稀土稀有稀散元素现代仪器测试全新方法的建立

屈文俊1),王登红2),朱云1),樊兴涛1),李超1),温宏利1)

1) 国家地质实验测试中心,北京,100037;

2)自然资源部成矿作用与资源评价重点实验室,中国地质科学院矿产资源研究所,北京,100037

内容提要:本文系统总结了自 2011 年以来在三稀矿产实验测试方面取得的新进展。重点介绍了离子相稀土 单元素浸泡提取实验研究、稀土原产地 Nd 同位素与微量元素示踪技术研究、离子吸附型稀土样品野外现场快速定 性定量手持 X 射线荧光(XRF)分析研究成果。结果表明,采用 2.5%硫酸铵浸泡提取,电感耦合等离子体无、质谱 (ICP-AES,ICP-MS)测定,可以清晰反映出各稀土元素的浸泡提取率;采用高精度多接收电感耦合等离子体质谱仪 (MC-ICP-MS)进行稀土矿石中 Nd¹⁴³/Nd¹⁴⁴同位素比值测定,其比值差异可以示踪不同稀土矿石产地;通过精确测 试分析不同产地稀土精矿样品中的稀土和其他微量元素含量,并进行数据相关性分析和数据分类分析,通过 Y、Be 和 Bi 三种元素含量的比较,可以判断稀土精矿来源;野外现场快速分析,20 分钟可完成 1 件样品测试,不仅可定性 判断是否为离子吸附型稀土,同时可定量各离子相稀土单元素含量,与室内精确分析结果符合性良好,可为我国离 子吸附型稀土矿床的找矿快速筛查提供技术支撑。同时介绍了混合酸微波分解样品-电感耦合等离子体光、质谱 (ICP-AES,ICP-MS)同时测定钨矿石、钼矿石、铌钽矿石中的多种稀有稀散稀土元素含量的方案。该方案的特点在 于采用了耐氢氟酸体系,尤其对高含量 W、Nb、Ta 样品更具优势,否则易产生水解,导致测定结果系统偏低。同时 梳理总结了我国常见三稀矿石地质样品的特点,针对不同矿种、不同矿床样品类型与基体特点,以及所测试元素种 类的不同,研究建立了专门针对"稀有、稀散、稀土元素"现代仪器分析的 10 个全新的配套方法及其相应的技术指 标(准确度、精密度、检出限),可满足地质矿产实验室测试质量管理的规范要求,而且为我国三稀金属矿产资源的 战略调查、国家重点研发计划"深地锂资源探测"和四川甲基卡等地找矿突破做出了贡献。

关键词:稀有稀土稀散元素;实验测试方法;电感耦合等离子体质谱;电感耦合等离子体光谱;微波消解

稀有、稀土、稀散元素(简称三稀元素, critical elements)独特的物理、化学性质决定了其在高科技 领域中的广泛应用前景(Cristian et al., 2018),因而 也是地质学家关注的热点(Wang Denghong et al., 2013; Lin Ronghong et al., 2018; Wang Chenghui et al., 2018)。而无论是从资源评价、综合利用、环 境保护的需要,还是从矿政管理的角度考虑,均离不 开室内精确分析及现场快速分析的实验测试手段。 目前的现状是针对三稀元素测定的行业及国家标准 分析方法大多数还是上世纪八十或九十年代颁布 的,规定的方法主要是经过化学手段分离后采用重 量法、容量法、比色法等经典化学分析方法,或是用 原子吸收光谱仪、火焰光度计、极谱仪等单元素分析 仪器进行逐个元素的测定。

例如,代替 GB/T 17415—1998 钽铌矿石化学 分析方法的新国标(GB/T 17415—2010),仍然规定 采用硅胶富集分离-丁基罗丹明 B 光度法测定钽量, 硅胶富集分离-硫氰酸盐光度法测定铌量,并且方法 也适用于锂、铷、铯矿石。这些分析方法,流程冗长, 同时还是单元素测定,并且痕量元素测定能力差,另 外在分析过程中除使用常规的酸碱之外还需使用大 量的其他化学试剂,不仅不利于环保,而且效率较

引用本文:屈文俊,王登红,朱云,樊兴涛,李超,温宏利.2019.稀土稀有稀散元素现代仪器测试全新方法的建立.地质学报,93(6):1514 ~1522,doi: 10.19762/j.cnki.dizhixuebao.2019085.

Qu Wenjun, Wang Denghong, Zhu Yun, Fan Xingtao, Li Chao, Wen Hongli. 2019. Establishment of new method for critical elements determination using modern analytical instruments. Acta Geologica Sinica, 93(6): 1514~1522.

注:本文为国家重点研发计划"深地资源勘查开发"专项"锂能源金属矿产基地深部探测技术示范"项目(编号 2017YFC0602700)"我国锂 能源金属成矿规律、靶区优选与重点查证"课题(编号 2017YFC0602701)和中国地质调查局项目(编号 1212011220804、1212011220809、 DD20160055)联合资助成果。

收稿日期:2019-05-04;改回日期:2019-05-29;网络发表日期:2019-05-30;责任编辑:周健。

作者简介:屈文俊,男,1964年生。现为国家地质实验测试中心研究员,主要从事岩石矿物测试技术及同位素地球化学研究。Email: quwenjun@sina.com。

低,显然不能满足批量样品测试要求。

与之形成鲜明对比的是,随着科技的进步及计 算机技术的发展,具有灵敏度高、精密度好、抗干扰 能力强且具备多元素同时分析特点的电感耦合等离 子体质谱仪(ICP-MS)、电感耦合等离子体光谱仪 (ICP-AES)以及 X 射线荧光光谱仪(XRF)等三大 现代化的分析仪器,已经成为目前国际地质分析实 验室的主流。当然,这些技术手段的推广采用,需要 提出相应的技术要求和实验方法,同时也需要地质 勘查的行业规范改进。如,稀土元素的测定,实验室 可以精确给出的是单个元素的含量,但《稀土矿产地 质勘查规范》仍然要求计算稀土总量、轻稀土和重稀 土的资源储量,导致重稀土被混杂在轻稀土中,造成 珍贵的关键矿产资源要么浪费,要么被低价出口;实 验室已经研究出野外现场测试方法,也由于与勘查 规范不衔接而难以推广适用(Wang Denghong et al.,2013a, 2013b)

