en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张成勇,男,1983年生。博士,副教授,主要从事砂岩型铀矿的研究与勘查。E-mail:850359676@qq.com。

参考文献
Aubakirov K B. 2016. A new interpretation of the formation of sandstone type uranium deposits. Beijing Research Institute of Uranium Geology, China, 3~35.
参考文献
Bau M, Dulski P. 1995. Comparative study of yttrium and rare earth element behaviours in fluorine rich hydrothermal fluids. Contributions to Mineralogy and Petrology, 119(2~3): 213~223.
参考文献
Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu wusheng, Qi Fucheng, Zhang Minglin. 2015. Characteristics of uranium resources and metallogenic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstracts).
参考文献
Chen Zuyi, Guo Qingyin. 2010. The mechanism of rare elements concentration in the redox front area of interlayer oxidation type sandstone-hosted uranium deposits. Uranium Geology, 26(1): 1~8 (in Chinese with English abstracts).
参考文献
Cuney M, Kyser K. 2008. Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada, 39: 257.
参考文献
Dahlkamp F J. 2009. Uranium Deposits of the World: Asia. Springer Ed, 493.
参考文献
Disnar J R, Sureau J F. 1990. Organic matter in ore genesis: Progress and perspectives. Organic Geochemistry, 16(1~3): 577~599.
参考文献
Doveton J H, Merriam D F. 2003. Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface. Chemical Geology: Isotope Geoscience section, 206(3): 249~258.
参考文献
Exley R A, Jones A P. 1983. 87Sr/86Sr in kimberlitic carbonates by ion microprobe: Hydrothermal alteration, crustal contamination and relation to carbonatite. Contributions to Mineralogy & Petrology, 83(3~4): 288~292.
参考文献
Fang Weixuan, Jia Runxing, Guo Yuqian, Li Tiancheng, Wang Lei, Huang Zhuanying. 2016. Fluid of hydrocarbon rich reducing basin and metallogenic mechanism of glutenite type Cu, Pb, Zn, U deposit in Taxi area. Acta Geosciences and Environment, 38 (6): 727~752 (in Chinese with English abstracts).
参考文献
Fisher Q J, Cliff R A, Dodson M H. 2003. U-Pb systematics of an Upper Carboniferous black shale from South Yorkshire, UK. Chemical Geology: Isotope Geoscience Section, 194(4): 331~347.
参考文献
Hansley P L, Spirakis C S. 1992. Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau. Economic Geology, 87(2): 352~365.
参考文献
Jiang Yaohui, Ling Hongfei, Jiang Shaoyong, Shen Weizhou, Fan Honghai, Ni Pei. 2006. Trace element and Sr-Nd isotope geochemistry of fluorite from the Xiangshan uranium deposit southeast China. Economic Geology, 101(8): 1613~1622.
参考文献
Jin Jiuqiang, Zhang Yan, Xu Dafeng, Meng Qingren. 2000. Jurassic Cretaceous basin evolution and hydrocarbon characteristics in Ejinaqi area. Acta Petrologica Sinica, 21(4): 13~19+119~120 (in Chinese with English abstracts).
参考文献
Li Rongxi, Duan Zhili, Chen Baoyun, Zhang Shaoni. 2011. Alteration and metallogeny on the oxic-acid / anoxic-alkali interface of the Dongsheng uranium deposit in northern Ordos basin. Geotectonica et Metallogenia, 35(4): 525~532 (in Chinese with English abstracts).
参考文献
Li Tong. 1979. Metallogenic geochemistry of marine sedimentary siderite deposits. Geology and Exploration, (1): 1~8 (in Chinese with English abstracts).
参考文献
Li Tong. 1994. Chemical element abundances of the continental crust and its sedimentary layers and upper continental crust in China. Geochemistry, 23(2): 140~145 (in Chinese with English abstracts).
参考文献
Li Wenhou, Zhou Lifa. 1997. Cretaceous sedimentary facies and tectonic environment of Suhongtu-Yingen basin. Geological Sciences, 32(3): 387~396 (in Chinese with English abstracts).
参考文献
Lin Shuangxing, Gong Xiaofeng, Zhang Tieling. 2017. Deep geological fluids and uranium mineralization in Mesozoic Cenozoic basins. Uranium Geology, 33(6): 321~328 (in Chinese with English abstracts).
参考文献
Liu Xiaobo, Li Guanglai, Liu Xiaodong, Li Chengxiang, Wang Guo, Lu Kegai. 2019. Geochemical characteristics of elements and their indicative significance in the Bingcaogou uranium-phosphate deposit in North Tianshan. Geology and Exploration, 55(6): 1379~1393 (in Chinese with English abstracts).
参考文献
Liu Zhengyi, Du Letian, Wen Zhijian. 2007. The geochemical experimental study on the relationship between uranium and phosphor in Xiangshan rich uranium mineralization. Journal of East China Institute of Technology, 30(2): 101~106 (in Chinese with English abstracts).
参考文献
Meng Qingren, Hu Jianmin, Yuan Xuanjun, Jin Jiuqiang. 2002. Structure, evolution and genesis of Late Mesozoic extensional basins in Sino Mongolian border area. Geological Bulletin, (z1): 224~231 (in Chinese with English abstracts).
参考文献
Qi Fucheng, Zhang Zilong, He Zhongbo, Li Zhixing, Wang Wenquan, Su Xiangli, Zhang Chao. 2011. Uranium polymetallic metallogenic system and mechanism of black rock series in southeast margin of Yangtze block. Uranium Geology, 27(3): 129~135+145 (in Chinese with English abstracts).
参考文献
Qin Yan, Zhang Wenzheng, Peng Ping'an, Zhou Zhenju. 2009. Uranium occurrence and enrichment mechanism of Chang 7 member of Yanchang Formation in Ordos basin. Acta Petrologica Sinica, 25(10): 2469~2476 (in Chinese with English abstracts).
参考文献
Romberger S B. 1984. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300℃: Geological implications. Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources, 12~17.
参考文献
Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Mlackwell, 9~56.
参考文献
Wang Feng, Liu Xuanchun, Deng Xiuqin, Li Yuanhao, Tian Jingchun, Li Shixiang, You Jingqian. 2017. Trace element geochemical characteristics and sedimentary environment indicating significance of Zhifang Formation in Ordos basin. Acta Sedimentologica Sinica, 35(6): 1265~1273 (in Chinese with English abstracts).
参考文献
Wang Jian, Qi Fucheng, Li Zhixing, Wang Wenquan, Zhang Wendong, Wang Zhenyun. 2020. Geological characteristics and metallogenic epoch of unconventional uranium resources in black rock series of Northwest Hunan. Uranium Geology, 36(1): 28~33 (in Chinese with English abstracts).
参考文献
Wang Jiangfeng. 1980. Migration precipitation and metallogenic model of uranium in hydrothermalism. Journal of East China University of Technology, 2: 184~200 (in Chinese).
参考文献
Wang Xinyu. 2014. Study on uranium speciation and distribution in phosphate-rich water. Doctoral thesis of Chengdu University of Technology (in Chinese with English abstracts).
参考文献
Wei Pingsheng. 2006. Petroleum Geological Characteristics and Exploration Prospects of Yingen Ejinaqi Basin. Beijing: Petroleum Industry Press, 1~55 (in Chinese with English abstracts).
参考文献
Wen Zhijian, Du Letian, Liu Zhangyi. 1999. Relation between francolite and metallogenesis of high-grade uranium ores in Xiangshan uranium orefield. Uranium Geology, 15(4): 26~33 (in Chinese with English abstracts).
参考文献
Wignall P B, Twitchett R J. 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155~1158.
参考文献
Worden R H, Morad S. 2003. Clay minerals in sandstones: Controls on formation, distribution and evolution. In: Worden R H, Morad S, eds. Clay Mineral Cements in Sandstones. International Association of Sedimentologists Special Publication, 1~41.
参考文献
Wu Rengui, Zhou Wanpeng, Liu Pinghua, Hou Shuren, Wang Yongjun, Ma Fusen, Pan Jiayong. 2008. Analysis of metallogenic conditions and prospecting prospects of sandstone type uranium deposits in Tamusi section of Bayin Gobi basin. Uranium Geology, 24(1): 24~31 (in Chinese with English abstracts).
参考文献
Xiao Xuchang, Li Tingdong, Li Guangcen, Gao Yanlin, Xu Zhiqin. 1990. Tectonic evolution of the Qinghai Tibet Plateau. Proceedings of the Chinese Academy of Geological Sciences, 20(1): 123~125 (in Chinese with English abstracts).
参考文献
Zhang Benhao, Wu Bailin, Liu Chiyang, Qiu Xinwei. 2011. Occurrence of uranium in Chang 7 uranium rich source rocks of Yanchang Formation in Ordos basin. Geology of Northwest China, 44(2): 124~132 (in Chinese with English abstracts).
参考文献
Zhang Chengyong, Nie Fengjun, Hou Shuren, Wang Junlin, Zhang Liang, Deng Wei. 2015. Controlling factors and metallogenic model of sandstone type uranium deposits in Tamusu area of Bayingebi basin, Inner Mongolia. Geological and Technological Information, 34(1): 140~147 (in Chinese with English abstracts).
参考文献
Zhang Chengyong, Nie Fengjun, Jiao Yangquan, Deng Wei, Peng Yunbiao, Hou Shuren. 2019. Characterization of ore-forming fluids in the Tamusu sandstone-type uranium deposit, Bayingebi basin, China: Constraints from trace elements, fluid inclusions and C-O-S isotopes. Ore Geology Reviews, 111: 102999.
参考文献
Zhang Wanliang. 1997. Study on the relationship between uranium and phosphor in deposit No. 60. Uranium Geology, 13(1): 19~24 (in Chinese with English abstracts).
参考文献
Zhang Wanliang, Fu Xiang. 2002. Selection of prospecting target layers for sandstone type uranium deposits in interlayer oxidation zone of Bayingebi basin. Uranium Geology, 18(2): 85~88 (in Chinese with English abstracts).
参考文献
Zhao Fengmin. 2017. Recognition on the role of reducing action in uranium metallization. Uranium Geology, 33(4): 193~198+214 (in Chinese with English abstracts).
参考文献
蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.
参考文献
陈祖伊, 郭庆银. 2010. 砂岩型铀矿床层间氧化带前锋区稀有元素富集机制. 铀矿地质, 26 (1): 1~8.
参考文献
方维萱, 贾润幸, 郭玉乾, 李天成, 王磊, 黄转盈. 2016. 塔西地区富烃类还原性盆地流体与砂砾岩型铜铅锌-铀矿床成矿机制. 地球科学与环境学报, 38(6): 727~752.
参考文献
靳久强, 张研, 许大丰, 孟庆任. 2000. 额济纳旗地区侏罗-白垩纪盆地演化与油气特征. 石油学报, 21(4): 13~19+119~120.
参考文献
李荣西, 段立志, 陈宝赟, 张少妮. 2011. 东胜砂岩型铀矿氧化酸性流体与还原碱性热液流体过渡界面蚀变带成矿作用研究. 大地构造与成矿学, 35(4): 525~532.
参考文献
黎彤. 1979. 海相沉积型菱铁矿矿床的成矿地球化学. 地质与勘探, (1): 1~8.
参考文献
黎彤. 1994. 中国陆壳及其沉积层和上陆壳的化学元素丰度. 地球化学, 23(2): 140~145.
参考文献
李文厚, 周立发. 1997. 苏红图-银根盆地白垩纪沉积相与构造环境. 地质科学, 32(3): 387~396.
参考文献
林双幸, 宫晓峰, 张铁岭. 2017. 中新生代盆地深部地质流体及铀成矿作用. 铀矿地质, 33(6): 321~328.
参考文献
刘小波, 李光来, 刘晓东, 李成祥, 王果, 鲁克改. 2019. 北天山冰草沟铀磷矿床元素地球化学特征及其指示意义. 地质与勘探, 55(6): 1379~1393.
参考文献
刘正义, 杜乐天, 温志坚. 2007. 相山铀矿田特富矿中铀磷关系的模拟实验研究. 东华理工学院学报, 30(2): 101~106.
参考文献
孟庆任, 胡健民, 袁选俊, 靳久强. 2002. 中蒙边界地区晚中生代伸展盆地的结构、演化和成因. 地质通报, (Z1): 224~231.
参考文献
漆富成, 张字龙, 何中波, 李治兴, 王文全, 苏香丽, 张超. 2011. 扬子陆块东南缘黑色岩系铀多金属成矿体系和成矿机制. 铀矿地质, 27(3): 129~135+145.
参考文献
秦艳, 张文正, 彭平安, 周振菊. 2009. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理. 岩石学报, 25(10): 2469~2476.
参考文献
王峰, 刘玄春, 邓秀芹, 李元昊, 田景春, 李士祥, 尤靖茜. 2017. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义. 沉积学报, 35(6): 1265~1273.
参考文献
王健, 漆富成, 李治兴, 王文全, 张文东, 王振云. 2020. 湘西北黑色岩系非常规铀资源成矿地质特征及成矿时代. 铀矿地质, 36(1): 28~33.
参考文献
王剑锋. 1980. 铀在热液作用中的迁移沉淀与成矿模式. 抚州地质学院学报, 2: 184~200.
参考文献
王新宇. 2014. 富磷水体中铀的赋存形态与分配研究. 成都理工大学博士学位论文.
参考文献
卫平生. 2006. 银根-额济纳旗盆地油气地质特征及勘探前景. 北京: 石油工业出版社, 1~55.
参考文献
温志坚, 杜乐天, 刘正义. 1999. 相山铀矿田磷灰石与富矿形成的关系. 铀矿地质, 15(4): 26~33.
参考文献
吴仁贵, 周万蓬, 刘平华, 侯树仁, 王永君, 马福森, 潘家永. 2008. 巴音戈壁盆地塔木素地段砂岩型铀矿成矿条件及找矿前景分析. 铀矿地质, 24 (1): 24~31.
参考文献
肖序常, 李廷栋, 李光岑, 高延林, 许志琴. 1990. 青藏高原的构造演化. 中国地质科学院院报, 20(1): 123~125.
参考文献
张本浩, 吴柏林, 刘池阳, 邱欣卫. 2011. 鄂尔多斯盆地延长组长7富铀烃源岩铀的赋存状态. 西北地质, 44(2): 124~132.
参考文献
张成勇, 聂逢君, 侯树仁, 王俊林, 张良, 邓薇. 2015. 内蒙古巴音戈壁盆地塔木素地区砂岩型铀矿控制因素与成矿模式. 地质科技情报, 34(1): 140~147.
参考文献
张万良, 付湘. 2002. 巴音戈壁盆地层间氧化带砂岩型铀矿找矿目的层选择. 铀矿地质, 18(2): 85~88.
参考文献
张万良. 1997. 六O矿床铀、磷关系研究. 铀矿地质, 13(1): 19~24.
参考文献
赵凤民. 2017. 重新认识还原作用在铀成矿中的贡献. 铀矿地质, 33(4): 193~198+214.
目录contents

