en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵健,男,1982年生。高级工程师,主要从事海外油气勘探与石油地质综合研究工作。E-mail:Zhaojian@cnpcint.com。

参考文献
Aslanian D, Maryline M, Jean-Louis O, Unternehr P, Matias L, François B, Marina R, Hervé N, Frauke K, Isabelle C, Cinthia L. 2009. Brazilian and African passive margins of the central segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics, 468: 98~112.
参考文献
Baba K, Chen J, Sommer M, Utada H, Geissler WH, Jokat W, Jegen M. 2017. Marine magnetotellurics imaged no distinct plume beneath the Tristan da Cunha hotspot in the southern Atlantic Ocean. Tectonophysics, 716: 52~63.
参考文献
Carvalho M D, Praça U M, Silva-Telles A C, Jahnert R, Dias J L. 2000. Bioclastic carbonate lacustrine facies models in the Campos Basin (Lower Cretaceous), Brazil. AAPG Studies in Geology, 46: 245~256.
参考文献
Chang H K, Kowsmann R O, Figueiredo A M F, Bender A. 1992. Tectonics and stratigraphy of the East Brazil Rift system: An overview. Tectonophysics, 213: 97~138.
参考文献
Cheng Tao, Kang Hongquan, Liang Jianshe, Jia Huaicun, Bai Bo, Li Minggang. 2019. Genetic classfication and activity periods analysis of magmatic rocks in Santos Basin, Brazil. China Offshore Oil and Gas, 31(4): 55~66 (in Chinese with English abstract).
参考文献
Chinelatto G F, Vidal A C, Kuroda M C, Basilici G. 2018. A taphofacies model for coquina sedimentation in lakes (Lower Cretaceous, Morro do Chaves Formation, NE Brazil). Cretaceous Research. 85: 1~19.
参考文献
Costa deOliveira L, Rancan C C, Oliveira M J R. 2019. Sill emplacement mechanisms and their relationship with the pre-salt stratigraphic framework of the Libra Area (Santos Basin, Brazil). In: Abstracts of LASI 6 Conference: 83~84.
参考文献
Dickson W, Schiefeelbein C, Zumberge J, Odegard M. 2005. Basin analysis in Brazilian and West African conjugates: Combining disciplines to deconstruct petroleum systems. In: Paul J P, Norman C R, Donald L O, Stephen L P, Kevin T L, Geoffrey B N, eds. Petroleum Systems of Divergent Continental Margin Basins. SEPM Society for Sedimentary Geology, ISBN electronic.
参考文献
Dunham R J. 1962. Classification of carbonate rocks according to depositional texture. In: Ham W E, eds. Classification of Carbonate Rocks—A Symposium. AAPG Memoir, 1: 108~121.
参考文献
Fairhead J, Wilson M. 2005. Plate tectonic processes in the South Atlantic Ocean: Do we need deep mantle plumes? In: Foulger G R, Natland J H, Presnall D C, Anderson D L, Eds. Plates, Plumes, and Paradigms. Geological Society of America, 537~554.
参考文献
Fodor R V, McKee E H, Asmus H E. 1983. K-Ar ages and the opening of the South Atlantic Ocean: Basaltic rock from the Brazilian margin. Marine Geology, 54: M1~M8.
参考文献
Fornero S A, Marins G M, Lobo J T, Freire A F M. 2019. Characterization of subaerial volcanic facies using acoustic image logs: Lithofacies and log-facies of a lava-flow deposit in the Brazilian pre-salt, deepwater of Santos basin. Marine and Petroleum Geology, 99: 156~174.
参考文献
Foulger G. 2017. Origin of the South Atlantic igneous province. Journal of Volcanology and Geothermal Research, 355: 2~20.
参考文献
Fromm T, Planert L, Jokat W, Ryberg T, Behrmann J H, Weber M H, Haberland C. 2015. South Atlantic opening: A plume-induced breakup? Geology, 43: 931~934.
参考文献
Geraldes M C, Motoki A, Costa A, Mota C E, Mohriak W U. 2013. Geochronology (Ar/Ar and K-Ar) of the South Atlantic post-break-up magmatism. In: Mohriak W U, Danforth A, Post P J, Brown D E, Tari G C, Nemčok M, Sinha S T, eds. Conjugate Divergent Margins. London: Geological Society, 41~74.
参考文献
Herz N. 1977. Timing of spreading in the South Atlantic: Information from Brazilian alkalic rocks. Geological Society of America Bulletin, 88(1): 101~112.
参考文献