本文系统总结了自 2011 年来在三稀矿产实验 测试方面取得的新进展。重点介绍了离子相稀土单 元素浸泡提取实验研究、稀土原产地 Nd 同位素与 微量元素示踪技术研究、离子吸附型稀土样品野外 现场快速定性定量手持 X 射线荧光(XRF)分析研 究成果以及矿石样品中三稀元素现代仪器测试 方案。

浸泡提取离子吸附型稀土离子相单 元素实验研究

研究主要目的是以离子吸附型稀土样品为实验 对象,用硫酸铵溶液浸泡样品,采用 ICP-MS 测试浸 出液中的各稀土元素的含量,可计算出样品中各离 子相稀土元素含量,并与经过全溶解过程所测出的 样品中各稀土元素总量进行对比,从而得到各稀土 元素的浸泡率,为离子吸附型稀土矿床(iRee)的勘 查评价与开发利用提供最重要的基础数据(Zhao Zhi et al.,2017; Wang Denghong et al.,2018)。

通过确定浸泡固液比值、称样量、硫酸铵浓度、 振荡时间对比等条件实验,本研究拟定浸泡实验条 件如下:样品称样量为 4.0 g、浸泡液为 2.5 % $(NH4)_2SO_4溶液、固液比 1:8。实验流程如下:称$ $取 4.0 g 样品,加入 32 mL、2.5 % (NH4)_2SO_4溶$ 液,摇晃均匀后静置 24 h。取 1 mL 上清液,加入 9mL 5 % HNO₃溶液稀释,上机测定溶液中稀土元素含量。实验过程中需带有不少于两个流程空白。

表1为样品的各稀土元素的浸泡和总量结果, 从中可以清晰反映出各稀土元素的浸泡提取率,从 而为深入研究样品风化程度和矿床成因以及对离子 相轻重稀土元素含量精确评价提供参考。

样号	样号 LJ001-H1			LJ001-H2			L	J001-H	[3	L	J001-H	I 4	LJ001-H5			LJ001-H6		
	浸泡量	总量	浸泡率 (%)	浸泡量	总量	浸泡率 (%)	浸泡量	总量	浸泡率 (%)	浸泡量	总量	浸泡率 (%)	浸泡量	总量	浸泡率 (%)	浸泡量	总量	浸泡率 (%)
Sc	0.1	11.2	1.1	0.0	9.7	0.2	0.0	17.4	0.1	0.0	13.2	0.2	0.0	12.4	0.1	0.0	15.1	0.1
Y	8.7	9.1	95.6	8.1	8.3	97.5	18.7	41.9	44.6	38.7	83.2	46.5	87.7	123	71.3	75.9	145	52.3
La	48.5	52.9	91.7	129	123	105	368	433	85.0	523	534	97.9	731	620	118	637	888	71.7
Ce	49.4	129	38.3	17.0	69.1	24.6	14.3	299	4.8	9.6	184	5.2	8.0	162	4.9	4.0	208	1.9
Pr	15.3	13.7	112	36.9	43.2	85.4	89.1	132	67.5	96.5	132	73.1	124	137	90.5	153	201	76.1
Nd	58.7	120	48.9	143	270	53.0	328	795	41.3	332	739	44.9	428	739	57.9	516	1092	47.3
Sm	5.7	6.1	93.3	11.6	11.9	97.5	32.5	42.6	76.3	40.4	51.0	79.2	63.8	58.0	110	75.6	88.5	85.4
Eu	1.1	0.8	126	1.7	1.3	133	5.3	5.3	100	8.1	8.6	94.5	14.6	10.9	134	16.5	15.7	105
Gd	3.6	4.2	84.7	4.1	6.9	59.4	14.4	25.3	56.9	27.8	39.7	70.0	53.5	51.8	103	57.1	69.6	82.0
Tb	0.5	0.6	84.2	0.4	0.7	58.1	1.1	2.4	46.7	2.3	3.9	59.0	5.2	5.4	95.2	4.8	6.9	70.7
Dy	3.0	2.6	114	3.7	3.2	116	8.6	9.9	87.0	13.8	16.9	81.7	29.2	24.6	119	27.2	31.7	85.8
Ho	0.5	0.5	102	0.5	0.5	98.0	1.3	1.6	80.6	2.2	2.9	75.1	5.0	4.4	114	4.4	5.5	81.1
Er	1.8	1.9	94.1	2.2	2.2	101	5.2	6.1	84.6	7.2	9.5	75.4	14.8	13.4	110	13.6	16.7	81.4
Tm	0.2	0.3	63.3	0.2	0.3	55.2	0.4	0.8	51.3	0.6	1.2	47.5	1.5	1.8	84.6	1.2	2.2	54.5
Yb	1.1	2.2	49.6	0.9	2.1	42.3	2.0	5.1	40.1	2.6	7.6	34.1	6.5	9.9	65.8	5.5	12.8	42.8
Lu	0.1	0.4	34.1	0.1	0.4	29.7	0.3	0.8	30.9	0.3	1.1	30.2	0.9	1.4	62.3	0.7	1.8	36.8
Σ	198	355	55.7	359	552	65.0	889	1818	48.9	1105	1828	60.5	1574	1975	79.7	1592	2800	56.9

表 1 样品的各稀土元素(×10⁻⁻⁶)的浸泡和总量结果

Table 1	Results of soaking and total content for individual rare earth elements ($ imes$	10^{-6}
---------	---	-----------

注: Σ对应"浸泡量"或"总量"为样品各稀土元素浸泡量或总量的加和;对应"浸泡率"为样品中稀土元素平均浸泡率,浸泡率=(浸泡量/总量) ×100。

2 稀土原产地同位素与微量元素示踪 技术方法研究

不同产地稀土样品的成矿时代与成矿地质条件 不同,因此,不同矿区矿石及矿产品中所记录的由母 体衰变产生的放射性子体的同位素组成也是不一致 的;同时,各产地样品稀土的配分曲线也有所差异, 具有指纹效应。根据这一地质规律,可以通过建立 "同位素+稀土元素配分模式"来示踪稀土样品的来 源,不但可以分析稀土矿产品的质量,研究稀土矿床 的成因,而且可以追踪商业流通渠道中稀土矿产品 的源头,为矿政管理(尤其是追踪稀土走私的源头) 提供科学依据。比如,内蒙古的白云鄂博和四川的 牦牛坪都是轻稀土矿床,但白云鄂博是元古宙形成 的矿床,记录下了元古宙的成因信息;而牦牛坪是新 生代形成的,记录的是新生代的同位素信息,二者的 钐钕同位素组成是明显不同的。

