, 30: 58~61.

    • Banks H P, Colthart B J. 1993. Plant-animal-fungal interactions in Early Devonian Trimerophytes from Gaspé, Canadal. American Journal of Botany, 80(9): 992~1001.

    • Bashkuev A S. 2011. Nedubroviidae, a new family of Mecoptera: the first Paleozoic long-proboscid scorpionflies. Zootaxa, 2895(1): 47~57.

    • Basinger J, Dilcher D L. 1984. Ancient bisexual flowers. Science, 224(4648): 511~513.

    • Beck A L, Labandeira C C. 1998. Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 142(3-4): 139~173.

    • Beckemeyer R J. 2000. The Permian insect fossils of Elmo, Kansas. Kansas School Naturalist, 16: 1~46.

    • Bergen P F, Collinson M E, Scott A C, de Leeuw J W. 1995. Unusual resin chemistry from Upper Carboniferous pteridosperm resin rodlets. In: Anderson K B, Crelling J C, eds. American Chemical Society Symposium Based on Amber, Resinite and Fossil Resin. American Chemical Society, Washington: ACS Publications, 149~169.

    • Berry E W. 1931. An insect-cut leaf from the Lower Eocoene. American Journal of Science, 21(124): 301~304.

    • Bodnaryk R P. 1992. Distinctive leaf feeding patterns on oilseed rapes and related Brassicaceae by flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Canadian Journal of Plant Science, 72: 575~581.

    • Brooks H K. 1955. Healed wounds and galls on fossil leaves from the Wdcox deposits (Eocene) of western Tennessee. Psyche: A Journal of Entomology, 62(1): 1~9.

    • Cariglino B. 2018. Patterns of insect-mediated damage in a Permian Glossopteris Flora from Patagonia (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology, 507(15): 39~51.

    • Carvalho M R, Wilf P, Barrios H, Windsor D M, Currano E D, Labandeira C C, Jaramillo C A. 2014. Insect leaf-chewing damage tracks herbivore richness in modern and ancient forests. PloS ONE, 9(5): e94950.

    • Carvalho M R, Jaramillo C, de la Parra F, Caballero-Rodríguez D, Herrera F, Wing S, Turner B L, D'ApolitoC, Romero-Báez M, Narváez P, Martínez C, Gutierrez M, Labandeira C, Bayona G, Rueda M, Paez-Reyes M, Cárdenas D, DuqueÁ, Crowley J L, Santos C, Silvestro D. 2021. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science, 372(6537): 63~68.

    • Chen L J, Hou Y M, Yin P F, Wang X. 2020. An edible fruit from the Jurassic of China. China Geology, 3(1): 8~15.

    • Cichan M A, Taylor T N. 1982. Wood-brings in Premnoxylon : plant-animal interactions in the Carboniferous. Palaeogeography, Palaeoclimatology, Palaeoecology, 39(1-2): 123~127.

    • Clapham M E, Karr J A. 2012. Environmental and biotic controls on the evolutionary history of insect body size. Proceedings of the National Academy of Sciences USA, 109: 10927~10930.

    • Coley P D, Barone J A. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27(1): 305~335.

    • Correia P, Bashforth A R, Š im ů nek Z, Cleal C J, Artur A Sá, Labandeira C C. 2020. The history of herbivory on sphenophytes: a new calamitalean with an insect gall from the Upper Pennsylvanian of Portugal and a review of arthropod herbivory on an ancient lineage. International Journal of Plant Sciences, 181(4): 387~418.

    • Currano E D, Wilf P, Wing S L, Labandeira C C, Lovelock E C, Royer D L. 2008. Sharply increased insect herbivory during the Paleocene-Eocene thermal maximum. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 1960~1964.

    • Currano E D, Labandeira C C, Wilf P. 2010. Fossil insect folivory tracks paleotemperature for six million years. Ecological Monographs, 80(4): 547~567.

    • Currano E D, Laker R, Flynn A G, Fogt K K, Stradtman H, Wing S L. 2016. Consequences of elevated temperature and pCO2 on insect folivory at the ecosystem level: perspectives from the fossil record. Ecology and Evolution, 6(13): 4318~4331.

    • Currano E D, Pinheiro E R S, Buchwaldt R, William C, Miller Ian M. 2019. Endemism in Wyoming plant and insect herbivore communities during the Early Eocene hothouse. Paleobiology, 45 (3): 421~439.

    • Currano E D, Azevedo-Schmidt L E, Maccracken S A, Swain A. 2021a. Scars on fossil leaves: an exploration of ecological patterns in plant-insect herbivore associations during the age of Angiosperms. Palaeogeography, Palaeoclimatology, Palaeoecology, 582: 110636.

    • Currano E D, Jacobs B F. 2021b. Bug-bitten leaves from the early Miocene of Ethiopia elucidate the impacts of plant nutrient concentrations and climate on insect herbivore communities. Global and Planetary Change, 207: 103655.

    • de Souza Pinheiro E R, Iannuzzi R, Tybusch G P. 2012. Specificity of leaf damage in the Permian “Glossopteris Flora”: a quantitative approach. Review of Palaeobotany and Palynology, 174(15): 113~121.

    • Deng W, Su T, Wappler T, Liu J, Li S, Huang J, Tang H, Low S L, Wang T X, Xu H, Xu X T, Liu P, Zhou, Z. 2020. Sharp changes in plant diversity and plant-herbivore interactions during the Eocene—Oligocene transition on the southeastern Qinghai-Tibetan Plateau. Global and Planetary Change, 194, 103293.

    • Dilcher D L. 1963. Eocene epiphyllous fungi. Science, 142(3593): 667~669.

    • Dilcher D L. 1965. Epiphyllous fungi from Eocene deposits in western Tennessee, USA. Palaeontographica Abteilung B, 116: 1~54.

    • Ding Q L, Labandeira C C, Ren D. 2014. Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of northeastern China and the leaf-mining biology of possible insect culprit clades. Arthropod Systematics and Phylogeny, 72(3): 281~308.

    • Ding Q L, Labandeira C C, Meng Q, Ren D. 2015. Insect herbivory, plant-host specialization and tissue partitioning on mid Mesozoic broadleaved conifers of northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 440(15): 259~273.

    • Dong Junling. 2019. The Miocene plant fossils, paleoatmospheric CO2 and plant-insect interations from Fujian Province. Doctoral dissertation of Lanzhou University (in Chinese with English abstract).

    • Donovan M P, Wilf P, Labandeira C C, Johnson K R, Peppe D J. 2014. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains, USA. PloS ONE, 9(7): 1~35.

    • Donovan M P, Iglesias A, Wilf P, Labandeira C C, Cúneo N R. 2016. Rapid recovery of Patagonian plant-insect associations after the end-Cretaceous extinction. Nature Ecology & Evolution, 1(1): 1~5.

    • Donovan M P, Iglesias A, Wilf P, Labandeira C C, Cúneo N R. 2018. Diverse plant-insect associations from the latest Cretaceous and Early Paleocene of Patagonia, Argentina. Ameghiniana, 55(3): 303~338.

    • Dos Santos T B, Pinheiro E R S, Iannuzzi R. 2020. First evidence of seed predation by arthropods from Gondwana and its Early Paleozoic history (Rio Bonito Formation, Paraná Basin, Brazil). Palaios, 35(7): 292~301.

    • Duncan I J. 1997. The taphonomy of insects. Doctoral dissertation of University of Bristol, UK, 1~328.

    • Dunn M T, Rothwell G W, Mapes G. 2003. On Paleozoic plants from marine strata: Trivena arkansana (Lyginopteridaceae) gen. et sp. nov. , a lyginopterid from the Fayetteville Formation (middle Chesterian/Upper Mississippian) of Arkansas, USA. American Journal of Botany, 90(8): 1239~1252.

    • Dunne J A, Labandeira C C, Williams R J. 2014. Highly resolved Early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proceedings of the Royal Society B: Biological Sciences, 281(1782): 20133280.

    • Edwards D. 1996. New insights into early land ecosystems: a glimpse of a Lilliputian world. Review of Palaeobotany and Palynology, 90(3-4): 159~174.

    • Enushchenko I V, Frolov А O. 2020. Revision of existing classification of fossil insect feeding traces and description of new ichnotaxa from Middle Jurassic sediments of Eastern Siberia (Russia). Zootaxa, 4758(2): 347~359.

    • Fang H, Labandeira C C, Ma Y M, Zheng B Y, Ren D, Wei X L, Liu J X, Wang Y. 2020. Lichen mimesis in Mid-Mesozoic lacewings. Elife, 9: e59007.

    • Feng Z, Su T, Yang J Y, Chen Y X, Wei H B, Dai J, Guo Y, Liu J R, Ding J H. 2014. Evidence for insect-mediated skeletonization on an extant fern family from the Upper Triassic of China. Geology, 42(5): 407~410.

    • Feng Z, Wang J, Röβler R, Slipinski A, Labandeira C C. 2017. Late Permian wood-borings reveal an intricate network of ecological relationships. Nature Communications, 8(1): 1~6.

    • Fernandes G W, Santos J C. 2014. NeotropicalInsect Galls. New York: Springer, 1~550.

    • Fernández J A, Chiesa J O. 2020. Plant-insect interactions in the fossil flora of the Bajo de Veliz Formation (Gzhelian-Asselian): San Luis, Argentina. Ichnos, 27(2): 156~166.

    • Filho E B S, Adami-Rodrigues K, Lima F J, Bantim R A M, Wappler T, Saraiva A Á F. 2019. Evidence of plant-insect interaction in the Early Cretaceous flora from the Crato Formation, Araripe basin, Northeast Brazil. Historical Biology, 31(7): 926~937.

    • Fisk L H, Fritz W J. 1984 Pseudoborings in petrified wood from the Yellowstone “fossil forests”. Journal of Paleontology, 58(1): 58~62.

    • Fürstenberg-Hägg J, Zagrobelny M, Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences, 14(5): 10242~10297.

    • Gallego J, Cúneo R, Escapa I. 2014. Plant-arthropod interactions in gymnosperm leaves from the Early Permian of Patagonia, Argentina. Geobios, 47(3): 101~110.

    • Gangwere S K. 1966. Relationships between the mandibles, feeding behavior, and damage inflicted on plants by the feeding of certain acridids (Orthoptera). Michigan Entomologist, 1(1): 13~16.

    • Gao T P, Shih C K, Xu X, Wang S, Ren D. 2012. Mid-Mesozoic flea-like ectoparasites of feathered or haired vertebrates. Current Biology, 22(8): 732~735.

    • Gao T P, Shih C K, Rasnitsyn A P, Xu X, Wang S, Ren D. 2014. The first flea with fully distended abdomen from the Early Cretaceous of China. BMC Evolutionary Biology, 14(1): 1~7.

    • Gao T P, Shih C K, Ren D. 2021. Behaviors and interactions of insects in Mid-Mesozoic ecosystems of northeastern China. Annual Review of Entomology, 66: 337~354.

    • Gaston K J, Spicer J I. 2004. Biodiversity: An Introduction. 2nd Edition. Massachusetts: Blackwell Publishers.

    • Giraldo L A, Labandeira C C, Herrera F, Carvalho M. 2021. Rich and specialized plant-insect associations in a Middle-Late Paleocene (58~60 Ma) neotropical rainforest (Bogotá Formation, Colombia). Ameghiniana, 58(2): 75~99.

    • Gnaedinger S C, Adami-Rodrigues K, Gallego O F. 2014. Endophytic oviposition on leaves from the Late Triassic of northern Chile: ichnotaxonomic, palaeobiogeographic and palaeoenvironment considerations. Geobios, 47(4): 221~236.

    • Grimaldi D A. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden, 86(2): 373~406.

    • Grimaldi D A, Engel M S. 2005. Evolution of the Insects. UK, Cambridge: Cambridge University Press, 1~772.

    • Habgood K S, Hass H, Kerp H. 2003. Evidence for an early terrestrial food web: coprolites from the Early Devonian Rhynie chert. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 94(4): 371~389.