Jia Huaicun, Kang Hongquan, Liang Jianshe, Cheng Tao, Zhang Shixin. 2021. Lacustrine carbonate characteristic and developmental controlled factors of pre-salt, Santos basin. Journal of Southwest Petroleum University (Science & Technology Edition), 43(2): 1~9(in Chinese with English abstract).
参考文献
Maitre L E, Streckeisen A, Zanettin B. 2002. Igneous Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences Sub-commission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press.
参考文献
Moreira J L P, Madeira C V, Gil J A, Machado M A P. 2007. Bacia de Santos. Boletim de Geociencias da Petrobras, 15: 531~549.
参考文献
Mizuno T A, Mizusaki A M P, Lykawka R. 2018. Facies and paleoenvironments of the Coqueiros Formation (lower Cretaceous, Campos Basin): A high frequency stratigraphic model to support pre-salt “coquinas” reservoir development in the Brazilian continental margin. Journal of South American Earth Sciences, 88: 107~117.
参考文献
Penna R, Araújo S, Geisslinger A, Sansonowski R, Oliveira L, Rosseto J, Matos M. 2019. Carbonate and igneous rock characterization through reprocessing, FWI imaging, and elastic inversion of a legacy seismic data set in Brazilian pre-salt province. The Leading Edge, 38(1): 11~19.
参考文献
Ren Kangxu, Oliveira M J R, Zhao Junfeng, Zhao Jian, Leonardo C O, Cristiano C R, Isabela O C, Deng Qicai. 2019. Using wireline logging and thin section to identify igneous contact metamorphism and hydrothermal influence on pre-salt limestone reservoirs in Libra Block, Santos Basin. Offshore Technology Conference Brasil (OTC). Rio de Janeiro, Brazil.
参考文献
Santos E V, Cerqueira J R, Prinzhofer A. 2012. Origin of CO2 in Brazilian Basins. AAPG Annual Convention and Exhibition. Article #40969.
参考文献
Schattner U, Mahiques M. 2020. Post-rift regional volcanism in southern Santos basin and the uplift of the adjacent South American coastal range. Journal of South American Earth Sciences, 104: 102855.
参考文献
Thompson D L, Stilwell J D, Hall M. 2015. Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: Pre-salt coquinas of Brazil and West Africa. Gondwana Research, 28(1): 26~51.
参考文献
Vinicius C B O, Carlos M A S, Leonardo F B, Ismar S C. 2019, Lacustrine coquinas and hybrid deposits from rift phase: Pre-salt, lower Cretaceous, Campos Basin, Brazil. Journal of South American Earth Sciences, 95: 1~31.
参考文献
Wan L K, Wu Y P, Ji Z F, Wen Z X. 2018. Formation mechanism of the Shell Beach in the East Sea of Brazil-a case of the Itapema formation in the Santos basin. Applied Ecology and Environmental Research, 17(1): 383~394.
参考文献
Wright V P. 2012, Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition. Geological Society, London, Special Publications, 370(1): 39~47.
参考文献
William G D, Fryklund R E, Odegard M E, Green C M. 2003. Constraints for plate reconstruction using gravity data-implications for source and reservoir distribution in Brazilian and West African margin basins. Marine and Petroleum Geology, 20(3-4): 309~322.
参考文献
Zhao Jian, Maria J R O, Zhao Junfeng, Ren Kangxu, Oliveira L C, Carmo I O, Rancan C C, Deng Qicai. 2019. Fault activity and its influences on distribution of igneous rocks in Libra Block, Santos Basin: Semi-quantitative to quantitative assessment of fault activity based on high-resolution 3D seismic data. Offshore Technology Conference Brasil (OTC), Rio de Janeiro, Brazil.
参考文献
Zhao Jian, ZhaoJunfeng, Ren Kangxu, Wang Tongkui, Xu Bifeng. 2021. Distribution and main controlling factors of CO2 in Santos Basin, Brazil. Earth Science, 46(9): 3217~3229(in Chinese with English abstract).
参考文献
程涛, 康洪全, 梁建设, 贾怀存, 白博, 李明刚. 2019. 巴西桑托斯盆地岩浆岩成因类型划分与活动期次分析. 中国海上油气, 31(4): 55~66.
参考文献
贾怀存, 康洪全, 梁建设, 程涛, 张世鑫. 2021. 桑托斯盆地湖相碳酸盐岩储层特征及控制因素. 西南石油大学学报(自然科学版), 43(2): 1~9.
参考文献
赵健, 赵俊峰, 任康绪, 王童奎, 许必锋. 2021. 巴西桑托斯盆地CO2 区域分布及主控因素. 地球科学, 46(9): 3217~3229.
目录contents

