川东南平桥地区寒武系洗象池群断层流体溶蚀-沉淀作用对白云岩储层的影响
doi: 10.19762/j.cnki.dizhixuebao.2024059
刘晨虎1,2 , 杨明磊1,2 , 诸丹诚1,3 , 杨伟强1,4 , 陈凡卓1,2 , 邹华耀1,2
1. 中国石油大学(北京)地球科学学院,北京, 102249
2. 中国石油大学(北京)油气资源与工程全国重点实验室,北京, 102249
3. 振华石油控股有限公司,北京, 100031
4. 中国石化中原油田分公司勘探开发研究院,河南濮阳, 457001
基金项目: 本文为国家自然科学基金项目(编号42172125)资助的成果
作者简介
刘晨虎,男,1998年生。硕士研究生,从事碳酸盐岩沉积储层研究。E-mail: 383241987@qq.com
通讯作者
邹华耀,男,1963年生。教授,从事油气运聚机理及富集规律研究。E-mail: huayaozou@cup.edu.cn。
The influence of dissolution-precipitation driven by fault-transported fluids on the development of dolostone reservoirs in the Cambrian Xixiangchi Group at Pingqiao area of the eastern Sichuan basin
LIU Chenhu1,2 , YANG Minglei1,2 , ZHU Dancheng1,3 , YANG Weiqiang1,4 , CHEN Fanzhuo1,2 , ZOU Huayao1,2
1. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249 , China
2. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249 , China
3. China Zhenhua Oil Co., Ltd., Beijing 102249 , China
4. Exploration and Development Research Institute, Zhongyuan Oilfield Company, SINOPEC, Puyang 457001 , China
摘要
含膏盐白云岩储层非均质性是优质白云岩储层形成的关键问题之一。本研究利用岩芯、薄片、测井、包裹体、物性等资料,深入探讨川东南平桥地区洗象池群储层中石膏和方解石充填物对储层非均质性的影响,定量表征胶结物的发育分布特征,分析胶结物的成因,半定量恢复储层孔隙差异演化过程。结果表明:① 虽然PQ2井裂缝相对PQ1井较为发育,但裂缝和孔洞中的充填物含量相对较高,裂缝对储层物性改造相对较差。② 石膏胶结物来源于下伏高台组含膏流体,早白垩世断层形成时期,高温高压条件下富含 SO2-4的高台组地层水上涌与富含Ca2+、Mg2+、CO2-3的洗象池群地层水混合,在同离子效应和地层抬升导致的降温条件下,发生方解石和石膏沉淀。③ 断层流体胶结物充填的颗粒白云岩和残余孔隙的颗粒白云岩在燕山期构造运动之前孔隙演化相似,即准同生期大气淡水溶蚀形成溶蚀孔洞,淡水和海水胶结作用以及压实压溶作用破坏孔隙;但在燕山期—喜马拉雅期发育的逆断层的影响下,流体混合溶蚀-沉淀作用优先发生在断层附近的颗粒白云岩,造成孔隙差异演化。
Abstract
The heterogeneity of gypsum-bearing dolomitized reservoirs is a crucial issue in understanding their formation mechanisms. This study, employing a multidisciplinary approach encompassing petrographic, geophysical, and geochemical analyses, investigates the influence of gypsum and calcite fill cements on the quality of these reservoirs. Through the examination of porosity distribution, origin, and semi-quantitative reconstruction, several key findings emerged.Firstly,calcite cements and gypsum have completely filled fractures and vugslocated in close proximity to fault zones.This extensive infilling process has resulted in significantly reduced porosity and permeability in the carbonate rocks adjacent to these fractures. Secondly, the fluid responsible for gypsum precipitation originated from the underlying Gaotai Formation, characterized by gypsum-rich carbonate successions. This precipitation was induced by the mixing of sulfate-, calcium-, and magnesium-rich fluids under high temperature and pressure conditions. Finally, the diagenetic parasequence preceding the Yanshan tectonic movement exhibits comparable characteristics, while the faults induced by thrust tectonic during the Yanshan-Himalayan tectonic event significantly controlled the differential evolution of porosity in the dolomitized reservoirs.
寒武系洗象池群是继震旦系灯影组和寒武系龙王庙组之后的古生界后备勘探层系之一,并已经在川中古隆起区的威远、高石梯、磨溪等地区的多口井获得油气显示(李伟等,2019; 李英强等,2022)。近年来,川东南地区洗象池群“新生古储、侧向对接”成藏组合取得重大突破,PQ1井测试获得25.13×104 m3/d高产工业气流,显示了良好的勘探前景(孙自明等,2021高键等,2023)。但同一构造内的PQ2井洗象池群储层的孔洞和裂缝中充填了大量的石膏和方解石胶结物,储层质量和试气结果均不如PQ1井,反映出储层具有极强的非均质性。
目前针对川东南地区洗象池群的研究内容多集中在层序地层、沉积与储层特征、成藏条件及其控制因素(李文正等,2016; 孙自明等,2021; 邓成昆等,2022; 石书缘等,2022; 文华国等,2022)。聚焦于储层非均质性成因,尤其是构造活动期断层流体的差异溶蚀-沉淀机理,及相关的而对于储层非均质性强的原因,尤其是断层活动期断层流体的差异溶蚀-沉淀机理,及相关颗粒白云岩储层差异演化的研究相对较少,制约了对有利储层的分布预测。因此,本文基于对岩芯、薄片的观察,阐明与断层流体溶蚀-沉淀作用相关的溶蚀孔洞和胶结物的岩石学特征,并结合定量统计和成像测井图像,表征胶结物在孔洞和裂缝中的分布特征。其次,通过包裹体均一温度与埋藏史-热史确定胶结物的形成时间,探讨断层流体的溶蚀-沉淀机理。最后,基于薄片面比率半定量统计,恢复颗粒白云岩孔隙差异演化过程,建立断层流体的溶蚀-沉淀模式,分析断层流体溶蚀-沉淀作用对储层非均质性的影响。本文为后续四川盆地洗象池群及类似碳酸盐岩油气层勘探开发研究中的储层演化分析提供理论依据。
1 区域地质概况
平桥构造是川东高陡构造带万县复向斜南部的“窄陡型”断背斜,背斜两翼发育北东向逆断层,且相对核部地层变形较强,裂缝也较发育(图1a)(郭旭升,2019)。自齐岳山断裂以西依次发育冲断褶皱,平桥背斜主体的断展褶皱,以及盆内向斜的滑脱构造(庹秀松等,2020)。平桥构造的边界断层为向东倾的平桥西断层和向西倾的平桥东①断层,二者形成背冲断层,向下断至中寒武统高台组膏盐岩,向上贯通志留系龙马溪组页岩,对洗象池群颗粒白云岩储层和龙马溪组烃源岩的配置关系起到了调节作用,形成源-储侧向对接的输导模式(图1b)(孙自明等,2021高键等,2023)。
平桥构造的主要活动时间发生在燕山期(覃作鹏等,2013)。燕山期之前川东南地区构造活动微弱,地层持续沉降接受沉积。早白垩世,雪峰山陆内造山带由南东向北西推挤,使南北向张性断裂带构造反转。在强烈的挤压背景下,川东南地区青龙乡、平桥东①断层形成。晚白垩世南东—北西向挤压应力场依然活跃,平桥地区背冲断层基本定型,源-储对接形成。喜马拉雅期川东地区构造隆升,平桥褶皱起伏增大。
川东南地区中—上寒武统洗象池群主要发育局限台地沉积相,包括台坪、颗粒滩和潟湖三个沉积亚相,根据海平面变化可划分为洗一段、洗二段和洗三段三个岩性段,由底到顶水体逐渐变浅,颗粒滩厚度逐渐增大(石书缘等,2022)。PQ1井和PQ2井颗粒滩储层主要分布在洗三段。洗象池群上覆奥陶系桐梓组灰岩,下伏中寒武统高台组膏云岩,均为整合接触关系(图1c)。
1平桥区块位置图及洗象池群顶面构造图(a);过PQ1井构造解释地震剖面图(b)(剖面位置见图1a中A—A′); 川东南地区下古生界地层综合柱状图(c)(据孙自明等,2021修改)
Fig.1Top structural map of the Xixiangchi Group in the Pingqiao area (a) ; the seismic profile in the study area (b) (the profile position shown in Fig.1a; comprehensive column of the Lower Paleozoic in the eastern Sichuan basin (c) (modified from Sun Ziming et al., 2021)
2 样品与分析方法
选取平桥构造中PQ1和PQ2井42件样品,矿物类型包括白云石,以及方解石和硬石膏胶结物。制备铸体和普通薄片22张,并用茜素红半染色,使用Nikon LV100NPOL偏光显微镜观察拍照。使用Image J图像分析软件进行岩石薄片定量研究,统计岩石薄片中胶结物和孔隙的面比率。利用岩芯和成像测井资料进行孔洞、裂缝和胶结物的发育分布定量研究,统计裂缝的线密度和充填比例,溶蚀孔洞中胶结物的含量和充填比例。