    摘要

    砂岩型铀矿是全球最重要的铀矿类型之一,一般以表生流体的氧化还原成矿作用为主。虽然在勘查中发现部分砂岩型铀矿中存在热液流体活动的痕迹,但热液流体与铀成矿之间的关系仍不明确。本研究以巴音戈壁盆地下白垩统巴音戈壁组下段底部砂质砾岩中新发现的铀矿化为研究对象,通过镜下鉴定、电子探针(EPMA)、铀含量、铀价态和微量元素分析等手段,研究了铀矿石的岩石学、矿物学和地球化学特征。结果显示,铀矿化产出于巴音戈壁组下段的紫红色砂岩中,与不整合界面及次级断层有关;铀呈分散状态分布在胶磷矿中,并伴生有方铅矿、闪锌矿等金属硫化物;微量元素分析显示矿石中Sr、Y、Mo、W和REE等显著富集,指示其形成与深部流体密切相关。研究认为,苏红图组玄武岩喷发形成的火山热液在上升过程中与地表大气降水混合形成弱酸性氧化流体,流体沿不整合和断层向上运移并不断萃取地层中的U和P,当其遇到上覆巴音戈壁组砂砾岩中的菱铁矿等还原物质时,形成酸碱度和氧化还原接触界面,进而诱发铀、磷的沉淀。本次在新层位发现的铀矿化拓宽了巴音戈壁盆地铀矿勘查的找矿空间和方向。

    Abstract

    Sandstone type uranium deposit is one of the most important type of uranium mineralization in the world, which is generally dominated by redox mineralization of supergene fluids. Although traces of hydrothermal fluid activity were found in some sandstone type uranium deposits, the relationship between the hydrothermal fluids and uranium mineralization is still unclear. In this study, the newly discovered uranium mineralization in the sandy conglomerate of the lower Bayingebi Formation of Lower Cretaceous in the Bayingebi basin is selected as the research object. The petrology, mineralogy and geochemistry of uranium ore were studied by means of microscopic identification, electron microprobe (EPMA), uranium content, uranium valence and trace element analysis.The results show that uranium mineralization occurs in the purplish red sandstone in the lower Bayingebi Formation, which is related to unconformity interface and secondary faults. Uranium is dispersed in collophanite and associated with metal sulfides such as galena and sphalerite. The Sr, Y, Mo, W and REE are significantly enriched in the ore. All these indicate that the formation of ore is closely related to deep fluids.Our research shows that the volcanic hydrothermal solution formed by the eruption of the Suhongtu Formation basalt mixes with the surface atmospheric precipitation to form a weak acidic oxidizing fluid during the rising process. The fluid moves upward along the unconformity and fault and continuously extracts U and P from the surrounding rocks. When it meets the reducing substances such as siderite in the overlying Bayingobi Formation glutenite, it forms the acid-alkali and redox contact interface, which then induces the precipitation of uranium and phosphorus.The uranium mineralization found in the new horizon widens the prospecting space and direction of uranium exploration in Bayingebi basin.

  • 砂岩型铀矿的成矿作用多以表生层间氧化作用或潜水氧化作用为主(Cuney et al.,2008; Dahlkamp,2009),但随着勘查和研究的不断深入,学者在很多砂岩型铀矿中发现深部流体活动的痕迹,如中亚楚-伊犁铀成矿省的多个铀矿床和我国的东胜、钱家店、塔木素等铀矿床等(蔡煜琦等,2015; Aubakirov,2016; 林双幸等,2017)。存在深部流体参与的砂岩型铀矿床的特征与典型层间氧化带型铀矿床存在一定的相似之处,但其成因却更加复杂。

  • 巴音戈壁盆地是我国北方重要的产铀盆地,盆内构造-岩浆活动明显。目前已落实的塔木素特大型砂岩铀矿床中表生氧化流体和深部热流体活动均很强,蚀变类型多样,矿石品位普遍很高(>0.03%)。巴音戈壁盆地铀矿勘查目前以寻找层间氧化带前锋线为主要找矿方向,在塔木素矿床以外地区找矿工作持续多年,但找矿局面一直难以突破。研究表明,氧化还原作用并不是铀沉淀富集的唯一控制因素(赵凤民,2017; 陈祖伊等,2010; 李荣西等,2011),来自盆地深部的流体可携带铀源或改变成矿环境(pH和Eh等),弥补或改造表生氧化流体作用下砂岩型铀矿成矿条件的不足,促进铀的沉淀富集(林双幸等,2017; Zhang Chengyong et al.,2019)。笔者和项目组在巴音戈壁盆地持续开展了十多年的科研工作,对塔木素铀矿床开展了精细的解剖(吴仁贵等,2008; 张成勇等,2015; Zhang Chengyong et al.,2019),研究显示,表生氧化流体和深部热流体相互作用造成pH和Eh值的改变,其是造成铀矿石品位增高的主要原因(Zhang Chengyong et al.,2019)。

  • 项目组以巴音戈壁盆地塔木素铀矿床中取得的认识为基础,对盆地内其他地区开展针对性的野外地质调查工作,在本巴图地区巴音戈壁组下段首次发现厚层铀矿化。本文从宏观和微观相结合的角度阐述了该矿化的成因,研究认为该矿化是表生氧化流体与深部热液相互作用的结果,热液活动为浅部砂岩型铀矿的成矿提供了深部铀源。本次铀矿化的发现和研究突破了巴音戈壁盆地的找矿空间和找矿类型,研究成果对丰富砂岩型铀矿成矿理论和推进该地区铀矿勘查有重要的指导意义。

