en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵璧,男,1984年生。高级工程师,主要从事古脊椎动物学研究。E-mail:312865130@qq.com。

通讯作者:

邹亚锐,女,1989年生。工程师,主要从事三叠纪地层古生物学研究。E-mail:569007425@qq.com。

参考文献
Algeo T J, Chen Zhongqiang, Fraiser M L, Richard J T. 2011. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1~2): 1~11.
参考文献
Brayard A, Bucher H, Escarguel G, Fluteau F, Bourquin S, Galfetti T. 2006. The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(3~4): 374~395.
参考文献
Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J. 2009. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science, 325(5944): 1118~1121.
参考文献
Carroll R L, Dong Zhiming. 1991. Hupehsuchus, an enigmatic aquatic reptile from the Triassic of China, and the problem of establishing relationships. Philosophical Transactions of the Royal Society B: Biological Sciences, 331(1260): 131~153.
参考文献
Chen Liezu, 1985. Early Triassic ichthyosaurs from Chaoxian, Anhui. Regional Geology of China, 15: 139~146 (in Chinese with English abstract).
参考文献
Chen Xiaohong, Motani R, Cheng Long, Jiang Dayong, Rieppel O. 2014a. The enigmatic marine reptile Nanchangosaurus from the Lower Triassic of Hubei, China and the phylogenetic affinities of hupehsuchia. Plos One, 9(7): 1~12.
参考文献
Chen Xiaohong, Motani R, Cheng Long, Jiang Dayong, Rieppel O. 2014b. Asmall short-necked hupehsuchian from the Lower Triassic of Hubei Province, China. Plos One, 9(12): e115244.
参考文献
Chen Xiaohong, Sander P M, Cheng Long, Wang Xiaofeng. 2013. A new Triassic primitive Ichthyosaur from Yuanan, South China. Acta Geologica Sinica-English Edition, 87(3): 672~677.
参考文献
Chen Zhongqiang, Benton M J. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience, 5(6): 375~383.
参考文献
Cheng Long, Yan Chunbo, Chen Xiaohong, Zeng Xiongwei, Motani R. 2015. Characteristics and significance of Nanzhang/Yuanan Fauna, Hubei Province. Chinese Geology, 42(2): 676~684 (in Chinese with English abstract).
参考文献
Clarkson M O, Wood R A, Poulton S W, Richoz S, Newton R J, Kasemann S A, Bowyer F, Krystyn L. 2016. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nature Communications, 7: 12236.
参考文献
Cuthbertson R S, Russell A P, Anderson J S. 2013. Cranial morphology and relationships of a new grippidian (ichthyopterygia) from the Vega-Phroso Siltstone Member (Lower Triassic) of British Columbia, Canada. Journal of Vertebrate Paleontology, 33(4): 831~847.
参考文献
Dai Xu, Song Haijun, Brayard A, Ware D. 2019. A new Griesbachian-Dienerian (Induan, Early Triassic) ammonoid fauna from Gujiao, South China. Journal of Paleontology, 93: 48~71.
参考文献
Erwin, D H. 1994. The Permo-Triassic extinction. Nature, 367 (6460): 231~235.
参考文献
Fan Junxuan, Shen Shuzhong, Erwin D H, Sadlers P M, MacLeod M, Cheng Qiuming, Hou Xudong, Yang Jiao, Wang Xiangdong, Wang Yue, Zhang Hua, Chen Xu, Lie Guoxiang, Zhang Yichun, Shi Yukun, Yuan Dongxun, Chen Qing, Zhan Linna, Lie Chao, Zhao Yingying. 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475): 272~277.
参考文献
Fang Zichen, Cheng Long, Yan Chunbo. 2020. A review on the Early Triassic Nanzhang-Yuanan Fauna of Hubei Province, South China. Geology and Mineral Resources of South China, 36(1): 80~86 (in Chinese with English abstract).
参考文献
Fu Wanlu, Jiang Dayong, Isabel P, Montañez, Meyers S R, Montani R, Tintori A. 2016. Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery. Scientific Reports, 6: 27793.
参考文献
He Yongzhong, He Xiao, Xiang Kunpeng, Qiao Weitao, Yi Chengxing, An Yayun. 2020. First discovery of marine reptile fossils from the Early Triassic strata in Guoxing area, Longlin County, northwest Guangxi. Geology in China, 47 (4): 368~369 (in Chinese).
参考文献
Huang Jiandong, Motani R, Jiang Dayong, Tintori A, Rieppel O, Zhou Min, Ren Xinxin, Zhang Rong. 2019. The new ichthyosauriform Chaohusaurus brevifemoralis (Reptilia, Ichthyosauromorpha) from Majiashan, Chaohu, Anhui Province, China. PeerJ, 7(7): e7561.
参考文献
Huang Jiandong, Motani R, Jiang Dayong, Ren Xinxin, Tintori A, Rieppel O, Zhou Min, Hu Yuanchao, Zhang Rong. 2020. Repeated evolution of durophagy during ichthyosaur radiation after mass extinction indicated by hidden dentition. Scientific Reports, 10: 7798.
参考文献
Ji Cheng, Jiang Dayong, Motani R, Rieppel O, Sun Zuoyu. 2015a. Phylogeny of the ichthyopterygia incorporating recent discoveries from South China. Journal of Vertebrate Paleontology, 36(1): e1025956.
参考文献
Ji Cheng, Zhang Chao, Jiang Dayong, Bucher H, Motani R, Tintori A. 2015b. Ammonoid age control of the Early Triassic marine reptiles from Chaohu (South China). Palaeoworld, 24(3): 277~282.
参考文献
Ji Cheng, Tintori A, Jiang Dayong, Motani R. 2017. New species of Thylacocephala (Arthropoda) from the Spathian (Lower Triassic) of Chaohu, Anhui Province of China. Palaontologische Zeitschrift, 91(2): 171~184.
参考文献
Jiang Dayong, Motani R, Huang Jiandong, Tintori A, Hu Yuanchao, Rieppel O, Nicholas C. Fraser, Ji Cheng, Kelley N P, Fu Wanlu, Zhang Rong. 2016. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction. Scientific Reports, 6: 26232.
参考文献
Kauffman E G, Erwin D H. 1995. Surviving Mass Ex-tinctions. Geotimes, 14(3): 14~17.
参考文献
Kump L R, Pavlov A, Arthur M A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 33(5): 397~400.
参考文献
Li Jiangli, Zhao Bi, Zou Yarui, Chen Gang. 2020. Strata characteristics of the Early Triassic Nanzhang-Yuan'an Fauna inwestern Hubei Province. Resources Environment and Engineering, 34(4): 485~493 (in Chinese with English abstract).
参考文献
Li Qiang, Liu Jun. 2020. An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health. Communications Biology, 3: 1~11.
参考文献
Mazin J M, Suteethorn V, Buffetaut E, Jaeger J J, Ingavat R. 1991. Preliminary description of Thaisaurus chonglakmanii n. g. , n. sp. , a new ichthyopterygian (Reptilia) from the Early Triassic of Thailand. Comptes Rendus de I'Academie des Sciences, Paris, Serie II, 313: 1207~1212.
参考文献
McGowan C, Motani R. 2003. Handbook of Paleoherpetology, Part 8 Ichthyopterygia. München: Verlag Dr. Friedrich Pfeil, 175.
参考文献
Moon B C. 2017. A new phylogeny of ichthyosaurs (reptilia: diapsida). Journal of Systematic Palaeontology, 17(2): 1~27.
参考文献
Motani R. 1999. Phylogeny of the ichthyopterygia. Journal of Vertebrate Paleontology, 19(3): 473~496.
参考文献
Motani R, You Hailu, Mcgowan C. 1996. Eel-like swimming in the earliest ichthyosaurs. Nature, 382(6589): 347~348.
参考文献
Motani R, You Hailu. 1998. Taxonomy and limb ontogeny of Chaohusaurus geishanensis (ichthyosauria), with a note on the allometric equation. Journal of Vertebrate Paleontology, 18(3): 533~540.
参考文献
Motani R, Jiang Dayong, Tintori A, Rieppel O, Chen Guanbao. 2014. Terrestrial origin of viviparity in Mesozoic marine reptiles indicated by Early Triassic embryonic fossils. Plos One, 9(2): e88640.
参考文献
Motani R, Jiang Dayong, Chen Guanbao, Tintori A, Rieppel O, Ji Cheng, Huang Jiandong. 2015a. A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature, 517(7535): 485~488.
参考文献
Motani R, Jiang Dayong, Tintori A, Rieppel O, Chen Guanbao, You Hailu. 2015b. Status of Chaohusaurus chaoxianensis (Chen, 1985). Journal of Vertebrate Paleontology, 35(1): e892011.
参考文献
Motani R, Huang Jiandong, Jiang Dayong, Tintori A, Rieppel O, You Hailu, Hu Yuanchao, Zhang Rong. 2018. Separating sexual dimorphism from other morphological variation in a specimen complex of fossil marine reptiles (Reptilia, Ichthyosauriformes, Chaohusaurus). Scientific Reports, 8: 14978.
参考文献
Orchard M J. 2007. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1~2): 93~117.
参考文献
Payne J L, Lehrmann D J, Wei J, Knoll A H. 2006. The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 21(1): 63~85.
参考文献
Peyer B. 1968. Comparative Odontology. Chicago: University of Chicago Press, 347.
参考文献
Rieppel O. 1998. The systematic status of Hanosaurus hupehensis (Reptilia, Sauropterygia) from the Triassic of China. Journal of Vertebrate Paleontology, 18(3): 545~557.
参考文献
Rodland D L, Bottjer D J. 2001. Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios, 16(1): 95~101.
参考文献
Shikama T, Kamei T, Murata M. 1978. Early Triassic ichthyosaurus, Utatsusaurus hataii gen. et sp. nov. from the Kitakami Massif, Northeast Japan. Science Reports of the Tohoku University, Sendai, Second Series (Geology), 48(1): 77~92.
参考文献
Song Huyue, Tong Jinnan, Algeo T J, Horacek M, Qiu Haiou, Song Haijun, Tian Li, Chen Zhongqiang. 2013. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change, 105: 7~20.
参考文献
Song Haijun, Wignall P B, Chu Daoliang, Tong Jinnan, Sun Yadong, Song Huyue, He Weihong, Tian Li. 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. ScientificReports, 4(4): 4132.
参考文献
Song Haijun, Tong Jinnan, Wignall P B, Luo Mao, Tian Li, Song Huyue, Huang Yunfei, Chu Daoliang. 2016. Early Triassic disaster and opportunistic foraminifers in South China. Geological Magazine, 153(2): 298~315.
参考文献
Song Haijun, Wignall P B, Dunhill A M. 2018. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science Advances, 4(10): eaat5091.
参考文献
Song Haijun, Song Huyue, Tong Jinnan, Gordon G W, Wignall P B, Tian Li, Zheng Wang, Algeo T J, Liang Lei, Bai Ruoyu, Wu Kui, Anbar A D. 2020. Conodont calcium isotopic evidence for multiple shelf acidification events during the early Triassic. Chemical Geology, 120038.
参考文献
Stanley S M. 2009. Evidence from ammonoids and conodonts for multiple EarlyTriassic mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 106: 15264~15267.
参考文献
Stone R. 2010. Paleontology. Excavation yields tantalizing hints of earliest marine reptiles. Science, 330(6008): 1164~1165.
参考文献
Sun Y, Joachimsld M M, Wignall P B, Yan C, Chen Y, Jiang H, Wang L, Lai X. 2012. Lethally hot temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366~370.
参考文献
Wiman C. 1929. Eine neue marine Reptilien-Ordnung aus der Trias Spitzbergens. Bulletin of the Geological Institution of the University of Uppsala, 22: 183~196.
参考文献
Wu Kui, Tian Li, Liang Lei, Metcalfe I, Chu Daoliang, Tong Jinnan. 2019. Recurrent biotic rebounds during the Early Triassic: biostratigraphy and temporal size variation of conodonts from the Nanpanjiang basin, South China. Journal of the Geological Society, 176(6): 1232~1246.
参考文献
Wu Kui, Tong Jinnan, Metcalfe I, Liang Lei, Xiao Yifan, Tian Li. 2020. Quantitative stratigraphic correlation of the Lower Triassic in South China based on conodont unitary associations. Earth-Science Reviews, 200: 102997.
参考文献
Yan Chunbo, Li Jiangli, Cheng Long, Zhao Bi, Zou Yarui, Niu Dongyi, Chen Gang, Fang Zichen. 2021. Strata characteristics of the Early Triassic Nanzhang-Yuan'an Fauna in western Hubei Province. Earth Science, 46(1): 122~135 (in Chinese with English abstract).
参考文献
Yang Zhongjian, Dong Zhiming. 1972. Aquatic Reptiles from the Triassic of China. Beijing: Science Press.
参考文献
Zhao Guochun, Peter A C. 2012. Precambrian geology of China. Precambrian Research, s 222~223: 13~54.
参考文献
Zhou Min, Jiang Dayong, Motani R, Tintori A, Ji Chen, Sun Zuoyu, Ni Peigang, Lu Hao. 2017. Thecranial osteology revealed by three-dimensionally preserved skulls of the Early Triassic ichthyosauriform Chaohusaurus chaoxianensis (Reptilia: Ichthyosauromorpha) from Anhui, China. Journal of Vertebrate Paleontology, 37(4): e1343831.
参考文献
Zou Yarui, Zhao Bi, Li Jiangli, Cheng Long, Yan Chunbo, Tan Qiuming. 2020. New forefin specimens and comparison of Early Triassic Ichthyopterygia from the Hubei Province. Acta Geologica Sinica, 94(4): 1017~1026 (in Chinese with English abstract).
参考文献
陈烈祖. 1985. 安徽巢县早三叠世鱼龙化石. 中国区域地质, 15: 139~146.
参考文献
程龙, 阎春波, 陈孝红, 曾雄伟, Motani R. 2015. 湖北省南漳/远安动物群特征及其意义初探. 中国地质, 42(2): 676~684.
参考文献
方子晨, 程龙, 阎春波. 2020. 早三叠世南漳-远安动物群研究进展. 华南地质与矿产, 36(1): 80~86.
参考文献
贺永忠, 贺箫, 向坤鹏, 乔卫涛, 易成兴, 安亚运. 2020. 桂西北隆林过兴地区首次发现早三叠世海生爬行动物化石. 中国地质, 47 (4): 368~369.
参考文献
李姜丽, 赵璧, 邹亚锐, 陈刚. 2020. 鄂西早三叠世南漳-远安动物群地层分布特征. 资源环境与工程, 34(4): 485~493.
参考文献
阎春波, 李姜丽, 程龙, 赵璧, 邹亚锐, 牛东毅, 陈刚, 方子晨. 2021. 鄂西早三叠世南漳-远安动物群地层分布特征. 地球科学, 46(1): 122~135.
参考文献
杨钟健, 董枝明. 1972. 中国三迭纪水生爬行动物. 北京: 科学出版社.
参考文献
张钰莹, 江大勇, 何治亮, 高波, 刘忠宝, 聂海宽. 2016. 安徽巢湖下三叠统南陵湖组中上段微相及古环境初探. 地层学杂志, 40(3): 290~296.
参考文献
邹亚锐, 赵璧, 李姜丽, 程龙, 阎春波, 谭秋明. 2020. 湖北早三叠世鱼龙前肢化石YGM-Y4701标本及对比讨论. 地质学报, 94(4): 1017~1026.
目录contents