考虑到样品的均匀性和不同样品分析中的系统 误差,同时考虑样品测定时的仪器测量误差,仅从稀 土元素分量这一指标难以区分矿产地。例如,从 ICP-MS测定稀土各分量来说,仪器的测定误差在 0.5%左右,而采用高精度的多接收等离子体质谱仪 (MC-ICP-MS)进行同位素的测定,则有可能示踪稀 土原产地。此外,通过精确测试分析稀土精矿样品 中的稀土和其他微量元素的含量,采用数学统计手 段,探讨微量元素和稀土产地的关系,实现以微量元 素示踪稀土原产地的目标。

稀土样品经过酸全部溶解后,采用特殊的 FLNA100804离子交换柱对Sm-Nd进行分离,以消 除MC-ICP-MS测定时Sm对Nd的质谱重叠干扰。 表2为不同产地稀土Nd¹⁴³/Nd¹⁴⁴表征结果(经过 Sm-Nd的分离)。从表中结果看,不同稀土产地样 品之间的Nd¹⁴³/Nd¹⁴⁴比值有略微差别,由此可以初 步判别稀土产地,而江西产地稀土Nd¹⁴³/Nd¹⁴⁴比值 很难区分。这是因为江西的离子吸附型稀土矿不但 成矿时代一致,成因也一样。但是,不同矿区母岩特 征是不一样的,因此,可以采用其他微量元素识别标 志来区分。

通过精确测试分析不同产地稀土精矿样品中的 稀土和其他微量元素含量,进行数据相关性分析和 数据分类分析,来探讨微量元素和稀土产地的关系, 以实现以微量元素示踪稀土原产地的目标。结果表 明,通过 Y、Be 和 Bi 三种元素含量的分析,基本可 以判断稀土来源(表 3)。

表 2 不同产地稀土 Nd¹⁴³/Nd¹⁴⁴表征结果

(经过 Sm-Nd 的分离)

Table 2 Results of Nd¹⁴³/Nd¹⁴⁴ ratio from different

producing areas samples (separation by Sm-Nd)

实验室编号	样品编号	产地	Nd^{143}/Nd^{144}	8
TWS-JK-1	DK-jk	江西	0.512339	0.000010
TWS-JK-2	GX-jk	江西	0.512398	0.000011
TWS-JK-3	NJ-jk	江西	0.512328	0.000012
TWS-JK-4	XK-jk	江西	0.512325	0.000013
TWS-JK-5	LLKEK-jk	江西	0.512376	0.000014
TWS-JK-7	CKW-jk	江西	0.512368	0.000010
TWS-JK-8	XFDKA-CP	江西	0.512116	0.000007
TWS-JK-9	LT-jk1	江西	0.512528	0.000036
TWS-JK-10	CC-jk	江西	0.512356	0.000012
TWS-JK-11	MZS-jk	江西	0.512357	0.000021
TWS-JK-12	LR-jk	江西	0.512513	0.000028
TWS-JK-13	WL-jk1	江西	0.512624	0.000047
TWS-JK-14	WAHZ-jk	江西	0.512301	0.000032
TWS-JK-15	OBT-jk	江西	0.512364	0.000012
TWS-JK-16	LSK-jk	江西	0.512317	0.000010
TWS-JK-17	GY	江西	0.512643	0.000423
TWS-JK-18	JCKE-jk1	江西	0.512921	0.000445
TWS-JK-19	HSX-jk	江西	0.513690	0.000743
TWS-JK-20	SQT-jk	江西	0.511805	0.000402
TWS-JK-21	gx-J1	江西	0.513500	0.000558
TWS-JK-23	GXDP	江西	0.512494	0.000161
TWS-JK-24	ΗY	江西	0.511998	0.000112
TWS-JK-25	JC1-jk	江西	0.512478	0.000057
TWS-JK-26	LCK-jk	江西	0.512677	0.000234
TWS-JK-27	JH-HLK-2J1	湖南	0.512548	0.000042
TWS-JK-31	longa2-1jk	云南	0.512260	0.000050
TWS-JK-36	WS-JK-2	山东	0.505955	0.000160
TWS-JK-37	WS-JK-3	山东	0.503742	0.000157
TWS-JK-38	WS-JK-4	山东	0.504716	0.000166
TWS-JK-39	LT1-1JK	广西	0.503356	0.000084
TWS-JK-40	dalc-hc2-1jk(a)	四川	0.497525	0.000098
TWS-JK-41	MNP-1JK	四川	0.499439	0.000070
TWS-JK-42	NMGZDK01	内蒙	0.503042	0.000097

3 离子吸附型稀土样品野外现场快速 定性定量分析研究

通过野外现场的 2.5% 的硫酸铵浸泡样品实 验,浸泡液加入草酸以产生乳白色沉淀后,经过注射 器压滤处理,用便携式 X 射线荧光仪测试,定性判 断是否为离子吸附型稀土样品;需要指出的是,不是 所有的可产生乳白色沉淀现象的样品均判断为离子 吸附型稀土,如草酸钙也可形成乳白色沉淀,因此需 要使用 X 射线荧光仪进行进一步的确认。其次,通 过建立稀土样品浸泡液浓度与样品离子相稀土元素 含量之间的对应关系,为建立稀土原矿品位的野外 快速判定方法提供了理论依据。在江西某矿区野外

表 3	不	司产地稀土精矿样品中微量元素含量(×10 ⁻⁶)
Table	3	Results of trace elements content ($\times 10^{-6})$ for
rare	eea	rth concentrate samples from different origins