    摘要

    桑托斯盆地裂陷初期岩浆活动与储层发育关系密切。本文以盆地L区块火成岩-介壳灰岩复合体为研究对象,通过对火成岩岩石学、年代学测试及钻井、测井资料分析等,首次明确了桑托斯盆地裂陷初期岩浆活动特征及其对介壳灰岩沉积过程的控制,并指出介壳灰岩储层的分布特征。L区块内火成岩分属晚白垩世Santonian期—Campanian期和早白垩世Aptian两期岩浆活动产物,并以Aptian期为主,至少经历了7次不连续喷发和3次侵入过程,形成了块状玄武岩、杏仁状玄武岩和玻基斑状玄武岩(含再沉积玻基斑状玄武岩)等喷发相火成岩和以辉绿岩(局部属粗玄岩)、煌斑岩形式产出的侵入相火成岩。Aptian期岩浆多期活动重塑了古地貌,形成了局部构造凸起,促成并控制了下白垩统Itapema组至少6期介壳灰岩沉积,最终形成了~620 m厚火成岩-介壳灰岩复合体。介壳灰岩储层呈透镜体形状,以“散点式”不连续分布在Aptian期盆内古隆、古断阶(坡)等区域,横向连续性差,垂向连通性受限,其发育规模和质量受古地貌及水深条件等影响。

    Abstract

    Magma events in the early stage of basin rifting in the Santos basin played a key role in the development of the carbonate reservoir. Taking the igneous rock-coquinas complex in Block L as a case study, this paper revealed two stages of magma events through systemic analysis, testing of igneous rock mineralogy, petrology, geochronology, petro-geochemistry, and wireline log curves. Compared with Santonian-Campanian thin layers of intrusive bodies, the Aptian extrusive magma dominated this complex and experienced at least 11 episodes of eruptions, including 7 discontinuous eruptions and 3 continuous multi-pulse eruptions, forming three main types of eruptive facies igneous rocks, including massive basalts, amygdaloidal basalts, and hyaloclastite. At the same time, this eruption process was also accompanied by 3 intrusions processes, in the form of diabase and lamprophyre. The multiple-phase of Aptian magma, as a key geological element, built up a paleo-high in place which contributed to, and controlled, the deposition of at least 6 stages of coquinas limestone in the ITP Fm.Finally, anigneous rock-coquinas limestone complex with a height of more than 620 meters was formed. Correspondingly, coquinas reservoirs developed as lens shapes, distributed in “dispersed spots” patterns, with low extension scale and limited vertical connectivity. The distribution scale and coquinas limestone quality was strongly affected by paleogeomorphology and water depth.Suitable paleogeomorphology determines their lateral distribution, while water depth variation determines their vertical thickness and depositioncycles.The multiple pulse eruption of Aptian magma and cumulatively increased igneous rock thickness not only created paleogeomorphology, but also caused relative changes of water depth.This is the first study to clarify the characteristics of magma events inthe basin's early rifting stage, its control on the depositional process of coquinas limestone, and finally point out the possible distribution of coquinas reservoirs in the Santos basin.

  • 桑托斯盆地形成和演化过程中,受板块裂陷、大洋中脊持续活动以及区域地幔柱作用等多种因素影响,盆地内部岩浆活动频繁,火山岩分布广泛(William et al.,2003; Dickson et al.,2005; Fairhead et al.,2005; Aslanian et al.,2009; Fromm et al.,2015; Baba et al.,2016; Foulger,2017)。区域构造演化及火成岩年代学研究表明,盆地内至少经历了4期岩浆活动,分别为早白垩世Valanginian—Hauterivian期(~130 Ma?)、早白垩世Aptian期(~120 Ma)、晚白垩世Santonian—Campanian期(~80 Ma)和始新世(~50 Ma)等(Herz,1977; Fodor et al.,1983; Moreira et al.,2007; Geraldes et al.,2013; Schattner et al.,2020)。油气勘探揭示不同时期的火成岩在盐下、盐层和盐上均有分布,成为桑托斯盆地油气地质的一大特色。其中,Aptian期和Santonian—Campanian期岩浆活动与油气成藏关系密切,备受关注。