    摘要

    早三叠世是鱼龙起源和早期演化的关键阶段,Chaohusaurus则是该时期化石材料最丰富、研究程度最高的鱼龙类群之一,但其标本几乎全部产自华南下扬子区的安徽巢湖,此外仅在中扬子区北部的湖北远安曾有少量发现和报道。本次对一件曾初步研究的远安Chaohusaurus zhangjiawanensis标本开展进一步修复和观察,对该属种形态信息缺失较多的头骨进行描述并重点与Ch. zhangjiawanensis最早报道的两件标本及安徽研究程度较高的其他Chaohusaurus进行对比分析,以期补充完善对Ch. zhangjiawanensis比较解剖和形态功能特征的认识并加强对Chaohusaurus内群演化、生活环境和活动范围等方面的了解。发现Ch. zhangjiawanensisCh. chaoxianensisCh. brevifemoralis等安徽分子的骨骼整体比例和头骨各孔构成等特征相似,但较Ch. chaoxianensisCh. brevifemoralis上颌骨更长、附着牙齿更多且更密集强壮,外鼻孔的后置不明显,骨架更粗壮,躯干更僵硬。研究认为Ch. zhangjiawanensis与安徽Chaohusaurus的骨骼形态差异可能是不同环境导致,推测其多而强壮的后部上颌牙和僵硬的躯干可能是因其以高度骨化的湖北鳄等脊椎动物为食和生活在局限、高盐度的浅海环境而发生的适应性演化,但也不能排除是继承自更古老的类群,或是其活动范围更大、食物来源更广等原因。据此分析,由于早三叠世恶劣的海洋生态环境,碎片化分布的小生态地理区可能广泛存在,使典型的游泳型生物鱼龙在起源和辐射后又在这些缺乏交流的“避难所”中分别演化并形成不同的形态属,但这也导致从特殊骨骼形态探讨早期鱼龙各类之间的演化关联及追索其共同祖先变得困难,因此尚需继续加强对已知早三叠世鱼龙化石层下部层位及相应化石产区附近同时期不同环境海相化石的追寻和分析。

    Abstract

    Chaohusaurus is a significant fossil genus with most abundant specimens and highest research level of ichthyosauromorpha in the Early Triassic, the key epoch of origin and early evolution of ichthyosaurs. However, specimens of this unique genus have only been found in limited areas, mostly in Chaohu, Anhui Province, Lower Yangtze region of South China, and a few in Yuan'an, Hubei Province, northern part of the Middle Yangtze region. Based on careful restoration and observation of a reported specimen of Chaohusaurus zhangjiawanensis found in Yuan'an, this study not only provides lots of cranial structure information which was largely lost in the holotype specimen, but also focuses on the comparison of the two previously reported specimens of well studied Ch.Zhangjiawanensis and other Chaohusaurus in Anhui. The current specimen also sheds light on understanding Ch. zhangjiawanensis from comparative anatomy and functional morphology, and the ingroup evolution, ecology habitat and home range of Chaohusaurus. The result shows that, from the view of the overall proportion of skeleton and structure of cranium, Ch. zhangjiawanensisis similar to Ch. chaoxianensis and Ch. brevifemoralis found in the Anhui Province. Nevertheless, this species can be differentiated from the latter two by longer maxilla with more and stronger, densely attached teeth, inconspicuous postposition of external naris, stronger skeleton and stretch-preserved truncus. The differences in the skeletal morphology of these species may indicate different living environments. Large amounts of strong maxillary teeth and stretch-preserved truncus might be connected to its adaptive evolution which fed on highly ossified vertebrates, such as Hupehsuchia, and its living habitat in limited water with high salinity. However, it cannot be rule out that those differences could have been inherited from archaic creatures, or that they were the result of adaptive evolution towards to wider ecological habitat and more abundant food sources, or other possible reasons. In the Early Triassic, ecological environment of marine is turbulent. Dispersive ecological geographic areas (refuge) during that time may lead to the absence of gene exchange of the ichthyosaurs after its origin and early radiation, and the resulting evolution with different morphology. Further, it makes it difficult to explore the evolutionary connections of the early ichthyosaurs from the specific morphology of the skeleton. Therefore, further study on the Early Triassic ichthyosaur fossils preserved in lower beds and corresponding beds in different environments is needed.

  • 鱼龙是生活于早三叠世至晚白垩世的海生爬行动物重要演化分支(McGowan et al.,2003),化石发现于世界各地,迄今已报道70个属110多个有效种(Moon,2017)。其中,Chaohusaurus(巢湖龙属)因其化石最早发现于中国安徽巢湖地区而得名(Yang Zhongjian et al.,1972)。作为中国迄今已知唯一的早三叠世鱼龙属和全球最古老鱼龙类群之一(Fu Wanlu et al.,2016),Chaohusaurus自报道以来长期为学界所重视和关注(Motani et al.,19962015a; Stone,2010)。截至目前,Chaohusaurus已厘定4个有效种,即Chaohusaurus geishanensisYang Zhongjian et al.,1972)、Chaohusaurus chaoxianensisChen Liezu,1985; Mazin,1991; Motani et al.,19982015b)、ChaohusauruszhangjiawanensisChen Xiaohong et al.,2013)和Chaohusaurus brevifemoralis(Huang Jiandong et al.,2019)。其中Ch. geishanensisCh. chaoxianensisCh. brevifemoralis三个种的化石全部产自安徽巢湖早三叠世斜坡边缘相地层(Chen Zhongqiang et al.,2011; Zhang Yuyin et al.,2016),唯独Ch. zhangjiawanensis化石产自湖北远安同时期的浅海台地相地层(Yan Chunbo et al.,2020)。与安徽Chaohusaurus化石相比,湖北Ch. zhangjiawanensis化石除产出地层及其代表的沉积环境不同,在骨骼形态上也有特殊之处。但目前仅有少量Ch. zhangjiawanensis标本完成了骨骼观察描述(Chen Xiaohong et al.,2013; Zou Yarui et al.,2020),且出于化石保存原因,形态学信息尤其是对古脊椎动物分类较关键的头骨结构信息尚不完整。Ch. zhangjiawanensis被发现后,安徽Chaohusaurus动物群的研究工作又取得较大进展,报道了多件保存完好的骨架及相关化石材料,在由Chaohusaurus及其“近亲分子”组成的basal Ichthyosauromorpha(Motani et al.,2015a)的比较解剖、系统发生、形态功能学等研究方向产生了许多新的重要认识(Motani et al.,20142015a2018; Jiang Dayong et al.,2016; Huang Jiandong et al.,2020),特别是对Ch. chaoxianensis三维保存头骨(Zhou Min et al.,2017)和Ch. brevifemoralis完整骨架(Huang Jiandong et al.,2019)的详细观察描述及在此基础上与其他basal Ichthyosauromorpha的对比讨论,为揭示Chaohusaurus系统发生、与其他生物演化关联和进一步准确理解该属科学涵义等方面提供了更多新的思路和重要信息。在此背景下,对产于邻近古地理区,有助于加强理解Chaohusaurus地理分布和迁移特征、演替和分异过程、环境和生活习性的Ch. zhangjiawanensis化石研究和讨论也期待加强。

  • 1 材料和方法

  • 2018年10月,笔者团队在实测产Ch. zhangjiawanensis模式和参考标本的湖北省远安县映沟剖面时幸运采集到一件大部分完整的鱼龙化石骨架(YGM-Y4701),其来自剖面嘉陵江组二段第三岩性段中部47层底(Yan Chunbo et al.,2020,图1),时代为早三叠世Olenikian期Spathian亚期(Cheng Long et al.,2015),通过对化石前肢进行精细修复和对比,认为其与Chen Xiaohong et al.(2013)报道的Ch. zhangjiawanensis为同种(Zou Yarui et al.,2020),因Chen Xiaohong et al.(2013)的研究材料非科学发掘获得(经与原作者咨询,标本是在采石生产过程中发现,没有记录层位),故这件标本也是中扬子地区首例具有确切层位信息的鱼龙化石骨架。进一步修复后,发现该标本还有不少重要的骨骼形态信息(尤其是头骨部分)。因此,本文主要以和Chen Xiaohong et al.(2013)报道的标本(主要是保存有部分头骨实体化石的WHGMR V26001标本)以及安徽部分研究认识程度较高Chaohusaurus的对比和分析为重点,对YGM-Y4701标本开展进一步骨骼形态学观察描述和相关讨论。在研究过程中,骨骼细节精修在体式显微镜下采用气动和手动剔针完成,骨缝观察也在体式显微镜下进行。化石照片均使用专业单反相机配合补光灯、稳定脚架和快门线拍摄,骨骼线条图使用Adobe Illustrator CC绘制,骨骼形态数据测量使用毫米级电子游标卡尺完成。

