-
中亚造山带南缘的北山造山带二叠纪镁铁质-超镁铁质岩体广泛发育,与之相关的岩浆铜镍硫化物矿床镍总储量超过百万吨,在我国已探明镍资源中占有重要地位(Qin Kezhang et al.,2003,2011; 焦建刚等,2018)(图1a)。以往研究表明,这些含矿岩体大多形成于早二叠世,且均集中分布于北山造山带西部的新疆坡北地区(图1b),包括坡一(276 Ma; Xue Shengchao et al.,2016a)、坡十(284 Ma; 苏本勋等,2011)、坡东(270 Ma; Xue Shengchao et al.,2018)、红石山(286 Ma; Su Benxun et al.,2012a)和红镍山(283 Ma; Ruan Banxiao et al.,2021)等岩体。前人对这些含矿岩体的形成时代、成岩成矿过程以及构造背景等开展了系统研究(姜常义等,2006; Xiao Wenjiao et al.,2010; Su Benxun et al.,2011; Xue Shengchao et al.,2016b; Ruan Banxiao et al.,2020)。然而,随着在坡北地区东侧启鑫矿床的发现(Xue Shengchao et al.,2019),更多新发现的二叠纪镁铁质-超镁铁质含矿岩体具有向北山造山带东延的趋势(Ruan Banxiao et al.,2021; Ma Bocheng et al.,2021)。最近,在北山造山带东延的甘肃北山地区,二叠纪骆驼山和西南山岩体也发现了铜镍硫化物矿化,相比之下,前人对甘肃北山地区二叠纪含矿岩体的研究还较少。因此本文通过对甘肃北山柳园地区骆驼山和西南山两个典型含硫化物岩体详细的野外地质调查,结合地质年代学、岩石学和地球化学等资料探讨其形成时代、岩浆演化和硫的饱和,并与新疆坡北地区典型含矿岩体对比,分析探讨甘肃北山地区二叠纪镁铁-超镁铁质岩体铜镍成矿潜力。
-
1 区域地质背景
-
北山造山带位于中亚造山带南缘中段,塔里木地块北缘,北以星星峡-红柳河大断裂与中天山地块相邻,南以柳园-大奇山大断裂与敦煌地块相邻,主构造走向为北东-南西向,延伸长约600 km,宽约100 km,是一个狭长的由一系列弧形大断裂分割形成的断块系统(图1b),区域上发育大量蛇绿岩、二叠纪A-型花岗岩和辉绿岩脉、长城-蓟县系沉积岩、前寒武系高级变质岩以及大量的镁铁-超镁铁质岩体(左国朝等,1990; Zuo Guochao et al.,1991; Xiao Wenjiao et al.,2004; Zhang et al.,2015; 王国强等,2018)。晚古生代北山构造格局是以活动大陆边缘及被蛇绿混杂岩带分割的岛弧为特征,以蛇绿混杂岩带为界,可将该地区自北向南划分为雀儿山弧、黑鹰山-旱山地块、马鬃山地块、双鹰山-花牛山弧以及石板山弧(Xiao Wenjiao et al.,2010)。甘肃北山造山带中的镁铁-超镁铁质岩体主要集中于南部双鹰山-花牛山弧以及古堡泉-红柳园大断裂附近(图2)。
-
甘肃北山造山带二叠纪镁铁-超镁铁质岩体主要分布在柳园地区,沿古堡泉-红柳园大断裂附近展布(图3a),其中骆驼山和西南山两岩体具有铜镍硫化物矿化(高文彬,2021; Ma Bocheng et al.,2021)。矿化岩体规模一般较小,平面形态主要受构造作用控制,多为透镜状或扁豆状延伸。结合前人对新疆北山地区岩体研究资料,甘-新北山地区二叠纪主要镁铁-超镁铁质岩体的年龄、规模、形态、岩相等基本特征见表1。
-
图1(a)中亚造山带构造简图(据Jahn,2004修改);(b)北山造山带古生代镁铁质-超镁铁质岩体分布图(据Xiao Wenjiao et al.,2004和Xue Shengchao et al.,2019修改)
-
Fig.1 (a) Simplified tectonic sketch map of the Central Asian Orogenic Belt (modified after Jahn, 2004) ; (b) simplified geological map showing the distribution of Late Paleozoic mafic-ultramafic intrusions and related Ni-Cu sulfide occurrences/deposits in the Beishan area (modified after Xiao et al., 2004 and Xue et al., 2019)
-
年龄数据引自Song Xieyan et al.(2011); Qin Kezhang et al.(2011); Su Benxun et al.(2011); Xue Shengchao et al.(2016a,2019)和Ma Bocheng et al.(2021)
-
Ages data are from Song Xieyan et al. (2011) ; Qin Kezhang et al. (2011) ; Su Benxun et al. (2011) ; Xue Shengchao et al. (2016a, 2019) ; Ma Bocheng et al. (2021)
-
图2 甘肃北山地区构造单元简图(底图据甘肃省地质局,1966)
-
Fig.2 Schematic map of structural units of the Gansu Beishan area (modified after BGMRGP, 1966)
-
图3 甘肃北山花牛山弧地质简图(a); 柳园地区骆驼山(b)和西南山岩体岩相(c)地质简图(底图据甘肃省地质局,1966)
-
Fig.3 Simplified geological maps of Huaniushan arc unit (a) in Gansu Beishan Luotuoshan and (b) Xinanshan (c) mafic-ultramafic intrusions in Liuyuan area (modified after BGMRGP, 1966)
-
2 岩体地质及岩石学特征
-
骆驼山岩体位于甘肃柳园以西约20 km处,岩体为不规则状,受次级断裂控制,近东西走向,长约1.6 km,宽约0.5 km(图3b)。岩体北部侵位于晚古生代花岗岩体中,南部与上泥盆统敦墩山群中酸性火山岩呈断层接触。岩石类型主要有:单辉橄榄岩,橄榄辉石岩,橄长岩,橄榄辉长岩和辉长岩。辉长岩相与超镁铁质岩相之间呈过渡关系,全岩微量元素特征表明骆驼山岩体的各岩相为同源岩浆演化产物,具有同期多次侵位的特征(Ma Bocheng et al.,2021)。岩石中常见包橄结构,以块状构造为主。主要蚀变类型有蛇纹石化、纤闪石化和绿泥石化。在岩体中部的橄榄岩相和辉石岩相中可见珠滴状硫化物,以镍黄铁矿和磁黄铁矿为主,黄铜矿较少(图4g)。
-
西南山岩体位于甘肃柳园西南约15 km处,古堡泉-红柳园断裂东南侧,岩体主要由三部分组成,均为北东向,主岩体呈长条状沿断裂展布,长约20 km,宽约1.5 km; 另外两个小岩体呈透镜状分布于主岩体东南侧,分别长1.5 km和3 km,宽约0.5 km和1 km(图3c)。围岩主要为下二叠统哲斯群上段玄武岩、凝灰岩及凝灰质砂岩。岩体西北部与花牛山群地层呈断层接触,主要岩性为大理岩、石英片岩、细粒片麻岩及混合岩。岩体西南部与下石炭统红柳园组地层为断层接触,主要岩性为粉砂岩、粗砂岩及含砾粗砂岩。主要岩石类型为:单辉橄榄岩、二辉橄榄岩、橄榄辉石岩、橄榄辉长岩、橄长岩、角闪辉长岩及辉长岩。岩体主体为辉长岩,局部发育镁铁-超镁铁质岩石,岩体中部-西南部基性程度较低,超镁铁质岩主要集中在岩体东北部,此外岩体内部尚有中酸性岩脉穿插。全岩微量元素特征表明西南山岩体的各岩相为同源不同期次侵入的产物(高文彬,2021)。岩石蚀变类型主要为蛇纹石化。矿化主要出现于橄榄岩相中,金属矿物以磁黄铁矿为主,镍黄铁矿、黄铜矿次之(图4h)。
-
骆驼山和西南山岩体岩相可分为橄榄岩相、辉石岩相、橄榄辉长岩相、橄长岩相和辉长岩相。主要岩相学特征如下:
-
橄榄岩相:可分为单辉橄榄岩和二辉橄榄岩两种,二辉橄榄岩仅在西南山岩体出现。主要由橄榄石、单斜辉石、斜方辉石以及少量角闪石和金云母构成(图4a)。橄榄石主要呈自形浑圆状,多以堆晶形式产出,粒径为0.5~2 mm,可见蛇纹石化和绿泥石化。早期结晶的橄榄石被后结晶的单斜辉石包裹形成包橄结构(图4b)。斜方辉石多为半自形粒状或他形板片状(图4a),发育在二辉橄榄岩中,其他岩相少见。角闪石为半自形柱状或他形粒状。金云母呈半自形鳞片状。
-
辉石岩相:主要为橄榄辉石岩。主要矿物成分为单斜辉石和橄榄石,及少量斜长石、铬尖晶石和金云母。单斜辉石多呈半自形片状,局部可见辉石包裹橄榄石颗粒(图4c)。橄榄石颗粒较小,粒径0.5~1 mm,多呈半自形粒状,裂理发育,部分橄榄石边缘可见反应边。
-
橄榄辉长岩相:主要为橄榄辉长岩。主要由橄榄石、单斜辉石、斜长石和少量角闪石组成。橄榄石呈堆晶相,大部分辉石、角闪石和斜长石呈填隙相(图4d)。橄榄石呈他形粒状,粒径为0.2~1 mm,沿其边部或裂理发生弱的蛇纹石化并析出粉尘状磁铁矿颗粒,局部发生弱的绿泥石化。单斜辉石为他形,粒径为0.2~0.5 mm。斜长石为半自形板片状不规则排列,常发生绢云母化。