  • 1 区域地质背景

  • 巴音戈壁盆地(也称银根-额济纳盆地)地处内蒙古高原西部,位于塔里木、哈萨克斯坦、西伯利亚、华北等四大板块的结合部位,与国内盆地相比,区域构造背景复杂多变(肖序常等,1990; 靳久强等,2000; 孟庆仁等,2002)。巴音戈壁盆地以宗乃山-沙拉扎山隆起为界分为北部坳陷区和南部坳陷区(图1a)。盆地基底由太古宇、古元古界变质岩、寒武系—泥盆系碎屑岩和火山岩等组成,盖层为中新生界陆相沉积,沉积充填主体为下白垩统巴音戈壁组、苏红图组、银根组和上白垩统乌兰苏海组。其中,巴音戈壁组可分为上下两段,下段为半干旱环境下的冲积扇、扇三角洲沉积,上段为半干旱—半潮湿气候背景下扇三角洲沉积和湖相沉积,苏红图组为一套中基性火山岩与细碎屑岩互层的沉积组合,上白垩统乌兰苏海组为干旱气候背景下的河湖相沉积。下白垩统巴音戈壁组上段是目前该盆地砂岩型铀矿勘探的主要目标层位,已在塔木素地区发现特大型铀矿床1个,在测老庙地区发现小型砂岩型铀矿床5个,在本巴图圈定铀矿产地1处。

  • 本次的研究区位于银根坳陷东部的新尼乌苏凹陷西北侧,区内沉积盖层主要为下白垩统、上白垩统及第四系(图1b)。其中,下白垩统是盆地沉积充填的主体,与下伏的二叠纪花岗岩或石炭纪石英闪长岩呈沉积接触关系,与上覆的下白垩统苏红图组玄武岩呈平行不整合接触。区内当前主要的铀矿找矿目的层为巴音戈壁组上段,勘查工程主要部署在凹陷的西北部,以追索层间氧化带前锋线和潜水氧化带前锋线为主要目标。

  • 2 巴音戈壁组岩性组合与铀矿化特征

  • 2.1 巴音戈壁组岩性组合

  • 本巴图地区巴隆乌拉剖面巴音戈壁组的出露厚度在1000 m以上,整体表现为下粗上细的沉积特征(李文厚等,1997)。项目组在该地区开展了详细的野外地质调查,结合前人认识,将巴音戈壁组地层划分为4个岩性段(图2):

  • 第一岩性段为黄色砾岩夹紫红色钙质、菱铁矿质粉砂岩团块,砾石大小多在3~6 cm,最大约40 cm,分选较差,厚度在80~120 m左右,与下伏的花岗岩呈不整合接触(图2a); 第二岩性段为浅黄色—黄褐色砂质砾岩与紫红色泥岩互层(图2b),砾石大小较第一岩性段略变小,分选仍较差,整体具下粗上细的特征,厚约150~200 m; 第三岩性段底部为黄色含砾粗砂岩,上部为黄色中细砂岩夹薄层粉砂岩或泥岩,厚度约260~300 m(图2c); 第四岩性段为灰绿色、黄绿色钙质页岩,层理发育,局部夹薄层粉砂岩,向上逐渐变为灰色油页岩(图2d),厚度在300 m以上,顶部与苏红图组玄武岩呈平行不整合接触。

  • 图1 研究区地质简图

  • Fig.1 Brief geological map of the study area

  • (a)—巴音戈壁盆地构造分区图;(b)—本巴图地质简图; 1—第四系; 2—苏红组图; 3—巴音戈壁组上段; 4—巴音戈壁组下段; 5—花岗闪长岩; 6—工业铀矿孔; 7—铀矿化孔; 8—铀异常孔; 9—无矿孔; 10—铀矿床; 11—剖面位置

  • (a) —structural zoning map of Bayingebi basin; (b) —geological map of Benbatu; 1—Quaternary; 2—Suhongtu Formation; 3—Upper Bayingebi Formation; 4—Lower Bayingebi Formation; 5—granodiorite; 6—industrial uranium ore hole; 7—uranium mineralization hole; 8— uranium anomaly hole; 9—no ore hole; 10—uranium deposit; 11—section position

  • 图2 本巴图地区巴隆乌拉山东侧巴音戈壁组剖面图

  • Fig.2 Section of Bayingebi Formation on the east side of the Balongwula in Benbatu area

  • (a)—花岗岩与巴音戈壁组不整合接触界面;(b)—紫红色泥岩,第二岩性段;(c)—黄色中砂岩,第三岩性段;(d)—油页岩,第四岩性段;(e)—细砂岩中的波痕,第三岩性段;(f)—菱铁矿结核被氧化,第一岩性段;(g)—菱铁矿团块;(h)—冲积扇砾岩,第一岩性段

  • (a) —unconformity contact interface between granite and Bayingebi Formation; (b) —purplish red mudstone, the second lithologic member; (c) —yellow medium sandstone, the third lithologic member; (d) —oil shale, the fourth lithologic member; (e) —ripple marks in fine sandstone, the third lithologic member; (f) —oxidized siderite nodule, the first lithologic section; (g) —siderite agglomerates; (h) —alluvial fan conglomerate, the first lithologic member

  • 野外剖面调查和钻孔资料对比显示,巴音戈壁组第一、二岩性段以砾岩和砂质砾岩为主(图2h),夹薄层细砂岩或粉砂岩,见大量菱铁矿结核及风化后留下的圆形空洞,指示其为冲积扇和扇三角洲的沉积环境。第三岩性为厚层状粗砂岩和细砂岩,形成多个下粗上细的正旋回,旋回底部为块状或板状含砾粗砂岩,顶部为细砂岩和粉砂岩,见明显的铁质胶结和波状层理(图2e),指示其为扇三角洲前缘沉积。第四岩性段的下部为席状砂与碳质泥岩互层沉积,上部为深灰色油页岩,反映其为静水缺氧的深湖—半深湖沉积。参照区域上巴音戈壁组沉积特征,可将第一、二岩性段划分为巴音戈壁组下段,其主要为冲积扇和扇三角洲沉积,第三、四岩性段划分为巴音戈壁组上段,主要为扇三角洲前缘和半深湖沉积。

  • 2.2 新发现铀矿化的特征与空间分布

  • 本次发现的地表铀矿化分布在巴音戈壁组第一岩性段底部砂质砾岩中,铀矿石以紫红色为主要识别标志。剖面追踪和对比显示,铀矿化整体表现为顺层产出,呈团块状、条带状或中厚层状(图3a~c)。垂向上,铀矿化从花岗岩顶部风化壳开始向上产出,底部铀矿石以团块状钙质、铁质细砾岩和细砂岩为主,向上逐渐演变为中—厚层状的粗砂岩(图3e~g)。野外FD3013伽马仪测量值为200~2780 cps,XRF手持式荧光分析仪测量铀含量在200×10-6~700×10-6之间,同时P、Sr、Y、Mo和W等元素富集明显。野外见部分铀矿化沿断层面分布(图3h、i),指示其分布与构造关系密切。铀矿化自基底不整合界面开始出现,呈多个薄层状或不连续条带状分布在砂砾岩中,出露的视厚度在20~60 m之间,走向延伸约3 km。

  • 图3 本巴图地区巴音戈壁组底部露头铀矿化特征

  • Fig.3 Characteristics of uranium mineralization in the outcrop at the bottom of the Bayingebi Formation in Benbatu area

  • (a)—薄层状铀矿石;(b)—紫红色铀矿石呈透镜状顺层分布在含砾粗砂岩中;(c)—铀矿化呈似层状分布在粗砂岩中;(d)—FD3013伽马仪测试露头矿化达1477 cps;(e)—紫红色含砾粗砂岩铀矿石;(f)—粗砂岩中的紫红色铀矿石和浅黄色氧化不含矿砂岩;(g)—砂质砾岩型铀矿石;(h)—铀矿化分布在断层面上;(i)—铀矿化沿断层分布

  • (a) —uranium mineralization occurs in layered distribution in gravel; (b) —the purplish red uranium ore occurs in the gravel bearing coarse sandstone in the form of lenticular bedding; (c) —uranium mineralization is distributed in the coarse sandstone in the form of stratoid; (d) —the outcrop mineralization is 1477 cps measured by FD3013; (e) —the purple red gravelly coarse sandstone, uranium ore; (f) —the purplish red uranium ore and yellow oxidized non uranium sandstone in coarse sandstone; (g) —sandy conglomerate type uranium ore; (h) —uranium is distributed on the strike slip fault plane; (i) — uranium mineralization occurs in fault

  • 3 分析测试方法

  • 在野外地质调查基础上,本文采集了蚀源区花岗岩、紫红色含矿砂岩、黄色不含矿砂砾岩等样品开展分析测试工作。花岗岩样品主要来自盆缘不整合界面下部的风化花岗岩,黄色不含矿砂砾岩样品采自巴音戈壁组第一岩性段的厚层黄色砂砾岩中,铀矿石样品主要为紫红色的层状、透镜状富铀岩石。项目组对采集的样品开展了镜下鉴定、电子探针和能谱分析,同时开展U、Th含量和微量元素分析。镜下鉴定在东华理工大学地球科学学院实验室完成。电子探针和能谱分析在东华理工大学核资源与环境国家重点实验室完成,实验所用的仪器为JXA-8100M型电子探针和与之配套的IncaEnergy型能谱仪,测试条件为:加速电压15.0 kV,探针电流20.0 nA,束斑直径<2 μm。U和Th含量分析在核工业二三O研究所分析测试中心完成。微量和稀土元素分析在北京锆年领航分析测试中心完成,测试方法为电感耦合等离子体质谱法(ICP-MS),仪器型号为NexION300D等离子体质谱仪,测试采用标准为GB/T14506.30—2010《硅酸盐岩石化学分析方法第30部分:44个元素量测定》,并增加了Se元素的分析,实验温度为20℃,相对湿度为27%,分析精度<5%。稀土数据处理中采用Taylor et al.(1985)的方法计算ΣREE、LREE/HREE和δEu等值。