  • 标本馆藏机构缩写:AGB:Anhui Gushengwu Bowuguan,安徽古生物博物馆(现改为安徽省地质博物馆),中国合肥; GMPKU:Geological Museum of Peking University,北京大学地质博物馆,中国北京; WHGMR:Wuhan Institute of Geology and Mineral Resources,武汉地质矿产研究所,中国武汉; YGM:Yuan'an Geological Museum,远安地质博物馆,中国宜昌。

  • 2 系统古生物学

  • 爬行Reptilia Laurenti,1768

  • 双孔下纲Diapsida Osborn,1903

  • 鱼龙型超目IchthyosauromorphaMotani et al.,2015

  • 科未定Incertaesedis

  • 巢湖鱼龙属Chaohusaurus Young Zhongjian et al.,1972

  • 张家湾巢湖鱼龙Chaohusauruszhangji-awanensis Chen Xiaohong et al.,2013

  • 模式标本:WHGMR V26001,一具近完整的骨架,标本保存长度63 cm,背视出露,头骨前部化石缺失,肩带和腰带以及前、后肢和尾端缺或保存不全。

  • 参考标本:WHGMR V26025,一具保存绝大部分躯干和一半左前肢的不完整骨架,头骨仅剩印模,左侧视出露。

  • 本文研究标本:YGM-Y4701,一具大部分保存完整,关节良好的骨架(图2),左侧视出露。

  • 释名:属名来自汉语拼音Chaohu(意思是“巢湖”,指这类化石最早发现的地区:中国安徽省巢湖县)和希腊语ϛσαυροζ(意思是“蜥蜴类”)组合; 种名取自地名(即汉语拼音“张家湾”),指模式标本产地(经咨询和实地查证,2013年论文记述的标本产地洋坪(镇)张家湾实有误,张家湾不在洋坪镇,而是其东部河口乡的一村落,但也非化石模式标本和参考标本的产出地点,准确产地应该是河口乡落星村映沟)。

  • 图1 研究材料产出地点及层位(地质图据1∶20万区域地质调查资料改绘)

  • Fig.1 Location and stratum of the research material (the geological map was redrawn based on the1∶200000 regional geological survey data)

  • 1 —白垩系; 2—侏罗系; 3—上三叠统; 4—中三叠统巴东组; 5—下—中三叠统嘉陵江组; 6—下三叠统; 7—二叠系; 8—志留系—二叠系; 9—奥陶系; 10—新元古界—寒武系; 11—断层; 12—不整合; 13—映沟剖面; 14—灰岩; 15—白云质灰岩; 16—蠕虫状灰岩; 17—白云岩; 18—角砾白云岩; 19—泥岩; 20—脊椎动物化石富集层; 21—泥质页岩; 22—玻屑凝灰岩; 23—沉积结核; 24—研究标本(YGM-Y4701)

  • 1 —Cretaceous; 2—Jurassic; 3—Upper Triassic; 4—Middle Triassic Badong Formation; 5—Lower-Middle Triassic Jialingjiang Formation; 6—Lower Triassic; 7—Permian; 8—Silurian-Permian; 9—Ordovician; 10—Neoproterozoic-Cambrian; 11—fault; 12—unconformity; 13—Yinggou section; 14—limestone; 15—dolomite limestone; 16—vermicular limestone; 17—dolomite; 18—breccia dolomite; 19—mudstone; 20—vertebrate fossil bed; 21—argillaceous shale; 22—glassy tuff; 23—sedimentary nodules; 24—research specimen (YGM-Y4701)

  • 图2 Chaohusauruszhangjiawanensis标本YGM-Y4701(比例尺5 cm)

  • Fig.2 Specimen (YGM-Y4701) of Chaohusauruszhangjiawanensis (scale bar 5 cm)

  • 产地和层位:湖北省远安县落星村映沟,下三叠统嘉陵江组二段(Spathian亚阶)。

  • 修订特征:小型鱼龙,长1 m左右; 眼眶大; 前额骨眶前平台大而明显; 前额骨—后额骨接触; 后额骨不参与上颞孔形成; 上颌骨大,有不少于17颗上颌牙; 异型齿,有生长替换特征; 2对荐肋,第一对荐肋远端明显扩展,第二对不扩展,形态上与尾肋相似但小于尾肋; 股骨发育明显的背突; 具尾折; 前肢腕骨骨化完全,发育豌豆骨,间中骨呈五边形; 前肢第一远端腕骨缺失,腕骨、掌骨及指骨均排列较紧密,其近远端间隙小。

  • 描述:新标本YGM-Y4701为一具相互关节的骨架,左侧视出露,躯干中部略打散,通过和前人标本对比,并根据骨化程度,判断其为一成年个体,推测其体长接近1 m。其从吻尖至躯干中部较完整保存了化石实体,但从躯干后部开始至尾部前端仅保存印模,由于化石发现于一断崖边,其荐椎附近及尾干后部的化石石板因自然崩解散落丢失。

  • 颅骨(Skull)  因模式标本WHGMR V26001头骨背腹向保存且不完整(图3b,主要保存了外鼻孔以后部分),而YGM-Y4701标本头骨从吻尖至枕部左侧视保存基本完整(图3a,颅顶中轴线附近靠后的额骨、顶骨、顶孔和上颞孔等因埋藏较深未暴露),可与模式标本互为补充,YGM-Y4701标本头骨部分测量数据见表1。

  • 表1 YGM-Y4701标本头骨测量数据

  • Table1 Measurements of the skull of YGM-Y4701

  • 前上颌骨(Premaxilla)   WHGMR V26001标本中因吻部骨骼缺失,前上颌骨仅残余右支后侧末端,而YGM-Y4701标本头骨前部略向左腹侧扭转,可见左右两侧原位轮廓清楚的前上颌骨及其中线,其总体形态结构与Ch. chaoxianensisCh. brevifemoralis相似,呈细长三角状,长度略小于头骨长度的一半,向前渐变细,构成吻尖上半部和吻的前半部,与后部骨片接触较清楚,其背侧支内侧与鼻骨接触,抵达外鼻孔前缘并少量参与外鼻孔构成,背侧支外侧与上颌骨前内侧接触,前上颌骨有牙,但较遗憾因前上颌骨两支中部皆有破损,故不能对其附着牙齿进行全面观察(关于标本牙齿专门描述见下文)。

  • 上颌骨(Maxilla)   WHGMR V26001标本仅可见右上颌骨后侧少量骨片,YGM-Y4701标本左侧上颌骨保存完整且清楚展示,其为典型三射形骨,前后长度略短于前上颌骨,构成吻的后腹外侧,前突向前延伸远超出外鼻孔,前突背缘构成外鼻孔整个腹缘,但没有观察到像Ch. chaoxianensisCh. brevifemoralisCartorhynchusSclerocormus那样在鼻孔附近分叉,背侧支强壮,像其他ChaohusaurusUtatsusaurusMixosaurus等原始鱼龙那样延伸至鼻骨,将泪骨与外鼻孔分开,与泪骨的缝合线光滑,腹侧支向眼眶下部延伸,与轭骨前支的腹侧相接触,上颌骨有牙。总体而言,Ch. zhangjiawanensis的前上颌骨侧视整体轮廓明显大于Ch. chaoxianensisCh. brevifemoralis,其前突也更加伸长,附着牙齿更多。

  • 鼻骨(Nasal)   是构成从眶前到外鼻孔前部区域的头骨顶部的主要骨块,在WHGMR V26001标本中鼻骨前部缺失,后侧保存,而YGM-Y4701标本的鼻骨前部保存较好,可见左右两侧鼻骨前半部分结构以及其中线,鼻骨向前逐渐变细,呈小分叉状与前上颌骨接触,超出外鼻孔,构成外鼻孔的整个背缘,生长纹前后走向,WHGMR V26001标本显示鼻骨与后侧额骨缝合线呈波浪形,但YGM-Y4701标本鼻骨后半部分由于骨破损,其与后侧额骨的接触情况难以观察。

  • 外鼻孔(External naris)   WHGMR V26001标本外鼻孔外围骨骼缺失,YGM-Y4701标本左侧外鼻孔可观察,但其可能受挤压作用影响,呈一压扁的、长轴前后走向的椭圆形,向前渐变为一浅的凹槽,主要由鼻骨前腹侧和上颌骨前突背侧围成(泪骨没有参与外鼻孔形成),前端与前上颌骨接触,比较清楚地观察到Ch. zhangjiawanensis的外鼻孔后缘没有像Ch. chaoxianensisCh. brevifemoralis那样凹入上颌骨前背侧,这可能说明中扬子早三叠世鱼龙的外鼻孔后置程度不如下扬子早三叠世的basal Ichthyosauromorpha,Yang Zhongjian et al.(1972)在描述Ch. geishanensis头骨时提到该动物鼻孔可能被上颌骨挤压遮挡,从保存情况推测,Ch. zhangjiawanensis很可能与Ch. geishanensis的外鼻孔位置和形态是类似的。

  • 图3 YGM-Y4701标本头骨及与其他Chaohusaurus研究材料的对比

  • Fig.3 Skull of YGM-Y4701 and comparison with other materials of Chaohusaurus

  • (a)、(a')—YGM-Y4701标本(Ch. zhangjiawanensis)头骨照片及线条图;(b)—WHGMR V26001标本(Ch. zhangjiawanensis)头骨照片及线条图(Chen Xiaohong et al.,2013);(c)—AGB7401标本(Ch. brevifemoralis)头骨照片及线条图(Huang Jiandong et al.,2019);(d)—GMPKU-P-3188标本(Ch. chaoxianensis)头骨照片及线条图(Zhou Min et al.,2017); a—隅骨; ar—关节骨; cb—角腮骨; cl—锁骨; exn—外鼻孔; f—额骨; j—颧骨; m—上颌骨; mand—下颌骨; n—鼻骨; orb—眼眶; p—顶骨; pf—后额骨; pm—前上颌骨; po—眶后骨; prf—前额骨; q—方骨; qj—方轭骨; sa—上隅骨; scr—巩膜环; sp—夹板骨; sq—鳞骨; st—上颞骨。比例尺2 cm

  • (a) , (a') —Photograph and line drawing of the skull of YGM-Y4701 (Ch. zhangjiawanensis) ; (b) —photograph and line drawing of the skull of WHGMR V26001 (Ch. zhangjiawanensis) (Chen Xiaohong et al., 2013) ; (c) —photograph and line drawing of the skull of AGB7401 (Ch. brevifemoralis) (Huang Jiandong et al., 2019) ; (d) —photograph and line drawing of the skull of GMPKU-P-3188 (Ch. chaoxianensis) (Zhou Min et al., 2017) ; a—angulare; ar—articular; cb—ceratobranchial; cl—clavicle; exn—external naris; f—frontal; j—jugal; m—maxilla; mand—mandible; n—nasal; orb—orbit; p—parietal; pf—postfrontal; pm—premaxilla; po—postorbital; prf—prefrontal; q—quadrate; qj—quadratojugal; sa—surangulare; scr—scleral ring; sp—splint; sq—squamosal; st—supratemporal. Scale bars 2 cm

  • 泪骨(Lacrimal)   WHGMR V26001标本中,背视该骨呈半月形,位于前额骨前外侧,YGM-Y4701标本该骨侧视近菱形,与Ch. chaoxianensisCh. brevifemoralis长而窄的泪骨侧视形态略不同,泪骨较大也许是该动物的原始特征之一,其被上颌骨和鼻骨前缘排除在外鼻孔边界之外,也表现出与CartorhynchusSclerocormusMixosaurus、Hupehsuchia等相似的原始鱼龙类特征,后部参与眼眶前缘组成,腹突不太明显,腹侧与上颌骨有一缝合线,背侧与前额骨的前腹侧接触。