  • Santonian—Campanian期岩浆以侵入岩常见,广泛侵位于下白垩统BarraVelha和Itapema组储层内部。该期侵入岩岩石学、岩相学研究已取得明显进展(程涛等,2019; Fornero et al.,2019),但其分布特征、主控因素及区域预测等尚处在探索阶段(Panna et al.,2019; Zhao Jian et al.,2019; 程涛等,2019)。由于其侵位于盐下储层,因此前人主要探讨其对围岩碳酸盐岩的热烘烤变质作用及对储层物性的改造等(Ren Kangxu et al.,2019; Costa et al.,2019)。除此之外,对伴生的热液流体及CO2等研究也有新进展(Santos et al.,2012; 赵健等,2021)。而Aptian期岩浆属盆地裂陷初期的岩浆活动,主要分布在盆地基底附近。由于该期火成岩埋深较大,钻井揭示厚度有限,且多位于油水界面之下,所以一直被忽视,对其岩石学特征和活动规律认识十分有限,岩浆是单期次-长时间喷发还是多期次-短时间喷发等鲜有报道,岩浆活动过程及产物在Itapema组储层沉积过程中的角色和地位尚未得到明确。另外,Itapema组介壳灰岩在局部区域已被证实是一套有效储层,但对其发育环境、分布特征和主控因素等认识十分有限(Wright,2012; Wan et al.,2018; 贾怀存等,2021),尚处在与邻区其他盆地介壳灰岩类比阶段(Carvalho et al.,2000; Thompson et al.,2015; Mizuno et al.,2018)。近期,盆内油气勘探过程中发现的一个大型火成岩-介壳灰岩复合体,可作为研究盆地裂陷初期岩浆活动与介壳灰岩沉积过程相互作用的经典案例。

  • 本文以桑托斯盆地L区块为研究区,利用钻井和取芯测试资料,对区内火成岩-介壳灰岩复合体内的火成岩开展了系统的岩石学、岩石地球化学和年代学等研究,理清了Aptian期火成岩发育特征,恢复了其活动次序及旋回特征; 并通过对与其共生的介壳灰岩储层沉积学和内部结构等研究,剖析了早期岩浆活动对同时期碳岩,碳酸盐储层统改为碳酸盐岩储层酸盐储层沉积过程的影响和控制。

  • 1 地质背景

  • 桑托斯盆地L区块位于巴西里约热内卢东南约200 km深水区,与盆内Buzios、Lula和Sapinhoa等巨型油田位于同一构造带上(图1a)。区内钻井揭示火成岩在盐下、盐内和盐上均有发育,并以盐下为主,集中分布于湖相碳酸盐岩Picarras组(简称PIC)、Itapema组(简称ITP)和Barra Velha组(简称BVE)内。区块内某钻井共钻揭BVE组和ITP组厚度累计~870 m,其中火成岩16层,累计厚度~460 m,占盐下地层厚度五成以上,且纵向分布分散,跨度达数百米,内部夹数十层碳酸盐岩,形成了一个累计厚度~620 m的火成岩-介壳灰岩复合体(图1b)。

  • 2 岩浆活动期次

  • 2.1 L区块火成岩发育特征

  • 为分析火成岩岩石类型,研究中进行了大量井壁取芯(图2),并进行薄片制备观察、岩石地球化学分析、同位素分析和地质测年等。通过大量薄片观察和测井资料综合解释,发现区内主要发育喷发相和侵入相2大类6种类型火成岩。其中,喷发相岩石以块状玄武岩、杏仁状玄武岩和玻基斑状玄武岩为主,侵入相则以辉绿岩和煌斑岩常见。综合研究及统计表明,井中火成岩呈层状,其中喷发岩 7层,累计厚度~350 m; 侵入岩9层,累计厚度~110 m,除少量薄层侵入岩以孤立状分布外,厚层侵入岩常毗邻火山岩分布。为便于描述,研究中分别以Ex1~Ex7对火山岩从下向上进行标注,以In.1~In.9对侵入岩从下向上进行标注(图2)。