挑选12件裂缝和溶蚀孔洞中充填的方解石和硬石膏样品制备包裹体薄片。利用偏光显微镜观察包裹体的大小和形态,选取气液两相零星分布的个体稍大的原生包裹体进行拍照和标记。使用Linnkam THMS600型冷热台,采用循环测温法测定包裹体均一温度,每张薄片至少测定7个点。仪器的检测条件,热台最高温度低于300℃,分辨率1℃;冷台最低温度可达-100℃以下,分辨率0.2℃。所有实验均在中国石油大学(北京)油气资源与工程全国重点实验室进行。
3 断层流体溶蚀-沉淀特征
3.1 溶蚀孔洞和裂缝发育特征
川东南地区洗象池群白云岩储层岩石类型以颗粒滩相砂屑白云岩和晶粒白云岩为主,储集空间类型以粒间(溶)孔、晶间(溶)孔和溶洞为主(图2a~d图3a~d)(李文正等,2016; 石书缘等,2022)。晶粒白云岩在显微镜下经过增强光进行结构恢复,可见颗粒幻影结构,说明晶粒白云岩是颗粒白云岩在白云岩化和重结晶过程中发生结构变化而形成(图3b)。岩芯上孔隙大多为针孔,孔径一般在0.02~2 mm之间,局部发育溶洞,直径一般在2~12 mm之间(图2a~c)。薄片下粒间孔和晶间孔面孔率主要介于2%~4%,局部孔洞发育段可达10%以上。部分溶孔周围可见明显的白云石晶粒被轻微溶蚀形成的圆滑边缘(图3c~f)。
川东南高陡断褶带在燕山期—喜马拉雅期挤压背景下,经历了多期挤压应力作用,形成了一系列逆断层(邹玉涛等,2015)。基于裂缝产状分类方案,平桥地区裂缝以高角度裂缝为主,其次为网状裂缝和低角度裂缝(图4)。高角度裂缝多为构造剪切缝,裂缝面平滑,显示岩石剪切破裂的特征(图4a、b)。薄片上可见剪切缝形态规则平直,切穿颗粒(图4e、f)。低角度裂缝也多为构造剪切缝,局部表现为千层饼状(图4d),其次为压实-压溶作用成因的层理缝和缝合线(图4h)。网状裂缝推测为挤压应力环境下,流体介入致使岩石同时发生破裂、溶蚀等多种成岩作用的产物(图4c)。
2川东南平桥地区洗象池群断层流体溶蚀-沉淀岩芯特征
Fig.2Dissolution and filling characteristics of fault fluid in the Xixiangchi Group of the Pingqiao area, the eastern Sichuan basin
(a)—溶蚀孔洞及孔洞中充填的石膏,PQ2井,3494.96 m;(b)—孔洞中充填石膏,PQ2井,3026.12 m;(c)—溶洞中充填方解石,PQ2井,3384.20 m;(d)—砂屑白云岩,孔隙中充填石膏,PQ2井,3323.50 m;(e)—裂缝中充填石膏,PQ2井,3470.76 m;(f)—裂缝中充填方解石,PQ2井,3135.92 m
(a) —dissolution pores and anhydrite filling into the vugs and caves, well PQ2, 3494.96 m; (b) —pores and holes filled with anhydrite, well PQ2, 3026.12 m; (c) —calcite filling into the cave, well PQ2, 3384.20 m; (d) —clast-enriched dolograinstone, porosity filled with anhydrite, well PQ2, 3323.50 m; (e) —anhydrite filled fracture, well PQ2, 3470.76 m; (f) —calcite filling in fracture, well PQ2, 3135.92 m
3川东南平桥地区洗象池群断层流体溶蚀-沉淀薄片特征
Fig.3Dissolution and filling characteristics of fault fluid on thin sections of the Xixiangchi Group in the Pingqiao area, the eastern Sichuan basin
(a)—砂屑白云岩,粒间溶孔,PQ2井,3394.68 m,蓝色铸体;(b)—细晶白云岩,残余颗粒结构,晶间孔,PQ2井,3388.76 m,蓝色铸体;(c)—细晶白云岩,残余颗粒结构,晶间孔充填方解石,见白云石溶蚀边缘,PQ2井,3337.80 m;(d)—砂屑白云岩,孔隙中充填石膏,PQ2井,3453.60 m;(e)—细晶白云岩,裂缝中充填石膏,PQ2井,3464.73 m;(f)—粉晶白云岩,裂缝中充填方解石,PQ2井,3384.73 m;(a~c)、(f)为单偏光,(d)、(e)为正交偏光
(a) —clast-enriched dolograinstone, intergranular pore, well PQ2, 3394.68 m, blue cast; (b) —fine-crystalline dolostone, residual grain structure, intercrystalline pores, well PQ2, 3388.76 m, blue cast; (c) —fine-crystalline dolostone, residual grain structure, intercrystalline pores filled with calcite, the yellow arrow refers to dissolution of dolomite crystallines, well PQ2, 3337.80 m; (d) —clast-enriched dolograinstone, porosity filled with anhydrite, well PQ2, 3453.60 m; (e) —fine-crystalline dolostone, anhydrite filled fracture, well PQ2, 3464.73 m; (f) —fine to medium crystalline dolostone, calcite filled fracture, well PQ2, 3384.73 m; (a~c) , (f) are polarized light, (d) , (e) are orthogonal polarized light
3.2 胶结物分布特征
PQ1井和PQ2井洗象池群白云岩孔洞和裂缝中充填的矿物以硬石膏和方解石为主(图23),局部裂缝和晶体内可见少量沥青和石英(高键等,2023)。岩芯上石膏和方解石为斑块状或条带状,局部全充填或半充填于粒间孔、晶间孔、溶蚀孔洞和裂缝中(图2)。岩芯上可见明显的基质白云岩断层角砾,角砾间全充填石膏,表明石膏充填于断层角砾形成之后(图2e)。显微镜下方解石胶结物在单偏光下被茜素红染色,硬石膏在正交偏光镜下显示为三级干涉色,晶形呈块状(图3c~f)。充填于孔隙的硬石膏和方解石胶结物与白云石溶蚀边缘相接触,且胶结物间有白云石溶蚀残余,说明硬石膏和方解石胶结物的充填晚于白云石的溶蚀(图3c~f)。
利用面积比值法对岩芯扫描照片和薄片照片上孔洞的充填程度和石膏含量进行定量表征,之后再与孔隙度进行对比,发现PQ1井平均孔洞充填比例为72.8%,平均孔隙度为2.16%(附表1);PQ2井平均孔隙充填比例为82.3%,平均孔隙度为1.53%(附表1,图5)。PQ1和PQ2井中,60%多的样品的石膏含量分布在0~2%,石膏含量小于10%的样品中PQ1井比PQ2井高3%~10%,而石膏含量大于10%的样品中PQ1井比PQ2井低4%~5%(附表2,图6)。整体而言,石膏含量和孔洞充填比例的增加与现今孔隙度的降低呈现出明显的正相关关系,这显示出石膏胶结物的充填是导致孔隙度降低的一个重要因素。
裂缝的充填和张开程度可以反映裂缝的有效性。基于充填程度的不同,裂缝可分为三类:未充填裂缝、半充填裂缝和全充填裂缝(史今雄等,2023)。随着充填程度的增加,裂缝的有效性逐渐降低(曾联波等,2012)。对岩芯上裂缝的线密度及充填程度进行统计,结果显示PQ1井裂缝线密度介于1~8条/m,平均5.3条/m,全充填比例34.8%。PQ2井裂缝线密度介于1~16条/m,平均6.8条/m,其中全充填裂缝占43.9%(附表3,图7)。裂缝发育程度PQ2井好于PQ1井,但裂缝有效性PQ1井较好(图5)。碳酸盐岩储层中剪切裂缝的发育程度通常受控于岩性、岩石力学层厚度和构造等多种因素影响(赫俊民等,2019)。研究区PQ2井和PQ1井的岩性和层厚度相差不大,基本都为厚层状白云岩,但PQ2井相对邻近断层(图1b),说明构造活动是控制研究区裂缝发育程度的主要因素。此外,剪切缝在成像测井动态图上显示为正弦曲线,网状裂缝表现为杂乱曲线,颜色变化反映裂缝充填情况,未充填裂缝电阻率相对较低,为高导缝,颜色为暗色的条带或条纹(图8a),全充填裂缝基本都为方解石和石膏,电阻率高于周围白云岩,为高阻缝,颜色为稍亮条带(图8b)(史今雄等,2023)。基于成像测井统计裂缝充填程度发现,PQ1井未被充填的高导缝占67.3%,充填的高阻缝占36.3%,PQ2井未被充填的高导缝占59.8%,充填的高阻缝占40.2%,与岩芯统计的变化趋势基本一致(图7b)。
4川东南平桥地区PQ2井取芯段裂缝和溶蚀孔洞及其充填胶结物发育特征
Fig.4Characteristics of fractures, dissolved pores and filling cements in the well PQ2 in the Pingqiao area, the eastern Sichuan basin
综合考虑孔隙和裂缝的发育程度及充填状况,PQ1井与PQ2井的孔洞的发育程度相近,但PQ2井的孔洞充填比例偏高,导致其储层物性相对较差。而对于邻近断层的PQ2井,尽管其裂缝相对发育,但裂缝全充填的比例偏高,从而降低了裂缝对储层质量的建设性作用。
4 断层流体溶蚀-沉淀形成机理
4.1 断层流体胶结物流体来源与形成时间
利用流体包裹体测温技术是确定胶结物形成时间的常用方法。为进一步明确孔隙和裂缝胶结物的充填期次、形成时间,选取PQ1井和PQ2井裂缝和孔洞中充填的方解石和硬石膏胶结物进行包裹体均一温度测试。显微镜下挑选能够反映胶结物形成时间的气液两相原生包裹体,包裹体气液比均<10%,大小在3~10 μm(图9)。结果显示方解石的均一温度分布在150~200℃之间,主峰位于170~190℃之间(图9a);硬石膏的均一温度分布范围广,在120~180℃之间,主峰位于150~170℃(附表4,图9b)。
5川东南平桥地区PQ1井和PQ2井裂缝和溶蚀孔隙及其充填胶结物分布特征
