-
华北克拉通经历了古元古代晚期“吕梁运动”固结为统一结晶基底之后(Zhao Zongpu,1993),进入稳定盖层沉积演化阶段,沉积了一套中—新元古代沉积盖层(Chen Jinbiao et al.,1980,1999),北部燕辽地区蓟县剖面长期被作为我国中元古代的代表地层,包括了1.8~1.4 Ga的长城系和1.4~1.0 Ga的蓟县系两套地层单元。近年来,两套地层中火山岩夹层锆石U-Pb定年研究,将蓟县系沉积时代限定在1.6~1.4 Ga(Li Huaikun et al.,2010),长城系限定在1.67~1.60 Ga(Li Huaikun et al.,2010; He Zhengjun et al.,2011),因而将长城系底界起始年龄推至1.67 Ga。由此,原有中元古代代表性地层剖面缺失了1.67 Ga之下的盖层沉积,引发了有无可替代地层作为我国古/中元古代地层界线的判别标志?并有效限定其底界年龄(Zhao Taiping et al.,2019)。华北克拉通南缘熊耳山地区出露一套未变质的火山沉积建造,角度不整合于太古宙太华群结晶基底和古元古代铁铜沟组变质碎屑岩之上,被称之为熊耳群(Zhao Taiping et al.,2019)。由熊耳群内中酸性火山岩及侵入其中的花岗岩脉获得的锆石U-Pb年龄,将它们的形成时代确定为1.83~1.76 Ga(Zhao Taiping et al.,2004; Wang Xiaolei et al.,2010; Cui Minli et al.,2011),明显早于燕辽地区长城系的~1.7 Ga的沉积年龄(He Zhengjun et al.,2011; Li Huaikun et al.,2011; Peng Peng et al.,2011; Zhang Shuanhong et al.,2013; Zhao Taiping et al.,2019)。因此,熊耳群火山沉积岩被认为是华北克拉通基底固结后进入盖层演化阶段以来第一套火山沉积盖层(Geng Yuansheng et al.,2019; Zhao Taiping et al.,2019)。然而,目前对于熊耳群火山岩形成背景存在拉张背景的裂谷环境(Sun Shu et al.,1985; Zhao Taiping et al.,2002)和大陆弧环境(He Yanhong et al.,2008; Zhao Guochun et al.,2009)两种不同观点,争议主要是对熊耳山地区不同火山岩成因研究认识不同所致。与熊耳群火山沉积建造相当的地层向北在中条地区也有发育,而且在更北部的吕梁地区的娄烦县白家滩附近出露的小两岭组和汉高山一带出露的汉高山群均可与熊耳群沉积地层相对比(山西省质矿产局,1989)。小两岭组火山岩获得1.78 Ga形成年龄,其成因与熊耳群火山岩相同,认为二者均形成于大陆裂谷环境,是熊耳裂谷北部分支最北部的组成部分(Qiao Xiufu et al.,2014; Yang Shuyan et al.,2019)。与小两岭组火山岩不同,吕梁地区的汉高山群下部发育大量沉积碎屑岩,与熊耳群最下部的大古石组沉积相当,其火山岩层则与熊耳群许山组火山岩相当(Qiao Xiufu et al.,2014)。因此,汉高山火山-沉积岩形成时代、成因及形成背景研究,将为熊耳裂谷北部分支的延伸和我国古/中元古代地层界线的限定提供重要证据。基于此,本文以汉高山群火山岩为研究对象,通过详细的野外地质及室内岩相学、岩石地球化学和Sr-Nd同位素等的系统研究,揭示汉高山群火山岩的成因及其形成背景,探讨它们与小两岭组及熊耳群火山岩的成因联系,为揭示华北克拉通中元古代初期首套火山沉积盖层的形成环境和演化提供新的证据。
-
1 地质概况及样品描述
-
Zhao Guochun et al.(2001,2005)依据华北克拉通基底组成、形成年代、构造以及岩浆与变质作用等将其划分为东、西两大陆块和二者之间的中部带三个构造单元,并认为中部带是一个经历了长期构造演化,于1.85 Ga东、西两大陆块最终碰撞形成的陆-陆碰撞造山带。此后,华北克拉通全面转入盖层沉积的陆内伸展演化阶段(Zhai Mingguo et al.,2011)。吕梁山地区构造位置位于华北克拉通中部造山带中部西缘,广泛发育新太古代和古元古代花岗片麻岩和变质表壳岩(图1 a),其上覆盖了中元古代火山-沉积岩,但出露有限,仅在吕梁山西侧的汉高山和东侧的娄烦县白家滩附近以及太原市北部关口附近钻孔中有所发现(Xu Yonghan et al.,2007),分别称为汉高山群和小两岭组。该区的汉高山群主要出露于临县东部紧邻方山县西南部的汉高山地区约3.1 km2的范围内(山西省地质矿产局,1989),为一套未变质、变形厚约520 m的沉积-火山建造,其北东侧明显呈角度不整合覆盖于界河口群何家湾组之上,西侧和南侧被寒武系霍山砂岩不整合覆盖(图1b)。根据岩石组合、沉积旋回,汉高山群分为三个岩性组(Wang Ruijun,2013),下部两个组以粗粒碎屑沉积为主,第一组分布于汉高山主峰一带至汉高里沟西侧(图1b),由砾岩、砂岩、砂质泥岩所组成,构成一冲积扇和扇前湖相沉积序列。第二组由含砾砂岩和杂色砂岩或砂质页岩的互层构成,出露于汉高山村南侧(图1b),超覆不整合于第一层砂岩段之上。第三组底部为砾岩,中部为杂色火山岩,其上为砾岩夹砂岩层。整体三组共同构成了辨状河沉积序列的裂陷盆地快速充填序列(Wang Ruijun,2013; Qiao Xiufu et al.,2014)。与下部两组相比,第三组地层相对较薄(厚约42 m),在汉高村沟南北均有出露(图1b),是汉高山群唯一有火山岩夹层的层段,火山岩夹层在南部野鸡梁沟和华家塌沟出露良好(图1b),为厚约十余米的暗紫红色和暗灰绿色安山岩,其下为10余米厚的砾岩、含砾石英砂岩,夹薄层砂岩,其上灰色砾岩加砂岩互层。火山岩层下部发育气孔及杏仁构造,厚约4~5 m,向上气孔和杏仁减少、逐渐过渡为无气孔及杏仁的均一块状(图1b)。
-
本研究在汉高山以南野鸡粱沟汉高山群第三组中部采集6件新鲜火山岩样品,地理坐标为34°14′55″N,108°55′14″E(图1 b),分别采自火山岩层中部和上部,尽量选择新鲜、气孔或杏仁不发育的岩石样品。这些火山岩石具有典型斑状结构,斑晶为辉石和角闪石及少量斜长石,辉石为半自形柱状,已发生绿泥石化呈假象(图2c、d),角闪石呈现菱形,也已发生绿泥石化(图2e、f)。斜长石斑晶为半自形板状,粒度为0.5~2 mm,发生绢云母或泥化而表面浑浊(图2c、d)。基质为玻基交织结构(图2b~f),由细板条状斜长石杂乱或半定向分布,其间充填了细小石英和玻璃质及暗色不透明金属矿物(图2c~f),基质中板条状斜长石多已蚀变为绢云母和黏土矿物(图2c~f)。这些火山岩的矿物组成和结构特征一致表明,它们为安山岩类。
-
2 分析方法与结果
-
2.1 主微量分析方法
-
样品的处理及主量和微量元素测定均在西北大学大陆动力学国家重点实验室完成。首先选择新鲜、少有或肉眼观察不到含气孔和杏仁构造的样品,在刚玉颚板破碎机中粗碎至5~10 mm大小的颗粒,并再次检查去除杏仁体,然后将剔除了杏仁体的颗粒放置于T-100型WC碳化钨研磨盘碎至200目。碎样过程,每研磨两件样品之间均用纯净水清洗研磨拖盘三遍,然后再装样粉碎,以最大程度避免样品间的相互混染。全岩主量元素分析采用日本理学XRF(RIGAKU 2100型)碱熔玻璃熔片法完成,经BCR-2和GBW07105标样监控,各项主量元素分析精度优于5%。微量元素采用ICP-MS(Perkin Elmer 公司具动态反应池的Elan 6100 DRC)分析,分析前选取50±0.5 mg样品置于Teflon高压溶样弹(bomb)中,并用1.5 mL HNO3 + 1.5 mL HF + 0.01 mL HClO4混合酸溶解后进行测试,具体的分析测试流程前人已有详细描述(Liu Ye et al.,2007)。样品测试过程,使用国际标准参考物质BHVO-1(玄武岩)、BCR-2(玄武岩)和AGV-1(安山岩)监控,Co、Ni、Zn、Ga、Rb、Y、Zr、Nb、Hf、Ta和REE(除Hf和Lu外)分析误差小于5%,其他微量元素分析精度介于5%~10%。所有样品的测试结果见表1。
-
图1 华北克拉通中部带汉高山地区地质简图
-
Fig.1 Geological sketch map of the Hangaoshan area, central segment of the Trans-North China Orogen in North China Craton
-
(a)—吕梁山地区前寒武纪基底岩石分布图(据Trap et al.,2009修编):1—汉高山群; 2—界河口群; 3—吕梁群; 4—野鸡山群; 5—云中山片麻岩; 6—盖家庄花岗片麻岩; 7—芦芽山花岗岩; 8—赤坚岭花岗岩; 9—惠家庄、市庄花岗岩; 10—关帝山片麻状花岗岩; 11—研究区;(b)—吕梁汉高山地区地质简图(据1∶50000房山县地质图修编)
-
