江西曾家垄锡矿高分异花岗岩黑云母地球化学组成:对岩浆源区和演化过程的记录
doi: 10.19762/j.cnki.dizhixuebao.2023069
孙克克1,2 , 陈伟3,4
1. 河海大学地球科学与工程学院,江苏南京, 211100
2. 地质过程与矿产资源国家重点实验室,北京, 100083
3. 安徽省生态环境科学研究院,安徽合肥, 230031
4. 上海化工院环境工程有限公司,上海, 200000
基金项目: 本文为国家自然科学基金项目(编号42003024) ; 地质过程与矿产资源国家重点实验室(中国地质大学)开放基金(编号GPMR202315) ; 中央高校基本科研业务费项目(编号B240201151)联合资助的成果
作者简介
孙克克,男,1989年生。博士,副研究员,矿物学、岩石学、矿床学专业。E-mail: sunkk1989@hhu.edu.cn。
Biotite in highly evolved granite from the Zengjialong Sn ore deposit, China: Insights into magma source and evolution
SUN Keke1,2 , CHEN Wei3,4
1. School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 211100 , China
2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083 , China
3. Department of Ecology and Environment of Anhui Province, Hefei, Anhui 230031 , China
4. Shanghai Institute of Chemical Industry Testing Co., Ltd, Shanghai 200000 , China
摘要
锡是重要的战略性关键金属,对其成矿规律的研究具有重要的理论意义和显著的经济价值。原生锡矿化总是与还原的高分异花岗质岩浆密切相关。相比于普通花岗岩,富锡高分异花岗岩经历了复杂的演化过程,全岩地球化学往往具有多解性且只能给出岩浆体系演化最终产物的信息,难以揭示岩浆经历的演化细节。岩浆中结晶的矿物如石英、黑云母、磷灰石等能够记录岩浆组分的动态变化及全岩组分难以反映的精细演化过程,在花岗岩成因研究中显示出独特的优势。本文对江西省曾家垄锡矿成矿高分异花岗岩中的黑云母开展了系统的地球化学研究。曾家垄花岗岩中的黑云母为岩浆来源。这些黑云母显示低的镁指数(Mg# = 5.70~9.93,平均值为7.63)和高的铝饱和指数(A/CNK = 1.77~1.98,平均值为1.88),与世界范围内S型花岗岩中黑云母特征一致,表明曾家垄花岗岩为变质沉积岩熔融而成的S型花岗岩。黑云母微量元素结果显示随着K/Rb比值降低,Rb、Cs、Sn的含量逐渐增加而Pb含量逐渐降低,暗示岩浆经历了以钾长石为主的分离结晶过程。值得关注的是黑云母中Sn的含量随着K/Rb比值降低增加了4倍,暗示随着岩浆分异锡在残余岩浆中的含量显著增加。曾家垄花岗岩黑云母具有较低的Ⅳ(F)、Ⅳ(F/Cl)、lg(fHF/fHCl)值,较高的Ⅳ(Cl)值,Ⅳ(Cl)与Ⅳ(F/Cl)之间、lg( /fHF)与lg(fHF/fHCl)之间显示明显的负相关性,暗示曾家垄岩浆为富氟贫氯岩浆体系,黑云母结晶过程中伴随有持续的流体出溶。曾家垄花岗岩中黑云母几乎不含Fe3+,在Fe3+-Fe2+-Mg三角图解中,黑云母均位于FMQ线之下,表明其氧逸度非常低。曾家垄花岗岩中黑云母记录了岩浆具有富集的源区组成、高程度的分异演化、较低的氧逸度、持续的流体出溶,这些过程有利于最终的矿化富集。结合本文的数据及统计的文献数据表明不同岩浆热液成矿系统(Cu、Mo、W、Sn)中岩浆黑云母在主量元素、卤素及微量元素上显示不同的特征,黑云母地球化学可用于区分不同岩浆热液成矿系统。
Abstract
Tin, a strategically significant metal, necessitates a comprehensive understanding of its mineralization processes, which hold substantial theoretical and economic value. Primary Sn mineralization is typically associated with highly evolved and relatively reduced granitic magmas. Compared to common granites, Sn-rich granites exhibit complex magmatic evolution, making it challenging to determine their early-stage magmatic compositions using whole rock geochemistry alone. This method yields data primarilyfrom the final stages of magmatic evolution, limiting our capacity to fully grasp the sources and evolution of these magmas. However, mineral phases such as quartz, biotite, and apatite, crystallized within the magma, serve as valuable archives of dynamic compositional changes and fine-scale evolutionary processes that often remain concealed in whole rock analyses. This study presents a comprehensive dataset of major and trace elements (including halogen) for biotites from highly evolved granites in the Zengjialong Sn ore deposit. These biotites exhibit magmatic origins, characterized by low Mg# (5.70~9.93, mean=7.63) and high A/CNK values (1.77~1.98, mean=1.88), consistent with biotites in S-type granites worldwide. These compositional characteristics suggest a metasedimentary origin for the parental magmas. Trace element analysis of biotites shows a systematic increase in Rb, Cs, and Sn, accompanied by concurrent decrease in Pb and K/Rb ratios. This trend suggests that crystal fractionation is dominated by K-feldspar. Furthermore, Sn concentrations in biotites increase fourfold due to progressive fractional crystallization, indicating Sn enrichment in the residual magmas. Biotites also exhibit low Ⅳ(F), Ⅳ(F/Cl), and lg (fHF/fHCl) values, coupled with high Ⅳ(Cl). These values, coupled with the negative correlations between Ⅳ(Cl) and Ⅳ(F/Cl) as well as lg( /fHF) and lg(fHF/fHCl), suggest a F-rich, Cl-depleted magma system and continuous fluid exsolution during biotite crystallization. Additionally, the biotites in the Zengjialong granite show almost no Fe3+, placing them below the FMQ line in the Fe3+-Fe2+-Mg triangle diagram, indicative of low oxygen fugacity. The biotites in the Zengjialong granite reveal a magmatic system characterized by an enriched source, a high degree of differentiation, low oxygen fugacity, and continuous fluid exsolution. These processes are conductive to Sn enrichment and mineralization. This study demonstrates the utility of biotite geochemistry for distinguishing various magmatic-hydrothermal mineralization systems, including those associated with Cu, Mo, W and Sn.
锡是现代工业和国防产业中不可或缺的重要金属,广泛应用于新能源、航空航天、电子产业、合金制造等领域,被多个国家列为战略性关键金属。锡的成矿规律与找矿勘查一直都是国际矿床学家关注的热点问题(毛景文等,2019; 蒋少涌等,2020; 袁顺达等,2020; Lehmann,2021)。原生锡矿化在时空分布上总是与高分异且还原的花岗质岩浆密切相关(Ishihara,1977; Lehmann and Mahawat,1989; Lehmann,2021; Sun Keke et al.,2023)。因此,富锡高分异花岗岩的成因及演化过程一直备受关注。相比于普通花岗岩,富锡高分异花岗岩经历了更为复杂的演化过程,且后期可能经历了一定程度的“熔-流体”相互作用,这些过程致使该体系更加开放,在演化过程中初始岩浆的成分会遭受显著改变,使得其岩石成因极为复杂。前人已对富锡花岗岩成因开展了大量研究工作,目前已取得以下几点认识:① 富锡花岗岩源区为经历过强烈风化作用的沉积岩,源区通常富集锡元素(Romer and Kroner,2016);② 岩浆源区往往以高温黑云母脱水熔融为主,富集在黑云母中的锡发生分解,使得其在初始岩浆中富集(Yuan Shunda et al.,2019; Zhao Panlao et al.,2022a);③ 在还原的花岗质岩浆中,锡为典型的不相容元素,随着岩浆的结晶分异逐渐富集在残余岩浆中(Ishihara,1977; Lehmann and Mahawat,1989; Lehmann,2021; Sun Keke et al.,2023);④ 在岩浆演化的晚期,富氯流体从岩浆中出熔,将岩浆中的锡带入流体中最终富集成矿(Heinrich,1990; Zhao Panlao et al.,2022b)。尽管已取得不少共识,但以往的研究主要是基于全岩地球化学分析。传统的岩石地球化学分析对于解决高分异花岗岩成因存在明显的缺陷和不足:一方面所得的全岩样品仅能够代表高分异花岗岩演化至晚期的产物,难以获得初始岩浆的信息;另一方面全岩地球化学结果往往具有多解性。这些不足严重制约了对富锡高分异花岗岩成因及演化细节的深入理解。