    • Han G, Liu Z, Liu X, Mao L, Jacques F M B, Wang X, 2016. A whole plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geologica Sinica (English Edition), 90(1): 19~29.

    • Hazra T, Adroit B, Hazra M, Spicer R A, Spicer T E, Bera S, Khan M A. 2021. New discovery of rare insect damage in the Pliocene of India reinforces the biogeographic history of Eurasian ecosystems. Review of Palaeobotany and Palynology, 298: 104589.

    • Heron H D C. 2003. Tortoise beetles (Chrysomelidae: Cassidinae) and their feeding patterns from the North Park Nature Reserve, Durban, KwaZulu-Natal, South Africa. Durban Museum Novitates, 28(1): 31~44.

    • Hochuli P A, Vigran J O. 2010. Climate variations in the Boreal Triassic—inferred from palynological records from the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 20~42.

    • Hu S S, Dilcher D L, Jarzen M J, Taylor D W. 2008. Early steps of angiosperm pollinator coevolution. Proceedings of the National Academy of Sciences of the United States of America, 105(1): 240~245.

    • Iannuzzi R, Labandeira C C. 2008. The oldest record of external foliage feeding and the expansion of insect folivory on land. Annals of the Entomological Society of America, 101(1): 79~94.

    • Imada Y, Oyama N, Shinoda K, Takahashi H, Yukawa H. 2022. Oldest leaf mine trace fossil from East Asia provides insight into ancient nutritional flow in a plant-herbivore interaction. Scientific Reports, 12(1): 1~12.

    • Jennings J R. 1974. Lower Pennsylvanian plants of Illinois. I: a flora from the Pounds Sandstone Member of the Caseyville Formation. Journal of Paleontology, 48(3): 459~473.

    • Kergoat G J, Condamine F L, Toussaint E F A, Capdevielle-Dulac C, Clamens A L, Barbut J, Goldstein P Z, Le Ru B. 2018. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nature Communications, 9(1): 1~9.

    • Khan M A, Spicer R A, Spicer T E V, Bera S. 2014. Fossil evidence of insect folivory in the eastern Himalayan Neogene Siwalik forests. Palaeogeography, Palaeoclimatology, Palaeoecology, 410(15): 264~277.

    • Khan M A, Bera S, Spicer R A, Spicer T E. 2015. Plant-arthropod associations from the Siwalik forests (Middle Miocene) of Darjeeling sub-Himalaya, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 438(15): 191~202.

    • Knor S, Prokop J, Kvaček Z, Janovský Z, Wappler T. 2012. Plant-arthropod associations from the Early Miocene of the Most Basin in North Bohemia—palaeoecological and palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 321: 102~112.

    • Krassilov V, Silantieva N, Hellmund M, Hellmund W. 2007. Insect egg sets on angiosperm leaves from the Lower Cretaceous of Negev, Israel. Cretaceous Research, 28(5): 803~811.

    • Krassilov V A, Rasnitsyn A P. 2008. Plant-arthropod Interactions in the Early Angiosperm History: Evidence from the Cretaceous of Israel. Moscow, Sofia: Pensoft Publishers, 1~229.

    • Krings M, Taylor T N, Kellogg D W. 2002. Touch-sensitive glandular trichomes: a mode of defence against herbivorous arthropods in the Carboniferous. Evolutionary Ecology Research, 4: 779~786.

    • Kunzmann L, Moraweck K, Müller C, Schröder I, Wappler T, Grein M, Roth-Nebelsick A. 2019. A Paleogene leaf flora (Profen, Sachsen-Anhalt, Germany) and its potentials for palaeoecological and palaeoclimate reconstructions. Flora, 254: 71~87.

    • Labandeira C C. 1986. Mouthpart design and basic ways that insects have partitioned recent food resource: implication for the macroevolutionary history of a morphologically diverse group. Geological Society of America, Abstracts with Programs, 18(6): 663.

    • Labandeira C C. 1990. Rethinking the diets of Carboniferous terrestrial arthropods: evidence for a nexus of arthropod/vascular plant interactions. Geological Society of America Abstract Programs, 22(7): A265.

    • Labandeira C C. 1997. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics, 28: 153~193.

    • Labandeira C C. 1998a. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences, 26: 329~377.

    • Labandeira C C. 1998b. The role of insect in Late Jurassic Middle Cretaceous ecoststems. Lower and Middle Cretaceous Terrestrial Ecosystems: Bulletin 14(1): 105~124.

    • Labandeira C C. 1998c. Plant-insect associations from the fossil record. Geotimes, 43(9): 18~24.

    • Labandeira C C. 1999. Insects and other hexapods. In: Singer R, ed. Encyclopedia of Paleontology. London: Fitzroy-Dearborn Publishers, 603~624.

    • Labandeira C C. 2001. The rise and diversification of insects. In: Briggs D E G, Crowther P R, eds. Palaeobiology II. UK, Oxford: Blackwell Science Publishers, 82~88.

    • Labandeira C C. 2002a. The history of associations between plants and animals. In: Herrera C M, Pellmyr O M, eds. Plant-Animal Interactions: An Evolutionary Approach. Oxford, UK, Malden, MA: Blackwell Science.

    • Labandeira C C. 2002b. Plant-insect associations from Middle Eocene floras of the Pacific Northwest: a preliminary report. Rocky Mountain Geology, 37: 31~59.

    • Labandeira C C. 2002c. The paleobiology of predators, parasitoids, and parasites: accommodation and death in the fossil record of terrestrial invertebrates. In: Kowalewski M, Kelley P H, eds. The Fossil Record of Predation. Cambridge: Paleontological Society Publisher, 8: 211~250.

    • Labandeira C C. 2006a. The four phases of plant-arthropod associations in deep time. Geologica Acta, 4(4): 409~438.

    • Labandeira C C. 2006b. Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Systematics & Phylogeny, 64(1): 53~94.

    • Labandeira C C. 2007. The origin of herbivory on land: initial patterns of plan tissue consumption by arthropods. Insect Science, 14(4): 259~275.

    • Labandeira C C. 2011. Evidence for an earliest Late Carboniferous divergence time and the early larval ecology and diversification of major Holometabola lineages. Entomologica Americana, 117(1): 9~21.

    • Labandeira C C. 2013a. A paleobiologic perspective on plant-insect interactions. Current Opinion in Plant Biology, 16(4): 414~421.

    • Labandeira C C. 2013b. Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften, 100(4): 355~364.

    • Labandeira C C. 2014a. Amber. In: Laflamme M, Schiffbauer J D, Darroch S A F, eds. Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. Ithaca: Paleontological Society.

    • Labandeira C C. 2014b. Why did terrestrial insect diversity not increase during the angiosperm radiation? Mid-Mesozoic, plant-associated insect lineages harbor clues. In: Pontarotti P, ed. Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. Switzerland: Springer, 261~299.

    • Labandeira C C. 2018. The fossil history of insect diversity. In: Foottit R G, Adler P H, eds. Insect Biodiversity: Science and Society. New York: John Wiley & Sons Ltd. , 2: 723~788.

    • Labandeira C C. 2019. Thefossil record of insect mouthparts: innovation, functional convergence, and associations with other organisms. In: Krenn H W, ed. Insect Mouthparts Zoological Monographs 5. Switzerland: Springer, 567~671.

    • Labandeira C C. 2021. Ecology andevolution of gall-inducing arthropods: the pattern from the terrestrial fossil record. Frontiers in Ecology and Evolution, 9(303): 1~30.

    • Labandeira C C, Beall B S, Hueber F M. 1988. Early insect diversification: evidence from a Lower Devonian bristletail from Québec. Science, 242(4880): 913~916.

    • Labandeira C C, Sepkoski J J. 1993. Insect diversity in the fossil record. Science, 261(5119): 310~315.

    • Labandeira C C, Dilcher D L, Davis D R, Wagner D L. 1994. Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. Proceedings of the National Academy of Sciences USA, 91(25): 12278~12282.

    • Labandeira C C, Phillips T L. 1996a. Insect fluid-feeding on Upper Pennsylvanian tree ferns (Palaeodictyoptera, Marattiales) and the early history of the piercing-and-sucking functional feeding group. Annals of the Entomological Society of America, 89(2): 157~183.

    • Labandeira C C, Phillips T L. 1996b. A Carboniferous petiole gall: insight into early ecologic history of the Holometabola. Proceedings of the National Academy of Sciences USA, 93: 8470~8474.

    • Labandeira C C, Phillips T L, Norton R A. 1997. Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12(4): 319~353.

    • Labandeira C C, Smith D M. 1999. Forging a future for fossil insects: thoughts on the First International Congress of Paleoentomology. Paleobiology, 25(2): 154~157.

    • Labandeira C C, Johnson K R, Lang P. 2002a. Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: major extinction and minimum rebound. In: Hartman J H, Johnson K R, Nichols D J, eds. The Hell Creek Formation of the Northern Great Plains. Washington DC: Geological Society of America Special Paper, 361: 297~327.

    • Labandeira C C, Johnson K R, Wilf P. 2002b. Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences USA, 99(4): 2061~2066.

    • Labandeira C C, Phillips T L. 2002c. Stem borings and petiole galls from Pennsylvanian tree ferns of Illinois, USA: implications for the origin of the borer and galler functional-feeding-groups and holometabolous insects. Palaeontographica (A), 264(1): 1~84.

    • Labandeira C C, Allen E G. 2007a. Minimal insect herbivory for the Lower Permian Coprolite Bone Bed site of north-central Texas, USA, and comparison to other Late Paleozoic Floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3-4): 197~210.

    • Labandeira C C, Wilf P, Johnson K R, Marsh F. 2007b. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils (version 3. 0). Smithsonian Institution (http: // paleobiology. si. edu/pdfs/insect Damage Guide 3. 01. pdf).

    • Labandeira C C, Currano E D. 2013. The fossil record of plant-insect dynamics. Annual Review of Earth and Planetary Sciences, 41(1): 287~311.

    • Labandeira C C, Prevec R. 2014a. Plant paleopathology and the roles of pathogens and insects. International Journal of Paleopathology, 4: 1~16.

    • Labandeira C C, Tremblay S L, Bartowski K E, VanAller H L. 2014b. Middle Devonian liverwort herbivory and antiherbivore defence. New Phytologist, 202(1): 247~258.

    • Labandeira C C, Kustatscher E, Wappler T. 2016a. Floral assemblages and patterns of herbivory during the Permian to Triassic of Northeastern Italy. PLoS ONE, 11(11): e0165205.

    • Labandeira C C, Yang Q, Santiago-Blay J A, Hotton C L, Monteiro A, Wang Y J, Goreva Y L, Shih C K, Sijeström S, Rose T R, Dilcher D L, Ren D. 2016b. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proceedings of the Royal Society B: Biological Sciences, 283(1824): 20152893.

    • Labandeira C C, Anderson J M, Anderson H M. 2018. Expansion of arthropod herbivory in Late Triassic south Africa: the Molteno biota, Aasvoëlberg 411 site and developmental biology of a gall. (Chapter 14). In: Tanner L H, ed. The Late Triassic World: Earth in a Time of Transition. Switzerland: Springer, 1~805.

    • Labandeira C C, Li L F. 2021. The history of insect parasitism and the Mid-Mesozoic Parasitoid Revolution. In: Baets K De, Huntley J, eds. The Evolution and Fossil Record of Parasitism—Identification and Macroevolution of Parasites. Switzerland: Springer, 377~533.

    • Li Q, Deng W, Wappler T, Utescher T, Maslova N, Liu Y C, Jia H, Song C Y, Su T, Quan C. 2022. High frequency of arthropod herbivore damage in the Miocene Huaitoutala flora from the Qaidam basin, northern Tibetan Plateau. Review of Palaeobotany and Palynology, 297: 104569.

    • Lin X D, Labandeira C C, Ding Q L, Meng Q M, Ren D. 2019a. Exploiting nondietary resources in deep time: Patterns of oviposition on Mid-Mesozoic plants from northeastern China. International Journal of Plant Sciences, 180(5): 411~457.