(a) —Distribution map of the Precambrian basement in Lvliangshan area (modified after Trap et al., 2009) : 1—Hangaoshan Group; 2—Jiehekou Group; 3—Lvliang Group; 4—Yejishan Group; 5—Yunzhongshan gneiss; 6—Gaijiazhuang granitic gneiss; 7—Luyashan granite; 8—Chijianling granite; 9—Huijiazhuang and Shizhuang granite; 10—Guandishan gneissic granite; 11—study area; (b) —geological map of the Hangaoshan area in Lvliang Mountain (modified after 1∶50000 geological map of Fangshan County)
-
图2 汉高山地区汉高山群安山岩露头和显微照片
-
Fig.2 Field and microphotos of andesites from Hangaoshan Group in Hangaoshan area
-
(a)—安山岩野外露头照片;(b)—褐色块状安山岩;(c,e)—安山岩(单偏光);(d,f)—安山岩(正交偏光); Pl—斜长石; Ilm—钛铁矿; Chl—绿泥石
-
(a) —Photograph of andesite; (b) —brown massive andesite; (c, e) —microphotos of andesite (plane-polerized light) ; (d, f) —microphotos of andesite (cross-polarized light) ; Pl—plagioclase; Ilm—ilmenite; Chl—chlorite
-
2.2 Sr-Nd同位素分析方法
-
Sr和Nd同位素比值分析在南京聚谱检测科技有限公司完成,采用多接收器型电感耦合等离子体质谱仪Nu Plasma II MC-ICP-MS测试分析。测试前将小于200目的粉末样品,用HCL和HNO3等溶液在Teflon容器中低温溶解,然后采用AG50W-X8(200~400目)阳离子交换树脂,提取出纯净的Rb、Sr、Nd和Sm。测试过程,Sr同位素用86Sr/88Sr=0.1194标准化校正,仪器标准采用国际标准物质NIST SRM 987; Nd同位素用146Nd/144Nd=0.7219标准化校正,仪器标准采用国际标准物质JNdi-1。同时,选取美国地质调查局USGS地球化学标准岩石粉末(玄武岩BCR-2、玄武岩BHVO-2、安山岩AGV-2、流纹岩RGM-2等)作为控制盲样。6件样品的Sr-Nd同位素结果列于表2,其误差范围与文献报道值吻合。
-
3 岩石地球化学特征
-
3.1 主、微量元素特征
-
分析结果表明,6件火山岩样品SiO2含量为53.1%~56.19%(平均为55.02%),Al2O3含量为14.18%~14.87%,全碱(K2O+N2O)含量为3.48%~4.42%(平均为3.79%),K2O含量为1.63%~3.31%,Na2O=1.11%~1.97%,Na2O/K2O=0.49~1.21; TiO2含量介于1.26%~1.32%(平均为1.28%)。MgO和TFe2O3含量分别为4.97%~6.16%和10.09%~10.67%,Mg#值为49.4~53.8(表1),低于原生岩浆Mg#值(>65)(Hess et al.,1989),表明岩浆经历了一定程度的演化。野外和薄片观察揭示,岩石受到较强热液流体(如杏仁体和绿泥石化的出现)作用的影响,样品的烧矢量(LOI)均高于3 %,也证明受到热液的改造,因而会干扰活动性元素(如K、Na、Ca、Si等)含量。因此,本文采用受蚀变作用影响较小的MgO、Al2O3、TiO2等主量元素,高场强元素(Nb、Ta、Zr、Hf、Ti、P等)和稀土元素(REE)分析和讨论岩石类型及其特征(Zhao Zhenhua,2016)。扣除烧失量后,得到的TiO2=1.34%~1.40%,TFeO/MgO=1.78~2.21,所有样品在Nb/Y-Zr/TiO2图中均落在亚碱性安山岩区(图3a),在TiO2-TFeO/MgO图解中落入拉斑系列区域内(图3b),指示这些火山岩属亚碱性拉斑系列安山岩,与岩相学观察结果一致。
-
3.2 稀土及微量元素特征
-
汉高山群安山岩稀土元素总量(ΣREE)介于243×10-6~267×10-6之间,轻稀土富集(LaN/SmN=3.44~3.64),轻、重稀土中度分馏(LaN/YbN=10.2~11.2),具弱Eu负异常(δEu=0.77~0.85),呈现为右倾弱负铕异常的稀土配分模式(图4)。
-
微量元素相对富集轻稀土元素(LREE)和Rb、Ba、U和K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,明显富集Pb(图4b),与岛弧型安山岩地球化学特征类似。较高的Cr(165×10-6~174×10-6)、Ni(31.1×10-6~34.2×10-6)含量,指示与幔源岩浆有很高的亲缘性。
-
3.3 Sr-Nd同位素特征
-
6件样品的Sr-Nd同位素分析结果表明,它们有较高的87Rb/86Sr和87Sr/86Sr比值,分别为0.197009~1.357400和0.714274~0.725498; 147Sm/144Nd= 0.102624~0.103350,143Nd/144Nd= 0.511312~0.511325(表2)。将区域上可与其对比的小两岭火山岩1780 Ma的形成年龄(Xu Yonghan et al.,2007)作为该火山岩形成年龄计算,获得汉高山群安山岩(143Nd/144Nd)i=0.510106~0.510115,εNd(t)=-4.48~-4.31,T DM=2509~2520 Ma以及较大的(87Sr/86Sr)i=0.690751~0.709813。其中,个别样品的(87Sr/86Sr)i值异常低(<0.7),很可能是后期蚀变所导致。样品的(87Sr/86Sr)i与LOI相关关系分析,显示较高的正相关性(R2=0.74),说明蚀变对样品造成很大的影响,显然Sr同位素不适合用以讨论这些安山岩源区和成因。
-
图3 汉高山群火成岩岩石化学分类图
-
Fig.3 Petrochemical classification diagrams for the volcanic rock from Hangaoshan Group
-
(a)—Zr/TiO2-Nb/Y图解(据Winchester et al.,1977):1—亚碱性玄武岩; 2—安山岩/玄武岩; 3—安山岩; 4—英安岩; 5—流纹岩; 6—钠闪碱流岩; 7—响岩; 8—粗面岩; 9—粗面安山岩; 10—碧玄岩11—碱性玄武岩;(b)—TiO2-TFeO/MgO图解(据Miyashiro,1974)
-
(a) —Zr/TiO2-Nb/Y diagram (after Winchester et al., 1977) : 1—sub-alkaline basalt; 2—andesite/basalt; 3—andesite; 4—rhyolite; 5—dacite; 6—comendite; 7—phonolite; 8—trachyte; 9—trachy-andesite; 10—basanite; 11—alkaline basalt; (b) —TiO2-TFeO/MgO diagram (after Miyashiro, 1974)
-
图4 汉高山群、小两岭组及熊耳群火山岩球粒陨石标准化稀土元素配分和原始地幔标标准化微量元素配分图(标准化数值据Sun and McDonough,1989; 熊耳群火山岩数据引自Zhao Taiping et al.,2002; He Yanhong et al.,2008; Wang Xiaolei et al.,2010; Wang Changming et al.,2019。小两岭组火山岩数据引自Xu Yonghan et al.,2007; Yang Shuyan et al.,2019)
-
Fig.4 Chondrite-normalized REE patterns and primitive mantle-normalized trace elements spidergram of the volcanic rock from Hangaoshan Group (chondrite and primitive mantle normalized values from Sun and McDonough, 1989. The date of volcanics from Xionger Group are from Zhao Taiping et al., 2002; He Yanhong et al., 2008; Wang Xiaolei et al., 2010; Wang Changming et al., 2019. The data of volcanics from Xiaoliangling Formation are from Xu Yonghan et al., 2007; Yang Shuyang et al., 2019)