-
图4 甘肃北山骆驼山和西南山镁铁-超镁铁质矿化岩体显微照片
-
Fig.4 Photomicrographs of representative samples from Luotuoshan and Xinanshan intrusions in Gansu Beishan area
-
(a)—西南山岩体二辉橄榄岩中的包橄结构;(b)—骆驼山岩体单辉橄榄岩中典型的包橄结构;(c)—骆驼山岩体橄榄单斜辉石岩中橄榄石发生蛇纹石化;(d)—西南山橄榄辉长岩具典型包橄结构及嵌晶含长结构;(e)—骆驼山岩体橄长岩;(f)—西南山岩体辉长岩,具典型辉长结构;(g)—骆驼山岩体橄榄单斜辉石岩中的硫化物珠滴;(h)—西南山岩体二辉橄榄岩中以磁黄铁矿为主的斑点状硫化物,边缘为镍黄铁矿和黄铜矿。矿物缩写:Ol—橄榄石; Opx—斜方辉石; Cpx—单斜辉石; Pl—斜长石; Sep—蛇纹石; Ccp—黄铜矿; Po—磁黄铁矿; Pn—镍黄铁矿
-
(a) —Poikilitic texture of lherzolite in Xinanshan intrusion; (b) —typical poikilitic texture of wehrlite in Luotuoshan intrusion; (c) —serpentinization of olivine of the olivine clinopyroxenite in Luotuoshan intrusion; (d) —picrite and poikilitic texture of olivine of olivine gabbro in Xinanshan intrusion; (e) —troclite in gabbro of Luotuoshan intrusion; (f) —gabbro with typical gabbroic texture in Xinanshan intrusion; (g) —a sulfide droplet patch in a olivine clinopyroxenite in Luotuoshan intrusion; (h) —speckled sulfides dominated by pyrrhotite that were rimed by pentlandite and tarnished chalcopyrite in lherzolite in Xinanshan intrusion.Mineral abbreviation:Ol—olivine; Opx—orthopyroxene; Cpx—clinopyroxene; Pl—plagioclase; Ccp—chalcopyrite; Po—pyrrhotite; Pn—pentlandite
-
橄长岩相:主要为橄长岩。主要矿物成分为斜长石、橄榄石,及少量单斜辉石。具包含结构,斜长石呈自形长条状,粒径为0.5~1 mm,普遍发生钠黝帘石化及绢云母化(图4e)。橄榄石多呈无色自形浑圆状或短柱状,粒径范围0.2~2 mm。辉石呈半自形片状,粒径为1.5~2 mm,部分辉石中可见包含粒径较小自形程度较高的斜长石及橄榄石。
-
辉长岩相:可分为辉长岩和角闪辉长岩两类,角闪辉长岩仅在西南山岩体出现。主要由单斜辉石和斜长石组成,可见角闪石和少量金云母。单斜辉石呈他形—半自形粒状或短柱状,局部发生纤闪石化或绿泥石化(图4f)。斜长石局部发生钠黝帘石化。角闪石主要呈半自形长柱状,以褐色普通角闪石为主。
-
3 分析测试方法
-
3.1 锆石U-Pb测年及Lu-Hf同位素分析
-
用于锆石U-Pb测年及Lu-Hf同位素分析的样品取自骆驼山岩体中新鲜的辉长岩(~15 kg,LTS-7),锆石分选在河北廊坊区域地质调查研究所采用浮选和磁选方法完成。将挑选出的锆石置于环氧树脂中,用扫描电镜进行阴极发光和背散射电子相研究。锆石U-Pb同位素分析在中国地质科学院北京离子探针中心使用SHRIMP完成,束斑直径为25 μm,选用91500(206Pb/238U年龄为1062.4 Ma,Wiedenbeck et al.,2004)和TEMORA(206Pb/238U年龄为417 Ma,Black et al.,2004)作为标样。普通铅根据实测204Pb进行校正。详细的分析流程和原理见Williams(1998)。数据处理、年龄计算和绘图使用SQUID和ISOPLOT程序完成(Ludwig,2012)。测试结果见表2。
-
锆石Lu-Hf同位素测试在西北大学大陆动力学国家重点实验室采用Neptune多接收等离子质谱和Newwave UP213激光剥蚀系统(LA-MC-ICPMS)完成,分析点与U-Pb测年点的位置一致。激光剥蚀束斑直径为40 μm,剥蚀时间为26 s,重复频率为10 Hz。对176Yb/ 176Hf的等压干扰使用侯可军等(2007)的方法进行了校正。详细的操作条件和分析方法见Wu et al.(2006)。标准锆石91500和TEMORA的176Hf/177Hf测定结果为0.282296±0.000013(2σ)和0.282680±0.000013(2σ),在误差范围内与文献报道值一致(Woodhead et al.,2004)。176Lu的衰变常数选用1.867×10-11/a(Albarede et al.,2006),球粒陨石的176Lu/177Hf和176Hf/177Hf分别选用0.033200和0.282772用来计算岩石样品的εHf(t)值(Bouvier et al.,2008)。测试结果见表3。
-
3.2 造岩矿物化学组分分析
-
骆驼山和西南山岩体主要造岩矿物的主量元素组分在长安大学西部矿产资源与地质工程教育部重点实验室使用JEOL JXA-8100电子探针完成。测试的工作电压为20 kV,电流2.0×10-8 A,探针的束斑直径为1 μm,分析误差为2%。测试结果见表4。
-
3.3 全岩主量元素及单矿物微量元素
-
全岩主量元素采用X射线荧光光谱仪(XRF)进行分析,测试仪器为Shimadzu XRF-1800型波长色散X射线荧光光谱仪。选用国家标样GB207112(辉长岩)为质量监控标样,采用外标法校正,分析误差小于3%。测试结果见表5。
-
单斜辉石微量元素分析在长安大学成矿作用及其动力学实验室的LA-ICP-MS上完成。实验仪器为联接美国Photon Machines公司193 nm气态准分子激光剥蚀系统的Agilent 7700x型四级杆等离子体质谱仪。氦气作为载气将样品气溶胶运输出剥蚀池,再经过“squid”信号平滑器,最后与补偿气氩气混合后到达ICP离子化。氦气流量为0.87 L/min,样品分析采用单点剥蚀模式,激光频率为5 Hz,束斑直径为50 μm,激光能量密度为5.9 mJ/cm2,每个剥蚀分析点的气体背景值采集时间为20 s,信号采集时间为40 s。样品测试采用多外标-无内标法(MRMC-AYC Calibration),即以NIST SRM 610、NIST SRM 612、USGS BCR-2G、USGS BIR-1G和USGS BHVO-2G作为外标校正(Liu Yongsheng et al.,2008)。数据使用ICPMSDataCal软件对测试数据进行离线处理,测试结果见表6。
-
3.4 全岩Sr-Nd同位素
-
全岩Sr-Nd同位素分析在西北大学大陆动力学国家重点实验室完成。Sr-Nd分离采用两步离子交换层析法,同位素分析使用Nu Plasma HR型多接收电感耦合等离子体质谱仪(MC-ICP-MS)进行。具体测试过程参考Yang Yueheng et al.(2010)。岩石标样采用BCR-2(玄武岩),测试过程中分别使用NBS987和JNdi-1对Sr和Nd同位素组成进行质量监控。Sr和Nd的同位素组成分别用86Sr/88Sr=0.119400和146Nd/144Nd=0.721906来校正仪器的质量分馏。实验中Rb-Sr和Sm-Nd比值的不确定度分别小于2%和0.5%。测试结果见表7。
-
4 实验结果与区域对比
-
4.1 锆石U-Pb年代学及Lu-Hf同位素特征
-
骆驼山辉长岩样品中挑选出的锆石呈无色透明、自形粒状或柱状,颗粒长约为70~150 μm,宽约为50~80 μm,长短轴比为1∶1~2.5∶1(图5a),阴极发光图像中锆石颗粒具有弱的震荡环带特征。Th/U比值均大于0.1,主要分布在0.2~0.5之间,表明所测锆石属于岩浆锆石(Hoskin and Black,2000)。骆驼山样品中16颗锆石U-Pb谐和年龄为282.6±2.6 Ma(图5b),这个年龄代表了骆驼山锆石的结晶年龄。此外本团队也得到了西南山岩体辉长岩年龄为277.1±2.8 Ma(待发表数据),表明骆驼山岩体和西南山岩体的形成年龄近似,均为早二叠世,与新疆坡北地区二叠纪含矿岩体为同一时期形成。
-