Fig.5Distribution of fractures,dissolved pores and filling cements of wells PQ 1 and PQ 2 in the Pingqiao area,the eastern Sichuan basin
6平桥地区洗象池群孔隙度与石膏含量交汇图及其分布直方图
Fig.6Cross plot and histograms of porosity and gypsum content of the Xixiangchi Group in the Pingqiao area
7平桥地区洗象池群裂缝线密度(a)和裂缝充填比例(b)分布直方图
Fig.7Histogram of fracture linear density (a) and fracture filling ratio (b) of the Xixiangchi Group in the Pingqiao area
结合PQ1井埋藏-热演化史图,方解石和硬石膏胶结物的形成时间主要在晚白垩世至古近纪,且方解石的形成时间要稍早于石膏胶结物(图10)。自晚白垩世(约85 Ma)开始,平桥地区发生构造抬升,褶皱和主要断层形成,源储侧向对接形成,平桥地区陆续经历“快—慢—快”的三期隆升(图10)(高键等,2023)。根据洗象池群的区域地质情况来看,川东南平桥地区洗象池群下伏中寒武统高台组和下寒武统龙王庙组顶部发育蒸发岩,最大厚度可达500 m(胡忠贵等,2023),且地震解释显示平桥东①断层和平桥西断层均断至下伏膏岩层(图1b)。因此可以判断硬石膏胶结物来源于下伏寒武系膏岩层地层水,并且在主断层活动时期下伏流体的上涌导致了硬石膏和方解石在孔洞和裂缝中的沉淀。
4.2 断层流体溶蚀-沉淀形成过程
碳酸盐岩储层发生的埋藏溶蚀作用通常与有机质热演化、硫酸盐热化学还原作用(TSR)或者与岩浆作用有关,其能够产生有机酸、CO2、H2S等酸性物质,溶于水后形成酸性溶液腐蚀碳酸盐岩,对储层孔隙发生改造(蔡春芳等,1997; 金之钧等,2006; Hao Fang et al.,2015)。埋藏溶蚀的流体来源于深部地层,受深大断裂控制的穿层流动方式,不依赖于近地表大气淡水的直接补给(Klimchouk,2013)。
有机酸是由于干酪根成熟及热降解过程中的脱羧作用产生大量CO2和H2O,溶于地层水形成具有溶蚀性的酸性溶液(Barth et al.,1993; Seewald,2003)。通常粒间和晶间溶孔、缝合线伴生溶孔充填沥青是有机酸溶蚀的标志(胡明毅等,2009)。从岩芯和薄片观察来看,平桥地区大部分孔隙周围干净,局部裂缝和晶体内可见少量沥青(图34),并且PQ1井主充注期为晚白垩世构造抬升阶段,五峰组—龙马溪组烃源岩处于过成熟阶段,干酪根生成以甲烷为主的干气(孙自明等,2021)。因此不具备有机酸大量形成的条件。
8平桥地区PQ2井洗象池群裂缝成像测井特征
Fig.8Characteristics of fractures in image logs of the Xixiangchi Group in the well PQ2, Pingqiao area
(a)—未充填缝,高导缝,暗色正弦曲线;(b)—石膏充填缝,高阻缝,明亮正弦曲线
(a) —unfilled fractures, high conductivity fractures, dark sinusoids; (b) —anhydrite filling fractures, high resistivity fractures, brightsinusoids
9平桥地区PQ1井和PQ2井洗象池群孔隙及裂缝中方解石(a)和硬石膏(b)流体包裹体均一温度直方图和显微特征
Fig.9Histograms of homogeneous temperature and microscopic characteristics of fluid inclusions in calcite (a) and anhydrite (b) cements filling in pores and fractures of the Xixiangchi Group in wells PQ1 and PQ2, Pingqiao area
TSR作用是指在热动力驱动下烃类将硫酸盐矿物还原成H2S、CO2等酸性气体的化学反应,是现今高含H2S气藏的重要作用(Krouse et al.,1988)。酸性气体溶于水后对储层有强烈的溶蚀改造作用,并且现今气藏H2S含量越高,储层溶蚀作用越强烈,孔隙度也越大(朱光有等,2006)。如在普光气田飞仙关组鲕粒滩白云岩储层,平均孔隙度15%,TSR作用强烈,现今气田的H2S含量9.3%~21.7%(Li Pingping et al.,2022)。但PQ1井和PQ2井储层孔隙度为2%左右,相对较差,且平桥地区洗象池群天然气组分中 H2S含量仅为0.48%,说明平桥地区TSR反应程度较弱。
10平桥地区PQ1井埋藏-热演化史及胶结物沉淀时间
Fig.10Burial and thermal histories and the formation of cementation in the well PQ1 of the Pingqiao area
热液多指来自地壳或地幔与岩浆活动有关的深部热流体,富含CO2、H2S等酸性气体、水和其他金属离子,并在高温高压条件下沿深大断裂上涌对储层发生不同程度的溶蚀改造(金之钧等,2006)。岩石学证据表明,在碳酸盐岩中的热液成因矿物组合主要为萤石-石英和鞍形白云石-黄铁矿(蒋裕强等,2018)。通过流体包裹体均一温度超出正常地温梯度所能达到的地层温度,也可以证明深部热液流体的存在(罗静兰等,2019)。而对研究区PQ1井和PQ2井岩芯观察中并未见到明显热液成因的矿物组合,所测量的包裹体温度也没有出现异常高值。另外除川东南齐岳山断层沟通基底外,平桥构造内断层断至寒武系滑脱层,未沟通下伏地层(图1b)(庹秀松等,2020)。因此平桥地区洗象池群也少有来自深部壳源或幔源热流体的参与。
洗象池群沉积时期,川东南平桥地区位于川东台内洼地东侧的古地貌高地,颗粒滩沉积较为发育,是储层发育的物质基础(石书缘等,2022; 文华国等,2022)。川东南地区孔隙度与高频旋回具有正相关性,在旋回的上部溶蚀孔洞相对发育,表明准同生溶蚀作用是研究区储层形成的关键(钱一雄等,2019; 谷明峰等,2020; 石书缘等,2022)。
此外,膏岩和碳酸盐岩混合导致的溶蚀—沉淀过程可能是潜在的研究区石膏和方解石共生沉淀的原因。有研究显示,在近地表环境中,当大气水或地下水流经石膏、灰岩和白云岩混合的地层时,石膏会率先溶解增加溶液中Ca2+含量,导致溶液中Ca/Mg比值升高。随后在同离子效应下会发生方解石的沉淀,同时SO2-4的加入也会促进白云石的溶解,即发生去白云石化作用(式1)(黄思静,2010Schoenherr et al.,2018)。与单一的石膏和白云石的溶液相比,混合溶液中石膏的溶解度可达1.5倍,白云石的溶解度可达7倍,并且这种混合效应随着水体盐度的增加而增强(Palmer,2007Klimchouk,2013)。碳酸盐岩和蒸发岩的混合溶解-沉淀反应机理解释了地下含石膏地层的岩溶作用(Bischoff et al.,1994; Raines et al.,1997)。然而,平桥地区洗象池群的石膏和方解石胶结物是在深埋的高温高压环境中形成。因缺少外界酸性流体的进入,此时地层水环境偏碱性。另外在深埋高温条件下,石膏的存在反而抑制了白云石的溶解(黄思静,2010)。因此当平桥地区主体断层形成时,高温高压条件下富含Ca2+和SO2-4的含膏流体沿断层及其相关的破碎带上涌,并与以Ca2+、Mg2+和CO2-3为主的洗象池群地层水混合。在初期,由于同离子效应,发生了小规模的方解石沉淀(式2)。随着断层流体供应的减少,溶解-沉淀反应逐渐达到平衡状态。随后,由于地层抬升导致流体温度降低,石膏的溶解度随之减小,最终石膏趋于过饱和在裂缝带及其周围的孔洞中发生沉淀(式3)。这一过程导致了临近断层区域的石膏沉淀作用较强。
MgCaCO32+CaSO42H2O=2CaCO3+Mg2++SO4-2+2H2O
(1)
Ca2+(aq)+CO32-(aq)=CaCO3(s)
(2)
Ca2+(aq)+SO42-(aq)+2H2O=CaSO42H2O(s)
(3)
4.3 断层流体溶蚀-沉淀作用对储层差异演化的影响
对川东南地区洗象池群白云岩储层研究表明,颗粒滩相砂屑白云岩和晶粒白云岩是主要储集岩,粒间孔、晶间孔和溶洞是主要储集空间类型,颗粒滩沉积是储层形成的物质基础,准同生溶蚀作用是储层形成的关键(李文正等,2016; 谷明峰等,2020; 石书缘等,2022)。本文基于薄片定量统计,结合古地貌背景与前人研究成果,对平桥地区两类白云岩——断层流体胶结物充填的颗粒白云岩和残余孔隙的颗粒白云岩,进行孔隙差异演化过程的分析与对比,并据此建立储层差异演化模式(图11)。
断层流体溶蚀-沉淀作用和大规模的构造破裂作用主要发生在燕山期之后的深埋藏环境。在此之前,PQ1井和PQ2井的颗粒滩相白云岩的孔隙演化相似。同生—准同生期,川东南地区远离川中古隆起,古地貌较低,颗粒滩发育厚度较薄(邓成昆等,2022)。其中PQ1井单层颗粒滩厚度0.7~10.2 m,PQ2井单层颗粒滩厚度0.8~9.8 m,两口井颗粒滩发育厚度规模相近,且都以潟湖—颗粒滩—台坪沉积旋回为主(图5)。通常情况下,随机排列的球形颗粒碳酸盐岩在沉积时的原始孔隙度可达到40%(Heydari,2000)。海水环境中,颗粒周围形成等厚环边和粒状胶结物,随后在海平面下降时颗粒滩遭受大气淡水淋滤作用,形成溶蚀孔洞(图11a)。对重结晶作用程度低的样品进行薄片面比率统计,海水和淡水胶结物平均含量16%。准同生白云岩化作用使颗粒白云岩在埋藏阶段具备较强的抗压实-压溶能力。因此在进入埋藏环境后,颗粒白云岩因压实-压溶作用损失的孔隙度一般为6%~15%(Yang et al.,2022)。重结晶作用可以改变颗粒白云岩结构,提高储层渗透率,但对孔隙度提升有限(王广伟,2022)。
埋藏直至早白垩世,燕山运动导致的强烈挤压构造背景下,裂缝的发育提供了流体运移通道,同时对储集空间的发育有建设性作用。川东南地区青龙乡断层和平桥东①断层形成,下伏高台组中的含膏流体沿断层上涌,断层附近颗粒白云岩发生溶蚀-沉淀作用,断层流体胶结物充填的颗粒白云岩和残余孔隙的颗粒白云岩开始发生孔隙的差异演化(图11b)。晚白垩世,平桥构造褶皱雏形基本形成,大量的含膏流体持续充填残余孔隙和裂缝,储层孔隙被破坏,同时伴随着源-储侧向对接形成,五峰组—龙马溪组天然气发生充注(图11c)(孙自明等,2021高键等,2023)。新近纪至今,褶皱起伏增大,构造破裂作用形成裂缝,断层流体充填胶结作用持续进行,储层非均质性进一步增强(图11d)。其中断层流体胶结物面比率介于22%~78%,面孔率小于1%;残余粒间孔颗粒白云岩面孔率介于2.2%~4.3%,平均3.2%,是目前洗象池群发现的主要储层(图9d)。