-
续表1
-
注:Mg#=100×(Mg2+/Mg2++Fe2+); δEu =2×EuN/(SmN×GdN)。
-
注:以1780 Ma进行同位素初始比值计算,λRb=1.42×10-11/a,λSm=6.54×10-12/a;(143Nd/144Nd)CHUR=0.512638,(147Sm/144Nd)CHUR=0.1967,(143Nd/144Nd)DM=0.51315,(147Sm/144Nd)DM=0.2317。
-
4 讨论
-
4.1 岩石成因与源区特征
-
安山岩是岛弧或大陆弧消减带最为常见的一类钙碱性岩石(Kelemen et al.,2003,2014),但也出现于大洋和板内构造环境(Gill,1981; Chen Long et al.,2016)。由于安山岩化学组成与大陆地壳平均组成相当(Rudnick et al.,2003),其成因对理解大陆地壳演化十分重要,吸引了岩石地球化学家开展了大量研究工作,目前已提出许多成因模式,可归纳为:① 经幔源玄武岩或玄武安山岩浆分离结晶所形成(Gill,1981; Lee et al.,2014); ② 玄武质岩浆和长英质岩浆混合或长英质上地壳物质受到镁铁质岩浆同化混染后形成(Anderson,1976; Gill,1981; Kent et al.,2010; Taniuchi et al.,2020); ③地壳变玄武岩脱水部分熔融形成(Kimura et al.,2002; Annen et al.,2006; Tatsumi et al.,2008); ④ 俯冲板片释放流体或熔体交代上覆地幔楔或板片熔体与地幔橄榄岩反应后部分熔融所形成(Hirose,1997; Rapp et al.,1999; Beier et al.,2017; Li Hongzhao et al.,2021)。
-
显然,上述前三种模式要么为幔源基性岩浆分离结晶演化所形成,要么为基性和酸性二端元岩浆混合的结果。其中,由玄武岩浆分离结晶作用形成的安山岩,结晶分离出的矿物来源于同源基性岩浆,因而它们的主量和微量元素与SiO2或Mg#值呈良好的线性相关关系(Zhu Mingshuai et al.,2013; Wu Hao et al.,2018)。由于元素晶体化学性质和地球化学行为的差异,元素在造岩矿物结晶时进入的难易程度取决于其分配系数(D 0)(Zhao Zhenhua,2016),如:安山岩熔体中橄榄石Cr(34)、Ni(58)和斜方辉石中Cr(13)、Ni(8)的分配系数远大于1,说明Cr、Ni更容易进入橄榄石和斜方辉石中; 单斜辉石中Ca的分配系数远大于1,CaO易进入单斜辉石(Gill,1981; Wang Xiaolei et al.,2010)。因而,根据元素的变化与岩浆演化程度(Mg#)可以探讨岩浆演化过程结晶分离的矿物相。汉高山群安山岩除Cr和Co元素与Mg#值略显正相关外,其他元素与Mg#值基本无明显的相关性(图5),说明岩浆演化过程可能仅有镁铁质矿物(橄榄石或辉石)的少量晶出,其他矿物则没有发生明显的结晶分离,因而说明该区安山岩在形成过程中,基本没有发生明显的岩浆分离结晶演化,这也得到研究区、甚至更大区域范围缺失能演化出安山岩的大量同期基性火山岩的支持。经玄武质熔体与长英质组分混合形成的安山岩,常出现不平衡矿物结构,且岩石的元素和同位素组成变化范围大,并呈现曲线演化趋势(Zhu Mingshuai et al.,2013; Beier et al.,2017; Wu Hao et al.,2018)。汉高山群安山岩除未发现岩浆混合形成的不平衡矿物结构外,它们的主量和微量元素变化范围不大(表1; 图5),Nd同位素组成十分均一(εNd(t)=-4.5~-4.2)(表2),元素与Mg#值也未出现规律的变化趋势,说明它们非由镁铁质与长英质组分岩浆混合所形成,而是单一源区部分熔融的产物。这些安山岩的Mg#(49.4~53.8)值明显高于镁铁质下地壳部分熔融形成的高SiO2熔体的Mg#(<40)(Atherton et al.,1993),其Nb/La比值(0.25~0.27)远小于下地壳Nb/La平均值(0.4)(Rudnick and Gao,2003)。显然,它们不是下地壳组分熔融所形成,而与直接来源于俯冲板片的长英质熔体反应后地幔橄榄岩部分熔融产物的第4种成因模式形成的安山岩十分类似,属Mg#>50的高镁安山岩类(Tatsumi et al.,1982,2006; Kelemen et al.,2003; Wang Jinfang et al.,2020)。这些安山岩高TiO2(1.26%~1.32%)、低Al2O3(14.18%~14.87%),明显高于岛弧区钙碱性火山岩TiO2(0.58%~0.85%),并低于它们的Al2O3(17.1%~17.8%)(Tamura et al.,2003),因而也排除了弧区下地壳镁铁质岩石部分熔融产物的可能。此外,这些安山岩除较高的Mg#值外,还具有较高的Cr(165×10-6~174×10-6)和Ni(31.1×10-6~34.2×10-6)含量,与SiO2>54%的高Mg#(>60)和Cr(>200)、Ni(>100)含量的幔源原生安山岩十分接近(Kelemen et al.,2003),反映汉高山群安山岩可能与幔源原生安山岩浆具有基本一致的成因和源自地幔的属性,是略微富集的地幔岩石部分熔融后基本没有受到分离结晶和陆壳混染的结果。但这些安山岩有略微偏负和变化不大的εNd(t)(-4.48~-4.35),显示了具有岩浆形成过程有陆壳物质参与的“陆壳型”(continental crust-like)特征(Taylor et al.,1985; Rudnick et al.,1995),指示它们形成过程有地壳物质的加入。一般而言,硅铝质大陆地壳有较高的Si、Al和LREE及LILEs,并且高的Sr同位素和低的Nd同位素及Nb含量(Rudnick et al.,2003)。当岩浆上升过程中发生地壳物质混染,不相容元素La或Ba就会相对于Nb明显增高,εNd(t)相对减小。因此,受到陆壳混染的岩浆形成的岩石将有高La/Nb、低La/Ba和εNd(t)值(Xia Linqi et al.,2008),可以用来有效探讨岩浆上侵过程是否受到陆壳物质混染的影响。研究区安山岩的εNd(t)与MgO、SiO2与Nb/La以及La/Nb与Ba/Nb之间基本无明显的相关性(图6),说明岩浆上侵过程基本没有受到陆壳物质的明显混染。因此,安山岩高La/Nb、低La/Ba和εNd(t)值反映的“陆壳型”特征,说明地壳物质的加入发生在源区部分熔融之前。另一方面,汉高山群安山岩相对富集LREE和大离子亲石元素、贫高场强元素,明显亏损Nb、Ta、Ti等元素(图4),在很大程度上与弧区岩浆地球化学特征类似,暗示了其源区曾经受到弧区消减组分的影响。
-
图5 华北克拉通汉高山群安山岩与熊耳群、小两岭中性岩主、微量元素与Mg#变异图
-
Fig.5 Major and trace elements vs. Mg# plots for the volcanics from Hangaoshan Group, Xiaoliangling Formation and Xionger Group in NCC
-
图6 汉高山群安山岩陆壳同化混染判别图
-
Fig.6 Crustal contamination discriminative diagrams for the andesites from Hangaoshan Group
-
(a)—SiO2-εNd(t)图解;(b)—MgO-εNd(t)图解;(c)—εNd(t)-(Nb/La)图解;(d)—大陆玄武岩的La/Ba-La/Nb图解(据Xia Linqi et al.,2013)
-
(a) —SiO2 vs. εNd (t) diagram; (b) —MgO vs. εNd (t) diagram; (c) —εNd (t) vs. Nb/La diagram; (d) —La/Ba vs. La/Nb diagram (after Xia Linqi et al., 2013)
-