    • Lin X D, Shih C, Li S, Ren D. 2019b. Mecoptera-Scorpionflies and hangingflies. In: Ren D, Shih C K, Gao T P, Yao Y Z, Wang Y J, eds. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China. New York: John Wiley & Sons Ltd. , 555~595.

    • Liu H Y, Wei H B, Chen J, Guo Y, Zhou Y, Gou X D, Yang S L, Labandeira C C, Feng Z. 2020. A latitudinal gradient of plant-insect interactions during the Late Permian in terrestrial ecosystems? new evidence from Southwest China. Global and Planetary Change, 192: 103248.

    • Ma F J, Ling C C, Ou-Yang M S, Yang G M, Shen X P, Wang Q J. 2020. Plant-insect interactions from the Miocene (Burdigalian-Langhian) of Jiangxi, China. Review of Palaeobotany and Palynology, 275: 104176.

    • Maccracken S A, Miller I M, Labandeira C C. 2019. Late Cretaceous domatia reveal the antiquity of plant-mite mutualisms in flowering plants. Biology Letters, 15(11): 20190657.

    • Maccracken S A, Labandeira C C. 2020. The Middle Permian South Ash Pasture assemblage of north-central Texas: coniferophyte and gigantopterid herbivory and longer-term herbivory trends. International Journal of Plant Sciences, 181(3): 342~362.

    • Maccracken S A, Sohn J C, Miller I M, Labandeira C C. 2021. A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: Lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. Journal of Systematic Palaeontology, 19(2): 131~144.

    • Maccracken S A, Miller I M, Johnson K R, Sertich J M, Labandeira C C. 2022. Insect herbivory onCatula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA). Plos ONE, 17(1): e0261397.

    • Manchester S R, Dilcher D L, Judd W S, Corder B, Basinger J F. 2018. Early Eudicot flower and fruit: Dakotanthus gen. nov. from the Cretaceous Dakota Formation of Kansas and Nebraska, USA. Acta Palaeobotany, 58(1): 27~40.

    • McCall A C, Irwin R E. 2006. Florivory: the intersection of pollination and herbivory. EcologyLetters, 9(12): 1351~1365.

    • McCoy V E, Gee C T, Michalski J M, Wings O. 2022. Oldest fossil evidence of latex sabotaging behavior by herbivorous insects. Review of Palaeobotany and Palynology, 300: 104631.

    • McDonald C M. 2009. Herbivory in Antartic fossil forests and comparisons with modern analogues in Chile. Doctoral thesis of University of Leeds.

    • McLoughlin S, Martin S K, Beattie R. 2015. The record of Australian Jurassic plant-arthropod interactions. Gondwana Research, 27(3): 940~959.

    • Meng Q M, Ding Q L, Labandeira C C, Ren D. 2017. The natural history of oviposition on a ginkgophyte fruit from the Middle Jurassic of northeastern China. Insect Science, 26(1): 171~179.

    • Möller A L, Kaulfuss U, Lee D E, Wappler T. 2017. High richness of insect herbivory from the Early Miocene Hindon Maar crater, Otago, New Zealand. PeerJ, 5: e2985.

    • Moreno-Domínguez R, Maccracken S A, Santos A A, Wappler T. 2022. Plant-insect interactions from the Late Oligocene of Spain (La Val fossil site, Estadilla, Huesca) and their palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 586: 110782.

    • Müller C, Wappler T, Kunzmann L. 2018. Insect herbivory patterns in Late Eocene coastal lowland riparian associations from central Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 491: 170~184.

    • Na Y L, Sun C L, Wang H S, Dilcher D L, Li Y F, Li T. 2017. A brief introduction to the Middle Jurassic Daohugou Flora from Inner Mongolia, China. Review of Palaeobotany and Palynology, 247: 53~67.

    • Na Y L, Sun C L, Wang H S, Dilcher D L, Yang Z Y, Li T, Li Y F. 2018. Insect herbivory and plant defense on ginkgoalean and bennettitalean leaves of the Middle Jurassic Daohugou Flora from Northeast China and their paleoclimatic implications. Palaeoworld, 27(2): 202~210.

    • Poinar G O, Chambers K L, Buckley R. 2008. An Early Cretaceous angiosperm fossil of possible significance in rosid floral diversification. Journal of the Botanical Research Institute of Texas, 2(2): 1183~1192.

    • Poinar G O, Chambers K L, Wunderlich J. 2013. Micropetasos, A new genus of angiosperms from Mid-Cretaceous Burmese amber. Journal of the Botanical Research Institute of Texas, 7(2): 745~750.

    • Poinar G O, Buckley R, Chen H. 2016. A primitive Mid-cretaceous angiosperm flower, antiquifloris latifibris Gen. & Sp. Nov. , in Myanmar amber. Journal of the Botanical Research Institute of Texas, 10(1): 155~162.

    • Poinar G O, Chambers K L. 2017. Tropidogyne pentaptera sp. nov. , a new Mid-Cretaceous fossil angiosperm flower in Burmese amber. Palaeodiversity, 10(1): 134~140.

    • Poinar G O, Chambers K L. 2018a. Fossil flowers of Lachnociona camptostylus sp. Nov. , a second record for the genus in Mid-Cretaceous Myanmar amber. Journal of the Botanical Research Institute of Texas, 12(2): 655~666.

    • Poinar G O, Chambers K L. 2018b. Endobeuthos paleosum GEN. et SP. NOV. , fossil flowers of uncertain affinity from Mid-cretaceouS Myanmar amber. Journal of the Botanical Research Institute of Texas, 12(1): 133~139.

    • Poinar G O, Chambers K L, 2018c. Setitheca lativalva gen. Et sp. Nov. , a fossil flower of laurales from Mid-Cretaceous Myanmar amber. Journal of the Botanical Research Institute of Texas, 12(2): 643~653.

    • Poinar G O, Chambers K L. 2020. Phantophlebia dicycla gen. et sp. nov. , a five-merous fossil flower in Mid-Cretaceous Myanmar amber. Journal of the Botanical Research Institute of Texas, 14(1): 73~80.

    • Popa M E, Zaharia A. 2011. Early Jurassic ovipositories on bennettitalean leaves from Romania. Acta Palaeontologica Romaniae, 7: 285~290.

    • Pott C, McLoughlin S, Wu S Q, Friis E M. 2012. Trichomes on the leaves of Anomozamites villosus sp. nov. (Bennettitales) from the Daohugou beds (Middle Jurassic), Inner Mongolia, China: mechanical defense against herbivorous arthropods? Review of Palaeobotany and Palynology, 169: 48~60.

    • Prevec R, Labandeira C C, Neveling J, Gastaldo R A, Looy C V, Bamford M. 2009. Portrait of a Gondwanan ecosystem: a new Late Permian fossil locality from KwaZulu-Natal, South Africa. Review of Palaeobotany and Palynology, 156(3-4): 454~493.

    • Reichgelt T, Jones W A, Jones D T, Conran J G, Lee D E. 2016. Diverse and abundant insect herbivory on Miocene Nothofagaceae of the Dunedin Volcano, Otago, New Zealand. Palaeobio Palaeoenv, 96(2): 265~279.

    • R Core Team. 2018. R: a language and environment for statistical computing. Vienna: the R Foundation for Statistical Computing. Available at https: //www. r-project. org/.

    • Ren D. 1998. Flower-associated Brachycera flies as fossil evidence for Jurassic angiosperm origins. Science, 280(5360): 85~88.

    • Ren D, Labandeira C C, Santiago-Blay J A, Rasnitsyn A, Shih C K, Bashkuev A, Logan M A, Hotton C L, Dilcher D L. 2009. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science, 326(5954): 840~847.

    • Ren D, Shih C K, Gao T P, Wang Y J, Yao Y Z. 2019. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China. New York: John Wiley & Sons Ltd. , 1~723.

    • Robledo J M, Pinheiro E R, Gnaedinger S C, Wappler T. 2018. Plant-insect interactions on dicots and ferns from the Miocene of Argentina. Palaios, 33(7): 338~352.

    • Rong Jiayu, Yuan Xunlai, Zhan Renbin, Deng Tao. 2018. Evolution of Biology and Environment. Hefei: University of Science and Technology of China Press, 1~421 (in Chinese).

    • Royer D L, Sack L, Wilf P, Lusk C H, Jordan G J, Niinemets Ü, Wright I J, Westoby M, Cariglino B, Coley P D, Cutter A D, Johnson K R, Labandeira C C, Moles A T, Palmer M B, Valladares F. 2007. Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 33(4): 574~589.

    • Santos A, Sender L M, Wappler T, Engel M S, Diez J B. 2021. A Robinson Crusoe story in the fossil record: plant-insect interactions from a Middle Jurassic ephemeral volcanic island (Eastern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 583: 110655.

    • Santos A, Hernández-Orúe A, Wappler T, Diez J B. 2022. Plant-insect interactions from the Late Pennsylvanian of the Iberian Peninsula (León, northern Spain). Review of Palaeobotany and Palynology, 301: 104658.

    • Sarzetti L C, Labandeira C C, Genise J F. 2008. A leafcutter bee trace fossil from the Middle Eocene of Patagonia, Argentina, and a review of megachilid (Hymenoptera) ichnology. Palaeontology, 51(4): 933~941.

    • Schachat S R, Labandeira C C, Gordon J, Chaney D, Levi S, Halthore M N, Alvarez J. 2014. Plant-insect interactions from early Permian (Kungurian) Colwell Creek Pond, north-central Texas: the early spread of herbivory in riparian environments. International Journal of Plant Sciences, 175(8): 855~890.

    • Schachat S R, Labandeira C C. 2015a. Evolution of a complex behavior in early ecosystems: the origin and initial diversification of foliar galling by insects during the Permian Period. The Science of Nature, 102: 1~14.

    • Schachat S R, Labandeira C C, Chaney D S. 2015b. Insect herbivory from early Permian Mitchell Creek Flats of north-central Texas: opportunism in a balanced component community. Palaeogeography, Palaeoclimatology, Palaeoecology, 440(1): 830~847.

    • Schachat S R, Labandeira C C, Maccracken S A. 2018. The importance of sampling standardization for comparisons of insect herbivory in deep time: a case study from the Late Palaeozoic. Royal Society Open Science, 5(3): 171991.

    • Schachat S R, Maccracken S A, Labandeira C C. 2020. Sampling fossil floras for the study of insect herbivory: how many leaves is enough?. Mitteilungen aus dem Museum für Naturkunde in Berlin. Fossil Record, 23(1): 15~32.

    • Schachat S R, Payne J L, Boyce C K. 2021. Linking host plants to damage types in the fossil record of insect herbivory. https: //www. biorxiv. org/.

    • Schachat S R, Payne J L, Boyce C K, Labandeira C C. 2022. Generating and testing hypotheses about the fossil record of insect herbivory with a theoretical ecospace. Review of Palaeobotany and Palynology, 297: 104564.

    • Schmidt L E A, Dunn R E, Mercer J, Dechesne M, Currano E D. 2019. Plant and insect herbivore community variation across the Paleocene-Eocene boundary in the Hanna basin, southeastern Wyoming. PeerJ, 7: e7798.

    • Schoonhoven L M, Van Loon B, van Loon J J A, Dicke M. 2005. Insect-Plant Biology. 2nd Edition. Demand: Oxford University Press, 1~421.

    • Shi G L, Herrera F, Herendeen P S, Clark E G, Crane P R. 2021. Mesozoic cupules and the origin of the angiosperm second integument. Nature, 594(7862): 223~226.

    • Skog J E, Dilcher D L. 1994. Lower vascular plants of the Dakota Formation in Kansas and Nebraska, USA. Review of Palaeobotany and Palynology, 80(1): 1~18.

    • Smith D M, Marcot J D. 2015. The fossil record and macroevolutionary history of the beetles. Proceedings of the Royal Society of London B, 282(1805): 20150060.