近年来,随着原位分析技术如LA-ICP-MS、电子探针EPMA、二次离子质谱SIMS的快速发展及在地学领域中的广泛应用,岩浆中结晶的矿物如石英、黑云母、锆石、磷灰石、榍石等已被系统分析用来反演母岩浆的成分及演化过程(Breiter et al.,2013; Bruand et al.,20142016; Li Jie et al.,2015; Gao Peng et al.,2016; 王汝成等,2019; Yin Rong et al.,2019; Sun Keke et al.,2019)。相比于全岩地球化学分析,结晶于岩浆不同阶段的矿物能够记录岩浆组分的动态变化;除此之外,矿物能够记录某些全岩组分难以察觉的岩浆精细演化过程(分离结晶、岩浆补给、岩浆混合、流体出溶等)。这些岩浆演化的细节过程在全岩地球化学分析结果中很难识别出来。黑云母是花岗质岩浆中最为常见的铁镁矿物之一,包含Fe、Mg、Ti、OH、F、Cl和大量微量元素如Li、Rb、Cs、Ba、Zn、Nb、Ta等,已被广泛用于示踪岩浆-热液系统的来源及演化过程(Wones and Eugster,1965; Munoz,19841992; Lentz,19921994; Tischendorf et al.,2001; Lichtervelde et al.,2008; Zhang Chao et al.,2012; Sun Keke et al.,2019)。黑云母的K/Rb、K/Cs比值能够有效示踪岩浆演化程度。作为钨锡等成矿元素最重要的载体矿物,黑云母的钨锡含量可直接反映与其平衡的熔体中钨锡金属含量。除此之外,作为一个含水矿物,黑云母的F、Cl、H2O含量可以有效记录岩浆的挥发分含量及演化过程,这对于岩浆演化及后续的热液成矿至关重要。
曾家垄锡矿是江南造山带内探明的重要原生锡矿床,已探明30万t锡、500万t铅锌以及3000 t银(卢树东等,2004)。已有的研究表明曾家垄锡矿与区内白垩纪花岗岩密切相关,这些花岗岩显示高硅、富碱、贫铁镁、富集Rb、Th、Cs、亏损Sr、Ba,具有稀土四分组效应,为典型的高分异花岗岩(Xu Bin et al.,2017; 陈伟等,2018)。但是对于这些高分异花岗岩的类型(I型 vs. S型)还存在较大争议,对于花岗岩的演化细节及挥发分演化过程还知之甚少。本文系统报道了曾家垄富锡高分异花岗岩中黑云母原位地球化学,试图通过对黑云母的综合研究探讨曾家垄花岗岩的源区组成、成分及挥发分的演化细节。
1 区域地质概况
华南板块由西北部的扬子板块、东南部的华夏板块以及中间的江南造山带组成,三者最终在罗迪尼亚超大型聚合末期碰撞拼合在一起(820 Ma; Charvet,2013)。江南造山带位于扬子板块东南,呈北东东—南西西走向延伸大约1500 km(图1)。江南造山带基底主要由新元古代变质沉积岩和少量变质火成岩组成。研究区内出露的基底地层主要为新元古代双桥山群地层,主要由泥岩、凝灰质砂岩、千枚岩、凝灰岩、凝灰质板岩和少量细碧角斑岩组成。在侏罗纪及白垩纪期间,华南板块经历了大规模的花岗质岩浆活动和矿化。以往的研究表明华南地区的钨锡矿及相关的花岗岩主要分布于南岭地区。最近十年来在江南造山带北部勘探发现了一大批钨锡矿床,包括高家塝钨钼矿、百丈岩钨钼矿、鸡头山钨钼矿、东源钨矿、阳储岭钨钼矿、朱溪钨铜矿、大湖塘钨铜钼矿、香炉山钨矿、曾家垄锡铅锌矿(图1)。
本文研究的曾家垄锡多金属矿集区位于江南造山带北部的江西省德安县境内(N29.01°,E115.62°)。整个矿集区位于由区内晚中生代岩浆底辟作用形成的穹隆上(图2a)。穹隆呈南北走向的椭圆形,出露面积约200 km2,发育一系列环弧状层间滑动断裂以及放射状断裂,控制了岩体及矿体的分布(图2)。区内出露有中元古代—晚古生代地层:中元古代地层主要为板岩及少量石英角斑岩,新元古代地层以大洋浊积岩为主夹杂有少量细碧角斑岩,震旦纪—中三叠世地层以碳酸盐岩为主夹杂少量碎屑岩及泥岩,晚三叠世及早侏罗世地层缺失。穹隆核部出露震旦纪地层,翼部主要由寒武纪—奥陶纪碳酸盐岩及页岩组成(图2b)。穹隆北翼和东翼较开阔,南翼和西翼倾角较陡,总体上呈现北缓南陡、内缓外陡的特征。环弧状层间滑动断裂带在穹隆内广泛发育,常伴有厚度变化较大的断层角砾岩带,是区内重要的导矿、控矿空间(图2b)。区内岩浆岩主要是隐伏花岗岩,位于穹隆构造北部近轴部的转折位置,平面上呈NE向展布,锡铅锌等矿体主要产于花岗岩体的内外接触带(图2b)。本次研究的花岗岩样品主要采自曾家垄锡矿163坑口70 m中段和40 m中段。这些花岗岩样品呈灰白色、块状构造、花岗结构,未见明显的蚀变现象(图3a)。镜下观察显示曾家垄花岗岩组成矿物包括斜长石(15%~20%)、钾长石(40%~45%)、石英(30%)、黑云母(5%~10%)、白云母(5%),副矿物为磷灰石、锆石、电气石、萤石及钛铁矿(图3)。部分黑云母发生白云母和绿泥石蚀变,钾长石发生绢云母和高岭土化蚀变。
1华南中生代花岗岩、火山岩及江南造山带及其中钨锡矿(包括曾家垄锡矿)分布图(据Zhou Xinmin et al.,2006; Sun Keke and Chen Bin,2017
Fig.1Distribution of the Mesozoic granites, volcanic rocks, the location of the Jiangnan orogen and tungsten-tin deposits (including the Zengjialong Sn ore deposit) in South China (after Zhou Xinmin et al., 2006; Sun Keke and Chen Bin, 2017)
曾家垄花岗岩中的黑云母主要以两类形式存在。第一类黑云母以斑晶形式存在,与石英、长石等平衡共生,这类黑云母通常为自形的片状,宽约100~1500 μm,长宽比约为 2∶1(图3b);第二类黑云母常以包裹体形式存在于石英和钾长石斑晶中,这类黑云母通常为半自形片状,晶体相对较小,长为200~500 μm,宽为50~100 μm,这类黑云母通常未遭受任何蚀变(图3c)。
2曾家垄区域地质简图(a)及南北向剖面图(b)(据卢树东等,2004
Fig.2Simplified geologic map and N-S profile of the Zengjialong district (after Lu Shudong et al., 2004)
2 分析方法
黑云母的主量元素分析在合肥工业大学资源与环境工程学院实验中心的电子探针实验室完成。测试使用的仪器为JEOL JXA-8900R 型电子探针,以TAP、PET和LIF晶体作为标样,空间分辨率为2 μm,采用波长色散(WDS)方法。分析条件如下:加速电压15 kV,电流10 nA,电子光斑直径10 μm。在测试过程中,F、Cl、Ti的背景和峰值时间分别为30 s和60 s,其他元素的背景和峰值时间分别为15 s和30 s。F、Cl、Ti的检测限为0.02%,其他元素检测限为0.01%。
黑云母的原位LA-ICP-MS微量元素测试在合肥工业大学矿床成因与勘查技术研究中心原位地球化学实验室完成。测试直接在岩石薄片上进行。测试使用的仪器为安捷伦7900四级杆ICP-MS系统,配合采用PhotonMachines Analyte HE(193 nm ArF Excimer)激光系统。激光束斑直径为30 μm,频率为10 Hz,输出能量为每脉冲0.01~0.1 mJ,积分通量约为4 J/cm2,气体空白时间为20~30 s,样品剥蚀时间为50 s。每分析运行10~15个测试点至少插入两个外部标样,用于监测仪器分析结果的精度和准确度。分析数据处理(包括样品和空白信号的选择、灵敏度漂移校正和元素含量)采用ICPMSDataCal软件完成(Liu Yongsheng et al.,2008)。详细检查每个样品的时间-信号剥蚀谱图,去除受包裹体和玻璃影响的部分(图4),元素含量采用多外标-无内标法进行定量计算。对比标样(GSC-1G、BCR-2G、GSD-1G)的实测值和推荐值,主要元素的分析精度优于5%,大多数微量元素的精度优于5%~10%,Zn、Cu、Sn的分析精度为10%~16%。
3 结果
3.1 黑云母主量元素
本次对曾家垄花岗岩中4个黑云母样品进行了分析,共计获得了41个有效数据,平均结果列于表1,完整数据见附表1。本文中按照黑云母阳离子总数8,阴离子负电价为23的理论值计算了黑云母的Fe2+、Fe3+郑巧荣,1983),按照22个氧原子为基础计算了黑云母的阳离子。曾家垄花岗岩黑云母具有较高的Al2O3含量(19.0%~21.7%,平均为20.3%)、FeO含量(18.3%~25.5%,平均为22.4%),较低的MgO(0.61%~1.12%,平均为0.89%)和TiO2(1.34%~2.93%,平均为2.21%)(表1)。这些黑云母在Ti-(Fe+Mn)-Mg三角投图中绝大部分位于原生黑云母范围内(图5a; Nachit et al.,2005)。所有的黑云母均是富铁贫镁的,具有较高的Fe/(Fe+Mg)值(0.91~0.95),在黑云母分类图上靠近铁叶云母端元(图5b)。所有的黑云母在MgO-FeO-Al2O3三角图中落在过铝质区域内(图5c; Abdel-Rahman,1994),在Al-Mg图解中位于钙碱性至过铝质范围内(图5d; Nachit et al.,2005)。值得关注的是曾家垄花岗岩中黑云母显示高的A/CNK值(1.77~1.98,平均为1.88)、低的Mg#值(5.70~9.93,平均为7.63)(表1)。
3曾家垄花岗岩代表性手标本(a、b)及岩相学照片(c~f)
Fig.3Representative samples (a, b) and photomicrographs (c~f) of granites in Zengjialong deposit
4曾家垄花岗岩黑云母LA-ICP-MS信号时间图解
Fig.4Time-resolved analytical signal of a biotite LA-ICP-MS analysis from the Zengjialong granite
灰色阴影区域代表样品信号,橙色阴影区域被排除以避免玻璃污染
The grey shaded area was used for further data processing and the orange shaded area was excluded to avoid contamination of analyses by glass
1曾家垄花岗岩黑云母平均电子探针分析结果
Table1Average electron microscope analytical data for the biotites of the Zengjialong granite
续表1