5 结论
(1)平桥地区洗象池群胶结物主要为石膏和方解石,充填于孔隙和裂缝中。PQ2井较PQ1井裂缝相对发育,但全充填裂缝占比高,有效性差;PQ1和PQ2井孔洞发育程度接近,但PQ2井充填比例高,储层物性相对较差。
(2)石膏胶结物源自下伏高台组含膏流体。燕山期断层形成时,高台组含膏流体沿断层与洗象池群地层水混合,导致石膏和方解石在孔洞和裂缝中沉淀。高温高压下,两地层水混合时Ca2+增多,破坏沉淀-溶解平衡,方解石沉淀。断层流体减少后,溶解-沉淀平衡。地层抬升使流体温度降低,石膏溶解度减小,最终在裂缝带及周围孔洞过饱和沉淀。
(3)洗象池群沉积时,川东南地貌低平,PQ1和PQ2井单层颗粒滩厚度相近。燕山期构造运动之前,颗粒白云岩孔隙演化相似,胶结物含量平均16%,压实作用导致孔隙度损失6%~15%。早白垩世断层形成,下伏含膏流体上涌,引发溶蚀-沉淀,孔隙演化差异开始。晚白垩世至今,断层流体持续充填胶结,储层非均质性增强。现今储层中,断层流体胶结物面比率高,面孔率小;而残余粒间孔颗粒白云岩面孔率平均3.2%,成为现今储层。
11平桥地区构造演化及洗象池群颗粒白云岩孔隙差异演化模式
Fig.11Tectonic histories and differential evolution of porosity in the dolograinstone of the Xixiangchi Group in the Pingqiao area
(a)—中—晚寒武世,同生—准同生阶段:海水胶结,大气淡水溶蚀与胶结作用;(b)—早白垩世,中—晚成岩阶段:压实-压溶,重结晶作用,断层形成,含膏流体沿断层上涌开始沉淀;(c)—晚白垩世:褶皱形成,重结晶作用持续进行,含膏流体持续上涌沉淀,天然气主充注期;(d)—新近纪—现今:褶皱起伏增大,破裂作用持续进行
(a) —Middle-Late Cambrian, syngenetic stage: seawater cementation, dissolution and cementation of meteoric leaching; (b) —Early Cretaceous, middle to late diagenetic stage: compaction-pressure dissolution, recrystallization, a fault is formed, and the gypsum-bearing fluid continued to upwell and precipitate, main charging period of hydrocarbon; (c) —Late Cretaceous: folds formed, recrystallization continued, fluctuation of folds increased and rupture continued, natural gas main charging period; (d) —Neogene-present: fold fluctuation increases and rupture continues
附件:本文附件(附表1~4)详见https://www.geojournals.cn/dzxb/dzxb/article/abstract/202503094?st=article_issue
1平桥区块位置图及洗象池群顶面构造图(a);过PQ1井构造解释地震剖面图(b)(剖面位置见图1a中A—A′); 川东南地区下古生界地层综合柱状图(c)(据孙自明等,2021修改)
Fig.1Top structural map of the Xixiangchi Group in the Pingqiao area (a) ; the seismic profile in the study area (b) (the profile position shown in Fig.1a; comprehensive column of the Lower Paleozoic in the eastern Sichuan basin (c) (modified from Sun Ziming et al., 2021)
下载: 全尺寸图片
2川东南平桥地区洗象池群断层流体溶蚀-沉淀岩芯特征
Fig.2Dissolution and filling characteristics of fault fluid in the Xixiangchi Group of the Pingqiao area, the eastern Sichuan basin
下载: 全尺寸图片
3川东南平桥地区洗象池群断层流体溶蚀-沉淀薄片特征
Fig.3Dissolution and filling characteristics of fault fluid on thin sections of the Xixiangchi Group in the Pingqiao area, the eastern Sichuan basin
下载: 全尺寸图片
4川东南平桥地区PQ2井取芯段裂缝和溶蚀孔洞及其充填胶结物发育特征
Fig.4Characteristics of fractures, dissolved pores and filling cements in the well PQ2 in the Pingqiao area, the eastern Sichuan basin
下载: 全尺寸图片
5川东南平桥地区PQ1井和PQ2井裂缝和溶蚀孔隙及其充填胶结物分布特征
Fig.5Distribution of fractures,dissolved pores and filling cements of wells PQ 1 and PQ 2 in the Pingqiao area,the eastern Sichuan basin
下载: 全尺寸图片
6平桥地区洗象池群孔隙度与石膏含量交汇图及其分布直方图
Fig.6Cross plot and histograms of porosity and gypsum content of the Xixiangchi Group in the Pingqiao area
下载: 全尺寸图片
7平桥地区洗象池群裂缝线密度(a)和裂缝充填比例(b)分布直方图
Fig.7Histogram of fracture linear density (a) and fracture filling ratio (b) of the Xixiangchi Group in the Pingqiao area
下载: 全尺寸图片
8平桥地区PQ2井洗象池群裂缝成像测井特征
Fig.8Characteristics of fractures in image logs of the Xixiangchi Group in the well PQ2, Pingqiao area
下载: 全尺寸图片
9平桥地区PQ1井和PQ2井洗象池群孔隙及裂缝中方解石(a)和硬石膏(b)流体包裹体均一温度直方图和显微特征
Fig.9Histograms of homogeneous temperature and microscopic characteristics of fluid inclusions in calcite (a) and anhydrite (b) cements filling in pores and fractures of the Xixiangchi Group in wells PQ1 and PQ2, Pingqiao area
下载: 全尺寸图片
10平桥地区PQ1井埋藏-热演化史及胶结物沉淀时间
Fig.10Burial and thermal histories and the formation of cementation in the well PQ1 of the Pingqiao area
下载: 全尺寸图片
11平桥地区构造演化及洗象池群颗粒白云岩孔隙差异演化模式
Fig.11Tectonic histories and differential evolution of porosity in the dolograinstone of the Xixiangchi Group in the Pingqiao area
下载: 全尺寸图片
Barth T, Bjorlykke K. 1993. Organic acids from source rock maturation; Generation potentials, transport mechanisms and relevance for mineral diagenesis. Applied Geochemistry, 8(4): 325~337.
Bischoff J L, Julia R, Shanks W C I, Rosenbauer R J. 1994. Karstification without carbonic acid: Bedrock dissolution by gypsum-driven dedolomitization. Geology, 22(11): 995~998.
Cai Chunfang, Mei Bowen, Ma Ting, Zhao Hongjing, Fang Xiaolin. 1997. The source,distribution of organic acids in oilfield waters and their effects on mineral diagenesis in Tarim basin. Acta Sedimentologica Sinica, 15(3): 103~109 (in Chinese with English abstract).
Deng Chengkun, Li Ting, Yang Weiqiang, Zhang Xihua, Cheng Zhongzhen, Chen Haoru, Zhu Dancheng, Hu Liwen, Zou Huayao. 2022. Characteristics and main controlling factors of shoal reservoirs in the Middle-Upper Cambrian Xixiangchi Formation, central Sichuan basin. Journal of Palaeogeography, 24(2): 292~307 (in Chinese with English abstract).