  • 4 结果

  • 4.1 矿物学特征

  • 铀矿石以紫红色砂质砾岩为主,碎屑颗粒主要为石英、斜长石、花岗岩岩屑和黑云母等(图4a),次棱角—次圆状,颗粒支撑,压实作用弱但胶结作用强。胶结物主要为胶磷矿、方解石和赤铁矿等(图4b、c)。胶磷矿以集合体状分布于碎屑颗粒的边缘,电子探针能谱分析显示,胶磷矿主要为氟磷灰石(图4d),单体呈四边形或六边形。方解石多为亮晶粗粒状孔隙式胶结,部分呈细脉状分布,表现出晚期充填胶结物的特点。赤铁矿和褐铁矿呈分散状分布在填隙物中,在不同类型胶结物接触部位呈浸染状分布。在胶磷矿中见到较多的Ti-Fe氧化物、细粒黄铁矿和重晶石等,并见到ZnS、PbS和Sb2S3等热液成因的金属硫化物(图4e、f)。黄色不含矿砂质砾岩中也普遍存在赤铁矿矿化和孔隙式胶结的亮晶方解石,但其胶结物中没有胶磷矿。

  • 4.2 铀沉淀环境

  • 本批次样品的U和Th含量以及价态铀分析结果见表1。紫红色矿石中铀含量明显较高,为236×10-6~794×10-6,折算矿石品位为0.024%~0.079%; 黄色不含矿砂砾岩中铀含量为20.1×10-6~24.6 ×10-6,花岗岩中铀含量为2.75×10-6~19.4×10-6,表明该地区花岗岩铀含量和地层铀本底值均较高。

  • U/Th值和δU值可判断沉积环境的氧化还原状态,一般在氧化环境中U/Th<0.75,δU<1,还原环境中U/Th>1.25,δU>1(Wignall et al.,1996; 王峰等,2017)。本次采集的花岗岩样品的U/Th均值为0.43,δU均值为1.13; 紫红色铀矿石U/Th值和δU值均较大,分别在1.3~125.3之间和1.89~1.99之间; 黄色砂砾岩中U/Th比值为1.5~8.14,δU为1.64~1.92,介于花岗岩和铀矿石之间。这表明,花岗岩经过地表风化作用处于氧化环境,造成铀的明显迁出,紫红色铀矿石则形成于还原环境,出现铀的富集。黄色不含矿砂砾岩也为氧化的环境,但本次采集的黄色不含矿砂砾岩样品与紫红色铀矿石处于同一层位,或受其影响而表现出U/Th值较高的现象。

  • 图4 本巴图铀矿石矿物学特征

  • Fig.4 Mineralogical characteristics of uranium ore in Benbatu area

  • (a)—次棱角状结构;(b)—碎屑颗粒边缘为胶磷矿,外侧为方解石和赤铁矿胶结;(c)—方解石和胶磷矿胶结物;(d)—胶磷矿呈微晶状分布在碎屑颗粒边缘;(e)—胶磷矿、方解石和金红石;(f)—胶磷矿胶结物中见方铅矿、重晶石和赤铁矿; Q—石英; Ab—斜长石; Bit—黑云母; Clh—胶磷矿; Cal—方解石; Hem—赤铁矿; Rt—金红石; Zr—锆石; Gn—方铅矿; Bar—重晶石

  • (a) —subangular structure; (b) —the particle edge is collophanite, and the outer side is calcite and hematite cementation; (c) —calcite and collophanite cementation; (d) —collophanite is microcrystalline distributed in the edge of clastic particles; (e) —collophanite, calcite and rutile; (f) — collophanite cementation with galena, barite and hematite; Q—quartz; Ab—plagioclase; Bit—biotite; Clh—collophanite; Cal—calcite; Hem—hematite; Rt—rutile; Zr—zircon; Gn—galena; Bar—barite

  • 价态铀含量分析结果显示(表2),铀矿石中U4+/U6+值变化范围很大,在0.44~9.73之间,表明铀矿化形成于还原环境,部分样品中U4+/U6+<1,与地表露头样品的后期风化改造有关。

  • 表1 本巴图铀矿石U和Th元素数据

  • Table1 Data of U and Th in the Benbatu uranium ore

  • 注: δU=U/[0.5×(Th/3+U)](王峰等,2017)。

  • 表2 本巴图铀矿石样品中的铀价态数据

  • Table2 Uranium valence data of the Benbatu uranium ore samples

  • 注:U4+和U6+含量分析在核工业北京地质研究院完成,仪器型号为MUA 激光微量铀分析仪,仪器编号80803,测试环境湿度为25%,温度为20.9℃。

  • 4.3 铀赋存状态

  • 铀矿石中α径迹蚀刻结果显示,径迹点多呈面状分散分布,零星出现少量很小的径迹聚集。在开展电子探针分析测试中,没有发现独立铀矿物,对胶磷矿中的黄铁矿颗粒的能谱线扫描和面扫描显示(图5),黄铁矿以及黄铁矿被氧化的部位也无铀异常。这表明,铀矿石样品中铀的赋存状态以分散吸附态为主。前人研究表明,在磷块岩型铀矿石中铀一般以类质同象和吸附状态分散分布在胶磷矿中(Doveton et al.,2003; 漆富成等,2011)。在英国约克郡、美国宾夕法尼亚、中国浙西和湘西黑色富磷富铀页岩中,铀也以类质同象和吸附状态分布在胶磷矿和碳质泥岩中,仅出现少量颗粒非常细小的独立铀矿物,如铀石和钛铀矿等(Doveton et al.,2003; Fisher et al.,2003; 漆富成等,2011)。本次所取的矿石样品全岩分析显示铀的含矿都很高,但在开展的多次电子探针分析并没有见到独立铀矿物,因此,综合分析认为铀矿石中铀以吸附态或类质同象分布于胶磷矿胶结物中。

  • 4.4 微量元素地球化学特征

  • 本次选取了花岗岩、紫红色铀矿石和黄色不含矿砂砾岩三种类型的样品开展微量元素分析(表3),微量元素数据的处理采用中国沉积岩为标准(黎彤,1994)。结果显示,三类岩石样品中微量元素差异明显(图6a)。

  • 花岗岩样品具U、Se富集和Co、Sc、Cu亏损的特点,指示花岗岩本身富铀,并在风化作用下出现氧化还原环境敏感元素Se的增高。黄色不含矿砂砾岩样品的微量元素曲线型式与花岗岩基本一致,这与黄色砂质砾岩的近源沉积有关,但受沉积搬运和后期氧化作用的影响,Mn、Co、Ni、Cu、Zr等值略低于花岗岩样品。其中一个黄色不含矿砂砾岩样品的Co、Ni、Cu、Zn、W等元素相对较高,这可能与样品取自紫红色铀矿石附近有关。紫红色铀矿石中Sr、Y、W、U、Th和Mo等元素显著富集(Sr=125.1×10-6~3044.5×10-6; Y=43.4×10-6~319.7×10-6; W=7.1×10-6~10.7×10-6; Mo=1.7×10-6~3.7×10-6; U=696.4×10-6~1832.0×10-6; Th=41.8×10-6~96.3×10-6),且U和W、Y呈明显的正相关关系。

  • 图5 本巴图铀矿石背散射图、能谱元素(Ca、P、Fe、Sc、Ti、U)面扫描和α蚀刻径迹分布图

  • Fig.5 The BSE, spectral element (Ca, P, Fe, Sc, Ti and U) mapping images and alpha etching track of uranium ore in Benbatu area

  • 黄色不含矿砂砾岩与花岗岩的稀土配分曲线型式基本一致,而紫红色铀矿石样品的稀土元素曲线型式则明显不同(图6b)。花岗岩样品中ΣREE分布范围比较集中,在107.5×10-6~124.6×10-6之间,平均为116.1×10-6,LREE/HREE平均值为11.9。黄色不含矿砂砾岩样品中ΣREE变化范围在75.7×10-6~227.9×10-6之间,平均值为120.1×10-6,LREE/HREE平均值为10.3。铀矿石中ΣREE 则显著富集,变化范围在194.6×10-6~733.8×10-6 之间,平均值388.7×10-6,远大于黄色不含矿砂砾岩,但LREE/HREE平均值为4.9,明显低于黄色不含矿砂砾岩样品。黄色不含矿砂砾岩和花岗岩两类样品的ΣREE和LREE/HREE值接近,指示二者物源具有一致性。紫红色铀矿石具有高ΣREE、低LREE/HREE和 HREE富集的现象,这可能与其中存在深部流体参与有关。

  • 5 讨论

  • 5.1 铀富集机理

  • 层间氧化带砂岩型铀矿中矿化带一般具弱酸性和氧化-还原过渡的环境,以明显的高岭石化和二价、三价铁共存为识别标志,且Re、Mo、Se等易变价元素与铀伴生现象明显(Hansley et al.,1992; 陈祖伊等,2010)。本巴图地区紫红色铀矿石中,既出现U、Mo等元素的富集,也出现Y、W、Sr、ΣREE等元素的富集,其特征与典型层间氧化带砂岩型铀矿元素富集规律并不完全一致。同时,矿石中出现大量的富铀胶磷矿和FeS2、PbS等金属硫化物,指示其并不是单一氧化还原作用的产物。Y、W、Sr和REE等元素一般在热液成因的矿床中富集,Sr 和W可由热液大量带入,以类质同象形式或吸附态型式进入胶磷矿中(Exley et al.,1983),如相山火山热液型铀矿田出现的磷灰石与富铀矿床正相关现象,指示了铀富集与深部热液流体密切相关(温志坚等,1999)。铀矿石中的胶磷矿为微晶氟磷灰石,指示成矿流体为富氟的热液流体,热液活动过程中富氟流体会增强稀土元素的活动性(Jiang Yaohui et al.,2006),REE、Y与F易形成较稳定的络合物(Bau et al.,1995; 刘小波等,2019),故造成稀土元素在矿石中的显著富集。

  • 图6 本巴图不同岩石微量元素(a)和稀土元素(b)曲线型式图

  • Fig.6 Patterns of trace elements (a) and rare earth elements (b) from different rocks in the Benbatu area