地壳物质再循环进入地幔主要有大洋板块俯冲消减或下地壳拆离两种途径。汉高山安山岩高K2O和K2O/Na2O,低Nb/U(14.35~16.44),明显低于下地壳物质的Nb/U(25)(Radhakrishna et al.,2003)。因此,其源区陆壳物质的加入非为下地壳物质拆沉进入地幔所致,而应是大洋板块俯冲将地壳物质带入地幔后改造的结果,这也是形成陆缘弧和岛弧岩浆的主要途径(Elliott,2003; Tatsumi et al.,2006)。由大洋板块俯冲带入地幔中的物质主要为蚀变的大洋地壳、海底沉积物和陆缘物质,它们随俯冲深度增加和温压条件的改变发生变质脱水或部分熔融,以流体或含水熔体的形式改造地幔,被改造的地幔熔融形成的岩浆产物明显富集LREE、LILE和Th及Pb,亏损HFSE元素(Elliott,2003; Kelemen et al.,2014; Zheng Yongfei et al.,2019及其中的参考文献)。LILE和Pb等为水溶性元素,活动性高、易溶于流体并随之迁移,而LREE和Th难溶于水,仅溶于含水硅酸盐熔体(Weaver,1991; Elliott,2003; Kelemen et al.,2014),在较高温度下融于熔体而随之迁移(Kelemen et al.,2003; Zheng Yongfei et al.,2014)。因此,俯冲板片脱水产生的流体相对高Ba/Th、低(La/Sm)N比值,变沉积岩熔融形成的熔体则明显低Ba/Th、高(La/Sm)N比值(Kessel et al.,2005; Zheng Yongfei et al.,2019)。汉高山群安山岩低(La/Sm)N,Ba/Th变化较大(图7),说明蚀变洋壳变质脱水形成的流体交代地幔起到主要作用。此外,大陆地壳强烈富集LILE、Pb、Th和LREE,汉高山群安山岩高的LILE和LREE,Th和Pb明显富集(图2),说明其源区除与板块俯冲有关的流体交代其地幔源区外,还有一定陆缘物质的参与。由这些安山岩获得的Nd模式年龄为~2.5 Ga,与华北克拉通新太古代末期首次克拉通化发生的时间一致(Zhai Mingguo et al.,2011),因而汉高山群安山岩地幔源区受流体改造与克拉通化过程发生的壳-幔相互作用密切相关,并非是其形成时期大洋俯冲消减事件的结果,这也得到吕梁地区,甚至整个中部带无与这些火山岩同期弧岩浆岩发育、也不存在代表俯冲大洋残片的蛇绿岩的支持。另一方面,在华北中部带、甚至更为广泛的范围,出现了大量与汉高山群火山岩形成同期的基性岩墙群(Peng Peng et al.,2004,2007,2015; Yang Shuyan et al.,2019),古地磁及地球化学研究均证明,吕梁地区以南的基性岩墙群与南部熊耳群火山岩有相同岩浆源区(Wang Yuejun et al.,2004; Yan Yonggang et al.,2019; Yang Shuyan et al.,2019),它们具弱富集的Nd-Hf同位素组成,均获得新太古代末期的Nd和Hf模式年龄,证明是源自新太古代末期流体交代改造的大陆岩石圈地幔,是新太古代大洋俯冲消减释放流体交代地幔的结果(Wang Xiaolei et al.,2010; Wang Changming et al.,2019)。与这些同期基性岩墙群Nd同位素(εNd(t)=-6.7~-3.0,Yang Shuyang et al.,2019)和熊耳群火山岩Nd同位素(εNd(t)=-10.9~-4.5; Zhao Taiping et al.,2002; Wang Xiaolei et al.,2010)以及小两岭组火山岩Nd同位素(εNd(t)=-5.71~-0.18; Xu Yonghang et al.,2007)相比,汉高山群安山岩也具略富集的Nd同位素组成(εNd(t)=-4.48~-4.31),它们共同表现了十分相似的Nd同位素组成(图8),说明形成于中元古代初期在不同地区形成的火山岩及基性岩墙群均源自相对富集大陆岩石圈地幔源区,只是汉高山群安山岩高Mg#和较高的Cr、Ni含量说明,它们基本没有经历岩浆分异和明显的陆壳混染的改造,而更接近原始岩浆。
-
图7 汉高山群、小两岭组及熊耳群安山岩(La/Sm)N-Ba/Th图解
-
Fig.7 (La/Sm) N versus Ba/Th for the volcanics from Hangaoshan Group, Xiaoliangling Formation and Xionger Group
-
图8 汉高山群、小两岭组、熊耳群火山岩以及华北克拉通中部带1.78~1.76 Ga基性岩墙群εNd(t)-年龄图解
-
Fig.8 εNd (t) vs. age diagram for the volcanics from Hangaoshan Group, Xiaoliangling Formation, Xionger Group and 1.78~1.76 Ga mafic dyke swarms in the Trans-North China Orogen (TNCO) of NCC
-
CHUR—球粒陨石; DMM—亏损地幔(Peucat et al.1989; Sun and McDonough,1989)。华北克拉通中部带1.78~1.76 Ga基性岩墙群数据据Peng Peng et al.(2015); Hu Guohui et al.(2010); Yang Shuyan et al.(2019); 熊耳群玄武火山岩数据据He Yanhong et al.(2008); Wang Changming et al.(2019); Wang Xiaolei et al.(2010); 小两岭数据引自Xu Yonghan et al.(2007); Yang Shuyan et al.(2019)
-
CHUR and DMM are from Peucat et al. (1989) and Sun and McDonough, 1989; the data of 1.78~1.76 Ga mafic dykes in TNCO of NCC are from Peng Peng et al. (2005, 2008) , Hu Guohui et al. (2010) and Yang Shuyan et al. (2019) , respectively; the data of volcanics from Xiong'er Group are from He Yanhong et al. (2008) , Wang Changming et al. (2019) and Wang Xiaolei et al. (2010) ; the data of volcanics from Xiaoliangling Formation are from Xu Yonghan et al. (2007) and Yang Shuyan et al. (2019)
-
4.2 形成环境
-
汉高山群分布于吕梁山西侧方山县西部汉高山地区,角度不整合覆盖于古元古代界河口群之上,与吕梁山东麓古交市白家滩地区不整合覆盖于元古代吕梁杂岩之上的小两岭组构成吕梁复背斜的两翼,二者均被寒武系霍山砂岩覆盖,被认为是同层位地层(山西省地矿局,1989)。汉高山群以一套粗粒碎屑岩加少量火山岩为特征,分为三个组。第一组自下而上以灰红、或紫红色为主的砾岩、砂岩和页岩段,构成一冲积扇和扇前湖相沉积序列; 第二组为灰色或灰红色含砾砂岩及石英砂岩夹薄层杂色页岩,第三组下部为灰色砾岩及含砾石英砂岩,中部为暗色安山岩,其上为灰红色砾岩夹砂岩层,共同构成了辫状河沉积序列的裂陷盆地快速充填序列(Wang Ruijun,2013; Qiao Xiufu et al.,2014)。小两岭组以火山岩为主,中部夹薄层砾岩、砂岩及页岩层,可与汉高山群第三组火山沉积层对比(图9)。前人在小两岭组火山岩获得了1779±20 Ma(Xu Yonghan et al.,2007)和1778±20 Ma的锆石U-Pb年龄(Qiao Xiufu et al.,2014),由汉高山群第二组砂岩碎屑锆石获得1783 Ma的最年轻的锆石U-Pb年龄(待发表数据),限定其与小两岭组形成于相同的时代,地质和年代学研究一致将汉高山群和小两岭组归属为同一地层单位。区域上,它们可与华北克拉通南部中条—崤山—熊耳山—外方山地区广泛出露的一套厚度达7000 m的火山沉积岩对比,该套火山沉积岩自下而上分为大古石组、许山组、鸡蛋坪组和马家河组(图9),称之为熊耳群(河南省区域地质志,1989)。其中,底部大古石组由陆相碎屑岩组成,其余三组都以火山岩占绝对优势,岩性以玄武安山质、安山岩为主,同时有一些英安-流纹质岩石。该群火山岩及相关侵入岩等多种岩性获得了1.8~1.75 Ga的锆石U-Pb年龄(Zhao Taiping et al.,2004,2019; Cui Minli et al.,2011; Peng Peng,2015),与北部小两岭组和汉高山群形成时代一致。因此表明,熊耳群火山沉积与吕梁地区小两岭组及汉高山群为同期火山沉积岩建造,共同代表华北克拉通基底固化以来首套沉积盖层。其中,汉高山群第一组碎屑沉积有着与熊耳群底部大古石组类似的沉积序列,二者均表现为由砾岩、砂岩向上过渡为泥岩层的沉积序列(图9),指示为冲积扇-河流及湖相快速充填堆积特征,代表伸展背景下裂谷初始裂解阶段的沉积产物。
-