  • 前额骨(Prefrontal)   构成眼眶前背缘,是环绕眼眶最大的骨,位于眼眶前上方类似“眉”的位置,WHGMR V26001标本背视观察该骨呈近三角形,在眼眶前部表现为一个明显的边缘扇形扩展的眶前平台(这与Ch. brevifemoralisCh. chaoxianensisUtatsusaurus hataii、Grippialongirostris等原始鱼龙类均较相似),YGM-Y4701标本可能因为侧向挤压,该骨折断并压覆在眼眶内前背角,上覆一小的不能识别的骨片,前额骨前部与泪骨和鼻骨接触,后侧与后额骨接触。

  • 后额骨(Postfrontal)   构成眼眶后背缘,WHGMR V26001标本中该骨背视较清楚,YGM-Y4701标本后额骨基本位于同一位置,但可能因挤压向背侧发生了少量旋转位移,判断其与WHGMR V26001标本一样,前侧与前额骨接触,将额骨排除在眶缘之外,Ch. zhangjiawanensis的后额骨较Ch. chaoxianensisCh. brevifemoralis大。

  • 眶后骨(Postorbital)   构成眼眶后缘,在WHGMR V26001标本中背视呈一明显的三射状骨,YGM-Y4701标本侧视三射形不太明显,更近似弯月形(与Ch. brevifemoralisCh. chaoxianensis侧视头骨类似),并受挤压影响向后背侧发生明显位移,与同样发生位移的后额骨间夹一不易识别的凸起骨片,从其相对位置及WHGMR V26001标本判断Ch. zhangjiawanensis的眶后骨与上颞骨接触并阻挡鳞骨参与上颞孔,腹侧支逐渐变细。

  • 眼眶(Orbit)   WHGMR V26001标本只能观察到背侧部分眼眶边缘,根据YGM-Y4701标本泪骨、前额骨和后额骨的挤压破碎裂缝走向以及轭骨轮廓判断其为略扁的较大的圆形,比Ch. brevifemoralisCh. chaoxianensis略大,其前背侧被泪骨和前额骨遮挡,后背侧部分被后额骨遮挡,眼眶边缘由前和前背侧的前额骨、后背侧的后额骨、后侧的眶后骨、腹侧的轭骨和前腹侧的泪骨构成,从WHGMR V26001标本能观察到和Ch. chaoxianensisCh. brevifemoralisG. longirostris U. hataiiCartorhynchuslenticarpus等类似的头骨顶部收缩和眼眶背缘向中部偏移现象。

  • 上颞骨(Supratemporal)   在WHGMR V26001标本中表现为眶后骨后外侧一不大的骨,YGM-Y4701标本中该骨侧视显得较大,占据颅骨外后侧方,显示其从顶面移动到枕面,表现出进步特征,结合WHGMR V26001标本,推断其前侧应与眶后骨接触,构成上颞孔腹缘,腹侧与鳞骨接触,靠近方骨背侧末端。

  • 鳞骨和方轭骨(Squamosal and Quadratojugal)   构成颊区主要骨骼,WHGMR V26001标本中鳞骨位于眶后骨和上颞骨下方,未参与上颞孔构成,YGM-Y4701标本中因挤压破损,前腹侧实体化石丢失,鳞骨和方轭骨骨缝不易分辨,判断二骨皆位于(未移位的)眶后骨后部,后侧与方骨接触,眶后骨虽有移位,但从上颞骨位置判断,YGM-Y4701标本的鳞骨也参与形成上颞孔的边缘,这与Ch. chaoxianensisCh. brevifemoralis等相似而与原始鱼龙UtatsusaurusGrippia不同,Huang et al.(2019)提到Chaohusaurus的鳞骨和Mixosaurus atavus的相似,在颊区侧面轻微鼓起并常覆盖上颞骨、方骨(有时还有眶后骨和方轭骨)等骨骼,因此很容易因挤压而破损脱落,这与在YGM-Y4701标本中观察到的现象吻合。

  • 方骨(Quadrate)   YGM-Y4701标本中为一略向内侧弯曲的杆状骨,其中部实体化石破损脱落,与WHGMR V26001标本暴露的左侧方骨以及Ch. chaoxianensis的方骨形态相似,其位于方轭骨(或包括鳞骨)后侧,后侧被挤压位移的锁骨压覆,和模式标本一样,方骨基部厚实,发育一个明显的椭圆形关节突,与下颌支方骨关节相连。

  • 轭骨(Jugal)   YGM-Y4701标本中为一窄而细长的J形骨骼,形态与WHGMR V26001标本的呈前后端略扁的棒状类似,大部分保存,前支略弯曲,向前端延伸,在眼眶中前部与上颌骨背侧和泪骨相接触,构成眼眶腹缘,后背侧支化石实体丢失,判断与眶后骨后缘接触,后背侧支上覆一难识别小骨片,但并非与Hupehsuchia相似的后腹突。

  • 颞孔(Temporal Fenestra)   YGM-Y4701标本上颞孔未暴露,WHGMR V26001标本观察上颞孔由后额骨、眶后骨、上颞骨、顶骨围成,椭圆形,比Ch. chaoxianensisCh. brevifemoralis略小,YGM-Y4701标本显示下颞孔不封闭,向下开口,垂直拉长,近似楔形,前方被轭骨、后背侧被方轭骨(不能确定是否包含鳞骨)所围,这与Ch. chaoxianensisCh. brevifemoralisCartorhynchuslenticarpus和Hupehsuchia等相似。

  • 下颌(Mandible)   WHGMR V26001标本从背视几乎无法观察到下颌,YGM-Y4701标本下颌各骨关节良好,但实体化石保存差,齿骨缺失近半,夹板骨未观察到,隅骨和上隅骨仅背侧少量实体化石保留,其余部分仅剩印模,关节骨被后侧的锁骨压覆,有关节后突。

  • 齿骨(Dentary)   YGM-Y4701标本中为一条状骨骼,前后伸长且末端收缩,长度超过下颌的一半,构成吻尖下部和下颌的整个前外侧,后外侧与上隅骨接触,齿骨有牙。

  • 上隅骨(Surangular   YGM-Y4701标本中上隅骨占下颌后外侧大部分,从向前逐渐变细,与齿骨后外侧接触,后侧背缘发育方骨突,与方骨形成下颌关节。

  • 隅骨(Angular)  YGM-Y4701标本中该骨实体大部分缺失,从印模观察其前背侧与上隅骨接触。

  • 齿系(Dentition)   WHGMR V26001标本牙齿保存较差,仅在左上颌骨最后端可观察到两颗破碎的牙齿断面(表面有密深的纵纹),新标本可以观察到左侧较多的前上颌牙、上颌牙和齿骨牙,均微向后弯,总体具有形态渐变特征,向后牙齿逐渐变大、排列逐渐紧密,从前部牙齿细长的圆锥形向后逐渐变成低矮的圆丘形,两种齿形的变化是逐渐过渡的,从整体而言,YGM-Y4701标本牙齿要比Ch. chaoxianensisCh. brevifemoralis显得密集和强壮得多(图4a)。

  • 前上颌牙(Premaxillary Teeth)   由于YGM-Y4701标本左侧前上颌骨中下部破损缺失,前上颌牙保存不全,可观察的牙(含印模)有8颗(图4b),相互间有2~3 mm间隔,其中第1、6、7、8前上颌牙实体缺失(或部分缺失,第6颗牙表面上覆一其他骨骼碎片),可见的前上颌牙均呈圆锥形,齿冠发育纵纹,侧视牙齿植入方式不明确,可能位于牙槽内,保存较好的第5前上颌牙高度5.12 mm,远端直径2.03 mm,形状指数约2.52,与Ch. chaoxianensis相近(前上颌牙形状指数2.6),从前上颌牙排列规律和前上颌骨长度推测前上颌牙20~30颗,应比Ch. brevifemoralis模式标本前上颌牙少。

  • 上颌牙(Maxillary Teeth)   YGM-Y4701标本左侧支上颌牙保存较完整,有明显的形态渐变特征,相互间排列比Ch. chaoxianensisCh. brevifemoralis紧密得多,齿冠基部收缩并发育密的纵纹,上颌牙共有17颗,比Ch. chaoxianensis(12颗)和Ch. brevifemoralis(9颗)明显要多,从上颌牙的大小参差不齐可以判断其为可替换牙(polyphyodont),其中第4、5、6、9、12颗牙明显大于其他上颌牙,应该不是近期更换的,第6、9、12颗牙还可以观察到牙颈,由于第2~6颗牙生长区域的左侧上颌骨表面破碎脱落(图4d),似可观察到第4颗上颌牙的牙根(Radix dentis)和第3、5颗上颌牙的髓腔结构(Cavum dentis),可能说明其为槽生,上颌前牙仍然是圆锥形的,但顶端已开始变得更圆,后牙则逐步变成圆丘形(图4c),变得更大,更坚固,最大的上颌牙是第16颗,牙冠呈球形,但表面破损,第14颗上颌牙保存完好,形状指数已下降为0.96,明显要比Ch. chaoxianensisCh. brevifemoralis的上颌牙(形状指数1.5左右)更加钝圆和粗壮。

  • 齿骨牙(Dentary Teeth)   YGM-Y4701标本中由于左侧齿骨前端破损丢失,齿骨牙保存不完整,总数不易统计,可识辨的牙不少于22颗,侧视牙齿植入方式不明确,齿根不可见,也可能位于牙槽内,和上牙弓的牙齿形态变化规律类似,前部齿骨牙为圆锥形,类似前上颌牙,从中前部(约倒数第18颗)牙开始齿尖变圆,后4颗牙的齿冠呈球形,倒数第4颗齿骨牙的形状指数为1.18,后部齿骨牙小于相对应的上颌牙。

  • 头后骨骼(Postcranial Elements)   YGM-Y4701标本的前肢骨骼保存较好,已进行观察描述(Zou Yarui et al.,2020),其他头后骨骼保存情况不如WHGMR V26001和WHGMR V26025标本,部分保存较好的骨骼及特征包括:锁骨(Clavicle)为不对称U形骨骼,可见左右两侧相互叠置,近端和中部较厚,远端细长杆状,有一尖端指向后方,与Ch. chaoxianensisCh. brevifemoralis相似,没有观察到明显的间锁骨; 肩胛骨(Scapula)较大,为一扇形骨板,前缘为圆形,无凹陷或凹缘; 椎体(Centrum)高略大于宽,颈椎不多于6个,似为双平型或双(微)凹型,与安徽的Chaohusaurus类似,躯干部的脊柱没有隆起; 神经弓和神经棘(Neural arches and spines)粗壮,排列紧密,没有Ch. chaoxianensisCh. brevifemoralis神经弓、棘间较明显间隙,神经弓上部比Ch. chaoxianensisCh. brevifemoralis宽(图5); 背肋(Dorsal Ribs)扁平,与Ch. chaoxianensisCh. brevifemoralis一样为单头,近端膨大较Ch. chaoxianensisCh. brevifemoralis明显,外表面没有观察到凹槽,前部背肋近端为三角形横断面,向后横断面渐变为矩形; 腹肋(Gastralia)细长密集,位于躯干腹面,分为Y形内侧单元和细长的外侧支,多被打散。

  • 图4 YGM-Y4701标本牙齿特征

  • Fig.4 Tooth characteristics of YGM-Y4701

  • (a)—标本左侧视牙齿总体暴露情况;(b)—前部前上颌牙(圆锥形)发育特征;(c)—后部上颌牙(圆丘形)发育特征;(d)—前部上颌牙(大小不一的典型替换型牙齿,可见牙髓腔和牙根)发育特征; pt No.—前上颌牙及编号; mt No.—上颌牙及编号; dt—齿骨牙; Radix dentis—牙根; Cavum dentis—髓腔。比例尺1 cm