  • 表3 本巴图地区不同岩石类型微量元素数据表(×10-6

  • Table3 Data (×10-6) of trace elements in different rocks from the Benbatu area

  • 注:微量元素分析在锆年领航完成,采用X Serise2 电感耦合等离子质谱仪,测试环境湿度为40%,温度为22℃。

  • 胶磷矿是一种具有胶状构造的细晶分散状磷灰石,由生物和生物化学沉积而成(Disnar et al.,1990; Fisher et al.,2003)。在湘西早寒武世黑色页岩和鄂尔多斯延长组烃源岩等地区中都发现了富铀胶磷矿层(秦艳等,2009; 王健等,2020),其形成与富含有机质背景下的微生物活动密切相关。微生物对胶磷矿和铀等多金属成矿物质的吸附和聚集起到了关键作用(张本浩等,2011; 漆富成等,2011)。研究区巴音戈壁组下段为半干旱气候背景下的扇三角洲沉积,具咸化湖盆沉积的特征。沉积—早成岩阶段整体为弱碱性的成岩环境,在生物和生物化学作用下,磷酸盐及其他碎屑物、黏土、有机质可吸附并造成铀的沉淀(张万良,1997),形成初步富集(图7)。

  • 本巴图地表矿石以铀与胶磷矿共生为主要特征。目前国内已发现的U-P共生富集矿床实例主要有:相山火山岩型铀矿床中的高品位矿石、赣杭构造带中六O铀磷矿床、中天山冰草沟铀磷矿床和鄂尔多斯延长组烃源岩中的富铀胶磷矿层等(张万良,1997; 温志坚等,1999; 秦艳等,2009; 刘小波等,2019)。前人研究发现,在偏酸性溶液中U和P一般呈UO2(HPO42-2络合物形式搬运(Romberger,1984),当pH 值为5~6之间,UO2(HPO42-2络合离子的溶解度最大; 当pH值增大向弱碱性变化时,UO2(HPO42-2溶解度大幅降低,且稳定性也随之变差,造成络合物的分解(Romberger,1984; 张万良,1997; 王新宇,2014; 刘小波等,2019)。研究表明,热液体系中pH的降低可能是形成特富铀矿石的重要条件,而Eh变化对U和P共沉淀的影响相对较小(刘正义等,2007)。本次研究发现,本巴图地区地表铀矿化的形成既与氧化还原变化有关,也与酸碱度变化有关。紫红色铀磷矿石与砂砾岩中大量存在的菱铁矿结核(FeCO3)等关系密切,沉积型菱铁矿一般代表弱碱性还原的环境(黎彤,1979),指示铀沉淀的环境为弱碱性的还原环境。在胶磷矿中存在黄铁矿,指示富铀胶磷矿沉淀环境相对还原,矿石中铀以四价(U4+)为主,表明成矿过程中出现U6+向U4+转化的现象。

  • 巴音戈壁组沉积后不久即发生掀斜抬升,在盆缘出现一次地表氧化流体渗入事件,此时气候干旱,大气降水以弱碱性为主(Worden,2003),因此在盆缘砂砾岩层中形成大面积分布的弱碱性氧化带。但该期沉积间断持续时间较短,氧化作用并不充分,在本巴图、乌力吉和塔木素等地区氧化砂岩中仍保留较多的碳屑和菱铁矿等还原性物质(Zhang Chengyong et al.,2019)。至苏红图组沉积时期,火山喷发形成的H2S、CH4等气体和热活动造成的有机质分解使得盆地深部的热液流体以还原弱酸性为主。热液在上移的过程中与地表大气降水混合,形成弱酸性氧化流体,并在循环和上移过程中不断萃取地层中的U和P,形成富铀富磷的弱酸性氧化热液。热液沿不整合界面向上运移进入巴音戈壁组底部砂砾岩中,当其在近地表部位遇到菱铁矿结核(FeCO3)等还原物质时,形成氧化-还原过渡和酸性-碱性界面,造成胶磷矿的结晶和铀的卸载沉淀(图7),形成富铀胶磷矿。

  • 5.2 铀矿化成因

  • 基于沉积、构造、矿物学和地球化学等方面的综合分析,结合区域构造演化和火山活动,初步认为本巴图巴音戈壁组底部铀矿化的形成过程可分为4个阶段。

  • (1)U和P的预富集:本巴图地区在早白垩世为半干旱背景下的扇三角洲沉积(卫平生,2006)。在该凹陷北部施工的钻孔中揭露到巴音戈壁组下段的灰色厚层泥岩,泥岩钙质含量较高且存在较多的有机质,指示湖盆中心整体处于弱碱性的成岩环境。在生物和生物化学作用下,湖盆中心产生U和P的预富集。

  • (2)构造抬升与氧化流体的渗入:野外剖面调查和区域资料分析显示,巴音戈壁组沉积之后存在一次区域抬升时间,造成巴音戈壁组顶部油页岩与上覆的苏红图组玄武岩呈平行不整合接触。此次抬升造成盆缘的巴音戈壁组下段砂砾岩被部分剥蚀,同时接受地表氧化流体的渗入。结合区域资料分析,此次氧化事件规模大但持续时间较短,可能以潜水氧化作用为主(Zhang Chengyong et al.,2019),氧化作用不充分,在氧化带内仍保留有部分菱铁矿结核和有机质碎屑等还原物质。

  • 图7 铀迁移沉淀过程

  • Fig.7 Uranium migration and precipitation process

  • 图8 巴音戈壁盆地铀矿化层位对比示意图

  • Fig.8 Diagrammatic sketch of uranium mineralization layer in Bayingebi basin

  • 1 —泥岩; 2—砂岩; 3—砂质砾岩; 4—花岗岩; 5—伽马测井曲线; 6—巴音戈壁组下段; 7—巴音戈壁组上段; 8—工业铀矿化

  • 1 —mudstone; 2—sandstone; 3—sandy conglomerate; 4—granite; 5—gamma logging curve; 6—Lower Bayingebi Formation; 7—Upper Bayingebi Formation; 8—industrial uranium mineralization

  • (3)火山作用下U的活化、迁移与富集成矿:早白垩世末期,大规模走滑拉伸造成苏红图组玄武岩的大面积喷发,其主要分布在宗乃山—沙拉扎山的两侧,玄武岩叠覆在巴音戈壁组上段油页岩之上,呈平行不整合接触。苏红图坳陷中部钻孔揭示显示,玄武岩与泥岩互层频繁出现,整个厚度大于400 m,表明此次火山岩浆活动持续时间较长(卫平生,2006; 吴仁贵等,2008)。火山活动对盆地内的巴音戈壁组进行了明显的改造,在塔木素、乌力吉和本巴图等地区,可见到巴音戈壁组上段中大量出现的近垂直方向的节理和充填其中的方解石脉和萤石脉等(吴仁贵等,2008; Zhang Chengyong et al.,2019)。火山热液与大气降水混合形成氧化弱酸性热液流体,并在循环过程中活化泥岩中预富集的U和P等元素。热液沿盆缘不整合界面或次级断层上移、萃取地层中的U、P等物质,当其运移至巴音戈壁组底部砂砾岩中时,遇到地层中顺层分布的菱铁矿结核或其他还原性物质,在氧化-还原过渡界面和酸性-碱性共同作用下形成富铀胶磷矿。

  • (4)成矿后抬升剥蚀:晚白垩世后,该地区以整体抬升为主(吴仁贵等,2008),凹陷中心巴隆乌拉山顶残留的层状玄武岩记录了该阶段的强烈抬升和剥蚀。持续的抬升造成了巴音戈壁组底部铀矿化的剥蚀和氧化,紫红色铀矿化呈残留的条带状产出。

  • 5.3 找矿指示意义

  • 长期以来,一直以沉积时期古气候和有机质含量作为铀矿化层位的遴选条件,认为巴音戈壁组下段以干旱环境下的冲积扇和扇三角洲沉积为主,对成矿不利,因此,巴音戈壁盆地的铀矿勘查一直以富有机质的巴音戈壁组上段为主攻层位,以层间氧化带砂岩型铀矿为主要的铀矿勘探目标(张万良等,2002; 吴仁贵等,2008)。本巴图地区的铀矿勘查也以塔木素为借鉴,钻孔主要分布在新尼乌苏凹陷的东北部,钻探揭露显示该地区铀矿化异常较多,但达到砂岩型铀矿工业指标(0.01%)的钻孔却很少。大量地质现象和室内实验资料表明,氧化还原作用对铀成矿有非常重要的贡献,但并不是铀成矿的唯一因素(赵凤民,2017),pH等其他条件的变化对铀的沉淀也会产生重要的影响,研究表明,pH值对铀酰离子等各种络合离子的稳定性有重要的影响,其改变利于铀的沉淀(王剑锋,1980)。在砂岩型铀矿成矿过程中,深部流体的参与可提供铀源、还原物质或改变成矿环境(pH、Eh等),弥补地球化学障的不足,影响铀沉淀富集过程(方维萱等,2016)。本巴图地表铀矿化的发现,表明深部流体在该地区铀成矿过程中起着重要的作用,热液活动为浅部砂岩型铀矿的成矿提供了深部铀源,层间氧化与热液的相互作用控制了铀矿体的产出。相比之前的勘查与研究,本次发现的铀矿化扩展了找矿空间和找矿类型(图8)。巴音戈壁盆地南部的本巴图、塔木素和乌力吉等地区构造和岩浆活动特征基本一致,因此,该类型铀矿化可能存在一定的分布范围,这需要引起我们的重视并开展相关的研究和查证工作。

  • 纵观整个巴音戈壁盆地,氧化砂体和火山岩分布范围均较大。在下一步铀矿勘查中,仅瞄准氧化前锋线的勘探规划显然是不足的,必须考虑氧化渗入与构造-火山活动的联合作用,改变传统成矿理论的约束,开阔思路。我国砂岩型铀矿的勘探已逐渐从浅部向深部推进,从稳定斜坡带向构造弱活动区推进,在很多地方已出现表生氧化和深部流体相互作用的现象,这需要引起我们的重视,丰富并扩展砂岩型铀矿成矿理论,推动铀矿勘查的进步。

  • 6 结论

  • (1)本巴图地区发现的地表铀矿化位于巴音戈壁组下段,找矿标志为紫红色蚀变砂岩,铀矿化与不整合界面及次级断层有关。铀以分散状态或类质同象赋存在胶磷矿中,并伴生多种金属硫化物,矿石中Sr、Y、Mo、W等元素显著富集,指示其形成与深部热液流体密切相关。

  • (2)苏红图组玄武岩喷发形成的火山热液与大气降水混合形成的氧化弱酸性热液流体活化、萃取地层中的铀和磷,在向上迁移过程中与巴音戈壁组下段地层中的菱铁矿结核等还原弱碱性物质相互作用,在酸-碱和氧化-还原过渡界面诱发铀和磷的沉淀。结合区域构造演化特征,本文初步将成矿过程分为铀的预富集、氧化流体的渗入、铀-磷迁移富集成矿和成矿后抬升剥蚀等4个阶段。

  • (3)本次发现的铀矿化为深部流体与砂岩型铀成矿之间的关系研究提供了重要证据,同时也扩展了找矿空间和找矿类型。在下一步勘查中,要重视构造岩浆活动对成矿的影响,加强对氧化带与热活动叠合部位的探索和研究。

  • 参考文献

    • Aubakirov K B. 2016. A new interpretation of the formation of sandstone type uranium deposits. Beijing Research Institute of Uranium Geology, China, 3~35.