上述三套同时代火山沉积岩中,以熊耳群分布范围最广,火山岩类型最多,得到诸多学者的深入研究。Sun Shu et al.(1985)首先根据熊耳群火山沉积岩区域上呈三角形分布,具双峰式火山岩特征,提出三叉裂谷背景下裂谷火山喷溢产物的认识。而后,一些学者依据该群火山岩发育大量钙碱性安山岩,具活动大陆边缘弧岩浆地球化学特征,认为是活动陆缘弧岩浆成因(Hu Shouxi et al.,1988),并被解释为Columbia超大陆边缘外缘增生、类似现今安第斯型大陆边缘弧岩浆活动的产物(He Yanhong et al.,2008; Zhao Guochun et al.,2009)。此外,还存在被动型裂谷建造(Chen Yanjin et al.,1992)以及与地幔柱活动有关的陆内伸展背景岩浆产物等不同认识(Peng Peng et al.,2007,2008)。总体上,熊耳群火山岩由拉斑玄武系列的玄武安山岩、安山岩、英安岩、流纹岩和少量玄武岩等多种类型火山岩构成,它们低MgO(Mg#=11~53)和Cr、Ni含量,富集LREEs和LILEs,亏损Nb、Ta和Ti等HFSEs元素,显示与弧火山岩类似的地球化学属性。与熊耳群火山岩基本类似,小两岭组火山岩也属拉斑玄武系列岩石,主要由玄武-安山岩和英安-流纹岩组成,同样也低镁(Mg#<50)、富集LREEs和LILEs,亏损Nb、Ta等HFSEs,与弧区岩浆岩相似的地球化学特征类似。与熊耳群和小两岭组火山岩相比,汉高山群火山岩不但含量不大,而且岩石单一,均为拉斑玄武系列安山岩类,也相对富集LREEs和LILEs,亏损Nb、Ta等HFSEs元素,具弧区火山岩地球化学特征,但这些安山岩有更高的MgO(Mg#=49~54)和Cr(165×10-6~174×10-6)和Ni(31.1×10-6~34.2×10-6)。金红石和其他含Ti矿物(如榍石)中Ti的分配系数高,因此Ti元素主要赋存在金红石和榍石等矿物中(Hofmann,1988)。实验研究表明,在80~100 km以上深度范围内金红石处于稳定状态(Ringwood,1990),俯冲物质达到此深度,地幔物质部分熔融形成岛弧岩浆的Ti大多保留在与熔体相平衡的残余相金红石、榍石等矿物中,而极少进入熔体相(Kelemen,2003),导致岛弧区岩浆往往低Ti(0.58%~0.85%)(Pearce et al.,1984)。尽管汉高山群中的火山岩一定程度上显示了弧岩浆地球化学特征,但它们高TiO2(1.26%~1.32%),明显高于岛弧钙碱性火山岩TiO2。同样的,熊耳群和小两岭组火山岩也有较高的TiO2,前者的安山岩的TiO2=0.72%~2.05%,后者火山岩的TiO2=0.73%~2.06%,均说明这些火山岩来源于TiO2较高的岩石圈地幔(TiO2≈1.82%)(Zhou Jincheng et al.,2005; Xu Wenliang et al.,2020),而非岛弧区岩浆活动的结果。它们的Th/Ta比值分别为1.56~12.8、4.07~11.76和5.59~5.79,也多低于活动陆缘火山岩的Th/Ta比值(6~20),与板内火山岩低的Th/Ta比值(1~6)一致(Gorton et al.,2000)。所有这些不同地区的同期火山岩在Th/Yb-Ta/Yb和Th/Ta-Yb/10-6图解中,均落入板内火山岩区域(图10)。此外,这些火山岩也表现了相对富集的Nd同位素组成(图8)。其中,熊耳群火山岩εNd(t)=-10.9~-4.5,T DM=2.45~3.07 Ga(Zhao Taiping et al.,2002; He Yanhong et al.,2008; Wang Xiaolei et al.,2010; Wang Changming et al.,2019),揭示这些火山岩源自陆壳物质改造的地幔源区,是经过新太古代大洋消减组分改造的岩石圈地幔高程度熔融后,在岩浆上升过程经历分离结晶形成的安山岩、英安流纹岩为主的多种火山岩(Zhao Taiping et al.,2002; Wang Xiaolei et al.,2010; Wang Changming et al.,2019)。小两岭火山岩的εNd(t)=-5.71~-0.18,T DM=2.5~2.6 Ga,揭示也源自受俯冲组分改造的岩石圈富集地幔,其岛弧型火山岩地球化学特征并非大洋俯冲的结果,也不是地壳混染所致(Xu Yonghan et al.,2007; Yang Shuyan et al.,2019)。与熊耳群和小两岭组火山岩类似,汉高山群安山岩也有偏负但变化不大的εNd(t)(-4.5~-4.3)和新太古代末期的模式年龄(T DM=~2.5 Ga),也说明它们是源自被新太古代消减组分改造的岩石圈地幔岩浆活动的产物。然而,相比吕梁地区小两岭组和汉高山群火山岩,熊耳群火山岩的εNd(t)变化范围更大和更为偏负(图8),其Ba/Th的变化范围也很大,说明地幔源区被流体交代改造程度更强和不均一,导致其地幔源呈现更富集的特征。同时,这也表明熊耳群火山岩、小两岭组火山岩和汉高山群安山岩尽管均源自在新太古代俯冲板片释放流体/或熔体物质交代改造的地幔,但改造的程度存在差异,岩浆侵入喷发过程的演化也不同,因而也使得这些同期、不同地区火山岩呈现了不同的地球化学特征。因此,这些同时代、区域上呈三叉裂谷状分布的火山-沉积建造和碎屑沉积岩记录的陆相快速充填的河湖相沉积特征,以及火山岩的地球化学和同位素组成反映的富集岩石圈地幔是新太古代板片消减改造的结果,均证明它们绝非是中元古代早期弧区岩浆活动的结果,而是华北克拉通基底固化后陆内伸展背景下裂谷火山沉积作用的产物。此外,在华北克拉通中部吕梁、五台、中条等地区还发育大量与火山岩同期的E—W和NNW向基性岩墙群。这些岩墙的εNd(t)=-8.1~-5.1、T DM=2.5~2.9 Ga(Peng Peng et al.,2007; Hu Guohui et al.,2010; Yang Shuyan et al.,2019)(图8),与汉高山群火山岩Sr-Nd同位素基本一致,因而代表这一时期的火山岩和基性岩墙群均来自一个相对富集的岩石圈地幔。大量的基性岩墙群的出现往往代表陆块固结后陆壳裂解的幔源岩浆产物(Ernst et al.,2001),因而汉高山群安山岩和这些基性岩墙的一同出现,充分证明华北克拉通古元古代末期统一结晶基底固结后,华北克拉通开始进入陆壳伸展拉张的盖层演化时期,这些火山沉积建造代表了与全球Columbia超大陆裂解有关的裂古初期的沉积物质记录。
-
图9 吕梁地区小梁岭组、汉高山群和官口地区火山岩及熊耳山地区熊耳群地层对比图(据Yang Shuyan et al.,2019修改)
-
Fig.9 Columns of the Xiaoliangling Formation, Hangaoshan Group and Guankou volcanics in the Lüliang area and the Xiong'er Group in the Xiong'er Mts. (modified after Yang Shuyan et al., 2019)
-
图10 汉高山、小两岭以及熊耳群1.78 Ga安山岩构造判别图解
-
Fig.10 Tectonic discriminative diagrams for the1.78 Ga andesites from the Hangaoshan Group, Xiaoliangling Fm and Xionger Group
-
(a)—Th/Yb-Ta/Yb;(b)—Th/Ta-Yb(据Gorton et al.,2000)
-
(a) —Th/Yb-Ta/Yb plot; (b) —Th/Ta-Yb plot (after Gorton et al., 2000)
-
5 结论
-
(1)吕梁地区汉高山群火山-沉积建造中的火山岩为拉斑系列的安山岩,具较高的MgO(3.23%~6.16%,Mg#=49.4~53.8)和Cr(165×10-6~174×10-6)、Ni(31.1×10-6~34.2×10-6)含量,低Al2O3(14.18%~16.1%)和TFeO/MgO(1.70~2.03),相对富集Rb、Ba、K、Th、U等LILEs元素,亏损Nb、Ta、Ti等HFSEs元素,负的εNd(t)(-4.48~-4.31)和新太古代末期的模式年龄(T DM=2509~2520 Ma),表明这些安山岩源自受新太古代末期板片俯冲流体交代改造后的大陆富集岩石圈地幔。
-
(2)汉高山群与邻区小两岭组及华北克拉通南部熊耳群火山沉积地层有可对比的层序,其中的火山岩均呈现弧区岩浆的地球化学特征和类似的Sr-Nd同位素组成,揭示它们为经太古宙末期改造的富集岩石圈地幔熔融的产物,不代表其形成时期存在弧环境岩浆活动的发生。它们与区域上同期基性岩墙群一同指示华北克拉通中元古代初期已转入大陆伸展拉张环境,代表华北克拉通结晶基底固化后首套火山沉积建造,是全球Columbian超大陆裂解初期在华北地块的物质记录。
-
致谢:野外研究工作中得到山西省地质调查院魏云峰高级工程师和西北大学地质学系孙娇鹏博士的帮助,两位审稿专家对本文提出了建设性的修改意见,促进了本文的提高和进一步完善,在此一并表示衷心的感谢!