  • (a) —The overall exposure of the teeth of the specimen (left side view) ; (b) —the developmental characteristics of the anterior of the premaxillary teeth (conical) ; (c) —developmental characteristics of the posterior of the maxillary teeth (dump-shaped) ; (d) —anterior of the maxillary teeth (they are polyphyodont, with various sizes, and cavum dentis and radix dentis can be seen) . pt No.—premaxillary teeth and number; mt No.—maxillary teeth and number; dt—dentary teeth. Scale bars 1 cm

  • 3 讨论

  • 3.1 骨骼对比分析

  • Chaohusaurus是目前化石材料最丰富、研究认识程度最高的早三叠世鱼龙属,尽管其模式种——发现于安徽巢湖的Ch. geishanensis仅有1件不完整的化石研究材料(Yang Zhongjian et al.,1972; Motani et al.,1998),认识程度低,但Ch. chaoxianensisCh. brevifemoralis这两种发现于同一地的Chaohusaurus均已有大量较完整化石骨架被修复和研究。Motani et al.(2015b)通过对26件Chaohusaurus标本的研究,更正了早期认为Ch. chaoxianensisCh. geishanensis幼年个体的认识(Motani et al.,1998),将Ch. chaoxianensis存在未完全骨化腕骨或跗骨的特征作为其与Ch. geishanensis鉴别的主要依据。Huang Jiandong et al.(2019)对大约40件Motani et al.(2015b,2018)认为是Ch. chaoxianensis的标本进行研究后,根据其中21个标本尾峰神经棘分叉,股骨相对于躯干长度较短的特征建立新种Ch. brevifemoralisCh. chaoxianensis相区别。与上述三种安徽Chaohusaurus主要鉴别特征相比,产自湖北远安的Ch. zhangjiawanensis腕骨骨化完全且紧密排列,与Ch. geishanensis相似而与Ch. chaoxianensisCh. brevifemoralis明显不同; 尾峰神经棘没有分叉,与Ch. chaoxianensis相似而与Ch. brevifemoralis不同。但上述Chaohusaurus定种的关键鉴别特征基本都是关于头后骨骼的,在对古脊椎动物分类较关键的头骨研究方面,Ch. geishanensis仅有1件背视头骨且研究成果发表较早,没有与后来发现的其他Chaohusaurus进行对比,Ch. chaoxianensisCh. brevifemoralis头骨材料虽多但十分类似,主要靠头后骨骼鉴别,而Ch. zhangjiawanensis缺乏完整头骨化石。因此,Chaohusaurus头骨的对比研究认识薄弱,Chaohusaurus内群不同分子的差异性未得到全面揭示。

  • 图5 Chaohusaurus神经弓与神经棘对比

  • Fig.5 Comparison of neural arches and spines of Chaohusaurus

  • (a)—YGM-Y4701标本(Ch. zhangjiawanensis);(b)—WHGMR V26025标本(Ch. zhangjiawanensis,引自Chen Xiaohong et al.,2013);(c)—WHGMR V26001标本(Ch. zhangjiawanensis,引自Chen Xiaohong et al.,2013);(d)—AGB7401标本(Ch. brevifemoralis,引自Huang Jiandong et al.,2019)。比例尺1 cm

  • (a) —YGM-Y4701 (Ch. zhangjiawanensis) ; (b) —WHGMR V26025 (Ch. zhangjiawanensis, from Chen Xiaohong et al., 2013) ; (c) —WHGMR V26001 (Ch. zhangjiawanensis, from Chen Xiaohong et al., 2013) ; (d) —AGB7401 (Ch. brevifemoralis, from Huang Jiandong et al., 2019) . Scale bars 1 cm

  • 本次根据进一步修复的YGM-Y4701标本重点补充了湖北早三叠世鱼龙Ch. zhangjiawanensis的头骨比较解剖学信息,主要包括其头骨前部各骨侧视结构以及相互关系,如拉长和参与形成外鼻孔的前上颌骨,前突明显超过外鼻孔且背侧支阻止泪骨参与围成外鼻孔的上颌骨,近完整、可替换、形态渐变的上颌齿系,部分前上颌齿和齿骨齿形态特点,围成头部各孔的骨骼接触情况和相对位置,下颌各骨,以及上下颌关节特征等。这些信息在Chen Xiaohong et al.(2013)对背腹保存且吻部缺失的模式标本WHGMR V26001和头骨实体化石缺失的参考标本WHGMR V26025的研究中因材料限制而缺少。通过YGM-Y4701标本并结合WHGMR V26001标本头骨部分的观察对比,发现Ch. zhangjiawanensis头骨轮廓和各骨形态及接触关系总体上与Ch. chaoxianensisCh. brevifemoralis相似:围成外鼻孔、眼眶、上颞孔等头骨各孔的骨块及相对位置基本一致,个体大小、头骨长度、吻长及相对比例等形态学数据也十分趋近。但Ch. zhangjiawanensis的眼眶更大,三射形上颌骨更大和更向前伸长,并附着了数量更多、更密、更粗壮钝圆的牙齿,前上颌骨的牙齿虽无法精确统计,但推测应比Ch. chaoxianensisCh. brevifemoralis要少。Ch. zhangjiawanensis外鼻孔的后置也不太明显,主要表现在其上颌骨前背侧没有与Ch. chaoxianensisCh. brevifemoralis类似的凹入。之前研究还指出,Ch. zhangjiawanensis骨化完全并紧密排列的腕骨明显不同于Ch. chaoxianensisCh. brevifemoralisZou Yarui et al.,2020)。另根据WHGMR V26001标本,Ch. zhangjiawanensis顶孔位于顶骨中部,与Ch. chaoxianensisCh. brevifemoralis一致而与Ch. geishanensis顶孔位于顶骨和额骨之间不同,且Ch. zhangjiawanensis的顶孔略小于Ch. Chaoxianensis

  • Ch. zhangjiawanensis明显的前部圆锥形、后部圆丘形的形态渐变的牙齿曾被早期学者认为是原始鱼龙的特征,而进步鱼龙应是锥状的同型齿(Peyer,1968)。Huang Jiangdong et al.(2020)基于可能的祖先性状重建提出鱼龙共同祖先应都是锥状的同型齿,而后部圆形牙齿的演化则与不同时期鱼龙的捕食对象有关,特别是与带壳动物有关,该结论能够得到安徽Chaohusaurus伴生生物证据的支持,如头足类(Ji Cheng et al.,2015b)、甲壳纲AnkitokazocarischaohuensisJi Cheng et al.,2017)等。对比而言,和Ch. zhangjiawanensis同层位地点发现的伴生生物面貌却明显不同于安徽,主要是大量的湖北鳄类和少量始鳍龙类,至今没有发现头足、双壳等带壳动物化石,甚至鱼类也很少(Li Jiangli et al.,2020)。目前倾向认为该动物群的食物链下层动物主要是不长牙的湖北鳄类(Fang Zichen et al.,2020),即暗示Ch. zhangjiawanensis密集强壮的后牙更多是针对捕食这些骨甲厚重的湖北鳄类(Carroll et al.,1991; Chen Xiaohong et al.,2014a),这似乎与一些湖北鳄化石中被其他捕食者攻击的证据(Chen Xiaohong et al.,2014b)吻合; 但另一种解释也可以成立,Ch. zhangjiawanensis的圆形后牙及上颌骨更多的牙齿并非最近演化的结果,而是部分早期鱼龙甚至更古老祖先类型的衍征之一,因为西特提斯的Grippia也具备圆丘形的强壮后牙,这也许是早期鱼龙在不同古地理区成功迁徙辐射的证据; 除此最后一种可能是,Ch. zhangjiawanensis的活动范围还包括周边乃至更远地区更加开阔、带壳营养动物更加丰富的海域,但这需要在中上扬子区其他早三叠世海相地层中进一步发现相关化石证据来予以佐证。

  • 除了头骨,湖北Chaohusaurus的头后骨骼也有值得注意的地方。Huang Jiandong et al.(2019)总结数十件安徽产Chaohusaurus标本骨架保存特征发现,Ch. chaoxianensisCh. brevifemoralis的身体通常以强烈蜷曲的方式保存,虽然Ch. zhangjiawanensis的模式标本骨架也蜷曲保存于层面,但蜷曲程度不高。并且,本次研究的YGM-Y4701标本和Chen Xiaohong et al.(2013)报道的Ch. zhangjiawanensis参考标本WHGMR V26025以及笔者最近在远安及周边地区发现的其他一些鱼龙骨架均显示该动物死亡后大多非蜷曲而是舒展状态,这种“僵直”的化石骨架保存方式也广泛存在于与Ch. zhangjiawanensis伴生的湖北鳄类中。另外,这一地区与Chaohusaurus伴生的第三类动物——以HanosaurusLariosaurus为代表的始鳍龙类也有明显的肿骨特征(Yang Zhongjian et al.,1972; Rieppel,1998; Cheng Long,2015; Li Qiang et al.,2020),据此推测,Ch. zhangjiawanensis及其伴生海生爬行类可能因受到局限、盐度较高的海水环境(Yan Chunbo et al.,2020)影响,骨骼增粗增大,导致躯干更加僵直,而具体原因可能是Ch. zhangjiawanensis宽的神经弓——神经棘及其相互间的紧密接触,这在已知3件标本中都易于观察,也是Ch. zhangjiawanensisCh. ChaoxianensisCh. brevifemoralis等安徽分子明显不同的骨骼特征之一。

  • 另值得注意的是,与Ch. zhangjiawanensis伴生的海生爬行类——湖北鳄曾被认为是与鱼龙有较近亲缘关系的动物(Carroll et al.,1991; Motani,1999; Ji Cheng et al.,2015a),但最早提出该认识时湖北鳄化石层并未发现真正的鱼龙化石,随着Ch. zhangjiawanensis被报道及形态学信息进一步完善,有必要注意这两类生活于同一时代和古地理区的动物之间的显著差异,特别从牙齿、颞区(譬如湖北鳄的轭骨为三射形)、神经棘、四肢等骨骼方面看,Ch. zhangjiawanensis和湖北鳄类似乎有不同的水生适应方式,这暗示斯帕斯亚期华南中扬子北部的湖北鳄和鱼龙之间的亲缘关系还值得进一步探讨。

  • 3.2 鱼龙早期分布和环境

  • 早三叠世是鱼龙起源和早期演化的重要阶段,古环境初步研究显示该时期的Ch. zhangjiawanensis生活在东特提斯低纬度区的一个高盐度并有多期火山活动的浅海局限盆地或近岸潟湖(Yan Chunbo et al.,2020),这种环境可能与当时附近的近海陆地生态系统有紧密的关联(Algeo et al.,2011),且丰富的陆源营养物质输入也有利于海洋表层生态食物链的构建(及陆地动物向水生适应发展)。但在Ch. zhangjiawanensis生活的斯帕斯亚期,东、西特提斯和东太平洋三大生物地理区的相关地层中均出现了典型的鱼龙化石,说明此时该类群已成功适应海洋生活并实现了跨洋交流和分布。研究显示这些最早期的鱼龙形态分异明显,譬如日本(东太平洋区)的早三叠世鱼龙长达3 m,具尖锐的同型齿(Shikama et al.,1978); 北美(东太平洋区)的早三叠世鱼龙同样个体大,并具有翼骨齿(Cuthbertson et al.,2013); 欧洲(西特提斯区)的早三叠世鱼龙牙齿形态渐变明显,个体略小于东太平洋区的鱼龙(Wiman,1929); 华南(东特提斯区)则发现了大量小型(1 m左右)早三叠世鱼龙,牙齿与欧洲鱼龙相似,腕骨特化,并有类似腕骨结构的近亲动物CartorhynchusSclerocormus等与之伴生,另也有一些形态类似、但腕骨并未特化的小型鱼龙如本文描述的Ch. zhangjiawanensisCh. geishanensis等,最近在南盘江盆地还出现了个体更大(推测超过2 m)的早三叠世鱼龙化石证据(He Yongzhong et al.,2020)。