    • Sohn J C, Labandeira C C, Davis D R. 2015. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evolutionary Biology, 15(1): 1~12.

    • Srivastava A K. 1987. Lower Barakar flora of Raniganj Coalfield and insect-plant relationship. Palaeobotanist, 36: 138~142.

    • Stephenson J, Scott A C. 1992. The geological history of insect-related plant damage. Terra Nova, 4(5): 542~552.

    • Stiles E, Wilf P, Iglesias A, Gandolfo M A, Cúneo N R. 2020. Cretaceous-Paleogene plant extinction and recovery in Patagonia. Paleobiology, 46(4): 445~469.

    • Strömberg C A E. 2011. Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39: 517~544.

    • Su T, Adams J M, Wappler T, Huang Y J, Jacques F M, Liu Y S C, Zhou Z K. 2015. Resilience of plant-insect interactions in an oak lineage through Quaternary climate change. Paleobiology, 41(1): 174~186.

    • Sun C L, Na Y L, Dilcher D L, Wang H S, Li T, Li Y F. 2015. Anew species of Phoenicopsis subgenus Windwardia (Florin) Samylina (Czekanowskiales) from the Middle Jurassic of Inner Mongolia, China. Acta Geologica Sinica (English Edition), 89(1): 55~69.

    • Sun G, Dilcher D L, Zheng S L, Zhou Z. 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science, 282(5394): 1692~1695.

    • Sun G, Zheng S L, Dilcher D. 2001. Early Angiosperms and Associated Flora in Western Liaoning. Shanghai: Shanghai Science and Technology Education Press, 1~227 (in Chinese).

    • Sun G, Ji Q, Dilcher D L, Zheng S L, Nixon K C, Wang X F. 2002. Archaefructaceae, a new Basal angiosperm family. Science, 296(5569): 899~904.

    • Swain A, Maccracken S A, Fagan W F, Labandeira C C. 2021. Understanding the ecology of host plant-insect herbivore interactions in the fossil record through bipartite networks. Paleobiology, 1~22.

    • Taylor T N, Osborn J M. 1996. The importance of fungi in shaping the paleoecosystem. Review of Palaeobotany and Palynology, 90(34): 249~262.

    • Turcotte M M, Davies T J, Thomsen C J, Johnson M T. 2014. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants. Proceedings of the Royal Society B: Biological Sciences, 281(1787): 20140555.

    • Upchurch G R, Dilcher D L. 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, southeastern Nebraska. Denver Department of the Interior U. S. Geological Survey Bulletin, 1915: 1~55.

    • Vasilenko D V. 2008. Insect ovipositions on aquatic plant leaves Quereuxia from the Upper Cretaceous of the Amur region. Paleontological Journal, 42(5): 514~521.

    • Walker J, Peet R K. 1984. Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina. Vegetatio, 55(3): 163~179.

    • Wang X, Ding Q L, Santos A A, Wappler T. 2021. Nilssoniopteris longifolius Chang from the Middle-Late Jurassic of China: implications for Bennettitales-insect interactions. Review of Palaeobotany and Palynology, 297: 104582.

    • Wang Y J, Ren D, Liu Z Q, Engel M S. 2010. Bellinymphia filicifolia, in Ancient pinnate leaf mimesis among lacewings. Proceedings of the National Academy of Sciences, 107(37): 16212~16215.

    • Wang Y J, Labandeira C C, Shih C, Ding Q L, Wang C, Yao Y Z, Ren D. 2012. Jurassic mimicry between a hangingfly and a ginkgo from China. Proceedings of the National Academy of Sciences, 109(50): 20514~20519.

    • Wappler T. 2010. Insect herbivory close to the Oligocene-Miocene transition—a quantitative analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(3-4): 540~550.

    • Wappler T, Currano E D, Wilf P, Rust J, Labandeira C C. 2009. No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverseMiddle Palaeocene plants, Menat, France. Proceedings of the Royal Society B: Biological Sciences, 276(1677): 4271~4277.

    • Wappler T, Denk T. 2011. Herbivory in early Tertiary Arctic forests. Palaeogeography, Palaeoclimatology, Palaeoecology, 310(3-4): 283~295.

    • Wappler T, Labandeira C C, Rust J, Frankenhauser H, Wilde V. 2012. Testing for the effects and consequences of Mid-Paleogene climate change on insect herbivory. PLoS ONE, 7(7): e40744.

    • Wappler T, Grímsson F. 2016. Before the ‘Big Chill': patterns of plant-insect associations from the Neogene of Iceland. Global and Planetary Change, 142(1): 73~86.

    • Ward P, Labandeira C C, Laurin M, Berner R A. 2006. Confirmation of Romer's Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proceedings of the National Academy of Sciences USA, 103(45): 16818~16822.

    • Weiss F E. 1904. A probable parasite of stigmarian rootlets. New Phytologist, 3(3): 63~68.

    • Weisser W W, Siemann E. 2013. Insects and Ecosystem Function (Vol. 173). Heidelberg: Springer Science & Business Media, 1~415.

    • Wilf P, Labandeira C C. 1999. Response of plant-insect associations to Paleocene-Eocene warming. Science, 284(5423): 2153~2156.

    • Wilf P, Labandeira C C, Kress W J, Staines C L, Windsor D M, Allen A L, Johnson K R. 2000. Timing the radiations of leaf beetles: hispines on gingers from latest Cretaceous to recent. Science, 289(5477): 291~294.

    • Wilf P, Labandeira C C, Johnson K R, Coley P D, Cutter A D. 2001. Insect herbivory, plant defense, and Early Cenozoic climate change. Proceedings of the National Academy of Sciences, 98(11): 6221~6226.

    • Wilf P, Johnson K R. 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology, 30(3): 347~368.

    • Wilf P, Labandeira C C, Johnson K R, Cunéo R. 2005. Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proceedings of the National Academy of Sciences, 102(25): 8944~8948.

    • Wilf P, Labandeira C C, Johnson K R, Ellis B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science, 313(5790): 1112~1115.

    • Wilf P, Wing S L, Meyer H W, Rose J A, Saha R, Serre T, Cunéo R, Donovan M P, Erwin D M, Gandolfo M A, González-Akre E, Herrera F, Hu S S, Iglesias A, Johnson K, Karim T S, Zou X Y. 2021. An image dataset of cleared, x-rayed, and fossil leaves vetted to plant family for human and machine learning. PhytoKeys, 187: 93~128.

    • Wing S L, Harrington G J, Smith F A, Bloch J I, Boyer D A, Freeman K H. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310(5750): 993~996.

    • Wing S L, Herrera F, Jaramillo C A, Gomez-Navarro C, Wilf P, Labandeira C C. 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences, 106(44): 18627~18632.

    • Winkler I S, Labandeira C C, Wappler T, Wilf P. 2010. Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: new taxa from the Paleogene of North America and Germany and their evolutionary implications. Journal of Paleontology, 84(5): 935~954.

    • Xiao L F, Labandeira C C, Dilcher D L, Ren D. 2021a. Florivory of Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination. Proceedings of the Royal Society B: Biological Sciences, 288: 20210320. https: //doi. org/10. 1098/rspb. 2021. 0320.

    • Xiao L F, Labandeira C C, Ben-Dov Y, Maccracken G, Shih C K, Dilcher D L, Ren D. 2021b. Early Cretaceous mealybug herbivory on a laurel highlights the deep history of angiosperm-scale insect associations. New Phytologist, 232: 1414~1423.

    • Xiao L F, Labandeira C C, Dilcher D L, Ren D. 2021c. Insect and fungal herbivory at the dawn of angiosperm diversification: the Rose Creek Flora of Nebraska, U. S. A. Cretaceous Research, 131: 105088, https: //doi. org/10. 1016/j. cretres. 2021. 105088.

    • Xiao L F, Labandeira C C, Ren D. 2022a. Insect herbivory immediately before the eclipse of the gymnosperms: the Dawangzhangzi Flora of northeastern China. Insect Science, 108, https: //doi. org/1111/1744-7917. 12988.

    • Xiao L F, Schachat S, Labandeira C C, Ren D. 2022b. A functional perspective on the diversification history of herbivorous insects. Proceedings of the National Academy of Sciences of the United States of America. Under review.

    • Xu Q, Jin J, Labandeira C C. 2018. Williamson Drive: herbivory from a north-central Texas flora of latest Pennsylvanian age shows discrete component community structure, expansion of piercing and sucking, and plant counterdefenses. Review of Palaeobotany and Palynology, 251(1): 28~72.

    • Yang H R, Shi C F, Engel M S, Zhao Z P, Ren D. 2020. Early specializations for mimicry and defense in a Jurassic stick insect. National Science Review, 8(1): 1~10.

    • Yin Suxin, Wu Xieting, Wang Zixi, Shi Gongle. 2021. A preliminary study on the plant-insect ecological relationship of the Miocene Tropical Forest in Zhangpu Biota, Fujian. The 2021 Academic Annual Meeting of the Paleontology Branch of the Chinese Palaeontological Society and the Jiangsu Paleontological Society (in Chinese).

    • Zaspel J M, Zahiri R, Hoy M A, Janzen D, Weller S J, Wahlberg N. 2012. A molecular phylogenetic analysis of the vampire moths and their fruit-piercing relatives (Lepidoptera: Erebidae: Calpinae). Molecular Phylogenetics and Evolution, 65(2): 786~791.

    • Zhang S H, Chen T Y, Zeng X, Yu Y, Zhang Y, Xie S P. 2018. Plant-insect associations from the upper Miocene of Lincang, Yunnan, China. Review of Palaeobotany and Palynology, 259(1): 55~62.

    • Zhang Y J, Adams J. 2011. Top-down control of herbivores varies with ecosystem types. Journal of Ecology, 99(2): 370~372.

    • Zhao X D, Wang B, Bashkuev A S, Aria C, Zhang Q, Zhang H C, Tang W T, Engel M S. 2020. Mouthpart homologies and life habits of Mesozoic long-proboscid scorpionflies. Science Advances, 6(10): eaay1259.

    • Zhou Z Y, Zhang B L. 1989. A sederitic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Review of Palaeobotany and Palynology, 56: 133~143.

    • Zidianakis G, Kovar-Eder J, Zelilidis A, Iliopoulos G. 2020. Evidence of plant-arthropod interaction in the fossil assemblage from Pitsidia (Messara Basin, Crete, Greece; Upper Miocene). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 295(2): 101~115.

    • 董俊玲. 2019. 福建中新世植物化石、古大气CO2及植物-昆虫关系. 兰州大学博士学位论文. 戎嘉余, 袁训来, 詹仁斌, 邓涛. 2018. 生物演化与环境, 合肥: 中国科学技术大学出版社, 1~421.

    • 孙革, 郑少林, D. 迪尔切. 2001. 辽西早期被子植物及伴生植物群. 上海: 上海科技教育出版社, 1~227.

    • 尹素心, 吴谐婷, 王姿晰, 史恭乐. 2021. 福建漳浦生物群中新世热带季雨林植物-昆虫生态关系初步研究. 中国古生物学会古植物学分会、江苏省古生物学会2021年学术年会.

  • 参考文献

    • Adami-Rodrigues K, Iannuzzi R, Pinto I D. 2004. Permian plant-insect interactions from a Gondwana flora of southern Brazil. Fossils and Strata, 51(51): 106~125.

    • Adams J M, Zhang Y, Basri M, Shukor N. 2009a. Do tropical forest leaves suffer more insect herbivory? a comparison of tropical versus temperate herbivory, estimated from leaf litter. Ecological Research, 24(6): 1381~1392.

    • Adams J M, Zhang Y. 2009b. Is there more insect folivory in warmer temperate climates? a latitudinal comparison of insect folivory in eastern North America. Journal of Ecology, 97(5): 933~940.

    • Adroit B, Girard, V, Kunzmann L, Terral J F, Wappler T. 2018. Plant-insect interactions patterns in three European paleoforests of the Late-Neogene—Early-Quaternary. PeerJ, 6: e5075.