    • Bau M, Dulski P. 1995. Comparative study of yttrium and rare earth element behaviours in fluorine rich hydrothermal fluids. Contributions to Mineralogy and Petrology, 119(2~3): 213~223.

    • Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu wusheng, Qi Fucheng, Zhang Minglin. 2015. Characteristics of uranium resources and metallogenic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstracts).

    • Chen Zuyi, Guo Qingyin. 2010. The mechanism of rare elements concentration in the redox front area of interlayer oxidation type sandstone-hosted uranium deposits. Uranium Geology, 26(1): 1~8 (in Chinese with English abstracts).

    • Cuney M, Kyser K. 2008. Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada, 39: 257.

    • Dahlkamp F J. 2009. Uranium Deposits of the World: Asia. Springer Ed, 493.

    • Disnar J R, Sureau J F. 1990. Organic matter in ore genesis: Progress and perspectives. Organic Geochemistry, 16(1~3): 577~599.

    • Doveton J H, Merriam D F. 2003. Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface. Chemical Geology: Isotope Geoscience section, 206(3): 249~258.

    • Exley R A, Jones A P. 1983. 87Sr/86Sr in kimberlitic carbonates by ion microprobe: Hydrothermal alteration, crustal contamination and relation to carbonatite. Contributions to Mineralogy & Petrology, 83(3~4): 288~292.

    • Fang Weixuan, Jia Runxing, Guo Yuqian, Li Tiancheng, Wang Lei, Huang Zhuanying. 2016. Fluid of hydrocarbon rich reducing basin and metallogenic mechanism of glutenite type Cu, Pb, Zn, U deposit in Taxi area. Acta Geosciences and Environment, 38 (6): 727~752 (in Chinese with English abstracts).

    • Fisher Q J, Cliff R A, Dodson M H. 2003. U-Pb systematics of an Upper Carboniferous black shale from South Yorkshire, UK. Chemical Geology: Isotope Geoscience Section, 194(4): 331~347.

    • Hansley P L, Spirakis C S. 1992. Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau. Economic Geology, 87(2): 352~365.

    • Jiang Yaohui, Ling Hongfei, Jiang Shaoyong, Shen Weizhou, Fan Honghai, Ni Pei. 2006. Trace element and Sr-Nd isotope geochemistry of fluorite from the Xiangshan uranium deposit southeast China. Economic Geology, 101(8): 1613~1622.

    • Jin Jiuqiang, Zhang Yan, Xu Dafeng, Meng Qingren. 2000. Jurassic Cretaceous basin evolution and hydrocarbon characteristics in Ejinaqi area. Acta Petrologica Sinica, 21(4): 13~19+119~120 (in Chinese with English abstracts).

    • Li Rongxi, Duan Zhili, Chen Baoyun, Zhang Shaoni. 2011. Alteration and metallogeny on the oxic-acid / anoxic-alkali interface of the Dongsheng uranium deposit in northern Ordos basin. Geotectonica et Metallogenia, 35(4): 525~532 (in Chinese with English abstracts).

    • Li Tong. 1979. Metallogenic geochemistry of marine sedimentary siderite deposits. Geology and Exploration, (1): 1~8 (in Chinese with English abstracts).

    • Li Tong. 1994. Chemical element abundances of the continental crust and its sedimentary layers and upper continental crust in China. Geochemistry, 23(2): 140~145 (in Chinese with English abstracts).

    • Li Wenhou, Zhou Lifa. 1997. Cretaceous sedimentary facies and tectonic environment of Suhongtu-Yingen basin. Geological Sciences, 32(3): 387~396 (in Chinese with English abstracts).

    • Lin Shuangxing, Gong Xiaofeng, Zhang Tieling. 2017. Deep geological fluids and uranium mineralization in Mesozoic Cenozoic basins. Uranium Geology, 33(6): 321~328 (in Chinese with English abstracts).

    • Liu Xiaobo, Li Guanglai, Liu Xiaodong, Li Chengxiang, Wang Guo, Lu Kegai. 2019. Geochemical characteristics of elements and their indicative significance in the Bingcaogou uranium-phosphate deposit in North Tianshan. Geology and Exploration, 55(6): 1379~1393 (in Chinese with English abstracts).

    • Liu Zhengyi, Du Letian, Wen Zhijian. 2007. The geochemical experimental study on the relationship between uranium and phosphor in Xiangshan rich uranium mineralization. Journal of East China Institute of Technology, 30(2): 101~106 (in Chinese with English abstracts).

    • Meng Qingren, Hu Jianmin, Yuan Xuanjun, Jin Jiuqiang. 2002. Structure, evolution and genesis of Late Mesozoic extensional basins in Sino Mongolian border area. Geological Bulletin, (z1): 224~231 (in Chinese with English abstracts).

    • Qi Fucheng, Zhang Zilong, He Zhongbo, Li Zhixing, Wang Wenquan, Su Xiangli, Zhang Chao. 2011. Uranium polymetallic metallogenic system and mechanism of black rock series in southeast margin of Yangtze block. Uranium Geology, 27(3): 129~135+145 (in Chinese with English abstracts).

    • Qin Yan, Zhang Wenzheng, Peng Ping'an, Zhou Zhenju. 2009. Uranium occurrence and enrichment mechanism of Chang 7 member of Yanchang Formation in Ordos basin. Acta Petrologica Sinica, 25(10): 2469~2476 (in Chinese with English abstracts).

    • Romberger S B. 1984. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300℃: Geological implications. Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources, 12~17.

    • Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Mlackwell, 9~56.

    • Wang Feng, Liu Xuanchun, Deng Xiuqin, Li Yuanhao, Tian Jingchun, Li Shixiang, You Jingqian. 2017. Trace element geochemical characteristics and sedimentary environment indicating significance of Zhifang Formation in Ordos basin. Acta Sedimentologica Sinica, 35(6): 1265~1273 (in Chinese with English abstracts).

    • Wang Jian, Qi Fucheng, Li Zhixing, Wang Wenquan, Zhang Wendong, Wang Zhenyun. 2020. Geological characteristics and metallogenic epoch of unconventional uranium resources in black rock series of Northwest Hunan. Uranium Geology, 36(1): 28~33 (in Chinese with English abstracts).

    • Wang Jiangfeng. 1980. Migration precipitation and metallogenic model of uranium in hydrothermalism. Journal of East China University of Technology, 2: 184~200 (in Chinese).

    • Wang Xinyu. 2014. Study on uranium speciation and distribution in phosphate-rich water. Doctoral thesis of Chengdu University of Technology (in Chinese with English abstracts).

    • Wei Pingsheng. 2006. Petroleum Geological Characteristics and Exploration Prospects of Yingen Ejinaqi Basin. Beijing: Petroleum Industry Press, 1~55 (in Chinese with English abstracts).

    • Wen Zhijian, Du Letian, Liu Zhangyi. 1999. Relation between francolite and metallogenesis of high-grade uranium ores in Xiangshan uranium orefield. Uranium Geology, 15(4): 26~33 (in Chinese with English abstracts).

    • Wignall P B, Twitchett R J. 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155~1158.

    • Worden R H, Morad S. 2003. Clay minerals in sandstones: Controls on formation, distribution and evolution. In: Worden R H, Morad S, eds. Clay Mineral Cements in Sandstones. International Association of Sedimentologists Special Publication, 1~41.

    • Wu Rengui, Zhou Wanpeng, Liu Pinghua, Hou Shuren, Wang Yongjun, Ma Fusen, Pan Jiayong. 2008. Analysis of metallogenic conditions and prospecting prospects of sandstone type uranium deposits in Tamusi section of Bayin Gobi basin. Uranium Geology, 24(1): 24~31 (in Chinese with English abstracts).

    • Xiao Xuchang, Li Tingdong, Li Guangcen, Gao Yanlin, Xu Zhiqin. 1990. Tectonic evolution of the Qinghai Tibet Plateau. Proceedings of the Chinese Academy of Geological Sciences, 20(1): 123~125 (in Chinese with English abstracts).

    • Zhang Benhao, Wu Bailin, Liu Chiyang, Qiu Xinwei. 2011. Occurrence of uranium in Chang 7 uranium rich source rocks of Yanchang Formation in Ordos basin. Geology of Northwest China, 44(2): 124~132 (in Chinese with English abstracts).

    • Zhang Chengyong, Nie Fengjun, Hou Shuren, Wang Junlin, Zhang Liang, Deng Wei. 2015. Controlling factors and metallogenic model of sandstone type uranium deposits in Tamusu area of Bayingebi basin, Inner Mongolia. Geological and Technological Information, 34(1): 140~147 (in Chinese with English abstracts).

    • Zhang Chengyong, Nie Fengjun, Jiao Yangquan, Deng Wei, Peng Yunbiao, Hou Shuren. 2019. Characterization of ore-forming fluids in the Tamusu sandstone-type uranium deposit, Bayingebi basin, China: Constraints from trace elements, fluid inclusions and C-O-S isotopes. Ore Geology Reviews, 111: 102999.