产地	样品原号	检测编号	Be	Y	Bi
NM-1	BYEBZD001	QT13050002	2.72	1080	29.4
NM-1	BYEBZD001	QT13050009	3.01	1091	27.4
SD-1	WS-JK-1	QT13050003	0.58	209	22.6
SD-1	WS-JK-2	QT13050004	0.66	213	23.3
HN-1	JH-HLK-2J3	QT13050007	0.18	92843	0.23
HN-1	JH-HLK-2J1	QT13050008	0.15	90550	0.27
YN-1	longa2-1jk	QT13050011	75.3	53660	0.07
SC-1	MNP1-1JK	QT13050012	5.44	766	176
SC-1	MNP1-2JK	QT13050013	0.6	533	152
SC-2	dalc-Zn2-jka	QT13050014	10.5	297	0.79
SC-2	dalc-Zn2-jkb	QT13050015	5.13	781	0.33
JX-1	JCEK-JK	QT13050020	70.6	194300	0.8
JX-2	HSX-JK	QT13050021	26.9	232400	0.29
GX-1	LT-JK	QT13050027	45.8	123400	0.13
GD-1	НҮ-ЈК	QT13050028	175	11025	1.26
GD-2	DBWF-Z	QT13050029	180	96140	0.19

现场进行了试用,并将野外现场分析结果与室内精确分析结果进行了对比(表 4),结果表明符合性良好。

此方法的关键在于制备一套稀土元素含量标准 膜,从而建立便携式 X 荧光测试系列标准曲线。离 子吸附型稀土样品野外现场快速定性定量分析方法 已获得国家发明专利。

4 钨矿石、钼矿石、铌钽矿石中的稀有 稀散多元素同时测定方案

采用微波或封闭罐分解是当前样品前处理的新 方法,较常规的敞开体系溶样方法具有酸用量少的 特点,尤其是微波溶样,还具有溶样时间短的优势。 这两种溶样方式大有取代目前常规的敞开体系溶样 的趋势(Lu Yan et al.,2018; Guilherme et al., 2019)。本研究中钨矿石、钼矿石、铌钽矿石的稀有 稀散多元素测定,就采用硝酸、氢氟酸-微波消解,稀 释后用 ICP-MS 外标法直接测定的新方法。该方法 的特点在于耐氢氟酸系统的使用,尤其对高含量 W、Nb、Ta 样品更具优势,否则易产生水解,导致结 果系统偏低。

本研究采用温度和时间梯度 120℃10min、 150℃10min、200℃40min 三步走的微波溶样方式, 以铌钽矿石(GBW07185)、钨矿石(GBW07241)成 分分析国家一级标准物质各进行 11 次实验,用 ICP-MS 测定,对该方法的准确度和精密度进行了 验证,以钼矿石成分分析国家一级标准物质 (GBW07238,GBW07239)进行实验,对方法的准确

样	医日	取样量	v	т	C	D	N I	0	Б	C 1	TI	D	п.	Е	T	VI	т	A 21.	现场结果	室内结果
号	原亏	(g)	Ŷ	La	Ce	Pr	Nd	Sm	Eu	Gđ	Ib	Dy	Но	Er	Im	Yb	Lu	合订	TRE2O3%	TRE2O3%
1	C886	1.63	196	105	48	36	38	11	5	0	0	0	0	0	0	2	4	445	0.054	0.052
2	C891	1.78	288	466	161	154	223	48	22	48	8	29	6	26	4	17	5	1504	0.180	0.152
3	C892	1.82	268	252	78	82	100	23	11	8	4	22	4	20	4	17	6	898	0.108	0.144
4	C913	2.44	538	450	155	142	200	42	21	77	14	73	13	56	10	46	9	1848	0.222	0.132
5	C914	2.06	172	0	0	3	0	0	0	0	0	0	0	0	0	2	3	180	0.023	0.048
6	C919	1.88	192	1087	413	395	684	132	57	153	20	53	9	30	3	10	2	3239	0.384	0.152
7	C923	1.83	495	234	72	77	97	24	12	24	6	41	8	39	8	34	6	1176	0.143	0.132
8	C931	1.84	185	166	51	55	62	16	7	0	0	3	0	5	1	5	3	560	0.068	0.062
9	C660	1.91	308	401	136	138	201	43	20	41	7	32	7	29	5	22	4	1392	0.167	0.178
10	C663	1.98	94	0	0	0	0	0	0	0	0	0	0	0	0	0	1	95	0.012	0.039
11	C652	2.22	0	716	272	281	495	100	43	89	11	24	5	16	1	2	0	2052	0.243	0.126
12	C653	1.96	0	510	172	185	304	61	26	38	3	3	2	8	1	1	0	1313	0.155	0.100
13	C670	1.85	36	437	143	154	237	47	21	30	3	7	3	12	2	5	0	1135	0.135	0.103
14	C671	2.12	297	832	299	284	443	86	40	134	21	80	14	55	9	36	3	2629	0.313	0.114
15	C685	1.85	400	585	207	195	288	60	29	110	17	83	16	65	11	47	5	2118	0.253	0.187
16	C686	1.94	621	331	107	113	158	35	18	60	12	77	14	64	13	55	6	1683	0.204	0.160
17	C712	1.85	0	31	5	30	42	12	5	0	0	0	0	0	0	0	0	125	0.015	0.056
18	C713	1.92	0	136	53	65	109	25	11	0	0	0	0	0	0	0	0	398	0.047	0.059
19	C697	1.94	66	809	281	265	398	74	32	87	11	26	6	23	3	10	0	2092	0.248	0.159
20	C698	1.89	286	797	272	250	360	68	32	115	19	74	13	50	8	32	3	2380	0.283	0.167
21	C666	1.94	0	321	105	126	210	44	19	7	0	0	0	2	0	0	0	834	0.099	0.120
22	C667	1.87	57	1224	447	433	730	136	60	165	21	52	10	33	4	11	0	3383	0.400	0.160

表4 江西某矿区稀土野外现场与室内常规分析结果比较(×10⁻⁻)

Table 4 Comparison of field and indoor accuracy results of rare earth in a mining area of Jiangxi Province ($\times 10^{-6}$)

注:现场分析单元素含量乘以相应的系数转化为氧化物,全部加和后转换为稀土全量氧化物结果(TRE2O3%),其中 Ce 转化为 CeO2 计算,系数为 1.2284;Pr 转化为 Pr₆O11计算,系数为 1.2082;Tb 转化为 Tb₄O7 计算,系数为 1.1762;其他均按三氧化二物形式计算。

度进行了验证,测定结果见表 5 和表 6。结果表明, 数据质量完全满足 DZ/T0130—2006《地质矿产实 验室测试质量管理规范》要求。

表 5 铌钽矿石、钨矿石成分分析标准物质精密度和 准确度结果(×10⁻⁶)