Gao Jian, Li Huili, Cai Xunyu, Li Shuangjian, Liu Guangxiang, Yuan Songyu, Lin Juanhua, Li Zhi. 2023. Multi-stage hydrocarbon accumulation in Cambrian Xixiangchi Group, Pingqiao area, southeastern Sichuan and its implications for hydrocarbon exploration. Earth Science Frontiers, 30(6): 263~276 (in Chinese with English abstract).
Gu Mingfeng, Li Wenzheng, Zou Qian, Zhou Gang, Zhang Jianyong, Lü Xueju, Yan Wei, Li Kunyu, Luo Jing. 2020. Lithofacies palaeogeography and reservoir characteristics of the Cambrian Xixiangchi Formation in Sichuan basin. Marine Origin Petroleum Geology, 25(2): 162~170 (in Chinese with English abstract).
Guo Xusheng. 2019. Controlling factors on shale gas accumulations of Wufeng-Longmaxi Formation in Pingqiao shale gas field in Fuling area, Sichuan basin. Natural Gas Geoscience, 30(1): 1~10 (in Chinese with English abstract).
Hao Fang, Zhang Xuefeng, Wang Cunwu, Li Pingping, Guo Tonglou, Zou Huayao, Zhu Yangming, Liu Jianzhang, Cai Zhongxian. 2015. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan basin, China. Earth-Science Reviews, 141: 154~177.
He Junmin, Wang Xiaoyao, Sun Jianfang, Sun Xiaotong, Shi Jinxiong, Cao Dongsheng, Zeng Lianbo. 2019. Characteristics and main controlling factors of natural fractures in the lower-to-middle Ordovician carbonate reservoirs in Tahe area, northern Tarim basin. Oil & Gas Geology, 40(5): 1022~1030 (in Chinese with English abstract).
Heydari E. 2000. Porosity loss, fluid flow, and mass transfer in limestone reservoirs: Application to the Upper Jurassic Smackover Formation, Mississippi1. AAPG Bulletin, 84(1): 100~118.
Hu Mingyi, Cai Xirao, Hu Zhonggui, Qian Yong, Xiang Yuan. 2009. Deep buried dissolution of Ordovician carbonates in Tazhong area of Tarim basin. Journal of Oil and Gas Technology, 31(6): 49~54 (in Chinese with English abstract).
Hu Zhonggui, Wang Jixuan, Li Shilin, Guo Yanbo, Zuo Yunan, Pang Yulai. 2023. High-frequency sequence division and geological significance of dolomite-evaporite paragenetic strata of Cambrian Gaotai Formation in eastern Sichuan basin. Lithologic Reservoirs, 35(2): 113~124 (in Chinese with English abstract).
Huang Sijing. 2010. Carbonate Diagenisis. Beijing: Geological Publishing House (in Chinese with English abstract).
Jiang Yuqiang, Gu Yifan, Liu Jun, Deng Jigang, Zhang Haowei, Zhang Hang, Xu Yanxia. 2018. The evidence of hydrothermal activity and its significance of Permian-Tassic strata, eastern Longgang area, northeastern Sichuan basin. Acta Sedimentologica Sinica, 36(1): 1~11 (in Chinese with English abstract).
Jin Zhijun, Zhu Dongya, Hu Wenxuan, Zhang Xuefeng, Wang Yi, Yan Xiangbin. 2006. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim basin. Acta Geologica Sinica, 80(2): 245~253 (in Chinese with English abstract).
Klimchouk A B. 2013. 6. 19 hypogene speleogenesis. In: Shroder J F, ed. Treatise on Geomorphology. San Diego: Academic Press, 220~240.
Krouse H R, Viau C A, Eliuk L S, Ueda A, Halas S. 1988. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature, 333(6172): 415~419.
Li Pingping, Li Bisong, Duan Jinbao, Zhao Yizhen, Zou Huayao, Hao Fang. 2022. Sulfate sources of thermochemical sulfate reduction and hydrogen sulfide distributions in the Permian Changxing and Triassic Feixianguan Formations, Sichuan basin, SW China. Marine and Petroleum Geology, 145: 105892.
Li Wei, Fan Ru, Jia Peng, Lu Yuanzheng, Zhang Zhijie, Li Xin, Deng Shenghui. 2019. Sequence stratigraphy and lithofacies paleogeography of Middle-Upper Cambrian Xixiangchi Group in Sichuan basin and its adjacent area, SW China. Petroleum Exploration and Development, 46(2): 226~240 (in Chinese with English abstract).
Li Wenzheng, Zhou Jingao, Zhang Jianyong, Hao Yi, Zeng Yiyang, Ni Chao, Wang Fang, Tang Song. 2016. Main controlling factors and favorable zone distribution of Xixiangchi Formation reservoirs in the Sichuan basin. Natural Gas Industry, 36(1): 52~60 (in Chinese with English abstract).
Li Yingqiang, Gao Jian, Li Shuangjian, Hao Yunqing, Lin Juanhua, Sun Wei, Wu Chongyang, Ma Qiang, Wang Linlin. 2022. Hydrocarbon accumulation model and exploration prospect of the Xixiangchi Group of Middle-Upper Cambrian in the Sichuan basin. Natural Gas Industry, 42(3): 29~40 (in Chinese with English abstract).
Luo Jinglan, He Min, Pang Xiong, Li Chi, Liu Baojun, Lei Chuan, Ma Yongkun, Pang Jiang. 2019. Diagenetic response on thermal evolution events and high geothermal gradients in the southern Pear River Mouth basin and its enlightenment to hydrocarbon exploration. Acta Petrolei Sinica, 40(S1): 90~104 (in Chinese with English abstract).
Palmer A N. 2007. Cave Geology. Dayton: Cave Books.
Qian Yixiong, He Zhiliang, Li Guoeong, Dong Shaofeng, Peng Shoutao, Wo Yujin, Zhang Juntao, Jiao Cunli, Zhang Wentao. 2019. Evidence of multiepisode dissolution of meteoric fluids of the middle and upper Cambrian carbonate rocks of Sanhuichang outcrop, Nanchuan area, Chongqing. Journal of Palaeogeography, 21(2): 278~292 (in Chinese with English abstract).
Qin Zuopeng, Liu Shugen, Deng Bin, Li Zhiwu, Sun Wei. 2013. Multiphase structural features and evolution of southeast Sichuan tectonic belt in China. Journal of Chengdu University of Technology (Science & Technology Edition), 40(6): 703~711 (in Chinese with English abstract).
Raines M A, Dewers T A. 1997. Dedolomitization as a driving mechanism for karst generation in Permian blaine formation, southwestern Oklahoma, USA. Carbonates and Evaporites, 12(1): 24~31 (in Chinese with English abstract).
Schoenherr J, Reuning L, Hallenberger M, Lüders V, Lemmens L, Biehl B C, Lewin A, Leupold M, Wimmers K, Strohmenger C J. 2018. Dedolomitization: Review and case study of uncommon mesogenetic formation conditions. Earth-Science Reviews, 185: 780~805.
Seewald J S. 2003. Organic-inorganic interactions in petroleum-producing sedimentary basins. Nature, 426(6964): 327~333.
Shi Jinxiong, Zhao Xiangyuan, Pan Renfang, Zeng Lianbo, Zhu Zhengping. 2023. Characteristics of natural fractures in carbonate reservoirs and their impacts on well productivity in the Sinian Dengying Formation, central Sichuan basin. Oil & Gas Geology, 44(2): 393~405 (in Chinese with English abstract).
Shi Shuyuan, Hu Suyun, Wang Zecheng, Wen Long, Xu Zuxin, Liu Wei, Xie Wuren, Jiang Hua, Bian Congsheng, Liu Jingjiang, Lu Bin, Su Wang, Feng Qingfu, Zhou Gang, Hao Tao. 2022. Characteristics and exploration prospect of dolograinstone beach reservoir in Xixiangchi Formation, Cambrian, Sichuan basin. Petroleum Geology and Experiment, 44(3): 433~447, 475 (in Chinese with English abstract).
Sun Ziming, Sun Wei, Lin Juanhua, Qiang M A. 2021. Hydrocarbon accumulation conditions and main controlling factors of the Middle-Upper Cambrian Xixiangchi Group in the eastern Sichuan basin. Petroleum Geology and Experiment, 43(6): 933~940 (in Chinese with English abstract).
Tuo Xiusong, Chen Kongquan, Luo Shunshe, Tang Jiguang, Zhang Douzhong, Shen Junjun. 2020. Structural characteristics of Qiyueshan fault and shale gas preservation at the southeastern margin of Sichuan basin. Oil & Gas Geology, 41(5): 1017~1027 (in Chinese with English abstract).
Wang Guangwei. 2022. Dolomitization and dolomite pore formation: Insights from experimentally simulated replacement. Acta Sedimentologica Sinica, 42(2): 632~642 (in Chinese with English abstract).
Wen Huaguo, Liang Jintong, Zhou Gang, Qiu Yuchao, Liu Sibing, Li Kunyu, He Yuan, Chen Haoru. 2022. Sequence-based lithofacies paleogeography and favorable natural gas exploration areas of Cambrian Xixiangchi Formation in Sichuan basin and its periphery. Lithologic Reservoirs, 34(2): 1~16 (in Chinese with English abstract).