-
参考文献
-
Anderson A T. 1976. Magma mixing: petrological process and volcanological tool. Journal of Volcanology and Geothermal Research, 1: 3~33.
-
Annen C, Blundy J D, Sparks R S J. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3): 505~539.
-
Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144~146.
-
Beier C, Haase K M, Brandl P A, Krumm S H. 2017. Primitive andesites from the Taupo volcanic zone formed by magma mixing. Contributions to Mineralogy and Petrology, 172(5): 33.
-
Chen Jinbiao, Zhu Huiming, Zhu Shixing, Zhao Zhen, Wang Zhengang. 1980. Research on Sinian Suberathem of Jixian, Tianjin. In: Tianjin Institute of Geology and Mineral Resources, CAGS, ed. Research on Precambrian Geology-Sinian Suberathem in China. Tianjin: Tianjin Science and Technology, 56~114 (in Chinese with English abstract).
-
Chen Jinbiao, Zhang Pengyuan, Zhang Zhenyu, Sun Shufen. 1999. Stratigraphic Dictionary of China ( Meso-Proterozoic ). Beijing: Geological Publishing House, 1~89 (in Chinese with English abstract).
-
Chen Long, Zheng Yongfei, Zhao Zifu. 2016. Geochemical constraints on the origin of Late Mesozoic andesites from the Ningwu basin in the Middle-Lower Yangtze Valley, South China. Lithos, 254~255: 94~117.
-
Chen Yanjin, Fu Shigu, Qiang Lizhi. 1992. The tectonic environment for the formation of the Xiong'er Group and the Xiyanghe Group. Geological Review, 38(4): 325~333 (in Chinese with English abstract).
-
Cui Minli, Zhang Baolin, Zhang Lianchang. 2011. U-Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton: constrains on the timing and tectonic setting of the Paleoproterozoic Xiong'er Group. Gondwana Research, 20(1): 184~193.
-
Elliott T. 2003. Tracers of the slab. Geophysical Monograph Series, 238: 23~45.
-
Ernst R E, Grosfils E B, Mege D. 2001. Giant dyke swarms: Earth, Venus, and Mars. Annual Review Earth and Planetary Sciences, 29: 489~534.
-
Geng Yuansheng, Kuang Hongwei, Du Lilin, Liu Yongqing, Zhao Taiping. 2019. On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent. Acta Petrologica Sinica, 35(8): 2299~2324 (in Chinese with English abstract).
-
Gill J B. 1981. Orogenic Andesites and Plate Tectonics. New York, Berlin, Heidelberg: Springer-Verlag.
-
Gorton M P, Schandl E S. 2000. From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist, 38(5): 1065~1073.
-
He Yanhong, Zhao Guochun, Sun Min, Wilde S A. 2008. Geochemistry, isotope systematics and petrogenesis of the volcanic rocks in the Zhongtiao Mountain: an alternative interpretation for the evolution of the southern margin of the North China Craton. Lithos, 102(1): 158~178.
-
He Zhengjun, Zhang Xinyuan, Niu Baogui, Liu Renyan, Zhao Lei. 2011. The paleo-weathering mantle of the Proterozoic rapakivi granite in Miyun Countey, Beijing and the relationship with the Changzhougou Formation of Changchengian System. Earth Science Frontiers, 18(4): 123~130 (in Chinese with English abstract).
-
Hess P C, Wiebe R A. 1989. Origins of Igneous Rocks. London: Harvard University Press, 109~275.
-
Hirose K. 1997. Melting experiments on Iherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 25: 42~44.
-
Hofmann A W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.
-
Hu Guohui, Hu Junliang, Chen Wei, Zhao Taiping. 2010. Geochemistry and tectonicsetting of the 1. 78 Ga mafic dyke swarms in the Mt. Zhongtiao and Mt. Song areas, the southern margin of the North China Craton. Acta Petrologica Sinica, 26(5): 1563~1576 (in Chinese with English abstract).
-
Hu Shouxi, Lin Qianlong. 1988. The Geology and Metallogeny of the Collision Belt between the South China and North China Plates. Nanjing: Nanjing University Press, 71~79 ( in Chinese with English abstract).
-
Kelemen P B, Yogodzinski G M, Scholl D W. 2003. Along-strike variation in the Aleutian Island arc: genesis of high Mg# andesite and implications for continental crust. In: Eiler J, ed. Inside the Subduction Factory, vol 138. Washington: American Geophysical Union (AGU), 223~274.
-
Kelemen P B, Hanghj K, Greene A R. 2014. Oneview of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise on Geochemistry, 4: 749~805.
-
Kent A J R, Darr C, Koleszar A M, Salisbury M J, Cooper K M. 2010. Preferential eruption of andesitic magmas through recharge filtering. Nature Geoscience, 3(9): 631~636.
-
Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature, 437: 724~727.
-
Kimura J I, Yoshida T, Iizumi S. 2002. Origin of low-K intermediate lavas at Nekoma volcano, NE Honshu arc, Japan: geochemical constraints for lower-crustal melts. Journal of Petrology, 43: 631~661.
-
Lee C T A, Bachmann O. 2014. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth and Planetary Science Letters, 393: 266~274.
-
Li Hongzhao, Sun Lixin, Liu Changli, Xu Fan, Li Yanfeng, Ren Bangfang, Zhang Yun. 2021. Petrogenesis of the Late Permian high magnesium andesite from Inner Mongolia. Acta Geologica Sinica, 95(3): 703~722 (in Chinese with English abstract).
-
Li Huaikun, Zhu Shixing, Xiang Zhengqun, Su Wenbo, Lu Songnian, Zhou Hongyin, Geng Jiangzhen, Li Sheng, Yang Fengjie. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica, 26(7): 2131~2140 (in Chinese with English abstract).
-
Li Huaikun, Sun Wenbo, Zhou Hongying, Geng Jiangzhen, Xiang Zhengqun, Cui Yunhong, Liu Wencang, Lu Songnian. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670 Ma: constraints from zircon U-Pb LA-MC-ICPMS dating of a graniteporphyry dike in Miyun County, Beijing. Earth Science Frontiers, 18(3): 108~120 (in Chinese with English abstract).
-
Liu Ye, Liu Xiaoming, Hu Zhaochu, Diwu Chunrong, Yuan Hongling, Gao Shan. 2007. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS. Acta Petrologica Sinica, 23(5): 1203~1210 (in Chinese with English abstract).
-
Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274: 321~355.
-
Pearce J A, Harris N B W, Tindle A G. 1984. Trace-element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25 (4): 956~983.
-
Peucat J J, Vidal P, Bernard G J, Condie K C. 1989. Sr, Nd, and Pb isotopic systematics in the archean low to high-grade transition zone of southern India: syn-accretion vs. post-accretion granulites. Geology, 97 (5): 537~549.
-
Peng Peng. 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications. Science China Earth Sciences, 58(5): 649~675.
-
Peng Peng, Zhai Mingguo, Zhang Huafeng, Zhao Taiping, Ni Zhiyao. 2004. Geochemistry and geological significance of the 1. 8 Ga mafic dyke swarms in the North China Craton: an example from the juncture of Shanxi, Hebei and Inner Mongoila. Acta Petrologica Sinica, 20 (3): 439~456 (in Chinese with English abstract).
-
Peng Peng, Zhai Mingguo, Guo Jinghui, Kusky T, Zhao Taiping. 2007. Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1. 78 Ga mafic dykes in the central North China Craton. Gondwana Research, 12(1-2): 29~46.
-
Peng Peng, Zhai Mingguo, Ernstc R E, Guo Jinghui, Fu Liu, Hu Bo. 2008. A 1. 78 Ga large igneous province in the North China Craton: the Xiong'er Volcanic Province and the North China dyke swarm. Lithos, 101(3-4): 260~280.
-
Peng Peng, Liu Fu, Zhai Mingguo, Guo Jinghui. 2011. Age of the Miyun dyke swarm: constraints on the maximum depositional age of the Changcheng System. Chinese Science Bulletin, 56 (35): 2975~2980 (in Chinese with English abstract).
-
Peng Peng, Wang Xinping, Lai Yong, Wang Chong, Windley B F. 2015. Large-scale liquid immiscibility and fractional crystallization in the 1780 Ma Taihang dyke swarm: implications for genesis of the bimodal Xiong'er volcanic province. Lithos, 236: 106~122.