    • Adroit B, Teodoridis V, Güner T H, Denk T. 2021. Patterns of insect damage types reflect complex environmental signal in Miocene forest biomes of Central Europe and the Mediterranean. Global and Planetary Change, 199: 103451.

    • Andruchow-Colombo A, Gandolfo M A, Cúneo N R, Escapa I H. 2022. Ginkgoites villardeseoanii sp. nov. , a ginkgophyte with insect damage from the Upper Cretaceous (Maastrichtian) Lefipán Formation (Chubut, Patagonia, Argentina). Cretaceous Research, 133: 105124.

    • Banerjee M, Bera S. 1998. Record of zoocecidia on leaves of Glossopteris browniana Brongn. from Mohuda Basin, Upper Permian, Indian Lower Gondwana. Indian Biologist, 30: 58~61.

    • Banks H P, Colthart B J. 1993. Plant-animal-fungal interactions in Early Devonian Trimerophytes from Gaspé, Canadal. American Journal of Botany, 80(9): 992~1001.

    • Bashkuev A S. 2011. Nedubroviidae, a new family of Mecoptera: the first Paleozoic long-proboscid scorpionflies. Zootaxa, 2895(1): 47~57.

    • Basinger J, Dilcher D L. 1984. Ancient bisexual flowers. Science, 224(4648): 511~513.

    • Beck A L, Labandeira C C. 1998. Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 142(3-4): 139~173.

    • Beckemeyer R J. 2000. The Permian insect fossils of Elmo, Kansas. Kansas School Naturalist, 16: 1~46.

    • Bergen P F, Collinson M E, Scott A C, de Leeuw J W. 1995. Unusual resin chemistry from Upper Carboniferous pteridosperm resin rodlets. In: Anderson K B, Crelling J C, eds. American Chemical Society Symposium Based on Amber, Resinite and Fossil Resin. American Chemical Society, Washington: ACS Publications, 149~169.

    • Berry E W. 1931. An insect-cut leaf from the Lower Eocoene. American Journal of Science, 21(124): 301~304.

    • Bodnaryk R P. 1992. Distinctive leaf feeding patterns on oilseed rapes and related Brassicaceae by flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Canadian Journal of Plant Science, 72: 575~581.

    • Brooks H K. 1955. Healed wounds and galls on fossil leaves from the Wdcox deposits (Eocene) of western Tennessee. Psyche: A Journal of Entomology, 62(1): 1~9.

    • Cariglino B. 2018. Patterns of insect-mediated damage in a Permian Glossopteris Flora from Patagonia (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology, 507(15): 39~51.

    • Carvalho M R, Wilf P, Barrios H, Windsor D M, Currano E D, Labandeira C C, Jaramillo C A. 2014. Insect leaf-chewing damage tracks herbivore richness in modern and ancient forests. PloS ONE, 9(5): e94950.

    • Carvalho M R, Jaramillo C, de la Parra F, Caballero-Rodríguez D, Herrera F, Wing S, Turner B L, D'ApolitoC, Romero-Báez M, Narváez P, Martínez C, Gutierrez M, Labandeira C, Bayona G, Rueda M, Paez-Reyes M, Cárdenas D, DuqueÁ, Crowley J L, Santos C, Silvestro D. 2021. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science, 372(6537): 63~68.

    • Chen L J, Hou Y M, Yin P F, Wang X. 2020. An edible fruit from the Jurassic of China. China Geology, 3(1): 8~15.

    • Cichan M A, Taylor T N. 1982. Wood-brings in Premnoxylon : plant-animal interactions in the Carboniferous. Palaeogeography, Palaeoclimatology, Palaeoecology, 39(1-2): 123~127.

    • Clapham M E, Karr J A. 2012. Environmental and biotic controls on the evolutionary history of insect body size. Proceedings of the National Academy of Sciences USA, 109: 10927~10930.

    • Coley P D, Barone J A. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27(1): 305~335.

    • Correia P, Bashforth A R, Š im ů nek Z, Cleal C J, Artur A Sá, Labandeira C C. 2020. The history of herbivory on sphenophytes: a new calamitalean with an insect gall from the Upper Pennsylvanian of Portugal and a review of arthropod herbivory on an ancient lineage. International Journal of Plant Sciences, 181(4): 387~418.

    • Currano E D, Wilf P, Wing S L, Labandeira C C, Lovelock E C, Royer D L. 2008. Sharply increased insect herbivory during the Paleocene-Eocene thermal maximum. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 1960~1964.

    • Currano E D, Labandeira C C, Wilf P. 2010. Fossil insect folivory tracks paleotemperature for six million years. Ecological Monographs, 80(4): 547~567.

    • Currano E D, Laker R, Flynn A G, Fogt K K, Stradtman H, Wing S L. 2016. Consequences of elevated temperature and pCO2 on insect folivory at the ecosystem level: perspectives from the fossil record. Ecology and Evolution, 6(13): 4318~4331.

    • Currano E D, Pinheiro E R S, Buchwaldt R, William C, Miller Ian M. 2019. Endemism in Wyoming plant and insect herbivore communities during the Early Eocene hothouse. Paleobiology, 45 (3): 421~439.

    • Currano E D, Azevedo-Schmidt L E, Maccracken S A, Swain A. 2021a. Scars on fossil leaves: an exploration of ecological patterns in plant-insect herbivore associations during the age of Angiosperms. Palaeogeography, Palaeoclimatology, Palaeoecology, 582: 110636.

    • Currano E D, Jacobs B F. 2021b. Bug-bitten leaves from the early Miocene of Ethiopia elucidate the impacts of plant nutrient concentrations and climate on insect herbivore communities. Global and Planetary Change, 207: 103655.

    • de Souza Pinheiro E R, Iannuzzi R, Tybusch G P. 2012. Specificity of leaf damage in the Permian “Glossopteris Flora”: a quantitative approach. Review of Palaeobotany and Palynology, 174(15): 113~121.

    • Deng W, Su T, Wappler T, Liu J, Li S, Huang J, Tang H, Low S L, Wang T X, Xu H, Xu X T, Liu P, Zhou, Z. 2020. Sharp changes in plant diversity and plant-herbivore interactions during the Eocene—Oligocene transition on the southeastern Qinghai-Tibetan Plateau. Global and Planetary Change, 194, 103293.

    • Dilcher D L. 1963. Eocene epiphyllous fungi. Science, 142(3593): 667~669.

    • Dilcher D L. 1965. Epiphyllous fungi from Eocene deposits in western Tennessee, USA. Palaeontographica Abteilung B, 116: 1~54.

    • Ding Q L, Labandeira C C, Ren D. 2014. Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of northeastern China and the leaf-mining biology of possible insect culprit clades. Arthropod Systematics and Phylogeny, 72(3): 281~308.

    • Ding Q L, Labandeira C C, Meng Q, Ren D. 2015. Insect herbivory, plant-host specialization and tissue partitioning on mid Mesozoic broadleaved conifers of northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 440(15): 259~273.

    • Dong Junling. 2019. The Miocene plant fossils, paleoatmospheric CO2 and plant-insect interations from Fujian Province. Doctoral dissertation of Lanzhou University (in Chinese with English abstract).

    • Donovan M P, Wilf P, Labandeira C C, Johnson K R, Peppe D J. 2014. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains, USA. PloS ONE, 9(7): 1~35.

    • Donovan M P, Iglesias A, Wilf P, Labandeira C C, Cúneo N R. 2016. Rapid recovery of Patagonian plant-insect associations after the end-Cretaceous extinction. Nature Ecology & Evolution, 1(1): 1~5.

    • Donovan M P, Iglesias A, Wilf P, Labandeira C C, Cúneo N R. 2018. Diverse plant-insect associations from the latest Cretaceous and Early Paleocene of Patagonia, Argentina. Ameghiniana, 55(3): 303~338.

    • Dos Santos T B, Pinheiro E R S, Iannuzzi R. 2020. First evidence of seed predation by arthropods from Gondwana and its Early Paleozoic history (Rio Bonito Formation, Paraná Basin, Brazil). Palaios, 35(7): 292~301.

    • Duncan I J. 1997. The taphonomy of insects. Doctoral dissertation of University of Bristol, UK, 1~328.

    • Dunn M T, Rothwell G W, Mapes G. 2003. On Paleozoic plants from marine strata: Trivena arkansana (Lyginopteridaceae) gen. et sp. nov. , a lyginopterid from the Fayetteville Formation (middle Chesterian/Upper Mississippian) of Arkansas, USA. American Journal of Botany, 90(8): 1239~1252.

    • Dunne J A, Labandeira C C, Williams R J. 2014. Highly resolved Early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proceedings of the Royal Society B: Biological Sciences, 281(1782): 20133280.

    • Edwards D. 1996. New insights into early land ecosystems: a glimpse of a Lilliputian world. Review of Palaeobotany and Palynology, 90(3-4): 159~174.

    • Enushchenko I V, Frolov А O. 2020. Revision of existing classification of fossil insect feeding traces and description of new ichnotaxa from Middle Jurassic sediments of Eastern Siberia (Russia). Zootaxa, 4758(2): 347~359.

    • Fang H, Labandeira C C, Ma Y M, Zheng B Y, Ren D, Wei X L, Liu J X, Wang Y. 2020. Lichen mimesis in Mid-Mesozoic lacewings. Elife, 9: e59007.

    • Feng Z, Su T, Yang J Y, Chen Y X, Wei H B, Dai J, Guo Y, Liu J R, Ding J H. 2014. Evidence for insect-mediated skeletonization on an extant fern family from the Upper Triassic of China. Geology, 42(5): 407~410.

    • Feng Z, Wang J, Röβler R, Slipinski A, Labandeira C C. 2017. Late Permian wood-borings reveal an intricate network of ecological relationships. Nature Communications, 8(1): 1~6.

    • Fernandes G W, Santos J C. 2014. NeotropicalInsect Galls. New York: Springer, 1~550.

    • Fernández J A, Chiesa J O. 2020. Plant-insect interactions in the fossil flora of the Bajo de Veliz Formation (Gzhelian-Asselian): San Luis, Argentina. Ichnos, 27(2): 156~166.

    • Filho E B S, Adami-Rodrigues K, Lima F J, Bantim R A M, Wappler T, Saraiva A Á F. 2019. Evidence of plant-insect interaction in the Early Cretaceous flora from the Crato Formation, Araripe basin, Northeast Brazil. Historical Biology, 31(7): 926~937.

    • Fisk L H, Fritz W J. 1984 Pseudoborings in petrified wood from the Yellowstone “fossil forests”. Journal of Paleontology, 58(1): 58~62.

    • Fürstenberg-Hägg J, Zagrobelny M, Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences, 14(5): 10242~10297.

    • Gallego J, Cúneo R, Escapa I. 2014. Plant-arthropod interactions in gymnosperm leaves from the Early Permian of Patagonia, Argentina. Geobios, 47(3): 101~110.

    • Gangwere S K. 1966. Relationships between the mandibles, feeding behavior, and damage inflicted on plants by the feeding of certain acridids (Orthoptera). Michigan Entomologist, 1(1): 13~16.

    • Gao T P, Shih C K, Xu X, Wang S, Ren D. 2012. Mid-Mesozoic flea-like ectoparasites of feathered or haired vertebrates. Current Biology, 22(8): 732~735.

    • Gao T P, Shih C K, Rasnitsyn A P, Xu X, Wang S, Ren D. 2014. The first flea with fully distended abdomen from the Early Cretaceous of China. BMC Evolutionary Biology, 14(1): 1~7.

    • Gao T P, Shih C K, Ren D. 2021. Behaviors and interactions of insects in Mid-Mesozoic ecosystems of northeastern China. Annual Review of Entomology, 66: 337~354.

    • Gaston K J, Spicer J I. 2004. Biodiversity: An Introduction. 2nd Edition. Massachusetts: Blackwell Publishers.