  • 中生代鱼龙等海生爬行类的起源被认为与二叠纪末生物大灭绝事件导致海洋中 90%以上的物种灭绝(Fan Juanxian et al.,2020)有密切联系。本次大灭绝导致底栖、内生类型的古生代型生物大量消失,使得大量的生态空间被腾出(Erwin,1994; Song Haijun et al.,2018),伴随着活动性游泳生物头足类(菊石)和牙形类则在早三叠世印度期中期(Dai Xu et al.,2019)或奥伦尼克期早期和晚期先后两次复苏(Brayard et al.,20062009; Orchard,2007; Stanley,2009; Wu Kui et al.,20192020),鱼龙等善于游泳的捕食者也在早三叠世出现并快速辐射演化,其也进一步导致 Spathian亚期海洋生态食物链上层的游泳群落的繁盛(Jiang Dayong et al.,2016),继而推动整个现代型海洋生态系统的创新重建(Chen Zhongqiang et al.,2012; Song Haijun et al.,2018)。地球化学指标已揭示,几乎整个早三叠世都处于高温气候中,海洋表层海水最高温度可能超过了40℃(Sun Yadong et al.,2012),且该时期海洋酸化(Payne et al.,2006; Song Haijun et al.,2020)、海水分层(Song Huyue et al.,2013)、间歇性缺氧( Kump et al.,2015; Clarkson et al.,2016)等多次全球性的海洋环境扰动也导致早三叠世海生动物灭绝和复苏的多次反复(Song Haijun et al.,2014),可能造成这一时期的海洋中形成大大小小、相互隔离的“避难所”,即类似现代海洋中洋岛海山、海底热泉、生物礁洞穴等相对孤立的地质部位(Kauffman et al.,1995),使鱼龙等“率先复苏”的游泳型生物分散活动于这些碎片化的区域,与一些奇特的灾后泛滥生物共生,骨骼结构也受到这些动物(食物)及海水环境的影响,呈现不同的演化路径。譬如Ch. zhangjiawanensis僵硬的躯干和粗壮后牙很可能就与其所生活的局限海台环境中较大、较笨重的特化海生爬行类作为主要食物,以及海水盐度高有一定关系。而安徽Chaohusaurus因其生活于开阔、盐度正常的深水斜坡,且有鱼、头足、介形类等丰富的小型营养生物伴生,牙齿因此变得纤细,骨骼也向轻量化发展,而且其与伴生的CartorhynchusSclerocormus所具有的软骨充填的肢骨也很可能是这种机制下的特殊环境适应演化结果。最近,Song Haijun et al.(2020)通过华南牙形石钙同位素研究提出早三叠世晚期下层缺氧、酸化的海水因气候变冷和洋流循环加速而向大陆架扩散的理论模型,这也许是该时期扬子海北部大陆架边缘与内部的Chaohusaurus骨骼差异演化的环境背景,但还有待进一步评估。另外,与Ch. zhangjiawanensis伴生的动物主要是较大的海生爬行类,而鱼类和其他无脊椎海洋动物均罕见,整个生物组合面貌特殊且怪异,这似乎也能为早三叠世海洋中存在奇特的小生态地理区提供佐证。

  • 就目前化石记录而言,华南似乎是早三叠世鱼龙早期繁盛和多样性演化的一个重要中心,一些学者基于对相关动物独特的骨骼结构特征观察和生物系统发生研究提出最古老(演化树最基干位置)的鱼龙形类来自该地区(Motani et al.,2015a)。但如前所述,由于早三叠世古海洋环境的特殊性,仅靠对少量标本的比较解剖学和系统发育系统学研究来建立全球早期鱼龙的演化脉络是很困难的,虽然特殊生境可能促进一些生物类群发生快速演化和辐射,但也有可能导致一些机会和灾难生物在局部地段繁盛并迅速灭绝(Rodland et al.,2001; Song Haijun et al.,2016),最终只构成生命树的短小分支。因此,探讨鱼龙起源之谜似乎还未到合适的时机。对一些早期鱼龙属种的现有科学认识,还需进一步结合更多化石材料证据及产出化石的地层及其暗示的古环境信息,通过加强多学科研究来验证或改进,尤其是基于当前已知所有早三叠世鱼龙已显示高度水生特化的考虑,特别要加强比现有化石层位更靠下的海相或海陆交互相地层中的化石发掘和研究,探索更古老原始的鱼龙或其祖先类型。

  • 4 结论

  • 本研究通过对发现自湖北远安下三叠统奥伦尼克阶嘉陵江组二段的Chaohusauruszhangjiawanensis化石骨架进行精细修复和观察,对该属种形态信息缺失较多的头骨开展描述并重点与前人描述的Ch. zhangjiawanensis标本及安徽两类研究程度较高的Chaohusaurus进行了对比分析,补充、完善了该鱼龙属种的比较解剖和形态功能特征的认识,加强了对Chaohusaurus演化、生活环境和活动范围等方面的了解。总结发现,Ch. zhangjiawanensisCh. chaoxianensisCh. brevifemoralis等安徽分子的骨骼整体比例和头骨各孔构成等特征相似,但较Ch. chaoxianensisCh. brevifemoralis上颌骨更长、附着牙齿更多且更密集强壮,外鼻孔的后置不明显,骨架更粗壮,躯干更僵硬。结合剖面的沉积相信息来看,Ch. zhangjiawanensis与安徽Chaohusaurus的骨骼形态差异可能是不同环境导致,推测其多而强壮的后部上颌牙和僵硬的躯干可能是因其以高度骨化的湖北鳄等脊椎动物为食和生活在局限、高盐度的浅海环境而发生的适应性演化,但也不能排除是继承自更古老的类群,或是其活动范围更大、食物来源更广等原因。

  • 致谢:湖北省地质局胡道银局长、熊保成总工程师和许多专家对本研究工作表示重视和支持,湖北省地质勘查基金中心、湖北省地质局和古生物与地质环境演化湖北省重点实验室为研究提供了资助,远安县自然资源和规划局雷官孝、曹阳、孙永新、李佑刚等为课题组在远安工作提供了便利条件,武汉地质调查中心程龙高级工程师指导观察化石标本,牛东毅先生协助完成化石修复,谨此一并致谢!最后,特别感谢审稿专家提出的意见建议。

  • 参考文献

    • Algeo T J, Chen Zhongqiang, Fraiser M L, Richard J T. 2011. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1~2): 1~11.

    • Brayard A, Bucher H, Escarguel G, Fluteau F, Bourquin S, Galfetti T. 2006. The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(3~4): 374~395.

    • Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J. 2009. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science, 325(5944): 1118~1121.

    • Carroll R L, Dong Zhiming. 1991. Hupehsuchus, an enigmatic aquatic reptile from the Triassic of China, and the problem of establishing relationships. Philosophical Transactions of the Royal Society B: Biological Sciences, 331(1260): 131~153.

    • Chen Liezu, 1985. Early Triassic ichthyosaurs from Chaoxian, Anhui. Regional Geology of China, 15: 139~146 (in Chinese with English abstract).

    • Chen Xiaohong, Motani R, Cheng Long, Jiang Dayong, Rieppel O. 2014a. The enigmatic marine reptile Nanchangosaurus from the Lower Triassic of Hubei, China and the phylogenetic affinities of hupehsuchia. Plos One, 9(7): 1~12.

    • Chen Xiaohong, Motani R, Cheng Long, Jiang Dayong, Rieppel O. 2014b. Asmall short-necked hupehsuchian from the Lower Triassic of Hubei Province, China. Plos One, 9(12): e115244.

    • Chen Xiaohong, Sander P M, Cheng Long, Wang Xiaofeng. 2013. A new Triassic primitive Ichthyosaur from Yuanan, South China. Acta Geologica Sinica-English Edition, 87(3): 672~677.

    • Chen Zhongqiang, Benton M J. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience, 5(6): 375~383.

    • Cheng Long, Yan Chunbo, Chen Xiaohong, Zeng Xiongwei, Motani R. 2015. Characteristics and significance of Nanzhang/Yuanan Fauna, Hubei Province. Chinese Geology, 42(2): 676~684 (in Chinese with English abstract).

    • Clarkson M O, Wood R A, Poulton S W, Richoz S, Newton R J, Kasemann S A, Bowyer F, Krystyn L. 2016. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nature Communications, 7: 12236.

    • Cuthbertson R S, Russell A P, Anderson J S. 2013. Cranial morphology and relationships of a new grippidian (ichthyopterygia) from the Vega-Phroso Siltstone Member (Lower Triassic) of British Columbia, Canada. Journal of Vertebrate Paleontology, 33(4): 831~847.

    • Dai Xu, Song Haijun, Brayard A, Ware D. 2019. A new Griesbachian-Dienerian (Induan, Early Triassic) ammonoid fauna from Gujiao, South China. Journal of Paleontology, 93: 48~71.

    • Erwin, D H. 1994. The Permo-Triassic extinction. Nature, 367 (6460): 231~235.

    • Fan Junxuan, Shen Shuzhong, Erwin D H, Sadlers P M, MacLeod M, Cheng Qiuming, Hou Xudong, Yang Jiao, Wang Xiangdong, Wang Yue, Zhang Hua, Chen Xu, Lie Guoxiang, Zhang Yichun, Shi Yukun, Yuan Dongxun, Chen Qing, Zhan Linna, Lie Chao, Zhao Yingying. 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475): 272~277.

    • Fang Zichen, Cheng Long, Yan Chunbo. 2020. A review on the Early Triassic Nanzhang-Yuanan Fauna of Hubei Province, South China. Geology and Mineral Resources of South China, 36(1): 80~86 (in Chinese with English abstract).

    • Fu Wanlu, Jiang Dayong, Isabel P, Montañez, Meyers S R, Montani R, Tintori A. 2016. Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery. Scientific Reports, 6: 27793.

    • He Yongzhong, He Xiao, Xiang Kunpeng, Qiao Weitao, Yi Chengxing, An Yayun. 2020. First discovery of marine reptile fossils from the Early Triassic strata in Guoxing area, Longlin County, northwest Guangxi. Geology in China, 47 (4): 368~369 (in Chinese).

    • Huang Jiandong, Motani R, Jiang Dayong, Tintori A, Rieppel O, Zhou Min, Ren Xinxin, Zhang Rong. 2019. The new ichthyosauriform Chaohusaurus brevifemoralis (Reptilia, Ichthyosauromorpha) from Majiashan, Chaohu, Anhui Province, China. PeerJ, 7(7): e7561.

    • Huang Jiandong, Motani R, Jiang Dayong, Ren Xinxin, Tintori A, Rieppel O, Zhou Min, Hu Yuanchao, Zhang Rong. 2020. Repeated evolution of durophagy during ichthyosaur radiation after mass extinction indicated by hidden dentition. Scientific Reports, 10: 7798.

    • Ji Cheng, Jiang Dayong, Motani R, Rieppel O, Sun Zuoyu. 2015a. Phylogeny of the ichthyopterygia incorporating recent discoveries from South China. Journal of Vertebrate Paleontology, 36(1): e1025956.

    • Ji Cheng, Zhang Chao, Jiang Dayong, Bucher H, Motani R, Tintori A. 2015b. Ammonoid age control of the Early Triassic marine reptiles from Chaohu (South China). Palaeoworld, 24(3): 277~282.

    • Ji Cheng, Tintori A, Jiang Dayong, Motani R. 2017. New species of Thylacocephala (Arthropoda) from the Spathian (Lower Triassic) of Chaohu, Anhui Province of China. Palaontologische Zeitschrift, 91(2): 171~184.

    • Jiang Dayong, Motani R, Huang Jiandong, Tintori A, Hu Yuanchao, Rieppel O, Nicholas C. Fraser, Ji Cheng, Kelley N P, Fu Wanlu, Zhang Rong. 2016. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction. Scientific Reports, 6: 26232.

    • Kauffman E G, Erwin D H. 1995. Surviving Mass Ex-tinctions. Geotimes, 14(3): 14~17.