注:SiO2至Total的单位为%;OH = 4-(Cl + F);黑云母钛饱和温度计算据Henry et al.(2005);卤素截距值及逸度值计算据Munoz(19841992);Fe3+计算据郑巧荣(1983)
5曾家垄花岗岩黑云母组分图解
Fig.5Chemical compositional diagrams of biotite from the Zengjialong granite
(a)—TiO2-(FeO+MnO)-MgO三元图解(据Nachit et al.,2005);(b)—黑云母分类图解(据Rieder et al.,1998);(c)—MgO-FeO-Al2O3三元图解(据Abdel-Rahman,1994);(d)—黑云母Al-Mg图解(据Stussi and Cuney,1996
(a) —ternary TiO2- (FeO+MnO) -MgO diagram (after Nachit et al., 2005) ; (b) —classification diagram of biotite (after Rieder et al., 1998) ; (c) —ternary diagram in terms of MgO-FeO-Al2O3 for biotite (after Abdel-Rahman, 1994) ; (d) —Al-Mg diagram for biotite (after Stussi and Cuney, 1996)
3.2 黑云母微量元素
黑云母的微量元素结果见表2。总体而言,在上地壳元素标准化图解上曾家垄黑云母富集Li(3521×10-6~5908×10-6)、Zn(574×10-6~1859×10-6)、Rb(3079×10-6~6720×10-6)、Nb(175×10-6~431×10-6)、Sn(80.2×10-6~287 ×10-6)、Cs(203×10-6~3429 ×10-6)和Ta(20.7×10-6~117 ×10-6),亏损Ba(1.85×10-6~10.1×10-6)、Sr(0.11×10-6~1.92×10-6)、Cu(0.01×10-6~10.64 ×10-6)、Mo(0.09×10-6~0.87×10-6)、Pb(0.89×10-6~2.05 ×10-6)(图6)。黑云母中稀土元素含量极低,低于检测限。黑云母的K/Rb比值通常用来示踪岩浆分异程度,随着岩浆分异程度增大黑云母的K/Rb比值逐渐降低。曾家垄花岗岩显示较低的K/Rb比值(11.8~26.2)(表2)。统计分析显示黑云母K/Rb比值与V、Co、Ni、Cu、Rb、Sn、Cs、Ta、Pb具有强烈相关性,与Sc、Ba、W、Nb/Ta具有中等相关性,与Li、Cr、Zn、Ga、Sr、Nb、Mo没有相关性(表3)。黑云母K/Rb比值与Rb、Cs、Sn具有明显的负相关性,Pb与K/Rb比值呈正相关(图7)。
3.3 黑云母卤素成分
曾家垄花岗岩黑云母具有较高的F浓度(0.94%~2.01%),极低的Cl含量(0.01%~0.07%)(表1)。这与F、Cl替代OH位置的难易程度有关,Cl-的半径为0.181 nm,明显大于F-(0.131 nm)和OH-(0.138 nm)的半径,因此Cl替代进入OH晶格难度相比F要大得多(Munoz,1984)。黑云母OH位置上卤素置换的程度会受“Fe-F规避”和“Mg-Cl”规避的晶体化学效应影响,即具有高Mg/Fe比值的黑云母倾向于富集F,而具有低Mg/Fe比值则倾向于富集Cl(Munoz,1984)。为了校正黑云母的晶体化学对卤素的影响,我们根据Munoz(1984)提出的公式计算了黑云母的卤素截距值Ⅳ(F)、Ⅳ(Cl)、Ⅳ(F/Cl)来表征卤素的相对富集程度,具体的计算公式如下所示:
2曾家垄花岗岩黑云母LA-ICP-MS主量元素(%)和微量元素(×10-6)分析结果
Table2Biotites major (%) and trace elements (×10-6) analyses data of Zengjialong granite by LA-ICP-MS
6曾家垄花岗岩黑云母微量元素上地壳标准化蛛网图(元素上地壳含量据Rudnick and Gao Shan,2003
Fig.6Upper crust-normalized multi-element diagrams of biotites in the Zengjialong granite (the upper crust values are from Rudnick and Gao Shan, 2003)
IV(F)=1.52Xphl+0.42Xann+0.20Xsid-lgXF/XOH
(1)
IV(Cl)=-5.01-1.93Xphl-lgXCl/XOH
(2)
IV(F/Cl)=IV(F)-IV(Cl)
(3)
其中,Xphl = Mg/(八面体位置上阳离子总数);Xsid = [(3-Si/Al)/1.75](1-Xphl);Xann = 1-(Xphl+Xsid),截距值越小代表黑云母中该卤素元素的富集程度越高。曾家垄花岗岩中黑云母的Ⅳ(F)、Ⅳ(Cl)、Ⅳ(F/Cl)值分别为0.27~0.79(平均值0.52)、-3.57~-2.81(平均值-3.11)、3.25~4.26(平均值3.63)(表1)。黑云母的Ⅳ(F)与Ⅳ(F/Cl)值之间呈现大致的正相关(图8a),Ⅳ(Cl)与Ⅳ(F/Cl)值之间呈现明显的负相关性(图8b)。
黑云母已被广泛用于研究岩浆-热液系统中挥发分的演化过程和细节,通常通过计算与黑云母平衡的流体的卤素逸度值来示踪这些过程(Munoz,19841992; Zhu Chen and Sverjensky,19911992; Coulson et al.,2001; Rasmussen and Mortensen,2013; Sun Keke et al.,2019)。Munoz(1992)根据修正后的黑云母与热液之间F-Cl-OH之间的分配系数(Zhu Chen and Sverjensky,19911992),提出了如下计算流体卤素逸度的公式:
lgfH2O/fHFfluid=1000/T2.37+1.1Xphl+0.43-lgXF/XOHbiotite
(4)
lgfH2O/fHClfluid=1000/T1.15-0.55Xphl+0.68-lgXCl/XOHbiotite
(5)
lgfHF/fHClfluid=-1000/T1.22+1.65Xphl+0.25+lgXF/XClbiotite
(6)
其中,XFXClXOH代表黑云母中F、Cl、OH的摩尔分数,T为卤素交换的温度,单位为K。在这里的温度计算采用黑云母的钛饱和温度计方法(Henry et al.,2005)。黑云母钛饱和温度计算表明曾家垄高分异花岗岩的结晶温度为472℃~649℃(表1)。与曾家垄花岗岩相关的流体显示高的lgfH2O/fHF值(3.16~4.08,平均为3.47)、lgfH2O/fHCl值(3.44~4.28,平均为3.98),低的lg(fHF/fHCl)值(-0.22~0.90,平均为0.51)(表1)。这些流体的lgfH2O/fHF值与lg(fHF/fHCl)值之间呈现明显的负相关性(图8d)。
4 讨论
4.1 黑云母来源及其对花岗岩类型的指示意义
花岗岩中的黑云母可能有以下四种来源:① 岩浆中结晶的黑云母;② 经历深融作用后的残留黑云母(Erdmann et al.,2009; Chappell and Wyborn,2012; Gao Peng et al.,2016);③ 交代包晶矿物(石榴子石、堇青石、辉石等)的次生黑云母(Lavaure and Sawyer,2011);④ 岩浆上升侵位过程中从围岩捕获的黑云母。实验研究表明黑云母脱水熔融可以产生硅酸岩熔体、残留的黑云母和包晶矿物(Patiño Douce and Beard,1996; Gao Peng et al.,2016)。曾家垄花岗岩中黑云母具有较低的结晶温度(472~649℃)、低的Mg#值(5.70~9.93; 表1),缺乏包晶矿物(石榴子石、堇青石、辉石等)以及替代结构,表明这些黑云母不是残留或者次生黑云母。曾家垄花岗岩中未见有围岩碎块,且其具有均一的Nd同位素组成(-5.4~-5.1; 陈伟等,2018),表明这些花岗岩没有经历显著的围岩混染作用,因此黑云母不大可能来自围岩。我们认为曾家垄花岗岩中的黑云母为岩浆来源,证据如下:① 这些黑云母都是自形的,与石英、钾长石、斜长石、钛铁矿等矿物共生(图3);② 黑云母的钛饱和温度计结果显示其结晶温度为472~649℃,稍低于全岩锆饱和温度651~782℃(陈伟等,2018)。因此,黑云母能够记录与其平衡的岩浆的组分信息及物理化学条件。
黑云母成分能够记录与其平衡的寄主岩浆的成分信息,过铝质花岗岩中黑云母通常富铝,钙碱性花岗岩中的黑云母通常富镁,绝大多数碱性岩浆中的黑云母富铁(Abdel-Rahman,1994)。在MgO-FeO-Al2O3三角图解(Abdel-Rahman,1994)和Mg-Al图解中(Stussi and Cuney,1996),曾家垄花岗岩中黑云母均落入了过铝质区域,表明他们的寄主岩浆富铝(图5),这与绝大多数全岩样品A/CNK值大于1.10结果一致(Xu Bin et al.,2017; 陈伟等,2018)。过铝质岩浆通常可以通过以下三个过程形成:① 富铝变质沉积岩部分熔融(Sylvester,1998; Chappell et al.,2012);② 准铝质玄武至安山岩在地壳条件下部分熔融(Patiño Douce and Beard,1996; Patiño Douce,1999; Sisson et al.,2005);③ 铝不饱和的初始岩浆通过贫铝矿物分离结晶(Zen,1986; Chappell et al.,2012)。曾家垄花岗岩中黑云母显示低Mg#高A/CNK值特征,明显偏离I型花岗岩中黑云母的相关特征(图9a),暗示其并非前人认为的高分异I型花岗岩(Xu Bin et al.,2017)。在岩石部分熔融实验产生的熔体成分图解中,曾家垄花岗岩全岩样品主要落入了变质杂砂岩和长英质泥岩的实验熔体范围内,而明显偏离了角闪岩的实验熔体范围(图9b、c),表明曾家垄花岗岩为S型花岗岩。另外,全岩铝饱和指数(A/CNK)与花岗岩演化指标Rb/Sr比值之间缺乏相关性(图9d),表明曾家垄花岗岩并非通过岩浆分离结晶贫铝矿物形成。除此之外,曾家垄花岗岩的Sr-Nd同位素组成与区域内广泛分布的新元古界双桥山群变质沉积岩基底一致,暗示两者之间具有成因关系(Xu Bin et al.,2017; 陈伟等,2018)。综上所述,曾家垄高分异花岗岩为S型花岗岩,为新元古界双桥山群富铝沉积岩部分熔融的产物。
3曾家垄花岗岩黑云母K/Rb比值与其他微量元素相关性分析
Table3Correlations between K/Rb and other elements for biotites of Zengjialong granite
注:*在0.05级别(双尾),相关性显著;**在0.01级别(双尾),相关性显著;相关性分析采用IBM SPSS Statistics 20软件分析。
7曾家垄花岗岩黑云母微量元素图解(a~d)
Fig.7Plots (a~d) of trace elements in biotites from the Zengjialong granite
8曾家垄花岗岩黑云母卤素组分图解(a~d)
Fig.8Halogen compositions (a~d) in biotites from the Zengjialong granite