Table 5 Results of precision and accuracy for niobium tantalum ore and tungsten ore reference materials ($\times 10^{-6}$)

	GE	3W0718	5			GBW0	7241	
元素	平均值 (n=11)	s	推荐值	s	平均值 (n=11)	s	推荐值	s
Li	58.84	4.5	49	2.8	293	16.6	(300)#	
Cu	14.47	1.35	1		961	51.5	960	40
Zn	64.28	2.98	/		1020	5.63	1030	80
Ga	18.98	0.74	/		17.7	0.75	16.5	1.4
As	1.91	0.19	1		66.5	4.17	69.9	9.3
Nb	3851	156	3635	70	38.5	2.69	/	
Мо	0.25	0.02	/		1040	46	980	60
In	0.026	0	1		1.88	0.11	1.3	0.3
Ta	8211	376	8353	164	8.5	0.56	/	
W	20.2	0.77	21.4	1.8	2026	85	2200	200
Tl	1.02	0.06	/		2.1	0.11	1.8	0.4

注: #括号内数值为参考值,以下同。

表 6 钼矿石成分分析标准物质准确度结果(×10⁻⁶) Table 6 Results of accuracy for molybdenum ore

	reference materials ($ imes 10^{-6}$)													
	G	BW07238	GBW07239											
元素	测定值	推荐值	s	测定值	推荐值	s								
Li	2.67	(3.2)		12.8	(13)									
Cu	95.7	93.6	12.3	48.3	48.6	5.7								
Zn	91.6	65.5		134	120	10								
Ga	27.8	25.1	2.1	21.7	23.1	1.5								
As	1.21	1.6	0.4	1.4	1.0	0.2								
Nb	5.87	/		9.62	/									
Mo	15641	15100	300	968	1100	10								
In	3.84	/		1.59	1.3	0.3								
Ta	0.19	/		0.59	/									
W	3628	3600	300	973	1000	100								

5 我国常见三稀矿石地质样品的特点 及测试方法总结

0.03

0.22

0.21

0.02

因为三稀矿石样品类型复杂,需要测试的元素 较多,不可能用一种或几种测试方法就能解决所有 元素的测试问题,需要按照样品类型以及必测或可

表 7 矿石样品三稀元素现代仪器实验测试方法

 Table 7
 Methods for the determination of critical elements in ores using modern instruments

Τl

0.056

0.06

亡口	主法 4 4		++	测合蛋白
序号		杆品分解	拉木符点	测定坝目
1	混合酸分解稀土矿 石,ICP-AES、ICP-MS 法测定	稀土矿石样品经硝酸+盐酸+氢氟酸 +高氯酸+硫酸敞开体系分解,盐酸 提取制备成溶液;或稀土矿石样品经 硝酸+氢氟酸+硫酸微波分解,盐酸 提取制备成溶液	适用测定稀土矿石(特别是高含量的稀土矿石样 品)中主次痕量元素。采用特性树脂分离,可有效 消除稀土间的质谱测定干扰。敞开体系分解方 法,适合大批量样品,但用酸量大。新型微波溶 样,速度快,试剂用量少,但设备比较昂贵	Al、Fe、Ca、Mg、 REEs、Li、Be、Sc 等 多元素
2	混合酸分解钨、铌钽、 铍矿石、锂辉石等, ICP-AES、ICP-MS测定	样品用高压密闭罐或微波分解,制备 成硝酸或氢氟酸体系的溶液,对于原 煤样品需加入适量双氧水	适用矿石样品范围广,氢氟酸体系可以防止钨矿 石、铌钽矿石中 W、Nb、Ta等元素的水解。可准确 测定 W 含量达到 50%的钨矿石样品	Al、Fe、Ca、Mg、Li、 Be、Sc、Cr、Nb、Mo、 Ta、W、REEs 等多 元素
3	偏硼酸锂碱熔多类型 矿石,ICP-AES、ICP- MS测定	样品经偏硼酸锂碱熔分解,5%王水浸 取制备成溶液	可同时测定造岩元素和多个稀有稀散稀土元素, 适合不宜使用 XRF 测定的多类型矿石的总量加和	Si、Al、Fe、Ca、Nb、 Ta、Zr、Hf、REEs 等 多元素
4	混合酸分解硫化物矿 石, ICP-AES、ICP- MS测定	样品用硝酸+氢氟酸高压密封罐分 解,硝酸提取制备成溶液;硝酸+盐酸 +氢氟酸+高氯酸敞开体系分解,王 水提取制备成溶液	适用硫化物矿石样品主次痕量元素的测定,敞开体系分解,对As、Sb、Te测定有影响	Al、Fe、Ca、Mg、W、 Tl、Pb、Bi、Th、REEs 等多元素
5	王水分解硫化物矿 石,ICP-MS测定	王水于沸水浴上分解硫化物矿石,制 备成溶液	能够适应多种硫化物矿石矿物的测定	As、Ag、Cd、Hg、In、 Bi 等多元素
6	碳酸钠碱熔分解天青石,ICP-AES、ICP-MS 测定	通过置换反应分解硫酸锶和硫酸钡, 过滤,盐酸溶解沉淀制备成溶液	可替换容量法、光度法测定天青石中的锶钡铝等	Al、Sr、Ba、Nb、Ta、 Zr、Hf、REEs 等多 元素
7	过氧化钠碱熔分解铝 土矿, ICP-MS测定	过氧化钠分解,盐酸提取制备成溶液	适用于高铝含量的多种难熔矿石的分解。由于高 倍稀释,检出限有影响	Li、Ga、Ge、Th、U、 REEs 等元素
8	混合酸分解多类型样品,AAS、AFS法测定	混合酸分解样品,制备成盐酸溶液	AAS测定能消除形成氢化物的金属离子的干扰,适 用于岩石土壤矿石样品;经过微色谱柱分离,AFS测 定,可消除干扰元素,适合铜精矿等多类型的样品	Se
9	王水分解金矿石样品,ICP-MS测定	样品经灼烧后,以王水溶解,后用泡塑吸附,灰化后采用王水解脱并制备成溶液	解决石墨炉测定速度慢,低含量准确度差的问题	Au
10	卤水多组分 ICP- AES、ICP-MS法测定	卤水经简单稀释后直接测定	解决原子吸收光谱测定的多级稀释问题	Ca、Mg、K、Na、Li、 B、Li、Rb、Cs、Br、I