    • Kump L R, Pavlov A, Arthur M A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 33(5): 397~400.

    • Li Jiangli, Zhao Bi, Zou Yarui, Chen Gang. 2020. Strata characteristics of the Early Triassic Nanzhang-Yuan'an Fauna inwestern Hubei Province. Resources Environment and Engineering, 34(4): 485~493 (in Chinese with English abstract).

    • Li Qiang, Liu Jun. 2020. An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health. Communications Biology, 3: 1~11.

    • Mazin J M, Suteethorn V, Buffetaut E, Jaeger J J, Ingavat R. 1991. Preliminary description of Thaisaurus chonglakmanii n. g. , n. sp. , a new ichthyopterygian (Reptilia) from the Early Triassic of Thailand. Comptes Rendus de I'Academie des Sciences, Paris, Serie II, 313: 1207~1212.

    • McGowan C, Motani R. 2003. Handbook of Paleoherpetology, Part 8 Ichthyopterygia. München: Verlag Dr. Friedrich Pfeil, 175.

    • Moon B C. 2017. A new phylogeny of ichthyosaurs (reptilia: diapsida). Journal of Systematic Palaeontology, 17(2): 1~27.

    • Motani R. 1999. Phylogeny of the ichthyopterygia. Journal of Vertebrate Paleontology, 19(3): 473~496.

    • Motani R, You Hailu, Mcgowan C. 1996. Eel-like swimming in the earliest ichthyosaurs. Nature, 382(6589): 347~348.

    • Motani R, You Hailu. 1998. Taxonomy and limb ontogeny of Chaohusaurus geishanensis (ichthyosauria), with a note on the allometric equation. Journal of Vertebrate Paleontology, 18(3): 533~540.

    • Motani R, Jiang Dayong, Tintori A, Rieppel O, Chen Guanbao. 2014. Terrestrial origin of viviparity in Mesozoic marine reptiles indicated by Early Triassic embryonic fossils. Plos One, 9(2): e88640.

    • Motani R, Jiang Dayong, Chen Guanbao, Tintori A, Rieppel O, Ji Cheng, Huang Jiandong. 2015a. A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature, 517(7535): 485~488.

    • Motani R, Jiang Dayong, Tintori A, Rieppel O, Chen Guanbao, You Hailu. 2015b. Status of Chaohusaurus chaoxianensis (Chen, 1985). Journal of Vertebrate Paleontology, 35(1): e892011.

    • Motani R, Huang Jiandong, Jiang Dayong, Tintori A, Rieppel O, You Hailu, Hu Yuanchao, Zhang Rong. 2018. Separating sexual dimorphism from other morphological variation in a specimen complex of fossil marine reptiles (Reptilia, Ichthyosauriformes, Chaohusaurus). Scientific Reports, 8: 14978.

    • Orchard M J. 2007. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1~2): 93~117.

    • Payne J L, Lehrmann D J, Wei J, Knoll A H. 2006. The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 21(1): 63~85.

    • Peyer B. 1968. Comparative Odontology. Chicago: University of Chicago Press, 347.

    • Rieppel O. 1998. The systematic status of Hanosaurus hupehensis (Reptilia, Sauropterygia) from the Triassic of China. Journal of Vertebrate Paleontology, 18(3): 545~557.

    • Rodland D L, Bottjer D J. 2001. Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios, 16(1): 95~101.

    • Shikama T, Kamei T, Murata M. 1978. Early Triassic ichthyosaurus, Utatsusaurus hataii gen. et sp. nov. from the Kitakami Massif, Northeast Japan. Science Reports of the Tohoku University, Sendai, Second Series (Geology), 48(1): 77~92.

    • Song Huyue, Tong Jinnan, Algeo T J, Horacek M, Qiu Haiou, Song Haijun, Tian Li, Chen Zhongqiang. 2013. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change, 105: 7~20.

    • Song Haijun, Wignall P B, Chu Daoliang, Tong Jinnan, Sun Yadong, Song Huyue, He Weihong, Tian Li. 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. ScientificReports, 4(4): 4132.

    • Song Haijun, Tong Jinnan, Wignall P B, Luo Mao, Tian Li, Song Huyue, Huang Yunfei, Chu Daoliang. 2016. Early Triassic disaster and opportunistic foraminifers in South China. Geological Magazine, 153(2): 298~315.

    • Song Haijun, Wignall P B, Dunhill A M. 2018. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science Advances, 4(10): eaat5091.

    • Song Haijun, Song Huyue, Tong Jinnan, Gordon G W, Wignall P B, Tian Li, Zheng Wang, Algeo T J, Liang Lei, Bai Ruoyu, Wu Kui, Anbar A D. 2020. Conodont calcium isotopic evidence for multiple shelf acidification events during the early Triassic. Chemical Geology, 120038.

    • Stanley S M. 2009. Evidence from ammonoids and conodonts for multiple EarlyTriassic mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 106: 15264~15267.

    • Stone R. 2010. Paleontology. Excavation yields tantalizing hints of earliest marine reptiles. Science, 330(6008): 1164~1165.

    • Sun Y, Joachimsld M M, Wignall P B, Yan C, Chen Y, Jiang H, Wang L, Lai X. 2012. Lethally hot temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366~370.

    • Wiman C. 1929. Eine neue marine Reptilien-Ordnung aus der Trias Spitzbergens. Bulletin of the Geological Institution of the University of Uppsala, 22: 183~196.

    • Wu Kui, Tian Li, Liang Lei, Metcalfe I, Chu Daoliang, Tong Jinnan. 2019. Recurrent biotic rebounds during the Early Triassic: biostratigraphy and temporal size variation of conodonts from the Nanpanjiang basin, South China. Journal of the Geological Society, 176(6): 1232~1246.

    • Wu Kui, Tong Jinnan, Metcalfe I, Liang Lei, Xiao Yifan, Tian Li. 2020. Quantitative stratigraphic correlation of the Lower Triassic in South China based on conodont unitary associations. Earth-Science Reviews, 200: 102997.

    • Yan Chunbo, Li Jiangli, Cheng Long, Zhao Bi, Zou Yarui, Niu Dongyi, Chen Gang, Fang Zichen. 2021. Strata characteristics of the Early Triassic Nanzhang-Yuan'an Fauna in western Hubei Province. Earth Science, 46(1): 122~135 (in Chinese with English abstract).

    • Yang Zhongjian, Dong Zhiming. 1972. Aquatic Reptiles from the Triassic of China. Beijing: Science Press.

    • Zhao Guochun, Peter A C. 2012. Precambrian geology of China. Precambrian Research, s 222~223: 13~54.

    • Zhou Min, Jiang Dayong, Motani R, Tintori A, Ji Chen, Sun Zuoyu, Ni Peigang, Lu Hao. 2017. Thecranial osteology revealed by three-dimensionally preserved skulls of the Early Triassic ichthyosauriform Chaohusaurus chaoxianensis (Reptilia: Ichthyosauromorpha) from Anhui, China. Journal of Vertebrate Paleontology, 37(4): e1343831.

    • Zou Yarui, Zhao Bi, Li Jiangli, Cheng Long, Yan Chunbo, Tan Qiuming. 2020. New forefin specimens and comparison of Early Triassic Ichthyopterygia from the Hubei Province. Acta Geologica Sinica, 94(4): 1017~1026 (in Chinese with English abstract).

    • 陈烈祖. 1985. 安徽巢县早三叠世鱼龙化石. 中国区域地质, 15: 139~146.

    • 程龙, 阎春波, 陈孝红, 曾雄伟, Motani R. 2015. 湖北省南漳/远安动物群特征及其意义初探. 中国地质, 42(2): 676~684.

    • 方子晨, 程龙, 阎春波. 2020. 早三叠世南漳-远安动物群研究进展. 华南地质与矿产, 36(1): 80~86.

    • 贺永忠, 贺箫, 向坤鹏, 乔卫涛, 易成兴, 安亚运. 2020. 桂西北隆林过兴地区首次发现早三叠世海生爬行动物化石. 中国地质, 47 (4): 368~369.

    • 李姜丽, 赵璧, 邹亚锐, 陈刚. 2020. 鄂西早三叠世南漳-远安动物群地层分布特征. 资源环境与工程, 34(4): 485~493.

    • 阎春波, 李姜丽, 程龙, 赵璧, 邹亚锐, 牛东毅, 陈刚, 方子晨. 2021. 鄂西早三叠世南漳-远安动物群地层分布特征. 地球科学, 46(1): 122~135.

    • 杨钟健, 董枝明. 1972. 中国三迭纪水生爬行动物. 北京: 科学出版社.

    • 张钰莹, 江大勇, 何治亮, 高波, 刘忠宝, 聂海宽. 2016. 安徽巢湖下三叠统南陵湖组中上段微相及古环境初探. 地层学杂志, 40(3): 290~296.

    • 邹亚锐, 赵璧, 李姜丽, 程龙, 阎春波, 谭秋明. 2020. 湖北早三叠世鱼龙前肢化石YGM-Y4701标本及对比讨论. 地质学报, 94(4): 1017~1026.

  • 参考文献

    • Algeo T J, Chen Zhongqiang, Fraiser M L, Richard J T. 2011. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1~2): 1~11.

    • Brayard A, Bucher H, Escarguel G, Fluteau F, Bourquin S, Galfetti T. 2006. The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(3~4): 374~395.

    • Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J. 2009. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science, 325(5944): 1118~1121.

    • Carroll R L, Dong Zhiming. 1991. Hupehsuchus, an enigmatic aquatic reptile from the Triassic of China, and the problem of establishing relationships. Philosophical Transactions of the Royal Society B: Biological Sciences, 331(1260): 131~153.

    • Chen Liezu, 1985. Early Triassic ichthyosaurs from Chaoxian, Anhui. Regional Geology of China, 15: 139~146 (in Chinese with English abstract).

    • Chen Xiaohong, Motani R, Cheng Long, Jiang Dayong, Rieppel O. 2014a. The enigmatic marine reptile Nanchangosaurus from the Lower Triassic of Hubei, China and the phylogenetic affinities of hupehsuchia. Plos One, 9(7): 1~12.

    • Chen Xiaohong, Motani R, Cheng Long, Jiang Dayong, Rieppel O. 2014b. Asmall short-necked hupehsuchian from the Lower Triassic of Hubei Province, China. Plos One, 9(12): e115244.

    • Chen Xiaohong, Sander P M, Cheng Long, Wang Xiaofeng. 2013. A new Triassic primitive Ichthyosaur from Yuanan, South China. Acta Geologica Sinica-English Edition, 87(3): 672~677.

    • Chen Zhongqiang, Benton M J. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience, 5(6): 375~383.

    • Cheng Long, Yan Chunbo, Chen Xiaohong, Zeng Xiongwei, Motani R. 2015. Characteristics and significance of Nanzhang/Yuanan Fauna, Hubei Province. Chinese Geology, 42(2): 676~684 (in Chinese with English abstract).

    • Clarkson M O, Wood R A, Poulton S W, Richoz S, Newton R J, Kasemann S A, Bowyer F, Krystyn L. 2016. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nature Communications, 7: 12236.

    • Cuthbertson R S, Russell A P, Anderson J S. 2013. Cranial morphology and relationships of a new grippidian (ichthyopterygia) from the Vega-Phroso Siltstone Member (Lower Triassic) of British Columbia, Canada. Journal of Vertebrate Paleontology, 33(4): 831~847.

    • Dai Xu, Song Haijun, Brayard A, Ware D. 2019. A new Griesbachian-Dienerian (Induan, Early Triassic) ammonoid fauna from Gujiao, South China. Journal of Paleontology, 93: 48~71.

    • Erwin, D H. 1994. The Permo-Triassic extinction. Nature, 367 (6460): 231~235.

    • Fan Junxuan, Shen Shuzhong, Erwin D H, Sadlers P M, MacLeod M, Cheng Qiuming, Hou Xudong, Yang Jiao, Wang Xiangdong, Wang Yue, Zhang Hua, Chen Xu, Lie Guoxiang, Zhang Yichun, Shi Yukun, Yuan Dongxun, Chen Qing, Zhan Linna, Lie Chao, Zhao Yingying. 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475): 272~277.