锆石Hf同位素分析数据较为均一,176Hf/177Hf比值范围为0.282826~0.283005,平均值为0.282955,εHf(t)的范围为+7.9~+14.1(t=282 Ma),与同时期坡北地区含矿岩体近似(Su Benxun et al.,2011; Xue Shengchao et al.,2016a,2019)。
-
4.2 矿物学和矿物化学特征
-
本文结合前人对坡北地区的研究资料,将甘肃-新疆北山二叠纪岩体中橄榄石和辉石的成分对比列于表4。甘肃北山骆驼山和西南山岩体超镁铁质岩中橄榄石Fo值范围分别为82~85和81~86之间。两岩体中橄榄石Ni含量分别为754×10-6~2081×10-6和628×10-6~2435×10-6。橄榄石Fo值和Ni含量范围均在新疆北山坡北地区含矿岩体的范围内(图6)。Su Benxun et al.(2012b)认为坡北地区橄榄石Fo值介于77~86且Ni含量小于0.22 %时更有利于成矿,骆驼山和西南山岩体橄榄石Fo值和Ni含量与该范围一致。
-
图5(a)骆驼山岩体辉长岩样品锆石的CL图像及各测试点位,红圈为测年点位,蓝圈为Hf同位素测试点位;(b)骆驼山岩体辉长岩样品锆石U-Pb年龄谐和图
-
Fig.5 (a) CL images and analyzes plots for zircons from a gabbro sample in the Luotuoshan intrusion.Red circles are for U-Pb dating, blue circles are for in-situ Hf isotopes; (b) U-Pb concordia age of zircons from Luotuoshan gabbro sample
-
图6 骆驼山和西南山岩体橄榄石Fo值与Ni含量相关图解
-
Fig.6 Variations of Fo-Ni contents in olivine from Luotuoshan and Xinanshan intrusions
-
坡一和启鑫数据范围分别来自于Xia Mingzhe et al.(2013)和Xue Shengchao et al.(2019); 北山矿化样品范围来自于Su Benxun et al.(2012b)
-
Fields of Poyi and Qixin intrusions are from Xia Mingzhe et al. (2013) and Xue Shengchao et al. (2019) ; fields of mineralized samples of Beishan area are from Su Benxun et al. (2012b)
-
骆驼山岩体辉石主要为透辉石,可见少量普通辉石。西南山岩体辉石主要为透辉石,以及少量顽火辉石(图7)。与普遍存在苏长岩相的坡北岩体相比,柳园地区岩体中斜方辉石较少。柳园不同岩体超镁铁质岩石中的单斜辉石Mg#值与坡北岩体近似(86~88)(薛胜超等,2015),但柳园地区辉石具有更均一的成分变化范围和更低的SiO2含量。
-
柳园和坡北地区矿化岩体中均普遍存在角闪石和云母类等富水矿物。
-
4.3 全岩主量元素及单矿物微量元素
-
为了排除蚀变干扰,将全岩主量元素扣除烧失量后,重新进行百分含量计算,全岩主要氧化物与造岩矿物关系见图8。骆驼山和西南山岩石主要氧化物随MgO含量变化的协变特征明显,橄榄岩相、辉石岩相以及橄榄辉长岩相岩石具有相对较高的TFeO含量,而SiO2和Al2O3在辉长岩相岩石中含量更高。除辉长岩外所有样品的Mg#均大于76.7。主要氧化物与MgO 的相关性表明:SiO2、Al2O3、CaO与MgO呈现明显的负相关关系,TFeO则呈现正相关关系,表明岩浆早期存在橄榄石和辉石的分离结晶和堆晶作用,这与岩相学观察结果一致。
-
本文选取骆驼山和西南山岩体中早期结晶的橄榄辉石岩中具有正堆晶相的单斜辉石进行原位微量元素测试,根据Hart and Dunn(1993)和Hauri et al.(1994) 提出的单斜辉石/熔体分配系数公式: (其中为单斜辉石中微量元素i的浓度,为熔体微量元素i浓度),计算得出单斜辉石结晶时母岩浆的微量元素的平均值数据后,再进行母岩浆的稀土元素球粒陨石标准化和微量元素原始地幔标准化,结果见图9。总体而言,骆驼山和西南山岩体的稀土元素配分模式较为相似,具有轻微右倾的稀土元素配分模式,LREE轻微富集和Eu负异常的特征(图9a)。Nb和Ta表现出较强的负异常,而Zr和Hf表现出较弱的负异常,具有岛弧岩浆的特征(图9b),与坡北地区坡一、启鑫含矿岩体和东天山含矿岩体母岩浆的稀土和微量元素配分模式类似(Tang Dongmei et al.,2013; Xia Mingzhe et al.,2013; Xue Shengchao et al.,2019)。
-
图7 骆驼山和西南山岩体辉石Wo-En-Fs分类图解(底图据Morimoto,1988)(新疆北山数据来自于薛胜超等,2015)
-
Fig.7 Wo-En-Fs triangular diagram for pyroxenes from Luotuoshan and Xinanshan intrusions (after Morimoti, 1988) (data of Xinjiang Beishan are from Xue Shengchao et al., 2015)
-
顽火辉石端元En=100 × Mg /(Mg+Fe); 斜方铁辉石端元Fs=100 × Fe /(Mg+Fe); 硅灰石端元Wo=Ca /(Ca+Mg+Fe); 其中Fe=Mn + Fe2+ + Fe3+
-
Enstatite endmember En=100 × Mg / (Mg+Fe) ; ferrosilite endmember Fs=100 × Fe / (Mg+Fe) ; wollastonite endmember Wo=Ca / (Ca+Mg+Fe) ; Fe=Mn + Fe2+ + Fe3+
-
图8 骆驼山和西南山岩体全岩主量元素与MgO含量相关关系(a~d)
-
Fig.8 Relationships between contents of whole-rock major oxides and MgO of Luotuoshan and Xinanshan intrusions (a~d)
-
图9 骆驼山和西南山岩体母岩浆球粒陨石标准化的稀土元素配分曲线图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989)
-
Fig.9 (a) Chondrite-normalized REE patterns and (b) primitive mantle normalized trace elements spider diagrams of Luotuoshan and Xinanshan intrusions (normalized values are from Sun and McDonough, 1989)
-
玄武岩数据和东天山岩体母岩浆数据来自于Tang Dongmei et al.(2013); 坡北岩体数据来自于薛胜超等(2015)
-
Data of basalts and intrusions in Eastern Tianshan area are from Tang Dongmei et al. (2013) ; Data of intrusions in Pobei area are from Xue Shengchao et al. (2015)
-
4.4 全岩Sr-Nd同位素
-
骆驼山全岩Sr-Nd同位素成分范围较大,初始87Sr/86Sr值为0.703919~0.705272,与坡北地区含矿岩体类似(0.7038~0.7083)(姜常义等,2006),初始143Nd/144Nd值为0.512296~0.512586,岩体εNd(t)值为+0.42~+6.10。在εNd(t)与(87Sr/86Sr)i的判别图中,大部分样品分布于北山西部含矿岩体所在区域内,具有类似的Sr-Nd同位素特征(图10a)。
-
图10 骆驼山岩体全岩(87Sr/86Sr)i-εNd(t)相关图解(a)和锆石年龄-εHf(t)相关图解(b)
-
Fig.10 Correlation diagrams of (a) whole-rock (87Sr/86Sr) i-εNd (t) and (b) zircons ages-εHf (t) of the Luotuoshan intrusion
-
新疆北山数据来自于Su Benxun et al.(2011)、Qin Kezhang et al.(2011)、Xia Mingzhe et al.(2013)、焦建刚等(2018)和 Xue Shengchao et al.(2019)
-
Data of intrusions in Xinjiang Beishan are from Su Benxun et al. (2011) , Qin Kezhang et al. (2011) , Xia Mingzhe et al. (2013) , Jiao Jiangang et al. (2018) and Xue Shengchao et al. (2019)