4.2 黑云母对岩浆成分及挥发分演化过程的记录
黑云母组分能够记录岩浆分异、岩浆混合、围岩同化混染、流体出溶、外来流体加入等复杂演化过程(Sun Keke et al.,2019; Li Jie et al.,2021)。曾家垄花岗岩成分均匀,岩体内未见岩浆暗色包体或围岩碎块,且其具有均一的Nd同位素组成,表明该岩浆在上升侵位过程中未经历岩浆混合或围岩混染,岩浆演化过程以分离结晶作用为主(Xu Bin et al.,2017; 陈伟等,2018)。黑云母的K/Rb比值可以有效示踪岩浆分异演化程度。曾家垄花岗岩中黑云母具有明显偏低的K/Rb比值(11.8~26.2),低于邻近的大湖塘高分异花岗岩中黑云母K/Rb比值(20~140; Sun Keke et al.,2019),表明曾家垄花岗岩具有更高的演化程度,这与其全岩具有更高的Si含量相一致。随着黑云母K/Rb比值的降低,其Rb、Cs含量升高,Pb含量降低,暗示岩浆演化过程中经历了以钾长石为主的分离结晶作用(图7)。黑云母中Sn含量伴随着K/Rb比值降低从80.2×10-6上升至287×10-6,浓度升高了接近4倍,表明随着岩浆分异锡在残余岩浆中逐渐富集。
除了元素和同位素外,许多研究还对含水矿物(如磷灰石、角闪石、黑云母)进行了重点研究,试图通过对含水矿物的研究探讨岩浆挥发分演化过程(Zhang Chao et al.,2012; Rasmussen and Mortensen,2013; Sun Keke et al.,2019)。挥发分(F、Cl、H2O)在岩浆演化、热液蚀变及相关的成矿过程中扮演重要作用(Holland,1972),因为挥发分可以影响它们的物理化学性质,比如可以显著影响岩浆的黏度和密度(Dingwell et al.,1985)、流体在岩浆房中出溶的时间(Piccoli and Candela,2002)以及微量元素在硅酸盐熔体和热液中的分配行为(Manning and Henderson,1984; Webster et al.,1989; Keppler,1993)。岩浆中F∶Cl∶OH比值的变化主要受控于流体出溶的时间、程度以及分离结晶的矿物相。一般来说,当含水挥发分从岩浆中出溶时Cl会强烈富集进入流体相中,而F则优先进入熔体相(Zhu Chen and Sverjensky,1991; Rasmussen and Mortensen,2013)。因此,当挥发分出溶时,残余熔体中Cl和OH浓度降低而F浓度升高,这将导致残余岩浆具有更高的F/Cl和F/OH比值(Candela,1986; Piccoli and Candela,2002)。这种情况在斑岩矿床中很常见,斑岩矿床通常侵位较浅,压力下降较快,由减压导致的挥发分出溶通常早于岩浆中含水矿物如磷灰石、黑云母的分离结晶(Rasmussen and Mortensen,2013)。在没有受到减压影响的岩浆系统中,早期不含水矿物(斜长石、钾长石等)的分离结晶将会导致挥发分在残余岩浆中的富集,但是不会引起岩浆中F∶Cl∶OH比值的变化。如果不含水矿物分离结晶与岩浆脱气过程同时发生,Cl和水将会进入岩浆挥发分,残留岩浆的F/Cl、F/OH比值将大于初始岩浆相应比值。如果岩浆继续演化,含水矿物磷灰石、黑云母也发生了分离结晶,那么残余岩浆将会相对富Cl和水而贫F,因为F相比于Cl和OH更容易进入这些富水矿物的晶格。如果岩浆脱气晚于含水矿物分离结晶,那么随着含水矿物分离结晶Cl和水会逐渐在残余岩浆中富集,导致残余岩浆具有较高的Cl/F和OH/F比值(Rasmussen and Mortensen,2013)。沿着这条路径演化的岩浆将产生较高的Cl/F、OH/F比值,直到岩浆中流体达到饱和出溶,这种情形常见于侵位较深的钨锡矿。如图8所示,曾家垄花岗岩中黑云母Ⅳ(Cl)与Ⅳ(F/Cl)、lgfH2O/fHF与lg(fHF/fHCl)均呈现出明显的负相关性,表明此时岩浆中已达到流体出溶条件。结合曾家垄花岗岩黑云母具有较宽的温度变化范围(472~649℃)、Sn含量随K/Rb比值降低持续升高,表明曾家垄花岗岩流体出溶持续时间较长且岩浆中的锡一直保持高的含量,这对于最终的矿化富集非常有利。
9曾家垄花岗岩黑云母A/CNK-Mg#(a)、全岩(Al2O3+FeO+MgO+TiO2)-Al2O3/(FeO+MgO+TiO2)(b)、全岩(CaO+FeO+MgO+TiO2)-CaO/(FeO+MgO+TiO2)(c)与全岩Rb/Sr-A/CNK图(d)
Fig.9Plot of A/CNK vs. Mg# for biotites (a) , whole rock (Al2O3+FeO+MgO+TiO2) -Al2O3/ (FeO+MgO+TiO2) diagram (b) , whole rock (CaO+FeO+MgO+TiO2) -CaO/ (FeO+MgO+TiO2) diagram (c) , whole rock Rb/Sr-A/CNK diagram (d) for the Zengjialong granite
4.3 曾家垄花岗岩氧逸度
富锡花岗岩的形成除受岩浆源区、分异演化程度、温度、挥发分出溶等因素影响外,氧逸度也是控制其最终成矿与否的关键因素。锡在岩浆形成与演化过程中主要以Sn2+和Sn4+两种形式存在,其在岩浆中的分配行为受氧逸度影响非常明显(Ishihara,1977)。在低氧逸度条件下Sn主要以Sn2+存在,在岩浆演化过程中表现为不相容元素,随着岩浆演化会逐渐富集在残余岩浆中(Linnen et al.,1996)。相比之下,在高氧逸度条件下Sn主要以Sn4+形式存在,其在岩浆演化过程中表现为相容元素,可以替代进入含钛矿物晶格中(如黑云母、磁铁矿、榍石),在残余岩浆中逐渐亏损(Ishihara,19771981; Lehmann and Mahawat,1989)。这就解释了为什么锡矿化只与还原的钛铁矿系列花岗岩有关,而与磁铁矿系列花岗岩无关(Ishihara,1977; Lehmann and Harmanto,1990)。曾家垄花岗岩中的铁钛氧化物主要为钛铁矿,以包裹体形式存在于黑云母中,表明该花岗岩氧逸度较低,为还原型花岗岩。黑云母组分能够反映岩浆的氧化还原条件。计算结果表明曾家垄花岗岩中黑云母几乎不含Fe3+,在Fe3+-Fe2+-Mg三角图解中,黑云母均位于FMQ线之下(图10a),表明其氧逸度非常低(Wones and Eugster,1965)。曾家垄花岗岩全岩显示较低的Fe2O3/FeO比值(0.02~0.3;陈伟等,2018),落入钛铁矿系列花岗岩范围,与世界范围内典型的分异程度高且还原富锡花岗岩范围一致(图10b)。岩相学、黑云母组分及全岩分析结果均表明曾家垄花岗岩为典型的高分异还原型花岗岩,这与前人对华南典型富锡花岗岩如个旧锡矿、锡山锡钨矿、大厂锡矿等研究结果一致(Zhang Lipeng et al.,2017; Huang Wenting et al.,2019; Sun Keke et al.,2023)。最新的实验结果也证实高分异还原的花岗质岩浆有利于锡在岩浆演化晚期进入出溶的岩浆热液流体中(Zhao Panlao et al.,2022b)。因此,低氧逸度是导致曾家垄花岗岩最终形成锡矿化富集的关键因素。
4.4 黑云母用于区分不同的岩浆热液成矿系统
黑云母是岩浆热液系统中最为常见的暗色矿物,本部分将在结合本文研究及已发表的文献数据基础上初步探讨不同岩浆热液成矿系统(Cu、Mo、W、Sn)中黑云母的成分差异性及用于示踪不同成矿系统的可能性。不同成矿系统具有一定的成矿专属性:铜的成矿总是与富水/氯/硫、高氧逸度、分异程度较低的中酸性钙碱性花岗质岩浆密切相关(Richards,2003; Cooke et al.,2005; Sillitoe,2010; 侯增谦等,2012; Wang Rui et al.,2014; Sun Weidong et al.,2015);钼的成矿可分为两类:第一种为Endako型,其特征为低品位矿化,通常与弧背景下钙碱性、分异程度低、贫氟的花岗闪长质岩浆相关;第二种为Climax型,其特征为高品位矿化,通常与裂谷背景下富氟的高分异花岗质岩浆密切相关,两种类型岩浆均为磁铁矿型,具有较高氧逸度(Sinclair,2007);锡的成矿无一例外总是与还原的高分异花岗岩紧密相关(Ishihara,1977; Lehmann and Harmanto,1990);钨的成矿则具有多样性,即可与钼矿共生构成与氧化性岩浆相关的W-Mo矿系列,也可与锡矿共生构成与还原性岩浆相关的W-Sn矿系列(图10b)。黑云母的主量元素尤其是A/CNK值、Mg#能够有效区分上述不同成矿系统(Sun Keke et al.,2023)。如图11a所示,从铜矿→钼矿→钨矿→锡矿,黑云母的Mg#逐渐降低,A/CNK值逐渐增大,铜矿相关岩浆分异演化程度最低,而锡矿相关岩浆分异演化程度最高,这与前人全岩结果相一致。从卤素的角度来看,与铜矿相关的岩浆黑云母显示最高的Ⅳ(F)、Ⅳ(F/Cl)值,与锡矿相关的岩浆黑云母具有最低的Ⅳ(F)、Ⅳ(F/Cl)值,与钼矿/钨矿相关的岩浆黑云母卤素值介于两者之间,表明铜矿相关的岩浆为贫氟富氯的岩浆体系,而锡矿相关的岩浆为富氟贫氯体系(图11b)。这与不同岩浆系统的源区物质组成密切相关:与铜矿相关的岩浆源区往往为新生下地壳或遭受俯冲带流体改造交代的富集地幔,受到富氯富水俯冲带流体交代的地幔或下地壳产生的岩浆能够继承这种富水富氯的特征(Richards,2003; 侯增谦等,2012; Wang Rui et al.,2014);与锡矿相关的岩浆主要为高分异S型花岗岩,其源区主要由经历过强烈风化作用的沉积岩组成,岩石在地表风化过程中氯会流失进入水圈而氟会富集在沉积物中,因此经历过强烈风化作用的沉积岩具有富氟低氯特征,它们部分熔融产生的岩浆自然会继承其源区富氟贫氯特征(Romer and Kroner,2016);钨钼成矿具有多样性,其岩浆源区介于两者之间。在卤素逸度图解上,与铜矿相关岩浆黑云母平衡的流体显示较高的lgfH2O/fHF、Mg#值,与锡矿相关岩浆黑云母平衡的流体显示最低的lgfH2O/fHF、Mg#值,表明与铜矿相关的岩浆地幔贡献更多且岩浆更加富水,而与锡矿相关的岩浆主要来自地壳且初始岩浆较为贫水,钨钼成矿系统上述特征介于两者之间(图11c、d)。在黑云母微量元素箱线图上,上述成矿系统也显示出截然不同的特征:与锡矿相关的岩浆黑云母往往显示最低的K/Rb、Nb/Ta比值、Ba、Ni含量,最高的Sn、Cs浓度;与铜矿相关的岩浆黑云母往往具有最高的K/Rb、Nb/Ta比值、Ba、Ni含量,最低的Sn、Cs含量;与钨钼矿相关的岩浆黑云母上述特征介于两者之间(图12)。这些微量元素特征指示出从铜矿→钼矿→钨矿→锡矿,岩浆演化程度逐渐增大,这与前人的研究观点一致。综上所述,黑云母的主量元素、卤素、微量元素能够有效区分不同的岩浆热液成矿系统。
10曾家垄花岗岩黑云母Fe+-Fe3+-Mg2+图解(a)与全岩Rb/Sr-Fe2O3/FeO图解(b)
Fig.10Plot of Fe2+-Fe3+-Mg2+ of biotite from Zengjialong granite (a) , whole rock Rb/Sr-Fe2O3/FeO diagram (b)
11不同岩浆热液成矿体系(铜、钼、钨、锡)黑云母组分及卤素图解(a~d)
Fig.11Compositional and halogen compositions diagrams (a~d) of biotites from different magmatic-hydrothermal mineralization-related (including Cu, Mo, W and Sn) granites