    • Zhang Wanliang. 1997. Study on the relationship between uranium and phosphor in deposit No. 60. Uranium Geology, 13(1): 19~24 (in Chinese with English abstracts).

    • Zhang Wanliang, Fu Xiang. 2002. Selection of prospecting target layers for sandstone type uranium deposits in interlayer oxidation zone of Bayingebi basin. Uranium Geology, 18(2): 85~88 (in Chinese with English abstracts).

    • Zhao Fengmin. 2017. Recognition on the role of reducing action in uranium metallization. Uranium Geology, 33(4): 193~198+214 (in Chinese with English abstracts).

    • 蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.

    • 陈祖伊, 郭庆银. 2010. 砂岩型铀矿床层间氧化带前锋区稀有元素富集机制. 铀矿地质, 26 (1): 1~8.

    • 方维萱, 贾润幸, 郭玉乾, 李天成, 王磊, 黄转盈. 2016. 塔西地区富烃类还原性盆地流体与砂砾岩型铜铅锌-铀矿床成矿机制. 地球科学与环境学报, 38(6): 727~752.

    • 靳久强, 张研, 许大丰, 孟庆任. 2000. 额济纳旗地区侏罗-白垩纪盆地演化与油气特征. 石油学报, 21(4): 13~19+119~120.

    • 李荣西, 段立志, 陈宝赟, 张少妮. 2011. 东胜砂岩型铀矿氧化酸性流体与还原碱性热液流体过渡界面蚀变带成矿作用研究. 大地构造与成矿学, 35(4): 525~532.

    • 黎彤. 1979. 海相沉积型菱铁矿矿床的成矿地球化学. 地质与勘探, (1): 1~8.

    • 黎彤. 1994. 中国陆壳及其沉积层和上陆壳的化学元素丰度. 地球化学, 23(2): 140~145.

    • 李文厚, 周立发. 1997. 苏红图-银根盆地白垩纪沉积相与构造环境. 地质科学, 32(3): 387~396.

    • 林双幸, 宫晓峰, 张铁岭. 2017. 中新生代盆地深部地质流体及铀成矿作用. 铀矿地质, 33(6): 321~328.

    • 刘小波, 李光来, 刘晓东, 李成祥, 王果, 鲁克改. 2019. 北天山冰草沟铀磷矿床元素地球化学特征及其指示意义. 地质与勘探, 55(6): 1379~1393.

    • 刘正义, 杜乐天, 温志坚. 2007. 相山铀矿田特富矿中铀磷关系的模拟实验研究. 东华理工学院学报, 30(2): 101~106.

    • 孟庆任, 胡健民, 袁选俊, 靳久强. 2002. 中蒙边界地区晚中生代伸展盆地的结构、演化和成因. 地质通报, (Z1): 224~231.

    • 漆富成, 张字龙, 何中波, 李治兴, 王文全, 苏香丽, 张超. 2011. 扬子陆块东南缘黑色岩系铀多金属成矿体系和成矿机制. 铀矿地质, 27(3): 129~135+145.

    • 秦艳, 张文正, 彭平安, 周振菊. 2009. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理. 岩石学报, 25(10): 2469~2476.

    • 王峰, 刘玄春, 邓秀芹, 李元昊, 田景春, 李士祥, 尤靖茜. 2017. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义. 沉积学报, 35(6): 1265~1273.

    • 王健, 漆富成, 李治兴, 王文全, 张文东, 王振云. 2020. 湘西北黑色岩系非常规铀资源成矿地质特征及成矿时代. 铀矿地质, 36(1): 28~33.

    • 王剑锋. 1980. 铀在热液作用中的迁移沉淀与成矿模式. 抚州地质学院学报, 2: 184~200.

    • 王新宇. 2014. 富磷水体中铀的赋存形态与分配研究. 成都理工大学博士学位论文.

    • 卫平生. 2006. 银根-额济纳旗盆地油气地质特征及勘探前景. 北京: 石油工业出版社, 1~55.

    • 温志坚, 杜乐天, 刘正义. 1999. 相山铀矿田磷灰石与富矿形成的关系. 铀矿地质, 15(4): 26~33.

    • 吴仁贵, 周万蓬, 刘平华, 侯树仁, 王永君, 马福森, 潘家永. 2008. 巴音戈壁盆地塔木素地段砂岩型铀矿成矿条件及找矿前景分析. 铀矿地质, 24 (1): 24~31.

    • 肖序常, 李廷栋, 李光岑, 高延林, 许志琴. 1990. 青藏高原的构造演化. 中国地质科学院院报, 20(1): 123~125.

    • 张本浩, 吴柏林, 刘池阳, 邱欣卫. 2011. 鄂尔多斯盆地延长组长7富铀烃源岩铀的赋存状态. 西北地质, 44(2): 124~132.

    • 张成勇, 聂逢君, 侯树仁, 王俊林, 张良, 邓薇. 2015. 内蒙古巴音戈壁盆地塔木素地区砂岩型铀矿控制因素与成矿模式. 地质科技情报, 34(1): 140~147.

    • 张万良, 付湘. 2002. 巴音戈壁盆地层间氧化带砂岩型铀矿找矿目的层选择. 铀矿地质, 18(2): 85~88.

    • 张万良. 1997. 六O矿床铀、磷关系研究. 铀矿地质, 13(1): 19~24.

    • 赵凤民. 2017. 重新认识还原作用在铀成矿中的贡献. 铀矿地质, 33(4): 193~198+214.

  • 参考文献

    • Aubakirov K B. 2016. A new interpretation of the formation of sandstone type uranium deposits. Beijing Research Institute of Uranium Geology, China, 3~35.

    • Bau M, Dulski P. 1995. Comparative study of yttrium and rare earth element behaviours in fluorine rich hydrothermal fluids. Contributions to Mineralogy and Petrology, 119(2~3): 213~223.

    • Cai Yuqi, Zhang Jindai, Li Ziying, Guo Qingyin, Song Jiye, Fan Honghai, Liu wusheng, Qi Fucheng, Zhang Minglin. 2015. Characteristics of uranium resources and metallogenic regularity in China. Acta Geologica Sinica, 89(6): 1051~1069 (in Chinese with English abstracts).

    • Chen Zuyi, Guo Qingyin. 2010. The mechanism of rare elements concentration in the redox front area of interlayer oxidation type sandstone-hosted uranium deposits. Uranium Geology, 26(1): 1~8 (in Chinese with English abstracts).

    • Cuney M, Kyser K. 2008. Recent and not-so-recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada, 39: 257.

    • Dahlkamp F J. 2009. Uranium Deposits of the World: Asia. Springer Ed, 493.

    • Disnar J R, Sureau J F. 1990. Organic matter in ore genesis: Progress and perspectives. Organic Geochemistry, 16(1~3): 577~599.

    • Doveton J H, Merriam D F. 2003. Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface. Chemical Geology: Isotope Geoscience section, 206(3): 249~258.

    • Exley R A, Jones A P. 1983. 87Sr/86Sr in kimberlitic carbonates by ion microprobe: Hydrothermal alteration, crustal contamination and relation to carbonatite. Contributions to Mineralogy & Petrology, 83(3~4): 288~292.

    • Fang Weixuan, Jia Runxing, Guo Yuqian, Li Tiancheng, Wang Lei, Huang Zhuanying. 2016. Fluid of hydrocarbon rich reducing basin and metallogenic mechanism of glutenite type Cu, Pb, Zn, U deposit in Taxi area. Acta Geosciences and Environment, 38 (6): 727~752 (in Chinese with English abstracts).

    • Fisher Q J, Cliff R A, Dodson M H. 2003. U-Pb systematics of an Upper Carboniferous black shale from South Yorkshire, UK. Chemical Geology: Isotope Geoscience Section, 194(4): 331~347.

    • Hansley P L, Spirakis C S. 1992. Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau. Economic Geology, 87(2): 352~365.

    • Jiang Yaohui, Ling Hongfei, Jiang Shaoyong, Shen Weizhou, Fan Honghai, Ni Pei. 2006. Trace element and Sr-Nd isotope geochemistry of fluorite from the Xiangshan uranium deposit southeast China. Economic Geology, 101(8): 1613~1622.

    • Jin Jiuqiang, Zhang Yan, Xu Dafeng, Meng Qingren. 2000. Jurassic Cretaceous basin evolution and hydrocarbon characteristics in Ejinaqi area. Acta Petrologica Sinica, 21(4): 13~19+119~120 (in Chinese with English abstracts).

    • Li Rongxi, Duan Zhili, Chen Baoyun, Zhang Shaoni. 2011. Alteration and metallogeny on the oxic-acid / anoxic-alkali interface of the Dongsheng uranium deposit in northern Ordos basin. Geotectonica et Metallogenia, 35(4): 525~532 (in Chinese with English abstracts).

    • Li Tong. 1979. Metallogenic geochemistry of marine sedimentary siderite deposits. Geology and Exploration, (1): 1~8 (in Chinese with English abstracts).

    • Li Tong. 1994. Chemical element abundances of the continental crust and its sedimentary layers and upper continental crust in China. Geochemistry, 23(2): 140~145 (in Chinese with English abstracts).

    • Li Wenhou, Zhou Lifa. 1997. Cretaceous sedimentary facies and tectonic environment of Suhongtu-Yingen basin. Geological Sciences, 32(3): 387~396 (in Chinese with English abstracts).

    • Lin Shuangxing, Gong Xiaofeng, Zhang Tieling. 2017. Deep geological fluids and uranium mineralization in Mesozoic Cenozoic basins. Uranium Geology, 33(6): 321~328 (in Chinese with English abstracts).

    • Liu Xiaobo, Li Guanglai, Liu Xiaodong, Li Chengxiang, Wang Guo, Lu Kegai. 2019. Geochemical characteristics of elements and their indicative significance in the Bingcaogou uranium-phosphate deposit in North Tianshan. Geology and Exploration, 55(6): 1379~1393 (in Chinese with English abstracts).

    • Liu Zhengyi, Du Letian, Wen Zhijian. 2007. The geochemical experimental study on the relationship between uranium and phosphor in Xiangshan rich uranium mineralization. Journal of East China Institute of Technology, 30(2): 101~106 (in Chinese with English abstracts).