-
5 成矿潜力探讨
-
5.1 成岩年龄及成矿背景意义
-
北山造山带是我国重要的岩浆铜镍硫化物矿床成矿带之一(Qin Kezhang et al.,2003; 秦克章等,2012; 钱壮志等,2015),分布着大量的镁铁-超镁铁质矿化岩体,这些岩体多以小岩体群形式产出,由西向东主要分布于新疆北山的坡北地区和甘肃北山的柳园地区。甘肃北山的矿化岩体主要集中在两个年龄范围:晚泥盆世,如大山头(359 Ma; 闫海卿等,2012)、庙庙井(379 Ma; Duan Jun et al.,2021)和黑山(366 Ma; Xie Wei et al.,2012)等岩体; 早二叠世,即本文的骆驼山和西南山岩体。锆石U-Pb年代学统计结果表明新疆北山的矿化岩体形成时代较为统一,均集中在早二叠世,这与甘肃北山发育早二叠世镁铁-超镁铁质岩体时代一致(Qin Kezhang et al.,2011; Xue Shengchao et al.,2016a,2019)。坡北地区含矿岩体中硫化物镍含量较低(0.2%~0.5%),而硅酸镍含量偏高(BGMRXUAR,2016; Ruan Banxiao et al.,2021),其中硅酸镍占镍总量的约20%,因而曾经被认为缺乏经济意义。但是近年来对于北山岩体中高镍含量硫化物矿化的突破性发现,如启鑫和白山矿化岩体中硫化物最高镍含量分别可达~7.8%和~11.0%(谢燮等,2018; Xue Shengchao et al.,2019),这与同时代东天山地区岩浆镍铜硫化物矿床中硫化物最高镍含量处于同一范围(Mao Yajing et al.,2014,2015,2017),表明北山地区仍是一个有铜镍成矿潜力的找矿勘查区。
-
过去很长一段时间前人将甘肃北山地区镁铁-超镁铁质岩体的找矿工作重心集中在晚泥盆世的岩体上,近年来由于对该地区二叠纪岩体认识的深入,随之硫化物矿化岩体相继被发现。在岩体年龄上,骆驼山和西南山岩体与新疆坡北地区的大中型矿化岩体一致,其测年结果将北山造山带~280 Ma左右的幔源岩浆侵入作用向东推进到了北山东部,从而拓展了东天山-北山地区寻找该时代潜在铜镍矿床的空间。
-
5.2 岩浆源区特征和地壳混染
-
骆驼山岩体均具有较高的全岩εNd(t)和锆石εHf(t)值以及较低的初始(87Sr/86Sr)i比值,表明岩浆来自于亏损的地幔源区。在(87Sr/86Sr)i与εNd(t)相关图解中(图10a),骆驼山超镁铁质岩石样品与坡北地区典型成矿岩体同位素范围相似,表明北山造山带二叠纪镁铁-超镁铁质岩体的岩浆均具有类似的源区亏损性质(Su Benxun,2014; 薛胜超等,2022)。通常幔源岩浆在上升过程中经历一定程度的地壳混染,会导致εNd(t)值和εHf(t)值降低以及初始(87Sr/86Sr)i比值升高,因此利用全岩Sr-Nd和锆石Hf同位素数据进行混合计算可以估算出岩浆经历的地壳混染程度。由于北山地区陆壳广泛存在古老变质岩基底,因此选用北山变质岩做上地壳组分的代表与亏损地幔作为两个端元进行模拟计算(Song Dongfang et al.,2013)。如图10a所示,骆驼山岩浆在上升侵位过程中经历了5%~15%的地壳污染,这与坡北地区含矿岩体类似。锆石Hf同位素模拟也得到了一致的结果(图10b)。
-
前人研究表明,坡北地区二叠纪镁铁质-超镁铁质岩体的岩浆源区具有俯冲流体交代的印记(Song Xieyan et al.,2011; Su Benxun et al.,2011; Xue Shengchao et al.,2018)。俯冲物质向地幔源区的输入会导致地幔楔中LILE的显著富集和HFSE的明显亏损(Miller et al.,1995; Pearce and Peate,1995),即母岩浆具有类似岛弧岩浆的地球化学特征。这一岩浆源区特征的解释同样适用于甘肃北山镁铁-超镁铁质岩体。骆驼山和西南山超镁铁质岩石均具有明显的Nb-Ta及中等程度的Zr-Hf负异常,与岛弧背景下玄武岩的特征相似(图9b)。然而同化混染或俯冲过程中的流体交代作用都可引起岩浆Nb-Ta的负异常(Rudnick and Gao,2003; Pearce et al.,2013)。如果我们假设骆驼山和西南山岩石中Nb-Ta的负异常完全是由地壳混染引起,则微量元素比值的模拟计算表明至少需要高达30%的地壳混染(图11a),这与上文中同位素的模拟结果不一致,所以Nb-Ta的负异常可能不仅由地壳混染引起,还与源区受到俯冲来源物质的加入相关。此外,Chung et al.(2001)认为板片来源流体的Ce/Pb比值小于0.1,板片来源流体的加入会使基性岩浆中Ce/Pb比值小于20。典型幔源岩浆(MORB)的Ce/Pb比值为23(Sun et al.,2008),而大陆地壳平均Ce/Pb比值普遍低于15(Hofmann,1997)。因此,骆驼山和西南山岩石样品的Ce/Pb比值(平均值分别为2.35和3.10)显著低于幔源岩浆和平均陆壳,表明地幔源区受到了板片来源流体的交代。在图11b中,较高的Ba/La(7.5~61.6)和较低的Th/Yb(0.1~3.3)比值进一步支持了上述解释。当俯冲作用发生时,高活动性元素(如Rb、Ba、Sr和Cs)通常更倾向于进入板片来源流体,而Th和轻稀土元素则更容易进入沉积物来源的硅质熔体中(Plank and Wade,2005; Oyhantcabal et al.,2007),因此骆驼山和西南山岩石中这些弧特征的“信号”应是继承了早期受到俯冲作用相关流体交代了的地幔源区的特征。综上所述,甘肃北山二叠纪镁铁-超镁铁质岩体岩浆源区与新疆坡北地区其他成矿岩体类似,均是被俯冲作用改造的交代地幔部分熔融的产物,并且在岩浆演化过程中经历了地壳物质混染。
-
5.3 硫饱和机制及成矿潜力探讨
-
镁铁质岩浆上升过程中可以通过岩浆混合、结晶分异、地壳混染或地壳硫的加入等方式达到硫饱和(Naldrett,2011),骆驼山和西南山岩体均存在硫化物熔离,表明岩浆达到了硫饱和。两岩体超镁铁质岩相具有堆晶结构,因此,全岩样品组分并不能代表母岩浆的组分。因此本文依据Li and Ripley(2011)提出的质量平衡方法计算母岩浆组分。假设具堆晶结构的橄榄岩组分等于堆晶矿物和母岩浆两部分组分之和,当橄榄石和母岩浆处于平衡时,橄榄石和母岩浆之间Fe-Mg分配系数为0.34 [KD=(FeO/MgO)橄榄石/(FeO/MgO)母岩浆],母岩浆中FeO/TFeO=0.9(Matzen et al.,2011; Li and Ripley,2011),我们选用骆驼山和西南山橄榄岩样品的平均组分和Fo值最高的橄榄石(分别为84.6和85.6)估算橄榄石开始结晶时母岩浆组分:
-
估算得出骆驼山和西南山母岩浆MgO含量分别为约10.2%和11.3%,TFeO的含量分别为约9.6%和10.1%,属于高镁玄武质岩浆。由于橄榄石可能与晶间熔体之间存在亚固相平衡交换导致橄榄石的MgO含量和Fo值相应减小,因此该方法获得的结果仅代表母岩浆MgO含量的下限(Li and Ripley,2010)。
-
根据已有母岩浆成分,我们使用MELTS软件对西南山母岩浆结晶过程中矿物及熔体组分的变化进行模拟(Ghiorso and Sack,1995; Asimow and Ghiorso,1998)。假设母岩浆发生分离结晶的压力条件为0.1 GPa(参考坡北地区研究成果,Xue et al.2016a,2019),根据Barnes et al.(2013)提出的经验公式对西南山岩浆系统的氧化状态进行估算得到氧逸度平均值为FMQ+1,由于含水矿物广泛存在,因此母岩浆初始H2O含量设定为1%。使用上述条件参数进行模拟得到的西南山岩体母岩浆液相线温度为 1280℃,随着温度下降,橄榄石开始结晶,斜方辉石开始和橄榄石一起出现在液相线时的温度为1195℃,随后单斜辉石和斜长石开始结晶。上述模拟的分离结晶顺序与西南山岩石的镜下观察结果一致。根据Li and Ripley et al.(2010)提出的橄榄石-熔体中Ni总分配系数计算公式对西南山橄榄石结晶过程中橄榄石的Fo值与Ni含量的相关关系进行模拟,并与橄榄石实际组分进行对比,结果表明西南山岩体橄榄相中的绝大多数橄榄石落在正常结晶演化线的下方(图6),指示橄榄石结晶过程中存在硫化物熔离,且橄榄石结晶和硫化物熔离同时进行时橄榄石与硫化物的共结比约为55∶1。Li et al.(2009)提出模拟计算岩浆结晶分异过程中硫的饱和度可以探讨硅酸盐矿物的分离结晶是否可以促使岩浆达到硫饱和。据此计算得到西南山原始岩浆在3 GPa(~90 km)压力条件下硫饱和时硫的溶解度(SCSS)为1150×10-6。在0.1 GPa条件下,西南山原始岩浆的SCSS约为1900 ×10-6。图12中模拟表明,如果在没有其他过程参与的情况下,岩浆在地壳层位达到硫化物饱和需要约16%的橄榄石分离结晶,然而橄榄石模拟计算和对硫化物的镜下观察均表明硫化物熔离发生在橄榄石开始结晶的过程中,因此,我们认为分离结晶并不是触发西南山岩体达到硫化物饱和的关键性因素。这一模拟结果与骆驼山岩体的模拟结果相似(Ma Bocheng et al.,2021)。结合前文对于全岩Nd和锆石Hf同位素数据的讨论,我们认为地壳混染是触发岩浆硫饱和的更好解释。Xue Shengchao et al.(2019) 通过热力学模拟手段对启鑫矿化岩体母岩浆的研究发现分离结晶加硅铝质地壳混染造成的硫化物饱和在时间上通常较晚,而母岩浆发生硫饱和通常在更早期的阶段,表明外源硫的加入对于岩体母岩浆早阶段的大规模硫化物熔离是必要的。Ruan Banxiao et al.(2021)对北山二叠纪红镍山矿化岩体的研究发现硫化物Δ33S异常值(1.4‰~3.6‰),表明母岩浆在地壳深部受到了太古宙地壳硫的混染。启鑫和红镍山矿化岩体中橄榄石最高Fo值集中在86~88之间,西南山岩体橄榄石最高Fo值与之近似,说明晶出西南山橄榄石的母岩浆与上述新疆北山岩体母岩浆在上地壳有相近的混染能力,因此我们认为在甘肃北山地区矿化岩体形成过程中可能也存在类似的外源硫加入的可能性。