表 8 我国常见三稀矿石地质样品的特点及测试方法

	Table 8 Characteristic of common ores containing critical elements and determination methods												
序号	寄主岩 石类型	工业矿物	特征矿物	主矿种 及含量	共伴生 元素	可选用测 试方法	可综合分析 测试的元素	三稀矿 石类型	矿产地 实例				
1	铝土矿	铝土矿		Al	Sc、Ga、 Ge、Li、 REEs	(2),(7)	Sc、 Ga、 Ge、 Li、REEs	含稀散元素的 铝土矿	广西平果铝、山西 阳泉				
2	金银矿石	金银矿物		Au, Ag	Se, Te	(5),(8),(9)	Se,Te	含 硒 碲 金 银 矿石					
3	含 绿 柱 石 花 岗岩	绿柱石		Be		(2),(3)		铍矿石					
4	流 纹 质 凝 灰 岩、流纹岩	羟硅铍石		Ве	U	(2) (3)	U	铍铀矿石	新疆白杨河				
5	绿柱石石英脉	绿柱石		Be		(2),(3)		铍矿石					
6	绿柱石伟晶岩	绿柱石		Be		(2),(3)		铍矿石	福建大湾				
7	矽卡岩	含铍条纹岩	香花石	Be		(2),(3)		铍矿石	湖南香花岭				
8	石英脉		绿柱石	Be, Nb-Ta, HRee		(2),(3), (1)		含铍矿石、含 铌钽矿石、含 重稀土矿石	江西荡坪、画眉坳				
9	绿柱石黑钨矿 石英脉	绿 柱 石、黑 钨矿		Be、W	Sc	(2), (3)	Sc	钨铍矿石	云南麻花坪				
10	碲铋矿石	碲铋矿等	磁黄铁矿	Bi、Te		(2), (4), (5), (8), (4), (5), (8), (4), (4), (4), (4), (4), (4), (4), (4		碲铋矿石	四川大水沟				
11	含铜砂页岩	铜矿物		Cu	Se	(2), (0, 4), (5), (8)	Se	砂岩铜矿矿石					
12	铜钼矿石	黄 铜 矿、辉 钼矿		Cu、Mo	Ge、 Re、 In、Te	(2), (4), (5), (8)	Ge, Re, In, Te	含稀散元素铜 钼矿石	江西德兴、城门山				
13	铜镍矿石	黄 铜 矿、磁 黄 铁 矿、镍 黄铁矿		Cu、Ni	Se、Te	(2),(4), (5),(8)	Se, Te, PGE	铜镍矿石	甘肃金川				
14	铜多金属矿石	铜矿物		Cu,Pb,Zn	Ge, In, Se,Te	(2),(4), (5),(8)	Ge,In,Se,Te	含稀散元素铜 矿石	广东大宝山				
15	赤铁矿石	赤铁矿		Fe	Ge、In	(2),(3)	Ge,In	锗可独立开采					
16	钒钛磁铁矿	磁铁矿	钒 钛 磁 铁矿	Fe	V、 Ti、 Sc、Ga 等	(2),(3)	V、Ti、Sc、Ga 等	伴生稀散元素 的钒钛磁铁矿 矿石	四川攀枝花				
17	锂 辉 石-锂 云 母伟晶岩	锂 辉 石、锂 云母		Li		(2) (8)		锂矿石	四川甲基卡				
18	钨锡石英脉	铁锂云母		Li	W , Sn	(2),(8)	W、Sn	钨 锡 矿 石 伴 生锂					
19	盐湖卤水			Li	Rb,Cs,B	(10)	KCl、 MgCl ₂ 、 NaCl、Na ₂ SO ₄ 、 B、Br、Rb、Cs、 Na ₂ CO ₃ 等	盐湖锂矿	西藏扎布耶、湖北潜 江、青海一里坪				
20	云英岩	绿柱石、硅铍 钇矿、日光榴 石、锂云母、 铌钽矿物		Li,Be	Sc	(2),(8)	Sc	铍矿石、锂矿 石、铌钽矿石	广东惠阳杓麻山、潮 安万峰山、湖南临湘 虎形山、江西星子枭 木山				
21	风化壳样		铌铁矿	Nb		(2),(8)		铌矿石	广东博罗 524、525				
22	碱性花岗岩	稀 土 矿 物、 铌矿物		Nb、Ree		(1),(2), (8)		铌稀土矿石	内蒙古 801				
23	碱 性 长 石 花 岗岩	铌钽矿物	钠 长 石- 白云母	Nb、Ta		(1),(2), (8)		钽铌矿石	广西恭城栗木、江西 大吉山				
24	碱性长石花 岗岩	铌钽矿物	钠 长 石- 黑鳞云母	Nb、Ta		(1),(2), (8)		铌钽矿石	江西会昌旱叫山、葛 源灵山,广东博罗 524、525 矿				
25	碱 性 长 石 花 岗岩	铁锂云母	钠长石	Nb,Ta		(1),(2), (8)		铌钽矿石	江西石城姜坑里				