12不同岩浆热液成矿体系(铜、钼、钨、锡)黑云母微量元素箱线图(a~f)
Fig.12Box plots (a~f) of representative biotite trace elements from different magmatic-hydrothermal mineralization-related granites (including Cu, Mo, W and Sn)
5 结语
黑云母能够有效记录高分异花岗岩的源区组成及演化细节。曾家垄花岗岩中的黑云母为岩浆来源。它们低的Mg#及高的A/CNK值表明曾家垄花岗岩为S型花岗岩,为双桥山群变质沉积岩部分熔融的产物。黑云母中Rb、Cs随着K/Rb比值降低增加,Pb随着K/Rb比值降低减小,暗示岩浆经历了以钾长石为主的分离结晶过程。随着岩浆分异,黑云母中锡的含量增加近4倍,记录了锡在残余岩浆中逐步富集的过程。黑云母具有较低的Ⅳ(F)、Ⅳ(F/Cl)、lg(fHF/fHCl)值,较高的Ⅳ(Cl)值,Ⅳ(Cl)与Ⅳ(F/Cl)之间、lgfH2O/fHF与lg(fHF/fHCl)显示明显的负相关性,暗示曾家垄岩浆为富氟贫氯岩浆体系,黑云母结晶过程中伴随有持续的流体出溶。曾家垄花岗岩黑云母基本不含Fe3+,表明岩浆具有较低的氧逸度。富集的源区组分、充分的岩浆分异演化、较低的氧逸度、流体的长时间持续出溶是导致曾家垄锡矿化富集的有利因素。除此之外,本研究发现黑云母主量元素、卤素、微量元素可以有效区分不同的岩浆热液成矿系统(Cu、Mo、W、Sn),未来对于找矿勘查具有一定的指导作用。
致谢:本文电子探针及激光原位微量元素分析得到了合肥工业大学王娟和汪方跃老师的帮助;野外工作得到了江西省地质局第三地质大队项新葵总工的大力支持和帮助;评审专家对本文提出了宝贵的建议。在此一并表示感谢。
附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202503091?st=article_issue
1华南中生代花岗岩、火山岩及江南造山带及其中钨锡矿(包括曾家垄锡矿)分布图(据Zhou Xinmin et al.,2006; Sun Keke and Chen Bin,2017
Fig.1Distribution of the Mesozoic granites, volcanic rocks, the location of the Jiangnan orogen and tungsten-tin deposits (including the Zengjialong Sn ore deposit) in South China (after Zhou Xinmin et al., 2006; Sun Keke and Chen Bin, 2017)
下载: 全尺寸图片
2曾家垄区域地质简图(a)及南北向剖面图(b)(据卢树东等,2004
Fig.2Simplified geologic map and N-S profile of the Zengjialong district (after Lu Shudong et al., 2004)
下载: 全尺寸图片
3曾家垄花岗岩代表性手标本(a、b)及岩相学照片(c~f)
Fig.3Representative samples (a, b) and photomicrographs (c~f) of granites in Zengjialong deposit
下载: 全尺寸图片
4曾家垄花岗岩黑云母LA-ICP-MS信号时间图解
Fig.4Time-resolved analytical signal of a biotite LA-ICP-MS analysis from the Zengjialong granite
下载: 全尺寸图片
5曾家垄花岗岩黑云母组分图解
Fig.5Chemical compositional diagrams of biotite from the Zengjialong granite
下载: 全尺寸图片
6曾家垄花岗岩黑云母微量元素上地壳标准化蛛网图(元素上地壳含量据Rudnick and Gao Shan,2003
Fig.6Upper crust-normalized multi-element diagrams of biotites in the Zengjialong granite (the upper crust values are from Rudnick and Gao Shan, 2003)
下载: 全尺寸图片
7曾家垄花岗岩黑云母微量元素图解(a~d)
Fig.7Plots (a~d) of trace elements in biotites from the Zengjialong granite
下载: 全尺寸图片
8曾家垄花岗岩黑云母卤素组分图解(a~d)
Fig.8Halogen compositions (a~d) in biotites from the Zengjialong granite
下载: 全尺寸图片
9曾家垄花岗岩黑云母A/CNK-Mg#(a)、全岩(Al2O3+FeO+MgO+TiO2)-Al2O3/(FeO+MgO+TiO2)(b)、全岩(CaO+FeO+MgO+TiO2)-CaO/(FeO+MgO+TiO2)(c)与全岩Rb/Sr-A/CNK图(d)
Fig.9Plot of A/CNK vs. Mg# for biotites (a) , whole rock (Al2O3+FeO+MgO+TiO2) -Al2O3/ (FeO+MgO+TiO2) diagram (b) , whole rock (CaO+FeO+MgO+TiO2) -CaO/ (FeO+MgO+TiO2) diagram (c) , whole rock Rb/Sr-A/CNK diagram (d) for the Zengjialong granite
下载: 全尺寸图片
10曾家垄花岗岩黑云母Fe+-Fe3+-Mg2+图解(a)与全岩Rb/Sr-Fe2O3/FeO图解(b)
Fig.10Plot of Fe2+-Fe3+-Mg2+ of biotite from Zengjialong granite (a) , whole rock Rb/Sr-Fe2O3/FeO diagram (b)
下载: 全尺寸图片
11不同岩浆热液成矿体系(铜、钼、钨、锡)黑云母组分及卤素图解(a~d)
Fig.11Compositional and halogen compositions diagrams (a~d) of biotites from different magmatic-hydrothermal mineralization-related (including Cu, Mo, W and Sn) granites
下载: 全尺寸图片
12不同岩浆热液成矿体系(铜、钼、钨、锡)黑云母微量元素箱线图(a~f)
Fig.12Box plots (a~f) of representative biotite trace elements from different magmatic-hydrothermal mineralization-related granites (including Cu, Mo, W and Sn)
下载: 全尺寸图片
1曾家垄花岗岩黑云母平均电子探针分析结果
Table1Average electron microscope analytical data for the biotites of the Zengjialong granite
下载: 全尺寸图片
2曾家垄花岗岩黑云母LA-ICP-MS主量元素(%)和微量元素(×10-6)分析结果
Table2Biotites major (%) and trace elements (×10-6) analyses data of Zengjialong granite by LA-ICP-MS
下载: 全尺寸图片
3曾家垄花岗岩黑云母K/Rb比值与其他微量元素相关性分析
Table3Correlations between K/Rb and other elements for biotites of Zengjialong granite
下载: 全尺寸图片
Abdel-Rahman A F M. 1994. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of Petrology, 35: 525~541.
Breiter K, Ackerman L, Svojtka M, Müller A. 2013. Behavior of trace elements in quartz from plutons of different geochemical signature: A case study from the Bohemian Massif, Czech Republic. Lithos, 175~176: 54~67.
Bruand E, Storey C, Fowler M. 2014. Accessory mineral chemistry of high Ba-Sr granites from Northern Scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55: 1619~1651.
Bruand E, Storey C, Fowler M. 2016. An apatite for progress: Inclusions in zircon and titanite constrain petrogenesis and provenance. Geology, 44(2): 91~94.
Candela P A. 1986. Toward a thermodynamic model for the halogens in magmatic systems: An application to melt-vapor-apatite equilibria. Chemical Geology, 57: 289~301.
Chappell B W, Wyborn D. 2012. Origin of enclaves in S-type granites of the Lachlan fold belt. Lithos, 154: 235~247.
Chappell B W, Bryant C J, Wyborn D. 2012. Peraluminous I-type granites. Lithos, 153: 142~153.
Charvet J. 2013. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block: An overview. Journal of Asian Earth Sciences 74: 198~209.
Chen Wei, Chen Bin, Sun Keke. 2018. Petrogenesis of the Zengjialong highly differentiated granite in the Pengshan Sn-polymetallic ore field, Jiangxi Province. Geochimica, 47(5): 554~574 (in Chinese with English abstract).
Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100: 801~818.
Coulson I, Dipple G, Raudsepp M. 2001. Evolution of HF and HCl activity in magmatic volatiles of the gold-mineralized Emerald Lake pluton, Yukon Territory, Canada. Mineralium Deposita, 36: 594~606.
Dingwell D B, Scarfe C M, Cronin D J. 1985. The effect of fluorine on viscosities in the system Na2O-Al2O3-SiO2: Implications for phonolites, trachytes and rhyolites. American Mineralogist, 70: 80~87.
Erdmann S, Jamieson R A, MacDonald M A. 2009. Evaluating the origin of garnet, cordierite, and biotite in granitic rocks: A case study from the South Mountain batholith, Nova Scotia. Journal of Petrology, 50: 1477~1503.
Gao Peng, Zhao Zifu, Zheng Yongfei. 2016. Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China. Journal of Asian Earth Sciences, 123: 142~161.
Heinrich C A. 1990. The chemistry of hydrothermal Tin (-Tungsten) ore deposition. Economic Geology, 85: 457~481.
Henry D J, Guidotti C V, Thomson J A. 2005. The Ti-saturation surface for low-tomedium pressure metapelitic biotites: Implications for geothermometry and Ti substitution mechanisms. American Mineralogist, 90: 316~328.
Holland H D. 1972. Granites, solutions, and base metal deposits. Economic Geology, 67: 281~301.
Hou Zengqian, Zheng Yuanchuan, Yang Zhiming, Yang Zhusen. 2012. Metallogenesis of continental collision setting: Part I. Gangdese Cenozoic porphyry Cu-Mo systems in Tibet. Mineral Deposits, 31(4): 647~670 (in Chinese with English abstract).
Huang Wenting, Liang Huaying, Zhang Jian, Wu Jing, Chen Xilian, Ren Long. 2019. Genesis of the Dachang Sn-polymetallic and Baoshan Cu ore deposits, and formation of a Cretaceous Sn-Cu ore belt from Southwest China to western Myanmar. Ore Geology Reviews, 112: 103030.
Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27: 293~305.
Ishihara S. 1981. The granitoid series and mineralization. Economic Geology, 75: 458~484.
Jiang Shaoyong, Zhao Kuidong, Jiang Hai, Su Huimin, Xiong Suofei, Xiong Yiqu, Xu Yaoming, Zhang Wei, Zhu Lüyun. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: A overview. Chinese Science Bulletin, 45(33): 3730~3745 (in Chinese with English abstract).
Keppler H. 1993. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114: 479~488.
Lavaure S, Sawyer E W. 2011. Source of biotite in the Wuluma Pluton: Replacement of ferromagnesian phases and disaggregation of enclaves and schlieren. Lithos, 125: 757~780.
Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, 402~403: 105756.
Lehmann B, Mahawat C. 1989. Metallogeny of tin in central Thailand: A genetic concept. Geology, 17: 426~429.
Lehmann B, Harmanto. 1990. Large-scale tin depletion in the Tanjungpandan tin granite, Belitung Island, Indonesia. Economic Geology, 85: 99~111.
Lentz D R. 1992. Petrogenesis and geochemical composition of biotites in rare-element granitic pegmatites in the Southwestern Grenville Province, Canada. Mineralogy and Petrology, 46: 239~256.
Lentz D R. 1994. Exchange reactions in hydrothermally altered rocks: Examples from biotite-bearing assemblages. In: Lentz D R, ed. Alteration and Alteration Processes Associated with Ore-Forming Systems, vol. 11. Geological Association of Canada Short Course Notes: 69~99.
Li Jie, Huang Xiaolong, He Pengli, Li Wuxian, Yu Yang, Chen Linli. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65: 793~810.
Li Jie, Huang Xiaolong, Fu Qi, Li Wuxian. 2021. Tungsten mineralization during the evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China. American Mineralogist, 106: 443~460.
Lichtervelde M V, Grégoire M, Linnen R L, Béziat D, Salvi S. 2008. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155: 791~806.
Linnen R, Pichavant M, Holtz F. 1996. The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta, 60: 4965~4976.
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.
Lu Shudong, Du Yangsong, Xiao E, Xu Chunwei. 2004. Study on tectonic features and metallogenic mechanism of Pengshan Sn-Pb-Zn polymetallic orefield, Jiangxi Province. Geotectonica et Metallogenia, 28(3): 297~305 (in Chinese with English abstract).
Manning D A C, Henderson P. 1984. The behaviour of tungsten in granitic melt-vapour systems. Contributions to Mineralogy and Petrology, 86: 286~293.
Mao Jingwen, Yuan Shunda, Xie Guiqing, Song Shiwei, Zhou Qi, Gao Yongbao, Liu Xiang, Fu Xiaofang, Cao Jing, Zeng Zailin, Li Tongguo, Fan Xiyin. 2019. New advances on metallogenic studies and exploration on critical minerals of China in 21st century. Mineral Deposits, 38(5): 935~969 (in Chinese with English abstract).
Munoz J L. 1984. Fe-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, 13: 469~493.
Munoz J L. 1992. Calculation of HF and HCl fugacities from biotite compositions: Revised equations. Geological Society of American, Abstracts with Programs 24: 221.
Nachit H, Ibhi A, Abia E H, Ohoud M B. 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience 337: 1415~1420.
Patiño Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society London Special Publications, 168: 55~75.
Patiño Douce A E, Beard J S. 1996. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Journal of Petrology, 37: 999~1024.
Piccoli P M, Candela P A. 2002. Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48: 255~292.
Rasmussen K, Mortensen J. 2013. Magmatic petrogenesis and the evolution of (F: Cl: OH) fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions: Case studies from the northern Canadian Cordillera. Ore Geology Reviews, 50: 118~142.
Richards J P. 2003. Tectono-Magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98: 1515~1533.
Rieder M, Cavazzini G, D'Yakonov Y S, Frank-Kamenetskii V A, Gottardi G, Guoggenheim S, Koval P V, Muller G, Neiva A M R, Radoslovich E W, Robert J L, Sassi F P, Takeda H, Weiss Z, Wones D R. 1998. Nomenclature of the micas. The Canadian Mineralogist, 36: 41~48.
Romer R L, Kroner U. 2016. Phanerozoic tin and tungsten mineralization-tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31: 60~95.
Rudnick R L, Gao Shan. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1~64.
Sillitoe R. 2010. Porphyry copper systems. Economic Geology, 105: 3~41.
Sinclair W D. 2007. Porphyry deposits. In: Goodfellow W D, ed. Mineral Deposits of Canada: A Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 223~243.
Sisson T W, Ratajeski K, Hankins W B, Glazner A F. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148: 635~661.
Stussi J M, Cuney M. 1996. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas by Abdel-Fattah M. Abdel-Rahman: A comment. Journal of Petrology, 37: 1025~1029.
Sun Keke, Chen Bin. 2017. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. American Mineralogist, 102: 1114~1128.
Sun Keke, Chen Bin, Deng Jun. 2019. Biotite in highly evolved granites from the Shimensi W-Cu-Mo polymetallic ore deposit, China: Insights into magma source and evolution. Lithos, 350~351: 105245.
Sun Keke, Deng Jun, Wang Qingfei, Chen Bin, Xu Rong, Ma Zhenfei. 2023. Formation of Sn-rich granitic magma: A case study of the highly evolved Kafang granite in the Gejiu tin polymetallic ore district, South China. Mineralium Deposita, 58: 359~378.
Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.
Sylvester P J. 1998. Post-collisional strongly peralumious granites. Lithos, 45: 29~44.
Tischendorf G, Förster H J, Gottesmann B. 2001. Minor-and trace-element composition of trioctahedral micas: A review. Mineralogical Magazine, 65: 249~276.
Wang Rucheng, Xie Lei, Zhu Zeying, Hu Huan. 2019. Micas: Important indicators of granite-pegmatite-related rare-metal mineralization. Acta Petrologica Sinica, 35(1): 69~75 (in Chinese with English abstract).
Wang Rui, Richards J R, Hou Zengqian, Yang Zhiming, Gou Zhengbin, Dufrane S A. 2014. Increasing magmatic oxidation state from Paleocene to Miocene in the Eastern Gangdese belt, Tibet: Implication for collision-related porphyry Cu-Mo ± Au mineralization. Economic Geology, 109: 1943~1965.
Webster J D, Holloway J R, Hervig R L. 1989. Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Economic Geology, 84: 116~134.
Wones D R, Eugster H P. 1965. Stability of biotite: Experiment, theory, and application. American Mineralogist, 50: 1228~1272.
Xu Bin, Jiang Shaoyong, Luo Lan, Zhao Kuidong, Ma Liang. 2017. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: Constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes. Mineralium Deposita, 52: 337~360.
Yin Rong, Han Li, Huang Xiaolong, Li Jie, Li Wuxian, Chen Linli. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China. American Mineralogist, 104: 949~965.
Yuan Shunda, Williams-Jones A E, Romer R L, Zhao Panlao, Mao Jingwen. 2019. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: Insights from the Nanling Region, China. Economic Geology, 114(5): 1005~1012.
Yuan Shunda, Zhao Panlao, Liu Min. 2020. Some problems involving in petrogenesis and metallogenesis of granite-related tin deposits. Mineral Deposits, 39(4): 607~618 (in Chinese with English abstract).
Zen E. 1986. Aluminum enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints. Journal of Petrology, 27: 1095~1117.
Zhang Chao, Holtz F, Ma Changqian, Wolff P E, Li Xiaoyan. 2012. Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: A case study from the Liujiawa pluton (Dabie orogeny, China). Contributions to Mineralogy and Petrology, 164: 859~879.
Zhang Lipeng, Zhang Rongqing, Hu Yongbin, Liang Jinlong, Ouyang Zhixia, He Junjie, Chen Yuxiao, Guo Jia, Sun Weidong. 2017. The formation of the Late Cretaceous Xishan Sn-W deposit, South China: Geochronological and geochemical perspectives. Lithos, 290~291: 253~268.
Zhao Panlao, Chu Xu, William-Jones A E, Mao Jingwen, Yuan Shunda. 2022a. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic province. Geology, 50(1): 121~125.