-
图11 骆驼山和西南山岩体微量元素Th/Yb-Nb/Yb相关图解(a)和Th/Yb-Ba/La相关图解(b)
-
Fig.11 Trace elements Th/Yb-Nb/Yb (a) and Th/Yb-Ba/La (b) correlation diagrams of Luotuoshan and Xinanshan intrusions
-
骆驼山和西南山全岩微量元素数据分别引自Ma Bocheng et al.(2021)和高文彬(2021); 新疆北山数据来源与图10一致。底图引自Pearce(2008); 北山变质岩数据引自Duan Jun et al.(2021); OIB和CAB的数据范围引自Li Chusi et al.(2015); 沉积物熔体和俯冲流体的演化趋势底图来自于Woodhead et al.(2001)
-
Data of whole-rock trace elements of Luotuoshan and Xinanshan intrusions are respectively from Ma Bocheng et al. (2021) and Gao Wenbin (2021) .Date sources of Western Beishan are the same as Figure10.Field of the MORB-OIB array is from Pearce (2008) .Fields of OIB and CAB are from Li Chusi et al. (2015) .Data of Beishan metamorphic rocks come from Duan Jun et al. (2021) .The arrows of sediments-derived melt and slab-derived fluids are from Woodhead et al. (2001)
-
图12 西南山岩浆分离结晶过程中硫化物饱和时硫含量(SCSS)模拟
-
Fig.12 Variation of sulfur contents at sulfide saturation (SCSS) in the Xinanshan magma during fractional crystallization
-
秦克章等(2012)通过对东天山-新疆北山地区含矿岩体与弱矿化岩体的对比研究表明,二者稀土元素地球化学特征之间的差异主要表现为前者稀土元素总量较后者稍高,且轻重稀土元素之间和轻、重两组稀土元素内部的之间元素分馏程度也较高。骆驼山和西南山岩体母岩浆中∑REE平均值分别为21.5×10-6和20.8×10-6;(La/Sm)N平均值分别为2.0和1.6,(La/Yb)N平均值分别为3.5和2.6,(Gd/Yb)N平均值分别为2.1和1.8,均相对较高,且与东天山-新疆北山地区含矿岩体类似(东天山和坡北地区含矿岩体的(La/Sm)N平均值分别为2.3和2.2,(La/Yb)N平均值分别为2.6和2.4,(Gd/Yb)N平均值分别为1.7和1.1)(Tang Dongmei et al.,2013; 王亚磊等,2013; 薛胜超等,2015; 刘欢,2016)。Li and Naldrett(1999)认为微量元素中Cu/Zr比值是成岩过程中硫化物熔离的重要指示。由于Cu为强亲硫元素,当岩浆中硫化物发生熔离时,Cu/Zr比值会迅速降低,当Cu/Zr<1时通常表明岩浆中硫达到了饱和并发生了硫化物熔离作用导致亲铜元素亏损(Lightfoot et al.,1994)。研究表明骆驼山和西南山岩石中Cu/Zr比值与橄榄石Ni含量均具有一定的正相关关系,且部分超镁铁质岩石样品具有Cu/Zr<1的特征(张江江,2014; 高文彬,2021),也表明岩浆分离结晶过程中发生了硫化物的熔离。
-
依据上述硫化物熔离作用的发生,以及地表可见硫化物矿化的事实,结合甘肃和新疆北山两地区岩体相同的形成时代、相似的构造背景、岩浆源区性质和母岩浆特征,表明甘肃北山二叠纪镁铁-超镁铁质岩体具有形成铜镍硫化物矿床的潜力,对该地区二叠纪镁铁-超镁铁质岩体仍值得进一步探索。
-
6 结论
-
锆石U-Pb年龄表明骆驼山镁铁-超镁铁质岩体的形成年龄为282.6±2.6 Ma,与坡北地区含矿岩体形成时代一致。全岩Sr-Nd同位素、锆石Hf同位素以及微量元素比值等表明甘肃北山地区二叠纪岩体的母岩浆来自于受到俯冲流体交代的亏损地幔源区的部分熔融,且在上升侵位过程中发生了约5%~15%的地壳混染。模拟计算显示骆驼山和西南山岩体的岩浆发生了硫化物熔离,地壳物质混染(含外源硫加入)可能是促使母岩浆硫饱和及硫化物熔离的关键因素。综合对比甘-新北山地区二叠纪含矿岩体,骆驼山和西南山岩体的发现显示甘肃北山具有类似于新疆北山的成矿潜力,从而拓展了在北山造山带~280 Ma镁铁-超镁铁质岩体中寻找铜镍硫化物矿床的空间。
-
致谢:本文的薄片鉴定及主微量元素分析测试过程中得到了长安大学成矿作用及其动力学实验室刘民武、何克、谭细娟、栾燕老师的指导和帮助; 在锆石Hf同位素测试过程中得到了西北大学大陆动力学国家重点实验室包志安老师的帮助; 两位匿名审稿专家给出了宝贵的修改建议,在此对他们表示诚挚的感谢!
-
参考文献
-
Albarede F, Scherer E E, Blichert-Toft J, Rosing M, Simionovici A, Bizzarro M. 2006. γ-Ray irradiation in the early Solar System and the conundrum of the 176Lu decay constant. Geochim et Cosmochim Acta, 70(5): 1261~1270.
-
Asimow P D, Ghiorso M S. 1998. Algorithmic modifications extending into calculate Subsolidus Phase relations. American Mineralogist, 83: 1127~1132.
-
Barnes S J, Godel B, Gürer D, Brenan J M, Robertson J, Paterson D. 2013. Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni-rich magmatic sulfides. Economic Geology, 108(8): 1971~1982.
-
Black L P, Kamo S L, Allen C M, Davis D W, Aleinikoff J N, Valley J W, Mundil R, Campbell I H, Korsch R J, Williams I S, Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a traceelement-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(2): 115~140.
-
Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1-2): 48~57.
-
Bureau of Geology and Mineral Resources of the Gansu Province (BGMRGP). 1966. Geological Background Map with 1: 200000 scale of Hongliuyuan region in Beishan Area (in Chinese).
-
Chung Sunlin, Wang Kuolung, Crawford A J, Kamenetsky V S, Chen Chenghong, Lan Chingying, Chen Changhwa. 2001. High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos, 59(4): 153~170.