									续表 8
序号	寄主岩 石类型	工业矿物	特征矿物	主矿种 及含量	共伴生 元素	可选用测 试方法	可综合分析 测试的元素	三稀矿 石类型	矿产地 实例
26	碱性长石花 岗岩	锂云母	钠长石	Nb、Ta、Li、 Rb、Cs、Tl		(1),(2), (8)		锂矿石、铌钽 矿石、含铷矿 石、含铯矿石	江西宜春 414
27	碱性伟晶岩			Nb、Th、U		(1),(2), (8)		铌矿石、放射 性矿石	新疆拜城、四川会理
28	铅锌矿石	方 铅 矿、闪 锌矿		Pb、Zn	Ge、Ga、 Tl、 In、 Se、Te	(4),(5), (8)	Ge、Ga、Tl、In、 Se、Te	含稀散元素的 铅锌矿石	广东凡口、云南会泽
29	含稀土碳酸岩	氟碳铈矿等	萤石、重 晶石	Ree	F	(1),(2), (8)	F、Ba、Mo、Pb、 Zn 等	稀土矿石	四川牦牛坪
30	碱 性 岩-碳 酸 盐岩(碳酸岩)	稀 土 矿 物、 铌矿物		Ree、Nb		(1),(2), (8)		铌稀土矿石	湖北庙垭
31	稀土-铁矿 石	氟碳铈矿等	磁铁矿、 萤石、重 晶石	Ree、Nb	Fe	(1),(2), (8)	Fe 等	稀土矿石、铌 矿石	内蒙古白云鄂博
32	锑砷汞矿石	辉锑矿、毒 砂、 雄 黄、 雌黄		Sb、As、Hg	Tl、 Au、Se	(4)、(5)、 (8)、(9)	Tl, Au, Se	含稀散元素的 锑砷汞矿石	
33	锡 石 硫 化 物 矿石	锡 石、闪 锌 矿等		Sn、Zn、Pb、 Sb 等	Sc、Cd、 In、Ge、 Se、Te	(4),(5), (8)	Sc, Cd, In, Ge, Se,Te	含稀散元素的 锡矿石、硫化 物矿石	广西大厂、云南都龙
34	菱 锶 矿 型 锶 矿石	菱锶矿		Sr		(2),(6)	Ba、Ca、F 等	锶矿石	
35	天青石型锶矿	天青石		Sr		(2),(6)	Ba、Ca、F 等	锶矿石	重庆干沟、江苏溧水 爱景山
36	花岗伟晶岩	 锂辉石、绿柱 石、钽铁矿、 细晶石、铌钽 铁矿、铌钽 锰矿 	含铷矿石、 铯河石、 铯榴石石、 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	Ta、Nb、Li、 Rb、 Cs、 Be、Tl		(1),(2), (8)		 铌 钽 矿 石、锂 矿 石、含 铷 矿 石、含 铯 矿 石、 铍 矿 石等 	新疆阿尔泰可可托 海、内蒙古大青山、 湖北幕阜山、四川康 定、江西石城
37	碱 性 长 石 花 岗岩	钽 铌 矿 物、 稀土矿物	钠 长 石- 锂云母	Ta、Nb、Ree		(1),(2), (8)		钽铌矿石、稀 土矿石	江西牛岭坳
38	砂样	锆石	钍石、钛铁矿、金红石	Zr、Hf		(1),(2), (8)		铌钽矿石	海南海滨砂矿
39	碳酸岩	斜 锆 石、铌 钽 矿 物、稀 土矿物	方 解 石、 白云石	Zr、Hf、Nb、 Ta、Ree		(1),(2), (8)		铌钽矿石、锆 铪矿石	
40	磷块岩			磷	Ree、U、 V、Se	(1),(2), (8)	Ree,U,V,Se	含稀土磷块岩	贵州织金新华磷矿
41	自然硫矿石	自然硫		硫	Se		Se	含硒自然硫	
42	砂样	独 居 石、磷 钇矿		稀土		(1),(2), (8)		稀土砂矿	
43	黑色页岩				Ge、 Tl、 U、 V、 Ni、Re 等	(1),(2), (8)	Ge、Tl、U、V、 Ni、Re 等	含稀散元素黑 色页岩	
44	硫铁矿矿石	黄 铁 矿、磁 黄铁矿			Ga、 In、Tl	(4),(5), (8)	Ga,In,Tl	含稀散元素硫 铁矿	
45	煤岩	煤			Ge,Tl	(2),(8)	Ge、Tl、U等	含锗煤矿	云南临沧锗矿
46	明矾石矿石	明矾石			Ga	(1),(2), (8)	Ga	含镓明矾石	
47	天河石花岗岩	云母	天河石		Rb、 Cs、Tl	(1),(2), (8)	Rb,Cs,Tl	含稀散元素 矿石	
48	土壤				Se	(2),(8)	Se	含硒土壤	
49	油页岩	油页岩			Ge		Ge	油页岩	

注:"可选用测试方法"同表7序号。

测元素的种类来选择不同的单一或组合测试方法。 表7是按照氧化物矿石、硫化物矿石、难溶矿石及特 殊矿石(稀土矿石、金矿石、卤水)类型,研究总结出 10个专门针对三稀元素的实验测试方法(Wang Denghong et al.,2016)。表8对我国常见三稀矿石 地质样品的特点及配套的测试方法进行了总结,但 尚不全面,因为有些特殊类型的样品,如自然硫矿 石、油页岩等,目前尚未有合适的仪器分析方法测定 其中的三稀元素,需要进一步研究。

6 结论

(1)离子吸附型稀土样品硫酸铵溶液浸泡流程及 ICP-MS 测试流程的建立,可精确测试浸出液中 各稀土元素的含量,从而可计算样品中各离子相稀 土元素含量。

(2)采用高精度的多接收等离子体质谱仪(MC-ICP-MS)进行 Nd¹⁴³/Nd¹⁴⁴同位素比值测定,可示踪 稀土样品不同产地;通过精确测试分析稀土精矿样 品中的稀土和其他微量元素的含量,采用数学统计 手段,可示踪稀土精矿产地。

(3)将浸泡实验、薄膜标准制备技术和手持式 XRF结合,实现了离子吸附型稀土元素的野外现场 快速定性定量分析。无需外接电源条件下进行野外 现场测试工作,20分钟可完成1件样品测试,可为 我国离子吸附型稀土矿床的找矿快速筛查提供技术 支撑。

(4)针对钨矿石、钼矿石、铌钽矿石的稀有稀散 多元素测定,建立了采用硝酸、氢氟酸-微波消解,稀 释后用 ICP-MS 外标法直接测定的新方法。该方法 的特点在于耐氢氟酸系统的使用,尤其对高含量 W、Nb、Ta 样品更具优势,否则易产生水解,导致结 果系统偏低。该方法同样适用于封闭罐溶样及锂、 铷、铯等矿石类型。

(5)按照氧化物矿石、硫化物矿石、难溶矿石及 特殊矿石(稀土矿石、金矿石、卤水)类型,研究总结 出 10 个专门针对三稀元素的实验测试方法。同时 对我国常见三稀矿石地质样品的特点及配套的测试 方法进行了总结。有些特殊类型的样品,如自然硫 矿石、油页岩等,目前尚未有合适的仪器分析方法测 定其中的三稀元素,需要进一步研究。