Zhao Panlao, Zajacz Z, Tsay A, Yuan Shunda. 2022b. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochimica et Cosmochimica Acta, 316: 331~346.
Zheng Qiaorong. 1983. Calculation of the Fe3+ and Fe2+ contents in silicate and Ti-Fe oxide minerals from EPMA data. Acta Mineralogica Sinica, 1: 55~62 (in Chinese with English abstract).
Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29: 26~33.
Zhu Chen, Sverjensky D A. 1991. Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochimica et Cosmochimica Acta, 55: 1837~1858.
Zhu Chen, Sverjensky D A. 1992. F-Cl-OH partitioning between biotite and apatite. Geochimica et Cosmochimica Acta, 56: 3435~3467.
陈伟, 陈斌, 孙克克. 2018. 江西彭山锡多金属矿集区曾家垄锡矿相关的铝质花岗岩成因. 地球化学,47(5): 554~574.
侯增谦, 郑远川, 杨志明, 杨竹森. 2012. 大陆碰撞成矿作用: I. 冈底斯新生代斑岩成矿系统. 矿床地质,31(4): 647~670.
蒋少涌, 赵葵东, 姜海, 苏慧敏, 熊索菲, 熊伊曲, 徐耀明, 章伟, 朱律运. 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展. 科学通报,65(33): 3730~3745.
卢树东, 杜杨松, 肖锷, 徐春伟. 2004. 江西彭山锡(铅锌)多金属矿田构造地质特征及成矿机理探讨. 大地构造与成矿学,28(3): 297~305.
毛景文, 袁顺达, 谢桂青, 宋世伟, 周琦, 高永宝, 刘翔, 付小方, 曹晶, 曾载淋, 李通国, 樊锡银. 2019. 21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质,38(5): 935~969.
王汝成, 谢磊, 诸泽颖, 胡欢. 2019. 云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物. 岩石学报,35(1): 069~075.
袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论. 矿床地质,39(4): 607~618.
郑巧荣. 1983. 由电子探针分析值计算Fe3+和Fe2+. 矿物学报,1: 55~62.
图(12) / 表(3)
手机扫码阅读
引用本文
孙克克,陈伟.2025.江西曾家垄锡矿高分异花岗岩黑云母地球化学组成:对岩浆源区和演化过程的记录[J].地质学报,99(3):760-777.
复制

SUN Keke, CHEN Wei.2025.Biotite in highly evolved granite from the Zengjialong Sn ore deposit, China: Insights into magma source and evolution[J].Acta Geologica Sinica,99(3):760-777.
Copy
计量
文章访问量: 181
HTML全文浏览量: 12
PDF下载量: 157
1华南中生代花岗岩、火山岩及江南造山带及其中钨锡矿(包括曾家垄锡矿)分布图(据Zhou Xinmin et al.,2006; Sun Keke and Chen Bin,2017
Fig.1Distribution of the Mesozoic granites, volcanic rocks, the location of the Jiangnan orogen and tungsten-tin deposits (including the Zengjialong Sn ore deposit) in South China (after Zhou Xinmin et al., 2006; Sun Keke and Chen Bin, 2017)
2曾家垄区域地质简图(a)及南北向剖面图(b)(据卢树东等,2004
Fig.2Simplified geologic map and N-S profile of the Zengjialong district (after Lu Shudong et al., 2004)
3曾家垄花岗岩代表性手标本(a、b)及岩相学照片(c~f)
Fig.3Representative samples (a, b) and photomicrographs (c~f) of granites in Zengjialong deposit
4曾家垄花岗岩黑云母LA-ICP-MS信号时间图解
Fig.4Time-resolved analytical signal of a biotite LA-ICP-MS analysis from the Zengjialong granite
5曾家垄花岗岩黑云母组分图解
Fig.5Chemical compositional diagrams of biotite from the Zengjialong granite
6曾家垄花岗岩黑云母微量元素上地壳标准化蛛网图(元素上地壳含量据Rudnick and Gao Shan,2003
Fig.6Upper crust-normalized multi-element diagrams of biotites in the Zengjialong granite (the upper crust values are from Rudnick and Gao Shan, 2003)
7曾家垄花岗岩黑云母微量元素图解(a~d)
Fig.7Plots (a~d) of trace elements in biotites from the Zengjialong granite
8曾家垄花岗岩黑云母卤素组分图解(a~d)
Fig.8Halogen compositions (a~d) in biotites from the Zengjialong granite
9曾家垄花岗岩黑云母A/CNK-Mg#(a)、全岩(Al2O3+FeO+MgO+TiO2)-Al2O3/(FeO+MgO+TiO2)(b)、全岩(CaO+FeO+MgO+TiO2)-CaO/(FeO+MgO+TiO2)(c)与全岩Rb/Sr-A/CNK图(d)
Fig.9Plot of A/CNK vs. Mg# for biotites (a) , whole rock (Al2O3+FeO+MgO+TiO2) -Al2O3/ (FeO+MgO+TiO2) diagram (b) , whole rock (CaO+FeO+MgO+TiO2) -CaO/ (FeO+MgO+TiO2) diagram (c) , whole rock Rb/Sr-A/CNK diagram (d) for the Zengjialong granite
10曾家垄花岗岩黑云母Fe+-Fe3+-Mg2+图解(a)与全岩Rb/Sr-Fe2O3/FeO图解(b)
Fig.10Plot of Fe2+-Fe3+-Mg2+ of biotite from Zengjialong granite (a) , whole rock Rb/Sr-Fe2O3/FeO diagram (b)
11不同岩浆热液成矿体系(铜、钼、钨、锡)黑云母组分及卤素图解(a~d)
Fig.11Compositional and halogen compositions diagrams (a~d) of biotites from different magmatic-hydrothermal mineralization-related (including Cu, Mo, W and Sn) granites
12不同岩浆热液成矿体系(铜、钼、钨、锡)黑云母微量元素箱线图(a~f)
Fig.12Box plots (a~f) of representative biotite trace elements from different magmatic-hydrothermal mineralization-related granites (including Cu, Mo, W and Sn)
1曾家垄花岗岩黑云母平均电子探针分析结果
Table1Average electron microscope analytical data for the biotites of the Zengjialong granite
2曾家垄花岗岩黑云母LA-ICP-MS主量元素(%)和微量元素(×10-6)分析结果
Table2Biotites major (%) and trace elements (×10-6) analyses data of Zengjialong granite by LA-ICP-MS
3曾家垄花岗岩黑云母K/Rb比值与其他微量元素相关性分析
Table3Correlations between K/Rb and other elements for biotites of Zengjialong granite
Abdel-Rahman A F M. 1994. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of Petrology, 35: 525~541.
Breiter K, Ackerman L, Svojtka M, Müller A. 2013. Behavior of trace elements in quartz from plutons of different geochemical signature: A case study from the Bohemian Massif, Czech Republic. Lithos, 175~176: 54~67.
Bruand E, Storey C, Fowler M. 2014. Accessory mineral chemistry of high Ba-Sr granites from Northern Scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55: 1619~1651.
Bruand E, Storey C, Fowler M. 2016. An apatite for progress: Inclusions in zircon and titanite constrain petrogenesis and provenance. Geology, 44(2): 91~94.
Candela P A. 1986. Toward a thermodynamic model for the halogens in magmatic systems: An application to melt-vapor-apatite equilibria. Chemical Geology, 57: 289~301.
Chappell B W, Wyborn D. 2012. Origin of enclaves in S-type granites of the Lachlan fold belt. Lithos, 154: 235~247.
Chappell B W, Bryant C J, Wyborn D. 2012. Peraluminous I-type granites. Lithos, 153: 142~153.
Charvet J. 2013. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block: An overview. Journal of Asian Earth Sciences 74: 198~209.
Chen Wei, Chen Bin, Sun Keke. 2018. Petrogenesis of the Zengjialong highly differentiated granite in the Pengshan Sn-polymetallic ore field, Jiangxi Province. Geochimica, 47(5): 554~574 (in Chinese with English abstract).
Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100: 801~818.
Coulson I, Dipple G, Raudsepp M. 2001. Evolution of HF and HCl activity in magmatic volatiles of the gold-mineralized Emerald Lake pluton, Yukon Territory, Canada. Mineralium Deposita, 36: 594~606.
Dingwell D B, Scarfe C M, Cronin D J. 1985. The effect of fluorine on viscosities in the system Na2O-Al2O3-SiO2: Implications for phonolites, trachytes and rhyolites. American Mineralogist, 70: 80~87.
Erdmann S, Jamieson R A, MacDonald M A. 2009. Evaluating the origin of garnet, cordierite, and biotite in granitic rocks: A case study from the South Mountain batholith, Nova Scotia. Journal of Petrology, 50: 1477~1503.
Gao Peng, Zhao Zifu, Zheng Yongfei. 2016. Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China. Journal of Asian Earth Sciences, 123: 142~161.
Heinrich C A. 1990. The chemistry of hydrothermal Tin (-Tungsten) ore deposition. Economic Geology, 85: 457~481.
Henry D J, Guidotti C V, Thomson J A. 2005. The Ti-saturation surface for low-tomedium pressure metapelitic biotites: Implications for geothermometry and Ti substitution mechanisms. American Mineralogist, 90: 316~328.
Holland H D. 1972. Granites, solutions, and base metal deposits. Economic Geology, 67: 281~301.
Hou Zengqian, Zheng Yuanchuan, Yang Zhiming, Yang Zhusen. 2012. Metallogenesis of continental collision setting: Part I. Gangdese Cenozoic porphyry Cu-Mo systems in Tibet. Mineral Deposits, 31(4): 647~670 (in Chinese with English abstract).
Huang Wenting, Liang Huaying, Zhang Jian, Wu Jing, Chen Xilian, Ren Long. 2019. Genesis of the Dachang Sn-polymetallic and Baoshan Cu ore deposits, and formation of a Cretaceous Sn-Cu ore belt from Southwest China to western Myanmar. Ore Geology Reviews, 112: 103030.
Ishihara S. 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27: 293~305.
Ishihara S. 1981. The granitoid series and mineralization. Economic Geology, 75: 458~484.