-
Duan Jun, Xu Gang, Qian Zhuangzhi, Ma Bocheng, Gao Wenbin, Zhang Zhigang. 2021. Petrogenesis and Ni-Cu exploration potential of Devonian mafic-ultramafic intrusions in the southern part of the Central Asian Orogenic Belt, NW China: constraints from zircon O isotopes and whole-rock Sr-Nd isotopes. International Geology Review, 64(11): 1495~1513.
-
Gao Wenbin. 2021. Study on geological characteristics and petrogeochemistry of the Xinanshan mafic-ultramafic intrusion in the Liuyuan area, Gansu Province. Master degree dissertationof Chang'an University (in Chinese with English abstract).
-
Ghiorso M S, Sack R O. 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology, 119(2-3): 197~212.
-
Hart S R, Dunn T. 1993. Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology , 113(1): 1~8.
-
Hauri E H, Wagner T P, Grove T L. 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology, 117(1-4): 149~166.
-
Hofmann A W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385(6613): 219~229.
-
Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423~439.
-
Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595~2604 (in Chinese with English abstract).
-
Jiang Changyi, Cheng Songlin, Ye Shufeng, Xia Mingzhe, Jiang Hanbing, Dai Yucai. 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei mafc rock body at Beishan region, Xinjiang. Acta Petrologica Sinica, 22(1): 115~126 (in Chinese with English abstract).
-
Jahn B M, Windley B, Natal'in B, Dobretsov N. 2004. Phanerozoic continental growth in Central Asia. Journal of Asian Earth Sciences, 23(5): 599~603.
-
Jiao Jiangang, Leng Xin, Duan Shaoshuai, Xia Mingzhe, Rui Huichao, Tan Lei. 2018. Petrogenesis and metallogenic characteristics of the Early Permian Podong Cu-Ni sulfide deposit, northeastern margin of the Tarim plate. Acta Petrologica Sinica, 34(8): 2211~2222 (in Chinese with English abstract).
-
Li Chusi, Naldrett A J. 1999. Geology and petrology of the Voisey's Bay intrusion: Reaction of olivine with sulfide and silicate liquids. Lithos, 47(1): 1~31.
-
Li Chusi, Ripley, E M. 2009. Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: empirical equations and example applications. Economic Geology, 104: 405~412.
-
Li Chusi, Ripley E M. 2010. The relative effects of composition and temperature on olivine-liquid Ni partitioning: statistical deconvolution and implications for petrologic modeling. Chemical Geology, 275(1-2): 99~104.
-
Li Chusi, Ripley E M. 2011. The giant Jinchuan Ni-Cu-(PGE) deposit: tectonic setting, magma evolution, ore genesis and exploration implications. Economic Geology, 17(2): 163~180.
-
Li Chusi, Arndt N T, Tang Qingyan, Ripley E M. 2015. Trace element indiscrimination diagrams. Lithos, 232: 76~83.
-
Lightfoot P C, Hawkesworth C J, Hergt J, Naldrett A J, Gorbachev N S, Fedorenko V A, Doherty W. 1994. Chemostratigraphy of the Siberian Trap lava, Noril'sk district, Russia: implications and source of flood basalt magma and their associated Ni-Cu mineralisation. Proceedings of the Sudbury-Noril'sk symposium. Ontario Geological Survey Special Publication, No. 5: 283~312.
-
Liu Huan. 2016. Ore-bearing evaluation of mafic-ultramafic rock intrusions in Eastern Tianshan, Xinjiang. Master degree dissertation of Chang'an University (in Chinese with English abstract).
-
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haidong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.
-
Ludwig K R. 2012. User's Manual for Isoplot 3. 75: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronological Center Special Publication No. 5.
-
Ma Bocheng, Qian Zhuangzhi, Keays R R, Xu Gang, Duan Jun, Zhang Jiangjiang, Gao Wenbin. 2021. Petrogenesis of the Permian Luotuoshan sulfide-bearing mafic-ultramafic intrusion, Beishan Orogenic Belt, NW China: evidence from whole-rock Sr-Nd-Pb and zircon Hf isotopic geochemistry. Journal of Geochemical Exploration, 233: 106920.
-
Ma Jian, Lü Xinbiao, Liu Yangrong, Cao Xiaofeng, Liu Yuegao, Ruan Banxiao, Adam M M A. 2016. The impact of early sulfur saturation and calc-crustal contamination on ore-forming process in the Posan mafc-ultramafc complex: derived from the shallow depleted mantle, Beishan region, NW China. Journal of Asian Earth Sciences, 118: 81~94.
-
Matzen A K, Baker M B, Beckett J R, Stolper E M. 2011. Fe-Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. Journal of Petrology, 52: 1243~1263.
-
Mao Yajing, Qin Kezhang, Li Chusi, Xue Shengchao, Ripley E M. 2014. Petrogenesis and ore genesis of the Permian Huangshanxi sulphide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, Western China. Lithos, 200-201: 111~125.
-
Mao Yajing, Qin Kezhang, Li Chusi, Tang Dongmei. 2015. A modified genetic model for the Huangshandong magmatic sulfide deposit in the Central Asian Orogenic Belt, Xinjiang, western China. Mineralium Deposita, 50(1): 65~82.
-
Mao Yajing, Qin Kezhang, Barnes S J, Tang Dongmei, Xue Shengchao, Vaillant M L. 2017. Genesis of the Huangshannan high-Ni tenor magmatic sulfide deposit in the Eastern Tianshan, northwest China: constraints from PGE geochemistry and Os-S isotopes. Ore Geology Reviews, 90: 591~606.
-
Miller D M, Goldstein S L, Langmuir C H. 1995. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature, 368: 514~520.
-
Morimoto N. 1988. Nomenclature of pyroxenes. Mineralogical Magazine, 52: 535~550.
-
Naldrett A J. 2011. Fundamentals of magmatic sulfde deposits. Society of Economic Geologists, 17: 1~50.
-
Oyhantcabal P, Siegesmund S, Wemmer K, Frei R, Layer P. 2007. Post-collisional transition from Cale-Alkaline to Alkaline Magmatism during transcurrent deformation in the Southernmost Dom Feliciano Belt (Braziliano-Pan-Afcan, Uruguay). Lithos, 98 (1-4): 141~159.
-
Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100: 14~48.
-
Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251~285.
-
Pearce J A, Stern R J, Bloomer S H, Fryer P. 2013. Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochemistry Geophysics Geosystems, 6(7): 1525~2027.
-
Plank T, Wade J. 2005. Constraints From Water on Mantle Melting and Slab Fluid Composition. London: AUG Fall Meeting.
-
Qian Zhuagzhi, Duan Jun, Feng Yanqing, Xu Gang, Zhang Jiangjiang. 2015. Main metallogenic tectonic settings of magmatic Cu-Ni-(PGE) sulfide deposits in China. Strategic Study of Chinese Academy of Engineering, 17(2): 19~28 (in Chinese with English abstract).
-
Qin Kezhang, Zhang Lianchang, Xiao Wenjiao. 2003. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China. In: Mao J W, Goldfarb S, eds. Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan (London), Natural History Museum of London: IAGOD Guidebook Seeries, 10: 227~249.
-
Qin Kezhang, Su Benxun, Sakyi P A, Tang Dongmei, Li Xianhua, Sun He, Xiao Qinghua, Liu Pingping. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): constraints on a ca. 280 Ma mantle plume. American Journal of Science, 311(3): 237~260.
-
Qin Kehzhang, Tang Dongmei, Su Benxun, Mao Yajing, Xue Shengchao, Tian Ye, Sun He, San Jinzhu, Xiao Qinghua, Deng Gang. 2012. The tectonic setting, style, basic feature, relative erosion degree, ore-bearing evacuation sign, potential analysis of mineralization of Cu-Ni-bearing Permian mafic-ultramafic complexes, northern Xinjiang. Northwestern Geology, 45(4): 83~116 (in Chinese with English abstract).
-
Ruan Banxiao, Yu Yingmin, Lv Xinbiao, Wu Chunming, Liu Xiao. 2020. Sulfide segregation mechanism of magmatic Ni mineralization in western Beishan region, Xinjiang, NW China: case study of the Hongshishan mafc-ultramafc complex. Ore Geology Reviews, 122: 103503.
-
Ruan Banxiao, Wei Wei, Yingmin, Lv Xinbiao. 2021. Geology, geochronology, mineral chemistry and geochemistry of the Hongnieshan mafc-ultramafc complex in the Beishan area, southern Central Asian orogenic Belt, NW China: Implications for petrogenesis and regional Ni mineralization. Ore Geology Reviews, 139: 104423.
-
Rudnick R L, Gao Shan 2003. Composition of the continental crust. Treatise Geochemistry, 3: 1~64.
-
Song Dongfang, Xiao Wenjiao, Han Chunming, Tian Zhenheng, Wang Zhenming. 2013. Provenance of metasedimentary rocks from the Beishan orogenic collage, southern Altaids: constraints from detrital zircon U-Pb and Hf isotopic data. Gondwana Research, 24: 1127~1151.