Yang Weiqiang, Zou Huayao, Li Ting, Hu Liwen, Deng Chengkun, Cheng Zhongzhen, Lan Caijun, Xu Zhehang, Chen Haoru, Lu Chaojin, Li Pingping. 2022. Factors influencing stylolite formation in the Cambrian Longwangmiao Formation, Sichuan basin, SW China. Journal of Petroleum Science and Engineering, 218: 110946.
Zeng Lianbo, Gong Lei, Zu Kewei, Tang Xiaomei, Wang Tiecheng, Wang Chenggang, Xu Wenguo. 2012. Influence factors on fracture validity of the Paleogene reservoir, western Qaidam basin. Acta Geologica Sinica, 86(11): 1809~1814 (in Chinese with English abstract).
Zhu Guangyou, Zhang Shuichang, Liang Yingbo, Ma Yongsheng, Dai Jinxing, Zhou Guoyuan. 2006. Dissolution and alteration of the deep carbonate reservoirs by TSR: An important type of deep-buried high-quality carbonate reservoirs in Sichuan basin. Acta Petrologica Sinica, 22(8): 2182~2194 (in Chinese with English abstract).
Zou Yutao, Duan Jinbao, Zhao Yanjun, Zhang Xin, Li Rangbin. 2015. Tectonic characteristics and evolution of the high and steep fault folding belt in east Sichuan. Acta Geologica Sinica, 89(11): 2043~2049 (in Chinese with English abstract).
蔡春芳, 梅博文, 马亭, 赵红静, 方孝林. 1997. 塔里木盆地有机酸来源、分布及对成岩作用的影响. 沉积学报, 15(3): 103~109.
邓成昆, 黎霆, 杨伟强, 张玺华, 程忠贞, 陈浩如, 诸丹诚, 胡力文, 邹华耀. 2022. 川中地区中上寒武统洗象池组颗粒滩储集层特征及主控因素. 古地理学报, 24(2): 292~307.
高键, 李慧莉, 何治亮, 蔡勋育, 李双建, 刘光祥, 袁玉松, 林娟华, 李智. 2023. 川东南平桥地区寒武系洗象池群多元复合成藏过程及其勘探启示. 地学前缘, 30(6): 263~276.
谷明峰, 李文正, 邹倩, 周刚, 张建勇, 吕学菊, 严威, 李堃宇, 罗静. 2020. 四川盆地寒武系洗象池组岩相古地理及储层特征. 海相油气地质, 25(2): 162~170.
郭旭升. 2019. 四川盆地涪陵平桥页岩气田五峰组——龙马溪组页岩气富集主控因素. 天然气地球科学, 30(1): 1~10.
赫俊民, 王小垚, 孙建芳, 孙小童, 史今雄, 曹东升, 曾联波. 2019. 塔里木盆地塔河地区中-下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素. 石油与天然气地质, 40(5): 1022~1030.
胡明毅, 蔡习尧, 胡忠贵, 钱勇, 向娟. 2009. 塔中地区奥陶系碳酸盐岩深部埋藏溶蚀作用研究. 石油天然气学报, 31(6): 49~54.
胡忠贵, 王纪煊, 李世临, 郭艳波, 左云安, 庞宇来. 2023. 川东地区寒武系高台组白云岩-蒸发岩共生地层高频层序划分及地质意义. 岩性油气藏, 35(2): 113~124.
黄思静. 2010. 碳酸盐岩的成岩作用. 北京: 地质出版社.
蒋裕强, 谷一凡, 刘均, 邓吉刚, 张洁伟, 张航, 徐艳霞. 2018. 川东北龙岗东地区二叠系—三叠系热液活动证据及意义. 沉积学报, 36(1): 1~11.
金之钧, 朱东亚, 胡文瑄, 张学丰, 王毅, 闫相宾. 2006. 塔里木盆地热液活动地质地球化学特征及其对储层影响. 地质学报, 80(2): 245~253.
李伟, 樊茹, 贾鹏, 卢远征, 张志杰, 李鑫, 邓胜徽. 2019. 四川盆地及周缘地区中上寒武统洗象池群层序地层与岩相古地理演化特征. 石油勘探与开发, 46(2): 226~240.
李文正, 周进高, 张建勇, 郝毅, 曾乙洋, 倪超, 王芳, 唐松. 2016. 四川盆地洗象池组储集层的主控因素与有利区分布. 天然气工业, 36(1): 52~60.
李英强, 高键, 李双建, 郝运轻, 林娟华, 孙炜, 武重阳, 马强, 王琳霖. 2022. 四川盆地中—上寒武统洗象池群油气成藏模式与勘探前景. 天然气工业, 42(3): 29~40.
罗静兰, 何敏, 庞雄, 李弛, 柳保军, 雷川, 马永坤, 庞江. 2019. 珠江口盆地南部热演化事件与高地温梯度的成岩响应及其对油气勘探的启示. 石油学报, 40(S1): 90~104.
钱一雄, 何治亮, 李国蓉, 董少峰, 彭守涛, 沃玉进, 张军涛, 焦存礼, 张文涛. 2019. 重庆南川三汇场寒武系碳酸盐岩中不同期次大气淡水作用的证据. 古地理学报, 21(2): 278~292.
石书缘, 胡素云, 汪泽成, 文龙, 徐祖新, 刘伟, 谢武仁, 姜华, 卞从胜, 刘静江, 陆彬, 苏旺, 冯庆付, 周刚, 郝涛. 2022. 四川盆地寒武系洗象池组滩相白云岩规模储层发育特征及勘探意义. 石油实验地质, 44(3): 433~447, 475.
史今雄, 赵向原, 潘仁芳, 曾联波, 朱正平. 2023. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响. 石油与天然气地质, 44(2): 393~405.
孙自明, 孙炜, 林娟华, 马强. 2021. 四川盆地东部中上寒武统洗象池群油气成藏条件与主控因素. 石油实验地质, 43(6): 933~940.
覃作鹏, 刘树根, 邓宾, 李智武, 孙玮. 2013. 川东南构造带中新生代多期构造特征及演化. 成都理工大学学报(自然科学版), 40(6): 703~711.
庹秀松, 陈孔全, 罗顺社, 汤济广, 张斗中, 沈均均. 2020. 四川盆地东南缘齐岳山断裂构造特征与页岩气保存条件. 石油与天然气地质, 41(5): 1017~1027.
王广伟. 2022. 白云岩化作用与白云岩孔隙的形成——来自实验模拟交代反应的启示. 沉积学报, 42(2): 632~642.
文华国, 梁金同, 周刚, 邱玉超, 刘四兵, 李堃宇, 和源, 陈浩如. 2022. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带. 岩性油气藏, 34(2): 1~16.
曾联波, 巩磊, 祖克威, 唐小梅, 王铁成, 王成刚, 许文国. 2012. 柴达木盆地西部古近系储层裂缝有效性的影响因素. 地质学报, 86(11): 1809~1814.
朱光有, 张水昌, 梁英波, 马永生, 戴金星, 周国源. 2006. TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式. 岩石学报, 22(8): 2182~2194.
邹玉涛, 段金宝, 赵艳军, 张新, 李让彬. 2015. 川东高陡断褶带构造特征及其演化. 地质学报, 89(11): 2043~2049.
图(11)
手机扫码阅读
引用本文
刘晨虎,杨明磊,诸丹诚,杨伟强,陈凡卓,邹华耀.2025.川东南平桥地区寒武系洗象池群断层流体溶蚀- 沉淀作用对白云岩储层的影响[J].地质学报,99(3):865-878.
复制

LIU Chenhu, YANG Minglei, ZHU Dancheng, YANG Weiqiang, CHEN Fanzhuo, ZOU Huayao.2025.The influence of dissolution- precipitation driven by fault- transported fluids on the development of dolostone reservoirs in the Cambrian Xixiangchi Group at Pingqiao area of the eastern Sichuan basin[J].Acta Geologica Sinica,99(3):865-878.
Copy
计量
文章访问量: 55
HTML全文浏览量: 13
PDF下载量: 99
1平桥区块位置图及洗象池群顶面构造图(a);过PQ1井构造解释地震剖面图(b)(剖面位置见图1a中A—A′); 川东南地区下古生界地层综合柱状图(c)(据孙自明等,2021修改)
Fig.1Top structural map of the Xixiangchi Group in the Pingqiao area (a) ; the seismic profile in the study area (b) (the profile position shown in Fig.1a; comprehensive column of the Lower Paleozoic in the eastern Sichuan basin (c) (modified from Sun Ziming et al., 2021)
2川东南平桥地区洗象池群断层流体溶蚀-沉淀岩芯特征
Fig.2Dissolution and filling characteristics of fault fluid in the Xixiangchi Group of the Pingqiao area, the eastern Sichuan basin
3川东南平桥地区洗象池群断层流体溶蚀-沉淀薄片特征
Fig.3Dissolution and filling characteristics of fault fluid on thin sections of the Xixiangchi Group in the Pingqiao area, the eastern Sichuan basin
4川东南平桥地区PQ2井取芯段裂缝和溶蚀孔洞及其充填胶结物发育特征
Fig.4Characteristics of fractures, dissolved pores and filling cements in the well PQ2 in the Pingqiao area, the eastern Sichuan basin
5川东南平桥地区PQ1井和PQ2井裂缝和溶蚀孔隙及其充填胶结物分布特征
Fig.5Distribution of fractures,dissolved pores and filling cements of wells PQ 1 and PQ 2 in the Pingqiao area,the eastern Sichuan basin
6平桥地区洗象池群孔隙度与石膏含量交汇图及其分布直方图
Fig.6Cross plot and histograms of porosity and gypsum content of the Xixiangchi Group in the Pingqiao area
7平桥地区洗象池群裂缝线密度(a)和裂缝充填比例(b)分布直方图
Fig.7Histogram of fracture linear density (a) and fracture filling ratio (b) of the Xixiangchi Group in the Pingqiao area
8平桥地区PQ2井洗象池群裂缝成像测井特征
Fig.8Characteristics of fractures in image logs of the Xixiangchi Group in the well PQ2, Pingqiao area
9平桥地区PQ1井和PQ2井洗象池群孔隙及裂缝中方解石(a)和硬石膏(b)流体包裹体均一温度直方图和显微特征
Fig.9Histograms of homogeneous temperature and microscopic characteristics of fluid inclusions in calcite (a) and anhydrite (b) cements filling in pores and fractures of the Xixiangchi Group in wells PQ1 and PQ2, Pingqiao area
10平桥地区PQ1井埋藏-热演化史及胶结物沉淀时间
Fig.10Burial and thermal histories and the formation of cementation in the well PQ1 of the Pingqiao area
11平桥地区构造演化及洗象池群颗粒白云岩孔隙差异演化模式
Fig.11Tectonic histories and differential evolution of porosity in the dolograinstone of the Xixiangchi Group in the Pingqiao area
Barth T, Bjorlykke K. 1993. Organic acids from source rock maturation; Generation potentials, transport mechanisms and relevance for mineral diagenesis. Applied Geochemistry, 8(4): 325~337.