    • Meng Qingren, Hu Jianmin, Yuan Xuanjun, Jin Jiuqiang. 2002. Structure, evolution and genesis of Late Mesozoic extensional basins in Sino Mongolian border area. Geological Bulletin, (z1): 224~231 (in Chinese with English abstracts).

    • Qi Fucheng, Zhang Zilong, He Zhongbo, Li Zhixing, Wang Wenquan, Su Xiangli, Zhang Chao. 2011. Uranium polymetallic metallogenic system and mechanism of black rock series in southeast margin of Yangtze block. Uranium Geology, 27(3): 129~135+145 (in Chinese with English abstracts).

    • Qin Yan, Zhang Wenzheng, Peng Ping'an, Zhou Zhenju. 2009. Uranium occurrence and enrichment mechanism of Chang 7 member of Yanchang Formation in Ordos basin. Acta Petrologica Sinica, 25(10): 2469~2476 (in Chinese with English abstracts).

    • Romberger S B. 1984. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300℃: Geological implications. Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources, 12~17.

    • Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Mlackwell, 9~56.

    • Wang Feng, Liu Xuanchun, Deng Xiuqin, Li Yuanhao, Tian Jingchun, Li Shixiang, You Jingqian. 2017. Trace element geochemical characteristics and sedimentary environment indicating significance of Zhifang Formation in Ordos basin. Acta Sedimentologica Sinica, 35(6): 1265~1273 (in Chinese with English abstracts).

    • Wang Jian, Qi Fucheng, Li Zhixing, Wang Wenquan, Zhang Wendong, Wang Zhenyun. 2020. Geological characteristics and metallogenic epoch of unconventional uranium resources in black rock series of Northwest Hunan. Uranium Geology, 36(1): 28~33 (in Chinese with English abstracts).

    • Wang Jiangfeng. 1980. Migration precipitation and metallogenic model of uranium in hydrothermalism. Journal of East China University of Technology, 2: 184~200 (in Chinese).

    • Wang Xinyu. 2014. Study on uranium speciation and distribution in phosphate-rich water. Doctoral thesis of Chengdu University of Technology (in Chinese with English abstracts).

    • Wei Pingsheng. 2006. Petroleum Geological Characteristics and Exploration Prospects of Yingen Ejinaqi Basin. Beijing: Petroleum Industry Press, 1~55 (in Chinese with English abstracts).

    • Wen Zhijian, Du Letian, Liu Zhangyi. 1999. Relation between francolite and metallogenesis of high-grade uranium ores in Xiangshan uranium orefield. Uranium Geology, 15(4): 26~33 (in Chinese with English abstracts).

    • Wignall P B, Twitchett R J. 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155~1158.

    • Worden R H, Morad S. 2003. Clay minerals in sandstones: Controls on formation, distribution and evolution. In: Worden R H, Morad S, eds. Clay Mineral Cements in Sandstones. International Association of Sedimentologists Special Publication, 1~41.

    • Wu Rengui, Zhou Wanpeng, Liu Pinghua, Hou Shuren, Wang Yongjun, Ma Fusen, Pan Jiayong. 2008. Analysis of metallogenic conditions and prospecting prospects of sandstone type uranium deposits in Tamusi section of Bayin Gobi basin. Uranium Geology, 24(1): 24~31 (in Chinese with English abstracts).

    • Xiao Xuchang, Li Tingdong, Li Guangcen, Gao Yanlin, Xu Zhiqin. 1990. Tectonic evolution of the Qinghai Tibet Plateau. Proceedings of the Chinese Academy of Geological Sciences, 20(1): 123~125 (in Chinese with English abstracts).

    • Zhang Benhao, Wu Bailin, Liu Chiyang, Qiu Xinwei. 2011. Occurrence of uranium in Chang 7 uranium rich source rocks of Yanchang Formation in Ordos basin. Geology of Northwest China, 44(2): 124~132 (in Chinese with English abstracts).

    • Zhang Chengyong, Nie Fengjun, Hou Shuren, Wang Junlin, Zhang Liang, Deng Wei. 2015. Controlling factors and metallogenic model of sandstone type uranium deposits in Tamusu area of Bayingebi basin, Inner Mongolia. Geological and Technological Information, 34(1): 140~147 (in Chinese with English abstracts).

    • Zhang Chengyong, Nie Fengjun, Jiao Yangquan, Deng Wei, Peng Yunbiao, Hou Shuren. 2019. Characterization of ore-forming fluids in the Tamusu sandstone-type uranium deposit, Bayingebi basin, China: Constraints from trace elements, fluid inclusions and C-O-S isotopes. Ore Geology Reviews, 111: 102999.

    • Zhang Wanliang. 1997. Study on the relationship between uranium and phosphor in deposit No. 60. Uranium Geology, 13(1): 19~24 (in Chinese with English abstracts).

    • Zhang Wanliang, Fu Xiang. 2002. Selection of prospecting target layers for sandstone type uranium deposits in interlayer oxidation zone of Bayingebi basin. Uranium Geology, 18(2): 85~88 (in Chinese with English abstracts).

    • Zhao Fengmin. 2017. Recognition on the role of reducing action in uranium metallization. Uranium Geology, 33(4): 193~198+214 (in Chinese with English abstracts).

    • 蔡煜琦, 张金带, 李子颖, 郭庆银, 宋继叶, 范洪海, 刘武生, 漆富成, 张明林. 2015. 中国铀矿资源特征及成矿规律概要. 地质学报, 89(6): 1051~1069.

    • 陈祖伊, 郭庆银. 2010. 砂岩型铀矿床层间氧化带前锋区稀有元素富集机制. 铀矿地质, 26 (1): 1~8.

    • 方维萱, 贾润幸, 郭玉乾, 李天成, 王磊, 黄转盈. 2016. 塔西地区富烃类还原性盆地流体与砂砾岩型铜铅锌-铀矿床成矿机制. 地球科学与环境学报, 38(6): 727~752.

    • 靳久强, 张研, 许大丰, 孟庆任. 2000. 额济纳旗地区侏罗-白垩纪盆地演化与油气特征. 石油学报, 21(4): 13~19+119~120.

    • 李荣西, 段立志, 陈宝赟, 张少妮. 2011. 东胜砂岩型铀矿氧化酸性流体与还原碱性热液流体过渡界面蚀变带成矿作用研究. 大地构造与成矿学, 35(4): 525~532.

    • 黎彤. 1979. 海相沉积型菱铁矿矿床的成矿地球化学. 地质与勘探, (1): 1~8.

    • 黎彤. 1994. 中国陆壳及其沉积层和上陆壳的化学元素丰度. 地球化学, 23(2): 140~145.

    • 李文厚, 周立发. 1997. 苏红图-银根盆地白垩纪沉积相与构造环境. 地质科学, 32(3): 387~396.

    • 林双幸, 宫晓峰, 张铁岭. 2017. 中新生代盆地深部地质流体及铀成矿作用. 铀矿地质, 33(6): 321~328.

    • 刘小波, 李光来, 刘晓东, 李成祥, 王果, 鲁克改. 2019. 北天山冰草沟铀磷矿床元素地球化学特征及其指示意义. 地质与勘探, 55(6): 1379~1393.

    • 刘正义, 杜乐天, 温志坚. 2007. 相山铀矿田特富矿中铀磷关系的模拟实验研究. 东华理工学院学报, 30(2): 101~106.

    • 孟庆任, 胡健民, 袁选俊, 靳久强. 2002. 中蒙边界地区晚中生代伸展盆地的结构、演化和成因. 地质通报, (Z1): 224~231.

    • 漆富成, 张字龙, 何中波, 李治兴, 王文全, 苏香丽, 张超. 2011. 扬子陆块东南缘黑色岩系铀多金属成矿体系和成矿机制. 铀矿地质, 27(3): 129~135+145.

    • 秦艳, 张文正, 彭平安, 周振菊. 2009. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理. 岩石学报, 25(10): 2469~2476.

    • 王峰, 刘玄春, 邓秀芹, 李元昊, 田景春, 李士祥, 尤靖茜. 2017. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义. 沉积学报, 35(6): 1265~1273.

    • 王健, 漆富成, 李治兴, 王文全, 张文东, 王振云. 2020. 湘西北黑色岩系非常规铀资源成矿地质特征及成矿时代. 铀矿地质, 36(1): 28~33.

    • 王剑锋. 1980. 铀在热液作用中的迁移沉淀与成矿模式. 抚州地质学院学报, 2: 184~200.

    • 王新宇. 2014. 富磷水体中铀的赋存形态与分配研究. 成都理工大学博士学位论文.

    • 卫平生. 2006. 银根-额济纳旗盆地油气地质特征及勘探前景. 北京: 石油工业出版社, 1~55.

    • 温志坚, 杜乐天, 刘正义. 1999. 相山铀矿田磷灰石与富矿形成的关系. 铀矿地质, 15(4): 26~33.

    • 吴仁贵, 周万蓬, 刘平华, 侯树仁, 王永君, 马福森, 潘家永. 2008. 巴音戈壁盆地塔木素地段砂岩型铀矿成矿条件及找矿前景分析. 铀矿地质, 24 (1): 24~31.

    • 肖序常, 李廷栋, 李光岑, 高延林, 许志琴. 1990. 青藏高原的构造演化. 中国地质科学院院报, 20(1): 123~125.

    • 张本浩, 吴柏林, 刘池阳, 邱欣卫. 2011. 鄂尔多斯盆地延长组长7富铀烃源岩铀的赋存状态. 西北地质, 44(2): 124~132.

    • 张成勇, 聂逢君, 侯树仁, 王俊林, 张良, 邓薇. 2015. 内蒙古巴音戈壁盆地塔木素地区砂岩型铀矿控制因素与成矿模式. 地质科技情报, 34(1): 140~147.

    • 张万良, 付湘. 2002. 巴音戈壁盆地层间氧化带砂岩型铀矿找矿目的层选择. 铀矿地质, 18(2): 85~88.

    • 张万良. 1997. 六O矿床铀、磷关系研究. 铀矿地质, 13(1): 19~24.

    • 赵凤民. 2017. 重新认识还原作用在铀成矿中的贡献. 铀矿地质, 33(4): 193~198+214.