-
Song Xieyan, Xie Wei, Deng Yufeng, Crawford A J, Zheng Weiqing. 2011. Slab break-off and the formation of Permian mafic-ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127: 128~143.
-
Su Benxun, Qin Kezhang, Sun He, Wang Heng. 2010. Geochronological, petrological, mineralogical and geochemical studies of the Xuanwoling mafic-ultramafic intrusion in Beishan area, Xinjiang. Acta Petrologica Sinica, 26(11): 3283~3294 (in Chinese with English abstract).
-
Su Benxun, Qin Kezhang, Sakyi P A, Li Xianhua, Yang Yiheng, Sun He, Tang Dongmei, Liu Pingping, Xiao Qinghua, Malaviarachchi S P K. 2011. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20: 516~531.
-
Su Benxun, Qin Kezhang, Tang Dongmei, Deng Gang, Xiao Qinghua, Sun He, Dai Yucai. 2011. Petrological features and implications for mineralization of the Poshi mafic-ultramafic intrusion in Beishan area, Xinjiang. Acta Petrologica Sinica, 27(12): 3627~3639 (in Chinese with English abstract).
-
Su Benxun, Qin Kezhang, Sakyi, P A, Tang Dongmei, Liu Pingping, Malaviarachchi, S P K, Xiao Qinghua, Sun He. 2012a. Geochronologic-petrochemical studies of the Hongshishan mafc-ultramafc intrusion, Beishan area, Xinjiang (NW China): petrogenesis and tectonic implications. International Geology Review, 54: 270~289.
-
Su Benxun, Qin Kezhang, Sun He, Tang Dongmei, Xiao Qinghua, Liu Pingping. 2012b. Olivine compositional mapping of mafic-ultramafic complexes in eastern Xinjiang (NW China): implications for Cu-Ni mineralization and tectonic dynamics. Journal of Earth Science, 23(1): 41~53.
-
Su Benxun. 2014. Mafic-ultramafic intrusions in Beishan and Eastern Tianshan at Southern CAOB: petrogenesis, mineralization and tectonic implication. Doctoral thesis of Institute of Geology and Geophysics, Chinese Academy of Sciences.
-
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society Special Publication, 42: 313~345.
-
Sun Weidong, Hu Yanhua, Kamenetsky V S, Eggins S M, Chen Ming, Arculus R J. 2008. Constancy of Nb/U in the mantle revisited. Geochimica et Cosmochimica Acta, 72: 3542~3549.
-
Tang Dongmei, Qin Kezhang, Su Benxun, Sakyi P A, Liu Yongsheng, Mao Qigui, Santosh M, Ma Yugang. 2013. Magma source and tectonics of the Xiangshanzhong mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures. Lithos, 170-171: 144~163.
-
Wang Guoqiang, Li Xiangmin, Xu Xueyi, Yu Jiyuan, Ji Bo, Zhu Tao. 2018. Petrogenesis and tectonic setting of the Carboniferous and Permian volcanic rocks in the Beishan orogenic belt. Acta Petrologica et Mineralogica, 37(6): 18~34 (in Chinese with English abstract).
-
Wang Yalei, Zhang Zhaowei, Zhang Mingjie, Zhang Jiangwei, Gao Yongbao. 2013. Geodynamic setting of the Pobei mafic-ultramafic intrusion in Xinjiang. Acta Petrologica et Mineralogica: 32(5): 693~707 (in Chinese with English abstract).
-
Wiedenbeck M, Hanchar J M, Peck W H, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard J P, Greenwood R C, Hinton R, Kita N, Mason P R D, Norman M, Ogasawara M, Piccoli R, Rhede D, Satoh H, Schulz-Dobrick B, Skar O, Spicuzza, M J, Terada K, Tindle A, Togashi S, Vennemann T, Zheng Yafei. 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28: 9~39.
-
Williams I S. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben M A, Shanks W C, Ridley W I, eds. Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Econonic Geology, 7: 1~35.
-
Woodhead J D, Hergt J M, Davidson J P, Eggins S M. 2001. Hafnium isotope evidence for “conservative” element mobility during subduction zone processes. Earth Planet Science Letter, 192: 331~346.
-
Woodhead J D, Hergt J M, Shelley M, Eggins S M, Kemp R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profling, ablation of complex geometries and comcomitant age estimation. Chemical Geology, 209: 121~135.
-
Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinghui, Xu Ping, 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105~126.
-
Xia Mingzhe, Jiang Changyi, Li Chusi, Xia Zhaode. 2013. Characteristics of a newly discovered Ni-Cu sulfde deposit hosted in the Poyi ultramafc intrusion, Tarim Craton, NW China. Economic Geology. 108 (8): 1865~1878.
-
Xiao Wenjiao. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the Growth of Central Asia. Journal of the Geological Society, 161: 339~342.
-
Xiao Wenjiao, Mao Qigui, Windley B F, Han Chunming, Qu Jiefeng, Zhang Jia, Ao Songjian, Guo Qiang, Cleven N R, Lin Shengfa, Shan Yihong, Li Jiliang. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. American Journal of Science, 310: 1553~1594.
-
Xie Wei, Song Xieyan, Deng Yafeng. 2012. Geochemistry and petrogenetic implications of a late Devonian mafc-ultramafc intrusion at the southern margin of the Central Asian Orogenic Belt. Lithos, 144: 209~230.
-
Xie Xie, Li Wenming, Sun Jiming, Li Jun, Huang Min. 2018. Geochemistry and zircon U-Pb dating of the Baishan mafic-ultramafic rock complex in the Beishan area of Xinjiang and its prospecting significance. Geological Science and Technology Information, 37(6): 11~21 (in Chinese with English abstract).
-
Xue Shengchao, Qin Kehznag, Tang Dongmei, Mao Yajing, Yao Zhuosen. 2015. Compositional characteristics of pyroxenes from Permian mafic-ultramafic complexes in Eastern Xinjiang and their implications for petrogenesis and Ni-Cu mineralization. Acta Petrologica Sinica, 31(8): 2175~2192 (in Chinese with English abstract).
-
Xue Shengchao, Qin Kezhang, Li Chusi, Tang Dongmei, Mao YaJ, Qi Liang, Ripley E M. 2016a. Geochronological, petrological, and geochemical constraints on Ningi-Cu sulfide mineralization in the Poyi ultramafic-troctolitic intrusion in the northeast rim of the Tarim Craton, western China. Economic Geology, 111: 1465~1484.
-
Xue Shengchao, Li Chusi, Qin Kezhang. 2016b. A non-plume model for the Permian protracted (266~286 Ma) basaltic magmatism in the Beishan-Tianshan region, Xinjiang, Western China. Lithos, 256: 243~249.
-
Xue Shengchao. , Li Chusi, Qin Kezhang. , Yao Zhuosen, Ripley, E M. 2018. Geochronological, mineralogical and geochemical studies of sulfde mineralization in the Podong mafc-ultramafc intrusion in northern Xinjiang, western China. Ore Geology Review, 101: 688~699.
-
Xue Shengchao, Li Chusi, Wang Qingfei, Ripley E M, Yao Zhuosen. 2019. Geochronology, petrology and Sr-Nd-Hf-S isotope geochemistry of the newly-discovered Qixin magmatic Ni-Cu sulfde prospect, southern Central Asian Orogenic Belt, NW China. Ore Geology Review, 111: 1~18.
-
Xue Shengchao, Wang Qingfei, Tang Dongmei, Mao Yajing, Yao Zhuosen. 2022. Contamination mechanism of magmatic Ni-Cu sulfide deposits in orogenic belts: examples from Permian Ni-Cu deposits in Tianshan-Beishan. Mineral Deposits, 41(1): 1~20 (in Chinese with English abstract).
-
Yan Haiqing, Zhao Huanqiang, Ding Ruiying, Mi Shihao, Wang Qiang, He Baolin, Fan Mochun, Ren Jianmei. 2012. Zircon SHRIMP U-Pb dating of the Dashantou basic complex and its geological signifcance in Beishan area, Gansu Province. Northeastern Geology, 45 (4): 216~228 (in Chinese with English abstract).
-
Yang Yueheng, Wu Fuyuan, Xie Liewen, Zhang Yanbing. 2010. High-precision measurements of the 143Nd/144Nd isotope ratio in certifed reference materials without Nd and Sm separation by multiple collectors inductively coupled plasma mass spectrometry. Analytical Letters, 43: 142~150.
-
Zhang Jiangjiang. 2014. Genesis and metallogenic potential of two types of mafic-ultramafic rocks in Beishan area, Gansu Province. PhD degree dissertation of Chang'an University (in Chinese with English abstract).