    • Fang Zichen, Cheng Long, Yan Chunbo. 2020. A review on the Early Triassic Nanzhang-Yuanan Fauna of Hubei Province, South China. Geology and Mineral Resources of South China, 36(1): 80~86 (in Chinese with English abstract).

    • Fu Wanlu, Jiang Dayong, Isabel P, Montañez, Meyers S R, Montani R, Tintori A. 2016. Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery. Scientific Reports, 6: 27793.

    • He Yongzhong, He Xiao, Xiang Kunpeng, Qiao Weitao, Yi Chengxing, An Yayun. 2020. First discovery of marine reptile fossils from the Early Triassic strata in Guoxing area, Longlin County, northwest Guangxi. Geology in China, 47 (4): 368~369 (in Chinese).

    • Huang Jiandong, Motani R, Jiang Dayong, Tintori A, Rieppel O, Zhou Min, Ren Xinxin, Zhang Rong. 2019. The new ichthyosauriform Chaohusaurus brevifemoralis (Reptilia, Ichthyosauromorpha) from Majiashan, Chaohu, Anhui Province, China. PeerJ, 7(7): e7561.

    • Huang Jiandong, Motani R, Jiang Dayong, Ren Xinxin, Tintori A, Rieppel O, Zhou Min, Hu Yuanchao, Zhang Rong. 2020. Repeated evolution of durophagy during ichthyosaur radiation after mass extinction indicated by hidden dentition. Scientific Reports, 10: 7798.

    • Ji Cheng, Jiang Dayong, Motani R, Rieppel O, Sun Zuoyu. 2015a. Phylogeny of the ichthyopterygia incorporating recent discoveries from South China. Journal of Vertebrate Paleontology, 36(1): e1025956.

    • Ji Cheng, Zhang Chao, Jiang Dayong, Bucher H, Motani R, Tintori A. 2015b. Ammonoid age control of the Early Triassic marine reptiles from Chaohu (South China). Palaeoworld, 24(3): 277~282.

    • Ji Cheng, Tintori A, Jiang Dayong, Motani R. 2017. New species of Thylacocephala (Arthropoda) from the Spathian (Lower Triassic) of Chaohu, Anhui Province of China. Palaontologische Zeitschrift, 91(2): 171~184.

    • Jiang Dayong, Motani R, Huang Jiandong, Tintori A, Hu Yuanchao, Rieppel O, Nicholas C. Fraser, Ji Cheng, Kelley N P, Fu Wanlu, Zhang Rong. 2016. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction. Scientific Reports, 6: 26232.

    • Kauffman E G, Erwin D H. 1995. Surviving Mass Ex-tinctions. Geotimes, 14(3): 14~17.

    • Kump L R, Pavlov A, Arthur M A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 33(5): 397~400.

    • Li Jiangli, Zhao Bi, Zou Yarui, Chen Gang. 2020. Strata characteristics of the Early Triassic Nanzhang-Yuan'an Fauna inwestern Hubei Province. Resources Environment and Engineering, 34(4): 485~493 (in Chinese with English abstract).

    • Li Qiang, Liu Jun. 2020. An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health. Communications Biology, 3: 1~11.

    • Mazin J M, Suteethorn V, Buffetaut E, Jaeger J J, Ingavat R. 1991. Preliminary description of Thaisaurus chonglakmanii n. g. , n. sp. , a new ichthyopterygian (Reptilia) from the Early Triassic of Thailand. Comptes Rendus de I'Academie des Sciences, Paris, Serie II, 313: 1207~1212.

    • McGowan C, Motani R. 2003. Handbook of Paleoherpetology, Part 8 Ichthyopterygia. München: Verlag Dr. Friedrich Pfeil, 175.

    • Moon B C. 2017. A new phylogeny of ichthyosaurs (reptilia: diapsida). Journal of Systematic Palaeontology, 17(2): 1~27.

    • Motani R. 1999. Phylogeny of the ichthyopterygia. Journal of Vertebrate Paleontology, 19(3): 473~496.

    • Motani R, You Hailu, Mcgowan C. 1996. Eel-like swimming in the earliest ichthyosaurs. Nature, 382(6589): 347~348.

    • Motani R, You Hailu. 1998. Taxonomy and limb ontogeny of Chaohusaurus geishanensis (ichthyosauria), with a note on the allometric equation. Journal of Vertebrate Paleontology, 18(3): 533~540.

    • Motani R, Jiang Dayong, Tintori A, Rieppel O, Chen Guanbao. 2014. Terrestrial origin of viviparity in Mesozoic marine reptiles indicated by Early Triassic embryonic fossils. Plos One, 9(2): e88640.

    • Motani R, Jiang Dayong, Chen Guanbao, Tintori A, Rieppel O, Ji Cheng, Huang Jiandong. 2015a. A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature, 517(7535): 485~488.

    • Motani R, Jiang Dayong, Tintori A, Rieppel O, Chen Guanbao, You Hailu. 2015b. Status of Chaohusaurus chaoxianensis (Chen, 1985). Journal of Vertebrate Paleontology, 35(1): e892011.

    • Motani R, Huang Jiandong, Jiang Dayong, Tintori A, Rieppel O, You Hailu, Hu Yuanchao, Zhang Rong. 2018. Separating sexual dimorphism from other morphological variation in a specimen complex of fossil marine reptiles (Reptilia, Ichthyosauriformes, Chaohusaurus). Scientific Reports, 8: 14978.

    • Orchard M J. 2007. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1~2): 93~117.

    • Payne J L, Lehrmann D J, Wei J, Knoll A H. 2006. The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 21(1): 63~85.

    • Peyer B. 1968. Comparative Odontology. Chicago: University of Chicago Press, 347.

    • Rieppel O. 1998. The systematic status of Hanosaurus hupehensis (Reptilia, Sauropterygia) from the Triassic of China. Journal of Vertebrate Paleontology, 18(3): 545~557.

    • Rodland D L, Bottjer D J. 2001. Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios, 16(1): 95~101.

    • Shikama T, Kamei T, Murata M. 1978. Early Triassic ichthyosaurus, Utatsusaurus hataii gen. et sp. nov. from the Kitakami Massif, Northeast Japan. Science Reports of the Tohoku University, Sendai, Second Series (Geology), 48(1): 77~92.

    • Song Huyue, Tong Jinnan, Algeo T J, Horacek M, Qiu Haiou, Song Haijun, Tian Li, Chen Zhongqiang. 2013. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: implications for oceanographic changes related to Siberian Traps volcanism. Global and Planetary Change, 105: 7~20.

    • Song Haijun, Wignall P B, Chu Daoliang, Tong Jinnan, Sun Yadong, Song Huyue, He Weihong, Tian Li. 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. ScientificReports, 4(4): 4132.

    • Song Haijun, Tong Jinnan, Wignall P B, Luo Mao, Tian Li, Song Huyue, Huang Yunfei, Chu Daoliang. 2016. Early Triassic disaster and opportunistic foraminifers in South China. Geological Magazine, 153(2): 298~315.

    • Song Haijun, Wignall P B, Dunhill A M. 2018. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science Advances, 4(10): eaat5091.

    • Song Haijun, Song Huyue, Tong Jinnan, Gordon G W, Wignall P B, Tian Li, Zheng Wang, Algeo T J, Liang Lei, Bai Ruoyu, Wu Kui, Anbar A D. 2020. Conodont calcium isotopic evidence for multiple shelf acidification events during the early Triassic. Chemical Geology, 120038.

    • Stanley S M. 2009. Evidence from ammonoids and conodonts for multiple EarlyTriassic mass extinctions. Proceedings of the National Academy of Sciences of the United States of America, 106: 15264~15267.

    • Stone R. 2010. Paleontology. Excavation yields tantalizing hints of earliest marine reptiles. Science, 330(6008): 1164~1165.

    • Sun Y, Joachimsld M M, Wignall P B, Yan C, Chen Y, Jiang H, Wang L, Lai X. 2012. Lethally hot temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366~370.

    • Wiman C. 1929. Eine neue marine Reptilien-Ordnung aus der Trias Spitzbergens. Bulletin of the Geological Institution of the University of Uppsala, 22: 183~196.

    • Wu Kui, Tian Li, Liang Lei, Metcalfe I, Chu Daoliang, Tong Jinnan. 2019. Recurrent biotic rebounds during the Early Triassic: biostratigraphy and temporal size variation of conodonts from the Nanpanjiang basin, South China. Journal of the Geological Society, 176(6): 1232~1246.

    • Wu Kui, Tong Jinnan, Metcalfe I, Liang Lei, Xiao Yifan, Tian Li. 2020. Quantitative stratigraphic correlation of the Lower Triassic in South China based on conodont unitary associations. Earth-Science Reviews, 200: 102997.

    • Yan Chunbo, Li Jiangli, Cheng Long, Zhao Bi, Zou Yarui, Niu Dongyi, Chen Gang, Fang Zichen. 2021. Strata characteristics of the Early Triassic Nanzhang-Yuan'an Fauna in western Hubei Province. Earth Science, 46(1): 122~135 (in Chinese with English abstract).

    • Yang Zhongjian, Dong Zhiming. 1972. Aquatic Reptiles from the Triassic of China. Beijing: Science Press.

    • Zhao Guochun, Peter A C. 2012. Precambrian geology of China. Precambrian Research, s 222~223: 13~54.

    • Zhou Min, Jiang Dayong, Motani R, Tintori A, Ji Chen, Sun Zuoyu, Ni Peigang, Lu Hao. 2017. Thecranial osteology revealed by three-dimensionally preserved skulls of the Early Triassic ichthyosauriform Chaohusaurus chaoxianensis (Reptilia: Ichthyosauromorpha) from Anhui, China. Journal of Vertebrate Paleontology, 37(4): e1343831.

    • Zou Yarui, Zhao Bi, Li Jiangli, Cheng Long, Yan Chunbo, Tan Qiuming. 2020. New forefin specimens and comparison of Early Triassic Ichthyopterygia from the Hubei Province. Acta Geologica Sinica, 94(4): 1017~1026 (in Chinese with English abstract).

    • 陈烈祖. 1985. 安徽巢县早三叠世鱼龙化石. 中国区域地质, 15: 139~146.

    • 程龙, 阎春波, 陈孝红, 曾雄伟, Motani R. 2015. 湖北省南漳/远安动物群特征及其意义初探. 中国地质, 42(2): 676~684.

    • 方子晨, 程龙, 阎春波. 2020. 早三叠世南漳-远安动物群研究进展. 华南地质与矿产, 36(1): 80~86.

    • 贺永忠, 贺箫, 向坤鹏, 乔卫涛, 易成兴, 安亚运. 2020. 桂西北隆林过兴地区首次发现早三叠世海生爬行动物化石. 中国地质, 47 (4): 368~369.

    • 李姜丽, 赵璧, 邹亚锐, 陈刚. 2020. 鄂西早三叠世南漳-远安动物群地层分布特征. 资源环境与工程, 34(4): 485~493.

    • 阎春波, 李姜丽, 程龙, 赵璧, 邹亚锐, 牛东毅, 陈刚, 方子晨. 2021. 鄂西早三叠世南漳-远安动物群地层分布特征. 地球科学, 46(1): 122~135.

    • 杨钟健, 董枝明. 1972. 中国三迭纪水生爬行动物. 北京: 科学出版社.

    • 张钰莹, 江大勇, 何治亮, 高波, 刘忠宝, 聂海宽. 2016. 安徽巢湖下三叠统南陵湖组中上段微相及古环境初探. 地层学杂志, 40(3): 290~296.

    • 邹亚锐, 赵璧, 李姜丽, 程龙, 阎春波, 谭秋明. 2020. 湖北早三叠世鱼龙前肢化石YGM-Y4701标本及对比讨论. 地质学报, 94(4): 1017~1026.