致谢:本文得到了中国地质科学院矿产资源研 究所李建康研究员、四川省地质调查院付小方教授 的支持与帮助。

References

- Cristian T, Martina P. 2018. Perspectives for the recovery of critical elements from future energy-efficient refrigeration materials. Journal of Cleaner Production, 197(1): 232~241.
- Guilherme S D, Silvio J R, Teotonio S C, Geila S C, Cynthia O, José O S, Luiz R G G. 2019. Dissolution techniques for determination of rare earth elements in phosphate products. Acid digestion or alkaline fusion? Journal of Geochemical Exploration, 197(2):114~121.
- Lin Ronghong, Soong Y, Granite E J. 2018. Evaluation of trace elements in U. S. coals using the USGS COALQUAL database version 3.0. Part II: Non-REY critical elements. International Journal of Coal Geology, 192(5):39~50.
- Lu Yan, Li Gang, Liu Wei, Yuan Hongyan, Xiao Dan. 2018. The application of microwave digestion in decomposing some refractory ore samples with solid fusion agent. Talanta, 186: $538 \sim 544$.
- Wang Chenghui, Yang Yueqing, Wang Denghong, Sun Yan, Chen Zhengyu, Xie Guogang, Fan Xiujun. 2018. Discovery of amblygonite and Li-Be-Sn-Ta minerals in the Jiuling area, Jiangxi Province. Rock and Mineral Analysis, 37(1):108~110 (in Chinese with English abstract).
- Wang Denghong, Li Peigang, Qu Wenjun, Yin Lijuan, Zhao Zhi, Lei Zhiyuan, Wen Shenfu. 2013. Discovery and preliminary study of the high tungsten and lithium contents in the Dazhuyuan bauxite deposit, Guizhou, China. Science China: Earth Sciences, 56(1): 145~152.
- Wang Denghong, Qu Wenjun. 2013a. Some new trends of the present geological-exploration work and the new contribution of rock and mineral analysis work. Rock and Mineral Analysis, 32 (4):532~537 (in Chinese with English abstract).
- Wang Denghong, Zhao Zhi, Yu Yang, Zhao Ting, Li Jiankang, Dai Jingjing, Liu Xinxing, He Hanhan. 2013b. Progress, problems and research orientation of ion-adsorption type rare earth resources. Rock and Mineral Analysis, 32(5):796~802 (in Chinese with English abstract).
- Wang Denghong, Liu Lijun, Liu Xinxing, Zhao Zhi, He Hanhan. 2016. Main types and research trends of energy metallic resources in China. Journal of Guilin University of Technology, 36(1): 21~29 (in Chinese with English abstract).
- Wang Denghong, Zhao Zhi, Yu Yang, Dai Jingjing, Deng Maochun, Zhao Ting, Liu Lijun. 2018. Exploration and research progress on ion-adsorption type REE deposits in South China. China Geology, 3(3):415~424.
- Zhao Zhi, Wang Denghong, Chen Zhenghui, Chen Zhenyu. 2017. Progress of research on metallogenic regularity of ion-adsorption type REE deposit in the Nanling Range. Acta Geologica Sinica, 91(12):2814~2827 (in Chinese with English abstract).

参考文献

- 王成辉,杨岳清,王登红,孙艳,陈振宇,谢国刚,凡秀君. 2018. 江西 九岭地区三稀调查发现磷锂铝石等锂铍锡钽矿物. 岩矿测试, 37(1):108~110.
- 王登红, 屈文俊. 2013a. 当前地质找矿工作的某些新动向与岩矿测试 的新贡献. 岩矿测试, 32(4):532~537.
- 王登红,赵芝,于扬,赵汀,李建康,代晶晶,刘新星,何晗晗.2013b. 离子吸附型稀土资源研究进展、存在问题及今后研究方向. 岩 矿测试,32(5):796~802.
- 王登红,刘丽君,刘新星,赵芝,何晗晗.2016.我国能源金属矿产的 主要类型及发展趋势探讨.桂林理工大学学报,36(1):21~29.
- 赵芝,王登红,陈郑辉,陈振宇.2017. 南岭离子吸附型稀土矿床成矿 规律研究新进展. 地质学报,91(12):2814~2827.

Establishment of new method for critical elements determination using modern analytical in struments

QU Wenjun^{*1)}, WANG Denghong²⁾, ZHU Yun¹⁾, FAN Xingtao¹⁾, LI Chao¹⁾, WEN Hongli¹⁾

1) National Research Center for Geoanalysis, Beijing, 100037;

2) Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Natural Resources of the PRC,

Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037

* Corresponding author: quwenjun@sina.com

Abstract

This paper systematically summarizes the new progress made incritical elements mineral experimental testing since 2011. The experimental research results of extracting ionic rare earth elements from ionadsorption type rare earth samples by soaking with ammonium sulfate and tracing rare earth origin by Nd isotopes and trace elements, and, quick qualitative and quantitative analysis in field using XRF for ionadsorption type rare earth sample are mainly introduced. The results showed that the difference of extraction rate of each rare earth elements could be clearly reflected by using 2.5% ammonium sulfate solution immersion extraction and ICP-AES and ICP-MS determination. Nd143/Nd144 isotope ratios in rare earth samples were determined by high precision MC-ICP-MS. The difference can be used to trace different rare earth samples origins. Through accurate analysis of rare earth and other trace elements in rare earth concentrate samples from different producing areas, data correlation analysis and data classification analysis were carried out. By comparing the contents of Y, Be and Bi, the source of rare earth concentrate can be judged. Rapid qualitative and quantitative analysis in the field can complete the determination of one sample in 20 minutes. This method can not only qualitatively judge whether it is ion adsorbed type rare earth, but also quantify the content of rare earth elements in each ion phase, and the result is in good agreement with the accurate analysis results in the laboratory. It can provide technical support for rapid screening of ion adsorbed type rare earth deposits in China. Determination scheme of critical elements in tungsten molybdenum and niobium tantalum ores using ICP-AES & ICP-MS with mixed acids microwave decomposition of samples are also mainly introduced. The characteristic of this scheme is that the hydrofluoric acid-resistant system is adopted. Especially for high content W, Nb and Ta samples. Otherwise, hydrolysis is easy to occur, which results in systematic low determination results. The characteristics of common geological samples of critical element ores in China are summarized. According to sample types, matrix characteristics and elements of interest, 10 new methods for critical elements determination using modern analytical instruments have been established. These methods meet the specification of testing quality management for geological laboratories.

Key words: critical elements; determination method; ICP-MS; ICP-AES; microwave decomposition