-
Zhang Yunying, Yuan Chao, Sun Min, Long Xiaoping, Xia Xiaoping, Wang Xinyu, Huang Zongying. 2015. Permian doleritic dikes in the Beishan Orogenic Belt, NW china: asthenosphere-lithosphere interaction in response to slab break-off. Lithos, 233(4): 174~192.
-
Zuo Guochao, Zhang Shuling, He Guoqi, Zhang Yang. 1990. Early Paleozoic plate tectonics in Beishan area. Chinese Journal of Geology, 25(4): 305~314 (in Chinese with English abstract).
-
Zuo Guochao, Zhang Shuling, He Guoqi, Zhang Yang. 1991. Plate tectonic characteristics during the early Paleozoic in Beishan near the Sino-Mongolian border region, China. Tectonophysics, 188: 385~392.
-
高文彬. 2021. 甘肃柳园地区西南山岩体地质特征及岩石地球化学研究. 长安大学硕士学位论文.
-
甘肃省地质矿产局. 1966. 北山红柳园幅1∶20万比例尺地质图.
-
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23 (10): 2595~2604.
-
姜常义, 程松林, 叶书锋, 夏明哲, 姜寒冰, 代玉财. 2006. 新疆北山地区中坡山北镁铁质岩体岩石地球化学与岩石成因. 岩石学报, 22(1): 115~126.
-
焦建刚, 冷馨, 段少帅, 夏明哲, 芮会超, 谭磊. 2018. 塔里木东北缘早二叠世坡东铜镍硫化物矿床成矿特征与岩石成因. 岩石学报, 34(8): 2211~2222.
-
刘欢. 2016. 新疆东天山镁铁-超镁铁岩体含矿性评价研究. 长安大学硕士学位论文.
-
钱壮志, 段俊, 冯延清, 徐刚, 张江江. 2015. 中国铜镍(铂族)岩浆硫化物矿床主要成矿构造背景. 中国工程科学, 17(2): 19~28.
-
秦克章, 邓刚, 唐冬梅, 苏本勋, 毛亚晶, 薛胜超, 田野, 孙赫, 三金柱和肖庆华. 2012. 北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析. 西北地质, 45(4): 83~116.
-
苏本勋, 秦克章, 孙赫和王恒. 2010. 新疆北山地区旋窝岭镁铁超镁铁岩体的年代学、岩石矿物学和地球化学研究. 岩石学报, 26(11): 3283~3294.
-
苏本勋, 秦克章, 唐冬梅, 邓刚, 肖庆华, 孙赫, 卢鸿飞, 代玉财. 2011. 新疆北山地区坡十镁铁-超镁铁岩体的岩石学特征及其对成矿作用的指示. 岩石学报, 27(12): 3627~3639.
-
王国强, 李向民, 徐学义, 余吉远, 计波, 朱涛. 2018. 北山石炭纪-二叠纪火山岩成因及构造背景. 岩石矿物学杂志, 37(6): 18~34.
-
王亚磊, 张照伟, 张铭杰, 张江伟, 高永宝. 2013. 新疆坡北镁铁-超镁铁质岩体地球动力学背景探讨. 岩石矿物学杂志, 32(5): 693~707.
-
谢燮, 李文明, 孙吉明, 李军, 黄敏. 2018. 新疆北山地区白山镁铁-超镁铁岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其找矿意义. 地质科技情报, 37(6): 11~21.
-
薛胜超, 秦克章, 唐冬梅, 毛亚晶, 姚卓森. 2015. 东疆二叠纪镁铁-超镁铁岩体中辉石的成分特征及其对成岩和Ni-Cu成矿的指示. 岩石学报, 31(8): 2175~2192.
-
薛胜超, 王庆飞, 唐冬梅, 毛亚晶, 姚卓森. 2022. 造山带岩浆铜镍硫化物矿床的混染模式——以天山-北山二叠纪铜镍矿为例. 矿床地质, 41(1): 1~20.
-
闫海卿, 赵焕强, 丁瑞颖, 米世好, 王强, 贺宝林, 范模春, 任建梅. 2012. 甘肃北山大山头基性杂岩体SHRIMP锆石U-Pb年龄及其地质意义. 西北地质, 45(4): 597~610.
-
张江江. 2014. 甘肃北山地区两类镁铁质-超镁铁质岩体成因与成矿潜力研究. 长安大学博士学位论文.
-
左国朝, 张淑玲, 何国琦, 张杨. 1990. 北山地区早古生代板块构造特征. 地质科学, 25(4): 305~314.
-
摘要
北山造山带是中亚造山带南缘镁铁-超镁铁质岩体的集中分布区之一,因其赋含二叠纪铜镍硫化物矿床而受到广泛关注。以往的研究多集中在北山造山带西部的新疆坡北地区,近年来随着对甘肃北山地区二叠纪镁铁-超镁铁岩体认识逐渐深入,新发现的矿化岩体有逐渐向东延伸的趋势。本文选择北山造山带中东部柳园地区骆驼山和西南山两个典型含铜镍硫化物岩体进行地质年代学、岩相学和岩石地球化学及同位素地球化学研究。岩体主要岩相包括橄榄岩相、辉石岩相、橄榄辉长岩相、橄长岩相和辉长岩相,其中硫化物主要出现在橄榄岩相和辉石岩相中。骆驼山岩体辉长岩锆石的U-Pb年龄为282.6 Ma,与坡北地区矿化岩体的形成时代一致。骆驼山和西南山岩体母岩浆稀土元素配分模式为轻微右倾型,富集大离子亲石元素,强烈亏损高场强元素Nb-Ta,中等亏损Zr-Hf,与坡北和东天山地区同时代矿化岩体母岩浆特征相似。岩体具有较高的全岩εNd(t)值(+0.42~+6.10)和锆石εHf(t)值(+7.9~+14.1)的特征,与坡北地区矿化岩体类似,表明具有相似的亏损地幔源区。橄榄石Fo值与Ni含量的关系和母岩浆微量元素Cu/Zr比值特征表明岩浆在橄榄石结晶过程中发生了硫化物熔离。同位素模拟计算表明母岩浆在上升侵位过程中发生了约5%~15%的地壳物质混染,可能是岩浆硫饱和的主要原因。相同的成岩成矿时代、相似的岩石地球化学特征、母岩浆特征及硫化物饱和机制,表明甘肃北山地区二叠纪镁铁-超镁铁质岩体具有与坡北地区类似的成矿潜力,为在北山地区中东部进一步寻找铜镍硫化物矿床提供了重要信息。
Abstract
The Beishan orogenic belt is one of the areas where mafic-ultramafic intrusions are concentrated in the southern margin of the Central Asian Orogenic Belt and has attracted widespread attention because of the reservoir of Permian Cu-Ni sulfide deposits. Previous studies have mostly focused on the Xinjiang Pobei in the western Beishan area. Recently, with gradual in-depth understanding of Permian mafic-ultramafic rocks in the Gansu Beishan area, the newly discovered mineralized rocks have a trend of extending eastward gradually. Here we selected two typical Cu-Ni sulfides mineralized Luotuoshan and Xinanshan intrusions in the Liuyuan area of the central-eastern part of Beishan for geochronological, petrographic and isotopic geochemical studies. The lithologies of the Luotuoshan and Xinanshan intrusions are composed mainly of peridotite, pyroxenite, olivine gabbro, troctolite and gabbro, among which sulfides predominantly appear in peridotite and pyroxenite. The zircons U-Pb concordant age of a gabbro from Luotuoshan intrusion is 282.6 Ma, which is consistent with the formation ages of mineralized mafic-ultramafic intrusions in Pobei area. Chondrite-normalized REE and primitive mantle-normalized trace element patterns of parental magmas of Luotuoshan and Xinanshan intrusions show strong depletion of Nb-Ta and moderate depletion of Zr-Hf, which are similar to those of typical sulfides bearing intrusions in Pobei and Eastern Tianshan areas. The Luotuoshan rocks have both elevated εNd(t) (+0.42~+6.10) and εHf(t) values (+7.9~+14.1), which are also similar to mineralized intrusions in the Pobei area, indicating their similar depleted mantle sources. The relationship between olivine Fo values and Ni contents and Cu/Zr ratios of their parental magmas indicate that the magmas underwent sulfide segregation during the process of olivine crystallization. Mixing calculations of isotopes indicate that about their parental magmas underwent 5% to 15% of crustal contamination during magma ascent and emplacement process, which may be the major reason for triggering sulfur saturation in magmas. The same diagenetic and metallogenic ages, similar geochemical characteristics of rocks and parental magmas, and similar sulfide saturation mechanism suggest that Permian mafic-ultramafic intrusions in the Gansu Beishan area probably have similar metallogenic potential to those in Pobei area, which provides important information for further prospecting of Cu-Ni sulfides deposits in the central-eastern part of the Beishan orogenic belt.