-
Qiao Xiufu, Wang Yanbin. 2014. Discussions on the lower boundary age of the Mesoproterozoic and basin tectonic evolution of teh Mesoproterozoic in North China Craton. Acta Geologica Sinica, 88 (9): 1623~1637 (in Chinese with English abstract).
-
Radhakrishna T, Joseph M, Krishnendu N R, Balasubramonian G. 2003. Palaeomagnetism of mafic dykes in Dharwar craton: possible geodynamic implications. Memoirs-Geological Society of India, 50: 193~224.
-
Ringwood A. 1990. Slab-mantle interactions 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chemical Geology - Chemistry Geology, 82: 187~207.
-
Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33(3): 267~309.
-
Rudnick R L, Gao Shan. 2003. Composition of the continental crust. In: Rudnick R L (ed. ) The Crust. Vol. 3, Treatise on Geochemistry. Oxford: Elsevier, 1~64.
-
Sun Shu, Zhang Guowei, Chen Zhiming. 1985. Geological Evolution of the Precambrian Southern Northern China Block. Beijing: Metallugy Industry Press, 90~149 (in the Chinese with English abstract).
-
Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanicbasalts: implications for mantle composition and process. Geological Society, London, Special Publications, 42(1): 313~345.
-
Tamura Y, Yuhara M, Ishii T, Irino N, Shukuno H. 2003. Andesites and dacites from Daisen Volcano, Japan: partial-to-total remelting of an andesite magma body. Journal of Petrology, 44(12): 2243~2260.
-
Taniuchi H, Kuritani T, Nakagawa M. 2020. Generation of calc-alkaline andesite magma through crustal melting induced by emplacement of mantle-derived water-rich primary magma: evidence from Rishiri volcano, southern Kuril Arc. Lithos, 354~355: 105362.
-
Tatsumi Y, Takahashi T, Hirahara Y, Chang Q, Miyazaki T, Kimura J I, Ban M, Sakayori A. 2008. New insights into andesite genesis: the role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath Zao volcano, NE Japan. Journal of Petrology, 49(11): 1971~2008.
-
Tatsumi Y. 2006. High-Mg andesites in the Setouchivolcanic belt, southwestern Japan: analogy to Archean magmatism and continental crust formation? Annual Review of Earth and Planetary Sciences, 34(1): 467~499.
-
Tatsumi Y, Ishizaka K. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, I. Petrographical and chemical characteristics. Earth and Planetary Science Letters, 60(2): 293~304.
-
Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford, UK: Blackwell Scientific Publications, 1~312.
-
Wang Changming, He Xinyu, Carranza E J M, Cui Chengmin. 2019. Paleoproterozoic volcanic rocks in the southern margin of the North China Craton, central China: implications for the Columbia supercontinent. Geoscience Frontiers, 10(4): 1543~1560.
-
Wang Jinfang, Li Yingjie, Li Hongyang, Dong Peipei. 2020. Late Carboniferous intraoceanic subduction of the Paleo-Asian Ocean: new evidences from the Zagayin high-Mg andesite in the Meilaotewula SSZ ophiolite. Geological Review, 66(2): 289~306 (in Chinese with English abstract).
-
Wang Ruijun. 2013. A study on the stratigraphic characteristics and age ofthe Han Gaoshan Group. Huabei Land and Resources, (3): 71~73 (in Chinese with English abstract).
-
Wang Xiaolei, Jiang Shaoyong, Dai Baozhang. 2010. Melting of enriched Archean subcontinental lithospheric mantle: evidence from the ca. 1760 Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton. Precambrian Research, 182(3): 204~216.
-
Wang Yuejun, Fan Weiming, Zhang Yanhua, Guo Feng, Zhang Hongfu, Peng Touping. 2004. Geochemical, 40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton. Precambrian Research, 135(1-2): 55~77.
-
Weaver B L. 1991. The origin of ocean island basalt end-member compositions trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2-4): 381~397.
-
Weis D, Kieffer B, Maerschalk C, Barling J, de Jong J, Williams G, Hanano D, Pretorius W, Mattielli N, Scoates J, Goolaerts A, Friedman R, Mahoney J. 2006. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochemistry Geophysics Geosystems, 7: 30.
-
Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325~343.
-
Wu Hao, Li Cai, Xie Chaoming, Fan Jianjun, Chen Jingwen. 2018. The petrogenesis and geological significance of the Late Triassic andesite and dioritic xenolith in the Riwanchaka area, central Qiangtang, northern Tibet. Geological Bulletin of China, 37(8): 1428~1438 (in Chinese with English abstract).
-
Xia Linqi, Xia Zuchun, Li Xiangming, Ma Zhongpin, Xu Xueyi. 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Groupvolcanic rocks and basic dyke swarms from eastern part of the South Qinling Mountains. Notrthwestern Geology, 41(3): 1~29 (in Chinese with English abstract).
-
Xia Linqi, Xia Zuchun, Xu Xueyi, Li Xiangmin, Ma Zhongping. 2013. Late Paleoproterozoic rift-related magmatic rocks in the North China Craton: geological records of rifting in the Columbia supercontinent. Earth Science Reviews, 125: 69~86.
-
Xu Wenliang, Chen Jiahui, Weng Aihua, Tang Jie, Wang Feng, Wang Chunguang, Guo Peng, Wang Yini, Yang Hao, Sorokin A. 2020. Stagnant slab front within the mantle transition zone controls the formation of Cenozoic intracontinental high-Mg andesites in northeast Asia. Geology, 49(1).
-
Xu Yonghan, Zhao Taiping, Peng Peng, Zhai Mingguo, Xi Liang, Luo Yan. 2007. Geochemical characteristics and geological significance of the Paleoproterozoic volcanic rocks from the Xiaoliangling Formation in the Lvliang area, Shanxi Province. Acta Petrologica Sinica, 23(5): 1123~1132 (in Chinese with English abstract).
-
Yan Yonggang, Chen Liwei, Huang Baochun, Yi Zhiyu, Zhao Jie. 2019. Magnetic fabric constraint on tectonic setting of Paleoproterozoic dyke swarms in the North China Craton, China. Precambrian Research, (329): 247~261.
-
Yang Shuyan, Peng Peng, Qin Zhaoyuan, Wang Xinping, Wang Chong, Zhang Jing, Zhao Taiping. 2019. Genetic relationship between 1780 Ma dykes and coeval volcanics in the Lvliang area, North China. Precambrian Research, 329: 232~246.
-
Zhai Mingguo. 2019. Tectonic evolution of the North China Craton. Journal of Geomechanics, 25(5): 722~745 (in the Chinese with English abstract).
-
Zhai Mingguo, Santosh M. 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Research, 20(1): 6~25.
-
Zhang Shuanhong, Zhao Yue, Ye Hao, Hu Jiangming, Wu Fei. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Carton. Acta Petrologica Sinica, 29(7): 2481~2490 (in the Chinese with English abstract).
-
Zhao Guochun, Wilde S A, Cawood P A, Sun Min. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1): 45~73.
-
Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 136(2): 177~202.
-
Zhao Guochun, He Yanhong, Sun Min. 2009. The Xiong'er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia supercontinent. Gondwana Research, 16(2): 170~181.
-
Zhao Taiping, Zhou Meifu, Minguo Zhou, Xia Bin. 2002. Paleoproterozoic rift-relatedvolcanism of the Xiong'er Group, North China Craton: implications for the breakup of Columbia. International Geology Review, 44(4): 336~351.
-
Zhao Taiping, Zhai Mingguo, Xia Bin, Li Huiming, Zhang Yixing, Wan Yusheng. 2004. Study on the zircon SHRIMP ages of the Xiong'er Group volcanic rocks: constraint on the starting time of covering strata in the North China Craton. Chinese Science Bulletin, 9(23): 2495~2502 (in the Chinese with English abstract).
-
Zhao Taiping, Pang Lanyin, Qiu Yifan, Zhu Xiyan, Wang Shiyan, Geng Yuansheng. 2019. The Paleo-Mesoproterozoic boundary: 1. 8 Ga. Acta Petrologica Sinica, 35(8): 2281~2298 (in the Chinese with English abstract).
-
Zhao Zhenhua. 2016. Principles of Trace Element Geochemistry. 2nd. Beijing: Science Press(in Chinese with English abstract).
-
Zhao Zongpu. 1993. Precambrian Crustal Evolution of the Sino-Korean Paraplatform. Beijing: Science Press, 389~390 ( in Chinese with English anstract).
-
Zheng Yongfei. 2019. Subduction zone geochemistry. Geoscience Frontiers, 10(4): 1223~1254.