    • Giraldo L A, Labandeira C C, Herrera F, Carvalho M. 2021. Rich and specialized plant-insect associations in a Middle-Late Paleocene (58~60 Ma) neotropical rainforest (Bogotá Formation, Colombia). Ameghiniana, 58(2): 75~99.

    • Gnaedinger S C, Adami-Rodrigues K, Gallego O F. 2014. Endophytic oviposition on leaves from the Late Triassic of northern Chile: ichnotaxonomic, palaeobiogeographic and palaeoenvironment considerations. Geobios, 47(4): 221~236.

    • Grimaldi D A. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden, 86(2): 373~406.

    • Grimaldi D A, Engel M S. 2005. Evolution of the Insects. UK, Cambridge: Cambridge University Press, 1~772.

    • Habgood K S, Hass H, Kerp H. 2003. Evidence for an early terrestrial food web: coprolites from the Early Devonian Rhynie chert. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 94(4): 371~389.

    • Han G, Liu Z, Liu X, Mao L, Jacques F M B, Wang X, 2016. A whole plant herbaceous angiosperm from the Middle Jurassic of China. Acta Geologica Sinica (English Edition), 90(1): 19~29.

    • Hazra T, Adroit B, Hazra M, Spicer R A, Spicer T E, Bera S, Khan M A. 2021. New discovery of rare insect damage in the Pliocene of India reinforces the biogeographic history of Eurasian ecosystems. Review of Palaeobotany and Palynology, 298: 104589.

    • Heron H D C. 2003. Tortoise beetles (Chrysomelidae: Cassidinae) and their feeding patterns from the North Park Nature Reserve, Durban, KwaZulu-Natal, South Africa. Durban Museum Novitates, 28(1): 31~44.

    • Hochuli P A, Vigran J O. 2010. Climate variations in the Boreal Triassic—inferred from palynological records from the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 20~42.

    • Hu S S, Dilcher D L, Jarzen M J, Taylor D W. 2008. Early steps of angiosperm pollinator coevolution. Proceedings of the National Academy of Sciences of the United States of America, 105(1): 240~245.

    • Iannuzzi R, Labandeira C C. 2008. The oldest record of external foliage feeding and the expansion of insect folivory on land. Annals of the Entomological Society of America, 101(1): 79~94.

    • Imada Y, Oyama N, Shinoda K, Takahashi H, Yukawa H. 2022. Oldest leaf mine trace fossil from East Asia provides insight into ancient nutritional flow in a plant-herbivore interaction. Scientific Reports, 12(1): 1~12.

    • Jennings J R. 1974. Lower Pennsylvanian plants of Illinois. I: a flora from the Pounds Sandstone Member of the Caseyville Formation. Journal of Paleontology, 48(3): 459~473.

    • Kergoat G J, Condamine F L, Toussaint E F A, Capdevielle-Dulac C, Clamens A L, Barbut J, Goldstein P Z, Le Ru B. 2018. Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nature Communications, 9(1): 1~9.

    • Khan M A, Spicer R A, Spicer T E V, Bera S. 2014. Fossil evidence of insect folivory in the eastern Himalayan Neogene Siwalik forests. Palaeogeography, Palaeoclimatology, Palaeoecology, 410(15): 264~277.

    • Khan M A, Bera S, Spicer R A, Spicer T E. 2015. Plant-arthropod associations from the Siwalik forests (Middle Miocene) of Darjeeling sub-Himalaya, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 438(15): 191~202.

    • Knor S, Prokop J, Kvaček Z, Janovský Z, Wappler T. 2012. Plant-arthropod associations from the Early Miocene of the Most Basin in North Bohemia—palaeoecological and palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 321: 102~112.

    • Krassilov V, Silantieva N, Hellmund M, Hellmund W. 2007. Insect egg sets on angiosperm leaves from the Lower Cretaceous of Negev, Israel. Cretaceous Research, 28(5): 803~811.

    • Krassilov V A, Rasnitsyn A P. 2008. Plant-arthropod Interactions in the Early Angiosperm History: Evidence from the Cretaceous of Israel. Moscow, Sofia: Pensoft Publishers, 1~229.

    • Krings M, Taylor T N, Kellogg D W. 2002. Touch-sensitive glandular trichomes: a mode of defence against herbivorous arthropods in the Carboniferous. Evolutionary Ecology Research, 4: 779~786.

    • Kunzmann L, Moraweck K, Müller C, Schröder I, Wappler T, Grein M, Roth-Nebelsick A. 2019. A Paleogene leaf flora (Profen, Sachsen-Anhalt, Germany) and its potentials for palaeoecological and palaeoclimate reconstructions. Flora, 254: 71~87.

    • Labandeira C C. 1986. Mouthpart design and basic ways that insects have partitioned recent food resource: implication for the macroevolutionary history of a morphologically diverse group. Geological Society of America, Abstracts with Programs, 18(6): 663.

    • Labandeira C C. 1990. Rethinking the diets of Carboniferous terrestrial arthropods: evidence for a nexus of arthropod/vascular plant interactions. Geological Society of America Abstract Programs, 22(7): A265.

    • Labandeira C C. 1997. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics, 28: 153~193.

    • Labandeira C C. 1998a. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Sciences, 26: 329~377.

    • Labandeira C C. 1998b. The role of insect in Late Jurassic Middle Cretaceous ecoststems. Lower and Middle Cretaceous Terrestrial Ecosystems: Bulletin 14(1): 105~124.

    • Labandeira C C. 1998c. Plant-insect associations from the fossil record. Geotimes, 43(9): 18~24.

    • Labandeira C C. 1999. Insects and other hexapods. In: Singer R, ed. Encyclopedia of Paleontology. London: Fitzroy-Dearborn Publishers, 603~624.

    • Labandeira C C. 2001. The rise and diversification of insects. In: Briggs D E G, Crowther P R, eds. Palaeobiology II. UK, Oxford: Blackwell Science Publishers, 82~88.

    • Labandeira C C. 2002a. The history of associations between plants and animals. In: Herrera C M, Pellmyr O M, eds. Plant-Animal Interactions: An Evolutionary Approach. Oxford, UK, Malden, MA: Blackwell Science.

    • Labandeira C C. 2002b. Plant-insect associations from Middle Eocene floras of the Pacific Northwest: a preliminary report. Rocky Mountain Geology, 37: 31~59.

    • Labandeira C C. 2002c. The paleobiology of predators, parasitoids, and parasites: accommodation and death in the fossil record of terrestrial invertebrates. In: Kowalewski M, Kelley P H, eds. The Fossil Record of Predation. Cambridge: Paleontological Society Publisher, 8: 211~250.

    • Labandeira C C. 2006a. The four phases of plant-arthropod associations in deep time. Geologica Acta, 4(4): 409~438.

    • Labandeira C C. 2006b. Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Systematics & Phylogeny, 64(1): 53~94.

    • Labandeira C C. 2007. The origin of herbivory on land: initial patterns of plan tissue consumption by arthropods. Insect Science, 14(4): 259~275.

    • Labandeira C C. 2011. Evidence for an earliest Late Carboniferous divergence time and the early larval ecology and diversification of major Holometabola lineages. Entomologica Americana, 117(1): 9~21.

    • Labandeira C C. 2013a. A paleobiologic perspective on plant-insect interactions. Current Opinion in Plant Biology, 16(4): 414~421.

    • Labandeira C C. 2013b. Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften, 100(4): 355~364.

    • Labandeira C C. 2014a. Amber. In: Laflamme M, Schiffbauer J D, Darroch S A F, eds. Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. Ithaca: Paleontological Society.

    • Labandeira C C. 2014b. Why did terrestrial insect diversity not increase during the angiosperm radiation? Mid-Mesozoic, plant-associated insect lineages harbor clues. In: Pontarotti P, ed. Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. Switzerland: Springer, 261~299.

    • Labandeira C C. 2018. The fossil history of insect diversity. In: Foottit R G, Adler P H, eds. Insect Biodiversity: Science and Society. New York: John Wiley & Sons Ltd. , 2: 723~788.

    • Labandeira C C. 2019. Thefossil record of insect mouthparts: innovation, functional convergence, and associations with other organisms. In: Krenn H W, ed. Insect Mouthparts Zoological Monographs 5. Switzerland: Springer, 567~671.

    • Labandeira C C. 2021. Ecology andevolution of gall-inducing arthropods: the pattern from the terrestrial fossil record. Frontiers in Ecology and Evolution, 9(303): 1~30.

    • Labandeira C C, Beall B S, Hueber F M. 1988. Early insect diversification: evidence from a Lower Devonian bristletail from Québec. Science, 242(4880): 913~916.

    • Labandeira C C, Sepkoski J J. 1993. Insect diversity in the fossil record. Science, 261(5119): 310~315.

    • Labandeira C C, Dilcher D L, Davis D R, Wagner D L. 1994. Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. Proceedings of the National Academy of Sciences USA, 91(25): 12278~12282.

    • Labandeira C C, Phillips T L. 1996a. Insect fluid-feeding on Upper Pennsylvanian tree ferns (Palaeodictyoptera, Marattiales) and the early history of the piercing-and-sucking functional feeding group. Annals of the Entomological Society of America, 89(2): 157~183.

    • Labandeira C C, Phillips T L. 1996b. A Carboniferous petiole gall: insight into early ecologic history of the Holometabola. Proceedings of the National Academy of Sciences USA, 93: 8470~8474.

    • Labandeira C C, Phillips T L, Norton R A. 1997. Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12(4): 319~353.

    • Labandeira C C, Smith D M. 1999. Forging a future for fossil insects: thoughts on the First International Congress of Paleoentomology. Paleobiology, 25(2): 154~157.

    • Labandeira C C, Johnson K R, Lang P. 2002a. Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: major extinction and minimum rebound. In: Hartman J H, Johnson K R, Nichols D J, eds. The Hell Creek Formation of the Northern Great Plains. Washington DC: Geological Society of America Special Paper, 361: 297~327.

    • Labandeira C C, Johnson K R, Wilf P. 2002b. Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences USA, 99(4): 2061~2066.

    • Labandeira C C, Phillips T L. 2002c. Stem borings and petiole galls from Pennsylvanian tree ferns of Illinois, USA: implications for the origin of the borer and galler functional-feeding-groups and holometabolous insects. Palaeontographica (A), 264(1): 1~84.

    • Labandeira C C, Allen E G. 2007a. Minimal insect herbivory for the Lower Permian Coprolite Bone Bed site of north-central Texas, USA, and comparison to other Late Paleozoic Floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3-4): 197~210.

    • Labandeira C C, Wilf P, Johnson K R, Marsh F. 2007b. Guide to Insect (and Other) Damage Types on Compressed Plant Fossils (version 3. 0). Smithsonian Institution (http: // paleobiology. si. edu/pdfs/insect Damage Guide 3. 01. pdf).

    • Labandeira C C, Currano E D. 2013. The fossil record of plant-insect dynamics. Annual Review of Earth and Planetary Sciences, 41(1): 287~311.

    • Labandeira C C, Prevec R. 2014a. Plant paleopathology and the roles of pathogens and insects. International Journal of Paleopathology, 4: 1~16.

    • Labandeira C C, Tremblay S L, Bartowski K E, VanAller H L. 2014b. Middle Devonian liverwort herbivory and antiherbivore defence. New Phytologist, 202(1): 247~258.

    • Labandeira C C, Kustatscher E, Wappler T. 2016a. Floral assemblages and patterns of herbivory during the Permian to Triassic of Northeastern Italy. PLoS ONE, 11(11): e0165205.

    • Labandeira C C, Yang Q, Santiago-Blay J A, Hotton C L, Monteiro A, Wang Y J, Goreva Y L, Shih C K, Sijeström S, Rose T R, Dilcher D L, Ren D. 2016b. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proceedings of the Royal Society B: Biological Sciences, 283(1824): 20152893.

    • Labandeira C C, Anderson J M, Anderson H M. 2018. Expansion of arthropod herbivory in Late Triassic south Africa: the Molteno biota, Aasvoëlberg 411 site and developmental biology of a gall. (Chapter 14). In: Tanner L H, ed. The Late Triassic World: Earth in a Time of Transition. Switzerland: Springer, 1~805.