Bischoff J L, Julia R, Shanks W C I, Rosenbauer R J. 1994. Karstification without carbonic acid: Bedrock dissolution by gypsum-driven dedolomitization. Geology, 22(11): 995~998.
Cai Chunfang, Mei Bowen, Ma Ting, Zhao Hongjing, Fang Xiaolin. 1997. The source,distribution of organic acids in oilfield waters and their effects on mineral diagenesis in Tarim basin. Acta Sedimentologica Sinica, 15(3): 103~109 (in Chinese with English abstract).
Deng Chengkun, Li Ting, Yang Weiqiang, Zhang Xihua, Cheng Zhongzhen, Chen Haoru, Zhu Dancheng, Hu Liwen, Zou Huayao. 2022. Characteristics and main controlling factors of shoal reservoirs in the Middle-Upper Cambrian Xixiangchi Formation, central Sichuan basin. Journal of Palaeogeography, 24(2): 292~307 (in Chinese with English abstract).
Gao Jian, Li Huili, Cai Xunyu, Li Shuangjian, Liu Guangxiang, Yuan Songyu, Lin Juanhua, Li Zhi. 2023. Multi-stage hydrocarbon accumulation in Cambrian Xixiangchi Group, Pingqiao area, southeastern Sichuan and its implications for hydrocarbon exploration. Earth Science Frontiers, 30(6): 263~276 (in Chinese with English abstract).
Gu Mingfeng, Li Wenzheng, Zou Qian, Zhou Gang, Zhang Jianyong, Lü Xueju, Yan Wei, Li Kunyu, Luo Jing. 2020. Lithofacies palaeogeography and reservoir characteristics of the Cambrian Xixiangchi Formation in Sichuan basin. Marine Origin Petroleum Geology, 25(2): 162~170 (in Chinese with English abstract).
Guo Xusheng. 2019. Controlling factors on shale gas accumulations of Wufeng-Longmaxi Formation in Pingqiao shale gas field in Fuling area, Sichuan basin. Natural Gas Geoscience, 30(1): 1~10 (in Chinese with English abstract).
Hao Fang, Zhang Xuefeng, Wang Cunwu, Li Pingping, Guo Tonglou, Zou Huayao, Zhu Yangming, Liu Jianzhang, Cai Zhongxian. 2015. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan basin, China. Earth-Science Reviews, 141: 154~177.
He Junmin, Wang Xiaoyao, Sun Jianfang, Sun Xiaotong, Shi Jinxiong, Cao Dongsheng, Zeng Lianbo. 2019. Characteristics and main controlling factors of natural fractures in the lower-to-middle Ordovician carbonate reservoirs in Tahe area, northern Tarim basin. Oil & Gas Geology, 40(5): 1022~1030 (in Chinese with English abstract).
Heydari E. 2000. Porosity loss, fluid flow, and mass transfer in limestone reservoirs: Application to the Upper Jurassic Smackover Formation, Mississippi1. AAPG Bulletin, 84(1): 100~118.
Hu Mingyi, Cai Xirao, Hu Zhonggui, Qian Yong, Xiang Yuan. 2009. Deep buried dissolution of Ordovician carbonates in Tazhong area of Tarim basin. Journal of Oil and Gas Technology, 31(6): 49~54 (in Chinese with English abstract).
Hu Zhonggui, Wang Jixuan, Li Shilin, Guo Yanbo, Zuo Yunan, Pang Yulai. 2023. High-frequency sequence division and geological significance of dolomite-evaporite paragenetic strata of Cambrian Gaotai Formation in eastern Sichuan basin. Lithologic Reservoirs, 35(2): 113~124 (in Chinese with English abstract).
Huang Sijing. 2010. Carbonate Diagenisis. Beijing: Geological Publishing House (in Chinese with English abstract).
Jiang Yuqiang, Gu Yifan, Liu Jun, Deng Jigang, Zhang Haowei, Zhang Hang, Xu Yanxia. 2018. The evidence of hydrothermal activity and its significance of Permian-Tassic strata, eastern Longgang area, northeastern Sichuan basin. Acta Sedimentologica Sinica, 36(1): 1~11 (in Chinese with English abstract).
Jin Zhijun, Zhu Dongya, Hu Wenxuan, Zhang Xuefeng, Wang Yi, Yan Xiangbin. 2006. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim basin. Acta Geologica Sinica, 80(2): 245~253 (in Chinese with English abstract).
Klimchouk A B. 2013. 6. 19 hypogene speleogenesis. In: Shroder J F, ed. Treatise on Geomorphology. San Diego: Academic Press, 220~240.
Krouse H R, Viau C A, Eliuk L S, Ueda A, Halas S. 1988. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature, 333(6172): 415~419.
Li Pingping, Li Bisong, Duan Jinbao, Zhao Yizhen, Zou Huayao, Hao Fang. 2022. Sulfate sources of thermochemical sulfate reduction and hydrogen sulfide distributions in the Permian Changxing and Triassic Feixianguan Formations, Sichuan basin, SW China. Marine and Petroleum Geology, 145: 105892.
Li Wei, Fan Ru, Jia Peng, Lu Yuanzheng, Zhang Zhijie, Li Xin, Deng Shenghui. 2019. Sequence stratigraphy and lithofacies paleogeography of Middle-Upper Cambrian Xixiangchi Group in Sichuan basin and its adjacent area, SW China. Petroleum Exploration and Development, 46(2): 226~240 (in Chinese with English abstract).
Li Wenzheng, Zhou Jingao, Zhang Jianyong, Hao Yi, Zeng Yiyang, Ni Chao, Wang Fang, Tang Song. 2016. Main controlling factors and favorable zone distribution of Xixiangchi Formation reservoirs in the Sichuan basin. Natural Gas Industry, 36(1): 52~60 (in Chinese with English abstract).
Li Yingqiang, Gao Jian, Li Shuangjian, Hao Yunqing, Lin Juanhua, Sun Wei, Wu Chongyang, Ma Qiang, Wang Linlin. 2022. Hydrocarbon accumulation model and exploration prospect of the Xixiangchi Group of Middle-Upper Cambrian in the Sichuan basin. Natural Gas Industry, 42(3): 29~40 (in Chinese with English abstract).
Luo Jinglan, He Min, Pang Xiong, Li Chi, Liu Baojun, Lei Chuan, Ma Yongkun, Pang Jiang. 2019. Diagenetic response on thermal evolution events and high geothermal gradients in the southern Pear River Mouth basin and its enlightenment to hydrocarbon exploration. Acta Petrolei Sinica, 40(S1): 90~104 (in Chinese with English abstract).
Palmer A N. 2007. Cave Geology. Dayton: Cave Books.
Qian Yixiong, He Zhiliang, Li Guoeong, Dong Shaofeng, Peng Shoutao, Wo Yujin, Zhang Juntao, Jiao Cunli, Zhang Wentao. 2019. Evidence of multiepisode dissolution of meteoric fluids of the middle and upper Cambrian carbonate rocks of Sanhuichang outcrop, Nanchuan area, Chongqing. Journal of Palaeogeography, 21(2): 278~292 (in Chinese with English abstract).
Qin Zuopeng, Liu Shugen, Deng Bin, Li Zhiwu, Sun Wei. 2013. Multiphase structural features and evolution of southeast Sichuan tectonic belt in China. Journal of Chengdu University of Technology (Science & Technology Edition), 40(6): 703~711 (in Chinese with English abstract).
Raines M A, Dewers T A. 1997. Dedolomitization as a driving mechanism for karst generation in Permian blaine formation, southwestern Oklahoma, USA. Carbonates and Evaporites, 12(1): 24~31 (in Chinese with English abstract).
Schoenherr J, Reuning L, Hallenberger M, Lüders V, Lemmens L, Biehl B C, Lewin A, Leupold M, Wimmers K, Strohmenger C J. 2018. Dedolomitization: Review and case study of uncommon mesogenetic formation conditions. Earth-Science Reviews, 185: 780~805.