-
Zhou Jincheng, Jiang Shaoyong, Wang Xiaolei, Yang Jinhong, Zhang Mengqun. 2005. Study on petrogeochemistry of Middle Jurassic basalts from southern China represented by the Fankeng basalts from Yongding of Fujian Province. Science in China (Series D), 35(10): 927~936 (in Chinese with English abstract).
-
Zhu Mingshuai, Miao Laicheng, Yang Shunhu. 2013. Genesis and evolution of subduction-zone andesites: evidence from melt inclusions. International Geology Review, 55(10): 1179~1190.
-
陈晋镳, 张惠民, 朱士兴, 赵震, 王振刚. 1980. 蓟县震旦亚界研究. 见: 中国地质科学院天津地质矿产研究所编. 中国震旦亚界. 天津: 天津科学技术出版社, 56~114.
-
陈晋镳, 张鹏远, 高振家, 孙淑芬. 1999. 中国地层典——中元古界. 北京: 地质出版社, 1~89.
-
陈衍景, 富士谷, 强立志. 1992. 熊耳群和西阳河群的构造背景. 地质论评, 38(4): 325~333.
-
耿元生, 旷红伟, 杜利林, 柳永清, 赵太平. 2019. 从哥伦比亚超大陆裂解事件论古/中元古代的界限. 岩石学报, 35(8): 2299~2324.
-
和政军, 张新元, 牛宝贵, 刘仁燕, 赵磊. 2011. 北京密云元古宙环斑花岗岩古风化壳及其与长城系常州沟组的关系. 地学前缘, 18(4): 123~130.
-
胡国辉, 胡俊良, 陈伟, 赵太平. 2010. 华北克拉通南缘中条山-嵩山地区1. 78 Ga基性岩墙群的地球化学特征及构造环境. 岩石学报, 26(5): 1563~1576.
-
胡受奚, 林潜龙. 1988. 华北与华南古板块拼合带地质和成矿. 南京: 南京大学出版社, 71~79.
-
李宏钊, 孙立新, 刘长利, 许凡, 李艳锋, 任邦方, 张云. 2021. 内蒙古林东地区晚二叠世高镁安山岩的成因及产出背景. 地质学报. 95(3): 703~722.
-
李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131~2140.
-
李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670 Ma: 来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束. 地学前缘, 18(3): 108~120.
-
刘晔, 柳小明, 胡兆初, 第五春荣, 袁洪林, 高山. 2007. ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析. 岩石学报, 23(5): 1203~1210.
-
彭澎, 翟明国, 张华峰, 赵太平, 倪志耀. 2004. 华北克拉通1. 8 Ga镁铁质岩墙群的地球化学特征及其地质意义: 以晋冀蒙交界地区为例. 岩石学报, 20(3): 439~456.
-
彭澎, 刘富, 翟明国, 郭敬辉. 2011. 密云岩墙群的时代及其对长城系底界年龄的制约. 科学通报, 56(35): 2975~2980.
-
乔秀夫, 王彦斌. 2014. 华北克拉通中元古界底界年龄与盆地性质讨论. 地质学报, 88(9): 1623~1637.
-
山西省质矿产局. 1989. 山西省区域地质志. 北京: 地质出版社: 1~780.
-
孙枢, 张国伟, 陈志明. 1985. 华北断块南部前寒武纪地质演化. 北京: 冶金工业出版社, 90~149.
-
王金芳, 李英杰, 李红阳, 董培培. 2020. 古亚洲洋晚石炭世俯冲作用: 梅劳特乌拉蛇绿岩中扎嘎音高镁安山岩证据. 地质论评, 66(2): 289~306.
-
王瑞军. 2013. 对汉高山群地层特征及时代的探讨. 华北国土资源, (3): 71~73.
-
吴浩, 李才, 解超明, 范建军, 陈景文. 2018. 藏北羌塘中部日湾茶卡地区晚三叠世安山岩与闪长质包体岩石成因及地质意义. 地质通报, 37(8): 1428~1438.
-
夏林圻, 夏祖春, 李向民, 马中平, 徐学义. 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, 41(3): 1~29.
-
徐勇航, 赵太平, 彭澎, 翟明国, 漆亮, 罗彦. 2007. 山西吕梁地区古元古界小两岭组火山岩地球化学特征及其地质意义. 岩石学报, 23(5): 1123~1132.
-
翟明国. 2019. 华北克拉通构造演化. 地质力学学报, 25(5): 722~745.
-
张拴宏, 赵越, 叶浩, 胡健民, 吴飞. 2013. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约. 岩石学报, 29(7): 2481~2490.
-
赵太平, 翟明国, 夏斌, 李惠民, 张毅星, 万渝生. 2004. 熊耳群火山岩锆石SHRIMP年代学研究: 华北克拉通盖层发育初始时间的制约. 科学通报, 49(22): 2342~2349.
-
赵太平, 庞岚尹, 仇一凡, 祝禧艳, 王世炎, 耿元生. 2019. 古/中元古代界线: 1. 8 Ga. 岩石学报, 35(8): 2281~2298.
-
赵振华. 2016. 微量元素地球化学原理(第二版). 北京: 科学出版社.
-
赵宗溥. 1993. 中朝准地台前寒武纪地壳演化. 北京: 科学出版社.
-
周金城, 蒋少涌, 王孝磊, 杨竞红, 张孟群. 2005. 华南中侏罗世玄武岩的岩石地球化学研究——以福建藩坑玄武岩为例. 中国科学, 35(10): 927~936.
-
摘要
吕梁地区汉高山群火山沉积岩是华北克拉通中部带中部中元古代初期火山-沉积记录,其成因及形成环境研究对认识华北克拉通结晶基底固结后地质演化有重要意义。该群火山岩为拉斑玄武系列安山岩,SiO2(54.68%~56.19%)略低,有较高的MgO(4.97% ~ 6.16%,Mg#=49.4~53.8)及Cr(165×10-6~174×10-6)和Ni(31.1×10-6~34.2×10-6)含量,高TiO2(1.34%~1.40%),TFeO/MgO=1.70~2.03,富集LREEs和Ba、U、K等LILEs,亏损Nb、Ta、Ti等HFSEs,与弧岩浆地球化学特征类似。它们的εNd(t)偏负且变化小(-4.48~-4.31),T DM=2509~2520 Ma,其高的Ba/Th和低的(La/Sm)N说明它们源自受板片俯冲流体改造的岩石圈地幔,地幔改造为新太古代大洋板片消减所致。结合邻区小两岭组火山岩和华北克拉通南部熊耳群火山岩也显示弧岩浆地球化学特征,且Sr-Nd同位素组成揭示源自新太古代板片俯冲改造的岩石圈地幔,与同期基性岩墙群一道代表板内伸展环境岩浆活动的产物,而非为弧岩浆活动的记录,代表了华北克拉通中元古代初期转入大陆伸展拉张环境,首套火山沉积建造,是全球Columbian超大陆裂解初期在华北地块的物质记录。
Abstract
The volcanic sedimentary rocks of the Hangaoshan Group in Lüliang area are representative of Early Masoproterozoic sedimentary records in the Trans-North China Orogen of the Norh China Craton (NCC). The study on their genesis and formation background is of great significance to understand the geological evolution of NCC after the consolidation of the crystalline basement. The volcanic rocks in this group are tholeiite series andesite, with lower SiO2 (54.68%~56.19%), higher MgO (4.97%~6.16%, Mg#=49.4~53.8), Cr (165×10-6~174×10-6) and Ni (31.1×10-6~34.2×10-6) contents as well as higher TiO2 (1.34%~1.40%), TFeO/MgO=1.70~2.03, enriched in LREEs and LILEs (Ba, U and K) and depleted in HFSEs (Nb, Ta and Ti). They show the geochemical characteristics similar to arc magma. However, they have slightly negative εNd(t) with a narrow range of -4.48~-4.31. Their T DM is from 2509 Ma to 2520 Ma. Besides, they have high Ba/Th and low (La/Sm)N, indicating that they were derived from the lithospheric mantle metasomatized by plate subduction fluid resulted from the subduction of oceanic plate in the Neoarchean. Furthermore, the volcanic rocks from the adjacent Xiaoliangling Formation, the Xiong'er Group of southern NCC show geochemical characteristics similar to those of arc magmatism, and their Sr-Nd isotopic composition suggested that they were derived from lithospheric mantle modified by the subduction of oceanic plate in the end of Neoarchean. All these volcanics, together with the coeval mafic dykes, were produced in an extensional setting of within plate, indicating that the NCC has transformed into a continental extensional environment in the early Mesoproterozoic, rather than an arc environment magmatism. They are representative of the first volcanic sedimentary after final solidification of the crystalline basement in the NCC, corresponding to the sedimentary products in the early breakup of Colombia Supercontinent all over the world.