    • Labandeira C C, Li L F. 2021. The history of insect parasitism and the Mid-Mesozoic Parasitoid Revolution. In: Baets K De, Huntley J, eds. The Evolution and Fossil Record of Parasitism—Identification and Macroevolution of Parasites. Switzerland: Springer, 377~533.

    • Li Q, Deng W, Wappler T, Utescher T, Maslova N, Liu Y C, Jia H, Song C Y, Su T, Quan C. 2022. High frequency of arthropod herbivore damage in the Miocene Huaitoutala flora from the Qaidam basin, northern Tibetan Plateau. Review of Palaeobotany and Palynology, 297: 104569.

    • Lin X D, Labandeira C C, Ding Q L, Meng Q M, Ren D. 2019a. Exploiting nondietary resources in deep time: Patterns of oviposition on Mid-Mesozoic plants from northeastern China. International Journal of Plant Sciences, 180(5): 411~457.

    • Lin X D, Shih C, Li S, Ren D. 2019b. Mecoptera-Scorpionflies and hangingflies. In: Ren D, Shih C K, Gao T P, Yao Y Z, Wang Y J, eds. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China. New York: John Wiley & Sons Ltd. , 555~595.

    • Liu H Y, Wei H B, Chen J, Guo Y, Zhou Y, Gou X D, Yang S L, Labandeira C C, Feng Z. 2020. A latitudinal gradient of plant-insect interactions during the Late Permian in terrestrial ecosystems? new evidence from Southwest China. Global and Planetary Change, 192: 103248.

    • Ma F J, Ling C C, Ou-Yang M S, Yang G M, Shen X P, Wang Q J. 2020. Plant-insect interactions from the Miocene (Burdigalian-Langhian) of Jiangxi, China. Review of Palaeobotany and Palynology, 275: 104176.

    • Maccracken S A, Miller I M, Labandeira C C. 2019. Late Cretaceous domatia reveal the antiquity of plant-mite mutualisms in flowering plants. Biology Letters, 15(11): 20190657.

    • Maccracken S A, Labandeira C C. 2020. The Middle Permian South Ash Pasture assemblage of north-central Texas: coniferophyte and gigantopterid herbivory and longer-term herbivory trends. International Journal of Plant Sciences, 181(3): 342~362.

    • Maccracken S A, Sohn J C, Miller I M, Labandeira C C. 2021. A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: Lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. Journal of Systematic Palaeontology, 19(2): 131~144.

    • Maccracken S A, Miller I M, Johnson K R, Sertich J M, Labandeira C C. 2022. Insect herbivory onCatula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA). Plos ONE, 17(1): e0261397.

    • Manchester S R, Dilcher D L, Judd W S, Corder B, Basinger J F. 2018. Early Eudicot flower and fruit: Dakotanthus gen. nov. from the Cretaceous Dakota Formation of Kansas and Nebraska, USA. Acta Palaeobotany, 58(1): 27~40.

    • McCall A C, Irwin R E. 2006. Florivory: the intersection of pollination and herbivory. EcologyLetters, 9(12): 1351~1365.

    • McCoy V E, Gee C T, Michalski J M, Wings O. 2022. Oldest fossil evidence of latex sabotaging behavior by herbivorous insects. Review of Palaeobotany and Palynology, 300: 104631.

    • McDonald C M. 2009. Herbivory in Antartic fossil forests and comparisons with modern analogues in Chile. Doctoral thesis of University of Leeds.

    • McLoughlin S, Martin S K, Beattie R. 2015. The record of Australian Jurassic plant-arthropod interactions. Gondwana Research, 27(3): 940~959.

    • Meng Q M, Ding Q L, Labandeira C C, Ren D. 2017. The natural history of oviposition on a ginkgophyte fruit from the Middle Jurassic of northeastern China. Insect Science, 26(1): 171~179.

    • Möller A L, Kaulfuss U, Lee D E, Wappler T. 2017. High richness of insect herbivory from the Early Miocene Hindon Maar crater, Otago, New Zealand. PeerJ, 5: e2985.

    • Moreno-Domínguez R, Maccracken S A, Santos A A, Wappler T. 2022. Plant-insect interactions from the Late Oligocene of Spain (La Val fossil site, Estadilla, Huesca) and their palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 586: 110782.

    • Müller C, Wappler T, Kunzmann L. 2018. Insect herbivory patterns in Late Eocene coastal lowland riparian associations from central Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 491: 170~184.

    • Na Y L, Sun C L, Wang H S, Dilcher D L, Li Y F, Li T. 2017. A brief introduction to the Middle Jurassic Daohugou Flora from Inner Mongolia, China. Review of Palaeobotany and Palynology, 247: 53~67.

    • Na Y L, Sun C L, Wang H S, Dilcher D L, Yang Z Y, Li T, Li Y F. 2018. Insect herbivory and plant defense on ginkgoalean and bennettitalean leaves of the Middle Jurassic Daohugou Flora from Northeast China and their paleoclimatic implications. Palaeoworld, 27(2): 202~210.

    • Poinar G O, Chambers K L, Buckley R. 2008. An Early Cretaceous angiosperm fossil of possible significance in rosid floral diversification. Journal of the Botanical Research Institute of Texas, 2(2): 1183~1192.

    • Poinar G O, Chambers K L, Wunderlich J. 2013. Micropetasos, A new genus of angiosperms from Mid-Cretaceous Burmese amber. Journal of the Botanical Research Institute of Texas, 7(2): 745~750.

    • Poinar G O, Buckley R, Chen H. 2016. A primitive Mid-cretaceous angiosperm flower, antiquifloris latifibris Gen. & Sp. Nov. , in Myanmar amber. Journal of the Botanical Research Institute of Texas, 10(1): 155~162.

    • Poinar G O, Chambers K L. 2017. Tropidogyne pentaptera sp. nov. , a new Mid-Cretaceous fossil angiosperm flower in Burmese amber. Palaeodiversity, 10(1): 134~140.

    • Poinar G O, Chambers K L. 2018a. Fossil flowers of Lachnociona camptostylus sp. Nov. , a second record for the genus in Mid-Cretaceous Myanmar amber. Journal of the Botanical Research Institute of Texas, 12(2): 655~666.

    • Poinar G O, Chambers K L. 2018b. Endobeuthos paleosum GEN. et SP. NOV. , fossil flowers of uncertain affinity from Mid-cretaceouS Myanmar amber. Journal of the Botanical Research Institute of Texas, 12(1): 133~139.

    • Poinar G O, Chambers K L, 2018c. Setitheca lativalva gen. Et sp. Nov. , a fossil flower of laurales from Mid-Cretaceous Myanmar amber. Journal of the Botanical Research Institute of Texas, 12(2): 643~653.

    • Poinar G O, Chambers K L. 2020. Phantophlebia dicycla gen. et sp. nov. , a five-merous fossil flower in Mid-Cretaceous Myanmar amber. Journal of the Botanical Research Institute of Texas, 14(1): 73~80.

    • Popa M E, Zaharia A. 2011. Early Jurassic ovipositories on bennettitalean leaves from Romania. Acta Palaeontologica Romaniae, 7: 285~290.

    • Pott C, McLoughlin S, Wu S Q, Friis E M. 2012. Trichomes on the leaves of Anomozamites villosus sp. nov. (Bennettitales) from the Daohugou beds (Middle Jurassic), Inner Mongolia, China: mechanical defense against herbivorous arthropods? Review of Palaeobotany and Palynology, 169: 48~60.

    • Prevec R, Labandeira C C, Neveling J, Gastaldo R A, Looy C V, Bamford M. 2009. Portrait of a Gondwanan ecosystem: a new Late Permian fossil locality from KwaZulu-Natal, South Africa. Review of Palaeobotany and Palynology, 156(3-4): 454~493.

    • Reichgelt T, Jones W A, Jones D T, Conran J G, Lee D E. 2016. Diverse and abundant insect herbivory on Miocene Nothofagaceae of the Dunedin Volcano, Otago, New Zealand. Palaeobio Palaeoenv, 96(2): 265~279.

    • R Core Team. 2018. R: a language and environment for statistical computing. Vienna: the R Foundation for Statistical Computing. Available at https: //www. r-project. org/.

    • Ren D. 1998. Flower-associated Brachycera flies as fossil evidence for Jurassic angiosperm origins. Science, 280(5360): 85~88.

    • Ren D, Labandeira C C, Santiago-Blay J A, Rasnitsyn A, Shih C K, Bashkuev A, Logan M A, Hotton C L, Dilcher D L. 2009. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science, 326(5954): 840~847.

    • Ren D, Shih C K, Gao T P, Wang Y J, Yao Y Z. 2019. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China. New York: John Wiley & Sons Ltd. , 1~723.

    • Robledo J M, Pinheiro E R, Gnaedinger S C, Wappler T. 2018. Plant-insect interactions on dicots and ferns from the Miocene of Argentina. Palaios, 33(7): 338~352.

    • Rong Jiayu, Yuan Xunlai, Zhan Renbin, Deng Tao. 2018. Evolution of Biology and Environment. Hefei: University of Science and Technology of China Press, 1~421 (in Chinese).

    • Royer D L, Sack L, Wilf P, Lusk C H, Jordan G J, Niinemets Ü, Wright I J, Westoby M, Cariglino B, Coley P D, Cutter A D, Johnson K R, Labandeira C C, Moles A T, Palmer M B, Valladares F. 2007. Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 33(4): 574~589.

    • Santos A, Sender L M, Wappler T, Engel M S, Diez J B. 2021. A Robinson Crusoe story in the fossil record: plant-insect interactions from a Middle Jurassic ephemeral volcanic island (Eastern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 583: 110655.

    • Santos A, Hernández-Orúe A, Wappler T, Diez J B. 2022. Plant-insect interactions from the Late Pennsylvanian of the Iberian Peninsula (León, northern Spain). Review of Palaeobotany and Palynology, 301: 104658.

    • Sarzetti L C, Labandeira C C, Genise J F. 2008. A leafcutter bee trace fossil from the Middle Eocene of Patagonia, Argentina, and a review of megachilid (Hymenoptera) ichnology. Palaeontology, 51(4): 933~941.

    • Schachat S R, Labandeira C C, Gordon J, Chaney D, Levi S, Halthore M N, Alvarez J. 2014. Plant-insect interactions from early Permian (Kungurian) Colwell Creek Pond, north-central Texas: the early spread of herbivory in riparian environments. International Journal of Plant Sciences, 175(8): 855~890.

    • Schachat S R, Labandeira C C. 2015a. Evolution of a complex behavior in early ecosystems: the origin and initial diversification of foliar galling by insects during the Permian Period. The Science of Nature, 102: 1~14.

    • Schachat S R, Labandeira C C, Chaney D S. 2015b. Insect herbivory from early Permian Mitchell Creek Flats of north-central Texas: opportunism in a balanced component community. Palaeogeography, Palaeoclimatology, Palaeoecology, 440(1): 830~847.

    • Schachat S R, Labandeira C C, Maccracken S A. 2018. The importance of sampling standardization for comparisons of insect herbivory in deep time: a case study from the Late Palaeozoic. Royal Society Open Science, 5(3): 171991.

    • Schachat S R, Maccracken S A, Labandeira C C. 2020. Sampling fossil floras for the study of insect herbivory: how many leaves is enough?. Mitteilungen aus dem Museum für Naturkunde in Berlin. Fossil Record, 23(1): 15~32.

    • Schachat S R, Payne J L, Boyce C K. 2021. Linking host plants to damage types in the fossil record of insect herbivory. https: //www. biorxiv. org/.

    • Schachat S R, Payne J L, Boyce C K, Labandeira C C. 2022. Generating and testing hypotheses about the fossil record of insect herbivory with a theoretical ecospace. Review of Palaeobotany and Palynology, 297: 104564.