Seewald J S. 2003. Organic-inorganic interactions in petroleum-producing sedimentary basins. Nature, 426(6964): 327~333.
Shi Jinxiong, Zhao Xiangyuan, Pan Renfang, Zeng Lianbo, Zhu Zhengping. 2023. Characteristics of natural fractures in carbonate reservoirs and their impacts on well productivity in the Sinian Dengying Formation, central Sichuan basin. Oil & Gas Geology, 44(2): 393~405 (in Chinese with English abstract).
Shi Shuyuan, Hu Suyun, Wang Zecheng, Wen Long, Xu Zuxin, Liu Wei, Xie Wuren, Jiang Hua, Bian Congsheng, Liu Jingjiang, Lu Bin, Su Wang, Feng Qingfu, Zhou Gang, Hao Tao. 2022. Characteristics and exploration prospect of dolograinstone beach reservoir in Xixiangchi Formation, Cambrian, Sichuan basin. Petroleum Geology and Experiment, 44(3): 433~447, 475 (in Chinese with English abstract).
Sun Ziming, Sun Wei, Lin Juanhua, Qiang M A. 2021. Hydrocarbon accumulation conditions and main controlling factors of the Middle-Upper Cambrian Xixiangchi Group in the eastern Sichuan basin. Petroleum Geology and Experiment, 43(6): 933~940 (in Chinese with English abstract).
Tuo Xiusong, Chen Kongquan, Luo Shunshe, Tang Jiguang, Zhang Douzhong, Shen Junjun. 2020. Structural characteristics of Qiyueshan fault and shale gas preservation at the southeastern margin of Sichuan basin. Oil & Gas Geology, 41(5): 1017~1027 (in Chinese with English abstract).
Wang Guangwei. 2022. Dolomitization and dolomite pore formation: Insights from experimentally simulated replacement. Acta Sedimentologica Sinica, 42(2): 632~642 (in Chinese with English abstract).
Wen Huaguo, Liang Jintong, Zhou Gang, Qiu Yuchao, Liu Sibing, Li Kunyu, He Yuan, Chen Haoru. 2022. Sequence-based lithofacies paleogeography and favorable natural gas exploration areas of Cambrian Xixiangchi Formation in Sichuan basin and its periphery. Lithologic Reservoirs, 34(2): 1~16 (in Chinese with English abstract).
Yang Weiqiang, Zou Huayao, Li Ting, Hu Liwen, Deng Chengkun, Cheng Zhongzhen, Lan Caijun, Xu Zhehang, Chen Haoru, Lu Chaojin, Li Pingping. 2022. Factors influencing stylolite formation in the Cambrian Longwangmiao Formation, Sichuan basin, SW China. Journal of Petroleum Science and Engineering, 218: 110946.
Zeng Lianbo, Gong Lei, Zu Kewei, Tang Xiaomei, Wang Tiecheng, Wang Chenggang, Xu Wenguo. 2012. Influence factors on fracture validity of the Paleogene reservoir, western Qaidam basin. Acta Geologica Sinica, 86(11): 1809~1814 (in Chinese with English abstract).
Zhu Guangyou, Zhang Shuichang, Liang Yingbo, Ma Yongsheng, Dai Jinxing, Zhou Guoyuan. 2006. Dissolution and alteration of the deep carbonate reservoirs by TSR: An important type of deep-buried high-quality carbonate reservoirs in Sichuan basin. Acta Petrologica Sinica, 22(8): 2182~2194 (in Chinese with English abstract).
Zou Yutao, Duan Jinbao, Zhao Yanjun, Zhang Xin, Li Rangbin. 2015. Tectonic characteristics and evolution of the high and steep fault folding belt in east Sichuan. Acta Geologica Sinica, 89(11): 2043~2049 (in Chinese with English abstract).
蔡春芳, 梅博文, 马亭, 赵红静, 方孝林. 1997. 塔里木盆地有机酸来源、分布及对成岩作用的影响. 沉积学报, 15(3): 103~109.
邓成昆, 黎霆, 杨伟强, 张玺华, 程忠贞, 陈浩如, 诸丹诚, 胡力文, 邹华耀. 2022. 川中地区中上寒武统洗象池组颗粒滩储集层特征及主控因素. 古地理学报, 24(2): 292~307.
高键, 李慧莉, 何治亮, 蔡勋育, 李双建, 刘光祥, 袁玉松, 林娟华, 李智. 2023. 川东南平桥地区寒武系洗象池群多元复合成藏过程及其勘探启示. 地学前缘, 30(6): 263~276.
谷明峰, 李文正, 邹倩, 周刚, 张建勇, 吕学菊, 严威, 李堃宇, 罗静. 2020. 四川盆地寒武系洗象池组岩相古地理及储层特征. 海相油气地质, 25(2): 162~170.
郭旭升. 2019. 四川盆地涪陵平桥页岩气田五峰组——龙马溪组页岩气富集主控因素. 天然气地球科学, 30(1): 1~10.
赫俊民, 王小垚, 孙建芳, 孙小童, 史今雄, 曹东升, 曾联波. 2019. 塔里木盆地塔河地区中-下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素. 石油与天然气地质, 40(5): 1022~1030.
胡明毅, 蔡习尧, 胡忠贵, 钱勇, 向娟. 2009. 塔中地区奥陶系碳酸盐岩深部埋藏溶蚀作用研究. 石油天然气学报, 31(6): 49~54.
胡忠贵, 王纪煊, 李世临, 郭艳波, 左云安, 庞宇来. 2023. 川东地区寒武系高台组白云岩-蒸发岩共生地层高频层序划分及地质意义. 岩性油气藏, 35(2): 113~124.
黄思静. 2010. 碳酸盐岩的成岩作用. 北京: 地质出版社.
蒋裕强, 谷一凡, 刘均, 邓吉刚, 张洁伟, 张航, 徐艳霞. 2018. 川东北龙岗东地区二叠系—三叠系热液活动证据及意义. 沉积学报, 36(1): 1~11.
金之钧, 朱东亚, 胡文瑄, 张学丰, 王毅, 闫相宾. 2006. 塔里木盆地热液活动地质地球化学特征及其对储层影响. 地质学报, 80(2): 245~253.
李伟, 樊茹, 贾鹏, 卢远征, 张志杰, 李鑫, 邓胜徽. 2019. 四川盆地及周缘地区中上寒武统洗象池群层序地层与岩相古地理演化特征. 石油勘探与开发, 46(2): 226~240.
李文正, 周进高, 张建勇, 郝毅, 曾乙洋, 倪超, 王芳, 唐松. 2016. 四川盆地洗象池组储集层的主控因素与有利区分布. 天然气工业, 36(1): 52~60.
李英强, 高键, 李双建, 郝运轻, 林娟华, 孙炜, 武重阳, 马强, 王琳霖. 2022. 四川盆地中—上寒武统洗象池群油气成藏模式与勘探前景. 天然气工业, 42(3): 29~40.
罗静兰, 何敏, 庞雄, 李弛, 柳保军, 雷川, 马永坤, 庞江. 2019. 珠江口盆地南部热演化事件与高地温梯度的成岩响应及其对油气勘探的启示. 石油学报, 40(S1): 90~104.
钱一雄, 何治亮, 李国蓉, 董少峰, 彭守涛, 沃玉进, 张军涛, 焦存礼, 张文涛. 2019. 重庆南川三汇场寒武系碳酸盐岩中不同期次大气淡水作用的证据. 古地理学报, 21(2): 278~292.
石书缘, 胡素云, 汪泽成, 文龙, 徐祖新, 刘伟, 谢武仁, 姜华, 卞从胜, 刘静江, 陆彬, 苏旺, 冯庆付, 周刚, 郝涛. 2022. 四川盆地寒武系洗象池组滩相白云岩规模储层发育特征及勘探意义. 石油实验地质, 44(3): 433~447, 475.
史今雄, 赵向原, 潘仁芳, 曾联波, 朱正平. 2023. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响. 石油与天然气地质, 44(2): 393~405.
孙自明, 孙炜, 林娟华, 马强. 2021. 四川盆地东部中上寒武统洗象池群油气成藏条件与主控因素. 石油实验地质, 43(6): 933~940.
覃作鹏, 刘树根, 邓宾, 李智武, 孙玮. 2013. 川东南构造带中新生代多期构造特征及演化. 成都理工大学学报(自然科学版), 40(6): 703~711.
庹秀松, 陈孔全, 罗顺社, 汤济广, 张斗中, 沈均均. 2020. 四川盆地东南缘齐岳山断裂构造特征与页岩气保存条件. 石油与天然气地质, 41(5): 1017~1027.
王广伟. 2022. 白云岩化作用与白云岩孔隙的形成——来自实验模拟交代反应的启示. 沉积学报, 42(2): 632~642.
文华国, 梁金同, 周刚, 邱玉超, 刘四兵, 李堃宇, 和源, 陈浩如. 2022. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带. 岩性油气藏, 34(2): 1~16.
曾联波, 巩磊, 祖克威, 唐小梅, 王铁成, 王成刚, 许文国. 2012. 柴达木盆地西部古近系储层裂缝有效性的影响因素. 地质学报, 86(11): 1809~1814.
朱光有, 张水昌, 梁英波, 马永生, 戴金星, 周国源. 2006. TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式. 岩石学报, 22(8): 2182~2194.
邹玉涛, 段金宝, 赵艳军, 张新, 李让彬. 2015. 川东高陡断褶带构造特征及其演化. 地质学报, 89(11): 2043~2049.