Jiang Shaoyong, Zhao Kuidong, Jiang Hai, Su Huimin, Xiong Suofei, Xiong Yiqu, Xu Yaoming, Zhang Wei, Zhu Lüyun. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: A overview. Chinese Science Bulletin, 45(33): 3730~3745 (in Chinese with English abstract).
Keppler H. 1993. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contributions to Mineralogy and Petrology, 114: 479~488.
Lavaure S, Sawyer E W. 2011. Source of biotite in the Wuluma Pluton: Replacement of ferromagnesian phases and disaggregation of enclaves and schlieren. Lithos, 125: 757~780.
Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, 402~403: 105756.
Lehmann B, Mahawat C. 1989. Metallogeny of tin in central Thailand: A genetic concept. Geology, 17: 426~429.
Lehmann B, Harmanto. 1990. Large-scale tin depletion in the Tanjungpandan tin granite, Belitung Island, Indonesia. Economic Geology, 85: 99~111.
Lentz D R. 1992. Petrogenesis and geochemical composition of biotites in rare-element granitic pegmatites in the Southwestern Grenville Province, Canada. Mineralogy and Petrology, 46: 239~256.
Lentz D R. 1994. Exchange reactions in hydrothermally altered rocks: Examples from biotite-bearing assemblages. In: Lentz D R, ed. Alteration and Alteration Processes Associated with Ore-Forming Systems, vol. 11. Geological Association of Canada Short Course Notes: 69~99.
Li Jie, Huang Xiaolong, He Pengli, Li Wuxian, Yu Yang, Chen Linli. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65: 793~810.
Li Jie, Huang Xiaolong, Fu Qi, Li Wuxian. 2021. Tungsten mineralization during the evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China. American Mineralogist, 106: 443~460.
Lichtervelde M V, Grégoire M, Linnen R L, Béziat D, Salvi S. 2008. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155: 791~806.
Linnen R, Pichavant M, Holtz F. 1996. The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta, 60: 4965~4976.
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.
Lu Shudong, Du Yangsong, Xiao E, Xu Chunwei. 2004. Study on tectonic features and metallogenic mechanism of Pengshan Sn-Pb-Zn polymetallic orefield, Jiangxi Province. Geotectonica et Metallogenia, 28(3): 297~305 (in Chinese with English abstract).
Manning D A C, Henderson P. 1984. The behaviour of tungsten in granitic melt-vapour systems. Contributions to Mineralogy and Petrology, 86: 286~293.
Mao Jingwen, Yuan Shunda, Xie Guiqing, Song Shiwei, Zhou Qi, Gao Yongbao, Liu Xiang, Fu Xiaofang, Cao Jing, Zeng Zailin, Li Tongguo, Fan Xiyin. 2019. New advances on metallogenic studies and exploration on critical minerals of China in 21st century. Mineral Deposits, 38(5): 935~969 (in Chinese with English abstract).
Munoz J L. 1984. Fe-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, 13: 469~493.
Munoz J L. 1992. Calculation of HF and HCl fugacities from biotite compositions: Revised equations. Geological Society of American, Abstracts with Programs 24: 221.
Nachit H, Ibhi A, Abia E H, Ohoud M B. 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience 337: 1415~1420.
Patiño Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society London Special Publications, 168: 55~75.
Patiño Douce A E, Beard J S. 1996. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Journal of Petrology, 37: 999~1024.
Piccoli P M, Candela P A. 2002. Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48: 255~292.
Rasmussen K, Mortensen J. 2013. Magmatic petrogenesis and the evolution of (F: Cl: OH) fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions: Case studies from the northern Canadian Cordillera. Ore Geology Reviews, 50: 118~142.
Richards J P. 2003. Tectono-Magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98: 1515~1533.
Rieder M, Cavazzini G, D'Yakonov Y S, Frank-Kamenetskii V A, Gottardi G, Guoggenheim S, Koval P V, Muller G, Neiva A M R, Radoslovich E W, Robert J L, Sassi F P, Takeda H, Weiss Z, Wones D R. 1998. Nomenclature of the micas. The Canadian Mineralogist, 36: 41~48.
Romer R L, Kroner U. 2016. Phanerozoic tin and tungsten mineralization-tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, 31: 60~95.
Rudnick R L, Gao Shan. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1~64.
Sillitoe R. 2010. Porphyry copper systems. Economic Geology, 105: 3~41.
Sinclair W D. 2007. Porphyry deposits. In: Goodfellow W D, ed. Mineral Deposits of Canada: A Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 223~243.
Sisson T W, Ratajeski K, Hankins W B, Glazner A F. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148: 635~661.
Stussi J M, Cuney M. 1996. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas by Abdel-Fattah M. Abdel-Rahman: A comment. Journal of Petrology, 37: 1025~1029.
Sun Keke, Chen Bin. 2017. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. American Mineralogist, 102: 1114~1128.
Sun Keke, Chen Bin, Deng Jun. 2019. Biotite in highly evolved granites from the Shimensi W-Cu-Mo polymetallic ore deposit, China: Insights into magma source and evolution. Lithos, 350~351: 105245.
Sun Keke, Deng Jun, Wang Qingfei, Chen Bin, Xu Rong, Ma Zhenfei. 2023. Formation of Sn-rich granitic magma: A case study of the highly evolved Kafang granite in the Gejiu tin polymetallic ore district, South China. Mineralium Deposita, 58: 359~378.
Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.
Sylvester P J. 1998. Post-collisional strongly peralumious granites. Lithos, 45: 29~44.
Tischendorf G, Förster H J, Gottesmann B. 2001. Minor-and trace-element composition of trioctahedral micas: A review. Mineralogical Magazine, 65: 249~276.
Wang Rucheng, Xie Lei, Zhu Zeying, Hu Huan. 2019. Micas: Important indicators of granite-pegmatite-related rare-metal mineralization. Acta Petrologica Sinica, 35(1): 69~75 (in Chinese with English abstract).
Wang Rui, Richards J R, Hou Zengqian, Yang Zhiming, Gou Zhengbin, Dufrane S A. 2014. Increasing magmatic oxidation state from Paleocene to Miocene in the Eastern Gangdese belt, Tibet: Implication for collision-related porphyry Cu-Mo ± Au mineralization. Economic Geology, 109: 1943~1965.
Webster J D, Holloway J R, Hervig R L. 1989. Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Economic Geology, 84: 116~134.
Wones D R, Eugster H P. 1965. Stability of biotite: Experiment, theory, and application. American Mineralogist, 50: 1228~1272.
Xu Bin, Jiang Shaoyong, Luo Lan, Zhao Kuidong, Ma Liang. 2017. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: Constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes. Mineralium Deposita, 52: 337~360.
Yin Rong, Han Li, Huang Xiaolong, Li Jie, Li Wuxian, Chen Linli. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China. American Mineralogist, 104: 949~965.
Yuan Shunda, Williams-Jones A E, Romer R L, Zhao Panlao, Mao Jingwen. 2019. Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: Insights from the Nanling Region, China. Economic Geology, 114(5): 1005~1012.
Yuan Shunda, Zhao Panlao, Liu Min. 2020. Some problems involving in petrogenesis and metallogenesis of granite-related tin deposits. Mineral Deposits, 39(4): 607~618 (in Chinese with English abstract).
Zen E. 1986. Aluminum enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints. Journal of Petrology, 27: 1095~1117.
Zhang Chao, Holtz F, Ma Changqian, Wolff P E, Li Xiaoyan. 2012. Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: A case study from the Liujiawa pluton (Dabie orogeny, China). Contributions to Mineralogy and Petrology, 164: 859~879.
Zhang Lipeng, Zhang Rongqing, Hu Yongbin, Liang Jinlong, Ouyang Zhixia, He Junjie, Chen Yuxiao, Guo Jia, Sun Weidong. 2017. The formation of the Late Cretaceous Xishan Sn-W deposit, South China: Geochronological and geochemical perspectives. Lithos, 290~291: 253~268.
Zhao Panlao, Chu Xu, William-Jones A E, Mao Jingwen, Yuan Shunda. 2022a. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic province. Geology, 50(1): 121~125.
Zhao Panlao, Zajacz Z, Tsay A, Yuan Shunda. 2022b. Magmatic-hydrothermal tin deposits form in response to efficient tin extraction upon magma degassing. Geochimica et Cosmochimica Acta, 316: 331~346.
Zheng Qiaorong. 1983. Calculation of the Fe3+ and Fe2+ contents in silicate and Ti-Fe oxide minerals from EPMA data. Acta Mineralogica Sinica, 1: 55~62 (in Chinese with English abstract).
Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29: 26~33.
Zhu Chen, Sverjensky D A. 1991. Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochimica et Cosmochimica Acta, 55: 1837~1858.
Zhu Chen, Sverjensky D A. 1992. F-Cl-OH partitioning between biotite and apatite. Geochimica et Cosmochimica Acta, 56: 3435~3467.
陈伟, 陈斌, 孙克克. 2018. 江西彭山锡多金属矿集区曾家垄锡矿相关的铝质花岗岩成因. 地球化学,47(5): 554~574.
侯增谦, 郑远川, 杨志明, 杨竹森. 2012. 大陆碰撞成矿作用: I. 冈底斯新生代斑岩成矿系统. 矿床地质,31(4): 647~670.
蒋少涌, 赵葵东, 姜海, 苏慧敏, 熊索菲, 熊伊曲, 徐耀明, 章伟, 朱律运. 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展. 科学通报,65(33): 3730~3745.
卢树东, 杜杨松, 肖锷, 徐春伟. 2004. 江西彭山锡(铅锌)多金属矿田构造地质特征及成矿机理探讨. 大地构造与成矿学,28(3): 297~305.
毛景文, 袁顺达, 谢桂青, 宋世伟, 周琦, 高永宝, 刘翔, 付小方, 曹晶, 曾载淋, 李通国, 樊锡银. 2019. 21世纪以来中国关键金属矿产找矿勘查与研究新进展. 矿床地质,38(5): 935~969.
王汝成, 谢磊, 诸泽颖, 胡欢. 2019. 云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物. 岩石学报,35(1): 069~075.
袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论. 矿床地质,39(4): 607~618.
郑巧荣. 1983. 由电子探针分析值计算Fe3+和Fe2+. 矿物学报,1: 55~62.