    • Schmidt L E A, Dunn R E, Mercer J, Dechesne M, Currano E D. 2019. Plant and insect herbivore community variation across the Paleocene-Eocene boundary in the Hanna basin, southeastern Wyoming. PeerJ, 7: e7798.

    • Schoonhoven L M, Van Loon B, van Loon J J A, Dicke M. 2005. Insect-Plant Biology. 2nd Edition. Demand: Oxford University Press, 1~421.

    • Shi G L, Herrera F, Herendeen P S, Clark E G, Crane P R. 2021. Mesozoic cupules and the origin of the angiosperm second integument. Nature, 594(7862): 223~226.

    • Skog J E, Dilcher D L. 1994. Lower vascular plants of the Dakota Formation in Kansas and Nebraska, USA. Review of Palaeobotany and Palynology, 80(1): 1~18.

    • Smith D M, Marcot J D. 2015. The fossil record and macroevolutionary history of the beetles. Proceedings of the Royal Society of London B, 282(1805): 20150060.

    • Sohn J C, Labandeira C C, Davis D R. 2015. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evolutionary Biology, 15(1): 1~12.

    • Srivastava A K. 1987. Lower Barakar flora of Raniganj Coalfield and insect-plant relationship. Palaeobotanist, 36: 138~142.

    • Stephenson J, Scott A C. 1992. The geological history of insect-related plant damage. Terra Nova, 4(5): 542~552.

    • Stiles E, Wilf P, Iglesias A, Gandolfo M A, Cúneo N R. 2020. Cretaceous-Paleogene plant extinction and recovery in Patagonia. Paleobiology, 46(4): 445~469.

    • Strömberg C A E. 2011. Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39: 517~544.

    • Su T, Adams J M, Wappler T, Huang Y J, Jacques F M, Liu Y S C, Zhou Z K. 2015. Resilience of plant-insect interactions in an oak lineage through Quaternary climate change. Paleobiology, 41(1): 174~186.

    • Sun C L, Na Y L, Dilcher D L, Wang H S, Li T, Li Y F. 2015. Anew species of Phoenicopsis subgenus Windwardia (Florin) Samylina (Czekanowskiales) from the Middle Jurassic of Inner Mongolia, China. Acta Geologica Sinica (English Edition), 89(1): 55~69.

    • Sun G, Dilcher D L, Zheng S L, Zhou Z. 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science, 282(5394): 1692~1695.

    • Sun G, Zheng S L, Dilcher D. 2001. Early Angiosperms and Associated Flora in Western Liaoning. Shanghai: Shanghai Science and Technology Education Press, 1~227 (in Chinese).

    • Sun G, Ji Q, Dilcher D L, Zheng S L, Nixon K C, Wang X F. 2002. Archaefructaceae, a new Basal angiosperm family. Science, 296(5569): 899~904.

    • Swain A, Maccracken S A, Fagan W F, Labandeira C C. 2021. Understanding the ecology of host plant-insect herbivore interactions in the fossil record through bipartite networks. Paleobiology, 1~22.

    • Taylor T N, Osborn J M. 1996. The importance of fungi in shaping the paleoecosystem. Review of Palaeobotany and Palynology, 90(34): 249~262.

    • Turcotte M M, Davies T J, Thomsen C J, Johnson M T. 2014. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants. Proceedings of the Royal Society B: Biological Sciences, 281(1787): 20140555.

    • Upchurch G R, Dilcher D L. 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, southeastern Nebraska. Denver Department of the Interior U. S. Geological Survey Bulletin, 1915: 1~55.

    • Vasilenko D V. 2008. Insect ovipositions on aquatic plant leaves Quereuxia from the Upper Cretaceous of the Amur region. Paleontological Journal, 42(5): 514~521.

    • Walker J, Peet R K. 1984. Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina. Vegetatio, 55(3): 163~179.

    • Wang X, Ding Q L, Santos A A, Wappler T. 2021. Nilssoniopteris longifolius Chang from the Middle-Late Jurassic of China: implications for Bennettitales-insect interactions. Review of Palaeobotany and Palynology, 297: 104582.

    • Wang Y J, Ren D, Liu Z Q, Engel M S. 2010. Bellinymphia filicifolia, in Ancient pinnate leaf mimesis among lacewings. Proceedings of the National Academy of Sciences, 107(37): 16212~16215.

    • Wang Y J, Labandeira C C, Shih C, Ding Q L, Wang C, Yao Y Z, Ren D. 2012. Jurassic mimicry between a hangingfly and a ginkgo from China. Proceedings of the National Academy of Sciences, 109(50): 20514~20519.

    • Wappler T. 2010. Insect herbivory close to the Oligocene-Miocene transition—a quantitative analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(3-4): 540~550.

    • Wappler T, Currano E D, Wilf P, Rust J, Labandeira C C. 2009. No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverseMiddle Palaeocene plants, Menat, France. Proceedings of the Royal Society B: Biological Sciences, 276(1677): 4271~4277.

    • Wappler T, Denk T. 2011. Herbivory in early Tertiary Arctic forests. Palaeogeography, Palaeoclimatology, Palaeoecology, 310(3-4): 283~295.

    • Wappler T, Labandeira C C, Rust J, Frankenhauser H, Wilde V. 2012. Testing for the effects and consequences of Mid-Paleogene climate change on insect herbivory. PLoS ONE, 7(7): e40744.

    • Wappler T, Grímsson F. 2016. Before the ‘Big Chill': patterns of plant-insect associations from the Neogene of Iceland. Global and Planetary Change, 142(1): 73~86.

    • Ward P, Labandeira C C, Laurin M, Berner R A. 2006. Confirmation of Romer's Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proceedings of the National Academy of Sciences USA, 103(45): 16818~16822.

    • Weiss F E. 1904. A probable parasite of stigmarian rootlets. New Phytologist, 3(3): 63~68.

    • Weisser W W, Siemann E. 2013. Insects and Ecosystem Function (Vol. 173). Heidelberg: Springer Science & Business Media, 1~415.

    • Wilf P, Labandeira C C. 1999. Response of plant-insect associations to Paleocene-Eocene warming. Science, 284(5423): 2153~2156.

    • Wilf P, Labandeira C C, Kress W J, Staines C L, Windsor D M, Allen A L, Johnson K R. 2000. Timing the radiations of leaf beetles: hispines on gingers from latest Cretaceous to recent. Science, 289(5477): 291~294.

    • Wilf P, Labandeira C C, Johnson K R, Coley P D, Cutter A D. 2001. Insect herbivory, plant defense, and Early Cenozoic climate change. Proceedings of the National Academy of Sciences, 98(11): 6221~6226.

    • Wilf P, Johnson K R. 2004. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology, 30(3): 347~368.

    • Wilf P, Labandeira C C, Johnson K R, Cunéo R. 2005. Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proceedings of the National Academy of Sciences, 102(25): 8944~8948.

    • Wilf P, Labandeira C C, Johnson K R, Ellis B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science, 313(5790): 1112~1115.

    • Wilf P, Wing S L, Meyer H W, Rose J A, Saha R, Serre T, Cunéo R, Donovan M P, Erwin D M, Gandolfo M A, González-Akre E, Herrera F, Hu S S, Iglesias A, Johnson K, Karim T S, Zou X Y. 2021. An image dataset of cleared, x-rayed, and fossil leaves vetted to plant family for human and machine learning. PhytoKeys, 187: 93~128.

    • Wing S L, Harrington G J, Smith F A, Bloch J I, Boyer D A, Freeman K H. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310(5750): 993~996.

    • Wing S L, Herrera F, Jaramillo C A, Gomez-Navarro C, Wilf P, Labandeira C C. 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences, 106(44): 18627~18632.

    • Winkler I S, Labandeira C C, Wappler T, Wilf P. 2010. Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: new taxa from the Paleogene of North America and Germany and their evolutionary implications. Journal of Paleontology, 84(5): 935~954.

    • Xiao L F, Labandeira C C, Dilcher D L, Ren D. 2021a. Florivory of Early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination. Proceedings of the Royal Society B: Biological Sciences, 288: 20210320. https: //doi. org/10. 1098/rspb. 2021. 0320.

    • Xiao L F, Labandeira C C, Ben-Dov Y, Maccracken G, Shih C K, Dilcher D L, Ren D. 2021b. Early Cretaceous mealybug herbivory on a laurel highlights the deep history of angiosperm-scale insect associations. New Phytologist, 232: 1414~1423.

    • Xiao L F, Labandeira C C, Dilcher D L, Ren D. 2021c. Insect and fungal herbivory at the dawn of angiosperm diversification: the Rose Creek Flora of Nebraska, U. S. A. Cretaceous Research, 131: 105088, https: //doi. org/10. 1016/j. cretres. 2021. 105088.

    • Xiao L F, Labandeira C C, Ren D. 2022a. Insect herbivory immediately before the eclipse of the gymnosperms: the Dawangzhangzi Flora of northeastern China. Insect Science, 108, https: //doi. org/1111/1744-7917. 12988.

    • Xiao L F, Schachat S, Labandeira C C, Ren D. 2022b. A functional perspective on the diversification history of herbivorous insects. Proceedings of the National Academy of Sciences of the United States of America. Under review.

    • Xu Q, Jin J, Labandeira C C. 2018. Williamson Drive: herbivory from a north-central Texas flora of latest Pennsylvanian age shows discrete component community structure, expansion of piercing and sucking, and plant counterdefenses. Review of Palaeobotany and Palynology, 251(1): 28~72.

    • Yang H R, Shi C F, Engel M S, Zhao Z P, Ren D. 2020. Early specializations for mimicry and defense in a Jurassic stick insect. National Science Review, 8(1): 1~10.

    • Yin Suxin, Wu Xieting, Wang Zixi, Shi Gongle. 2021. A preliminary study on the plant-insect ecological relationship of the Miocene Tropical Forest in Zhangpu Biota, Fujian. The 2021 Academic Annual Meeting of the Paleontology Branch of the Chinese Palaeontological Society and the Jiangsu Paleontological Society (in Chinese).

    • Zaspel J M, Zahiri R, Hoy M A, Janzen D, Weller S J, Wahlberg N. 2012. A molecular phylogenetic analysis of the vampire moths and their fruit-piercing relatives (Lepidoptera: Erebidae: Calpinae). Molecular Phylogenetics and Evolution, 65(2): 786~791.

    • Zhang S H, Chen T Y, Zeng X, Yu Y, Zhang Y, Xie S P. 2018. Plant-insect associations from the upper Miocene of Lincang, Yunnan, China. Review of Palaeobotany and Palynology, 259(1): 55~62.

    • Zhang Y J, Adams J. 2011. Top-down control of herbivores varies with ecosystem types. Journal of Ecology, 99(2): 370~372.

    • Zhao X D, Wang B, Bashkuev A S, Aria C, Zhang Q, Zhang H C, Tang W T, Engel M S. 2020. Mouthpart homologies and life habits of Mesozoic long-proboscid scorpionflies. Science Advances, 6(10): eaay1259.

    • Zhou Z Y, Zhang B L. 1989. A sederitic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Review of Palaeobotany and Palynology, 56: 133~143.

    • Zidianakis G, Kovar-Eder J, Zelilidis A, Iliopoulos G. 2020. Evidence of plant-arthropod interaction in the fossil assemblage from Pitsidia (Messara Basin, Crete, Greece; Upper Miocene). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 295(2): 101~115.

    • 董俊玲. 2019. 福建中新世植物化石、古大气CO2及植物-昆虫关系. 兰州大学博士学位论文. 戎嘉余, 袁训来, 詹仁斌, 邓涛. 2018. 生物演化与环境, 合肥: 中国科学技术大学出版社, 1~421.

    • 孙革, 郑少林, D. 迪尔切. 2001. 辽西早期被子植物及伴生植物群. 上海: 上海科技教育出版社, 1~227.

    • 尹素心, 吴谐婷, 王姿晰, 史恭乐. 2021. 福建漳浦生物群中新世热带季雨林植物-昆虫生态关系初步研究. 中国古生物学会古植物学分会、江苏省古生物学会2021年学术年会.