  • 图1 巴西桑托斯盆地L区块位置(a)(底图为谷歌地图)及火山机构模式图(b)

  • Fig.1 The location of Block L (a) (modified from Google-map) and simplified volcanic edifice (b) in Santos basin, Brazil

  • 图2 桑托斯盆地L区块钻井岩性综合柱状图及各类测试取样位置

  • Fig.2 Comprehensive lithology column and sampling in the well from Block L, Santos basin

  • 图中箭头表示取样点位置; 岩石化学测试取样点和年龄测试取样点分别使用不同颜色的箭尾符号(圆形、正方形等)来区分,并分别在图7、表1和表2中进行标注; GR—伽马测井; CAL—井径测井; CGR—去铀伽马测井; DEN—密度测井; CNL—中子测井; DT—声波测井

  • The sampling locations are marked by arrows; the red arrows correspond to the igneous rock samples and the blue arrows correspond to the carbonate samples; the petrochemical sampling points and Ar-Ar age sampling spots are distinguished by different arrow tail symbols (circles, squares) , and are marked in Fig.7, Table1 and Table2, respectively; GR—Gamma ray logging; CAL—caliper logging; CGR—deuranium gamma ray logging; DEN—density logging; CNL—neutron logging; DT—sonic logging

  • 2.2 火成岩岩石学特征及期次划分

  • 对100余块火成岩薄片进行观察描述,并结合岩矿测试资料系统判识了全井段火成岩岩石类型。笔者以辉绿岩和块状玄武岩(M),杏仁状玄武岩(Am)和玻基斑状玄武岩(包括再沉积碎玻质岩)(H/B)为三端元,以碳酸盐岩为基线,制作了全井段岩石类型折线图(见图3火成岩岩石类型),并以Ex2、In.4、Ex3为例介绍其岩石学特征及垂向分布规律(图3)。

  • ① 块状玄武岩,薄片镜下呈细粒半晶质结构、间隐结构或玻基斑状结构,基质中火山玻璃含量高,偶见稀疏气孔或杏仁体(图4a2)。斑晶以斜长石为主,基质为细粒斜长石。矿物蚀变严重,斜长石绢云母化、钠长石化(图4a)。② 杏仁状玄武岩,大量发育白色或灰白色圆形—次圆形气孔或杏仁(图4b1),镜下半晶质或隐晶质,火山玻璃含量较高,结构从不等粒、斑状到次斑状。斑晶以斜长石和橄榄石为主,基质则包括火山玻璃、斜长石、少量橄榄石和辉石等,长石和橄榄石等蚀变形成多种次生矿物(图4b2)。③ 玻基斑状玄武岩,镜下呈玻基斑状结构,基质由火山玻璃和不透明矿物组成,发育少量细粒斜长石斑晶(图4c1); 也可呈全玻质,常发生塑性变形,无矿物晶体析出(图4c2)。④ 再沉积玻基斑状玄武岩,矿物组成和岩石结构、构造与玻基斑状玄武岩基本一致,属高温熔岩淬火过程中发生撕裂破碎形成的玻屑或岩屑,可以原地被胶结成岩(图4d1),也可经过搬运再沉积成岩(图4d2),属火山碎屑岩范畴,井下发育较少,且主要与玻基斑状玄武岩伴生。⑤ 辉绿岩(粗玄岩),薄片镜下呈全晶—半晶质,斑状结构和辉绿结构。矿物以斜长石为主,含少量橄榄石和辉石(图4e1),不含火山玻璃的全晶质岩石属辉绿岩; 部分含火山玻璃的样品属粗玄岩。中等至强烈蚀变(图4e2)。⑥ 煌斑岩,井筒内发育较少,以薄层岩脉形式存在,由全晶质细粒矿物组成,镜下呈不等粒斑状结构、煌斑结构,矿物以橄榄石、角闪石和长石为主,矿物蚀变严重,常出现橄榄石假晶(图4f1,图4f2)。

  • 图3 桑托斯盆地L区块火成岩垂向分布特征及岩性垂向变化

  • Fig.3 Vertical distribution and lithologic variation of igneous rocks in well in Block L, Santos basin

  • 图中黑色箭头对应图4中火成岩样品,蓝色箭头对应图9中碳酸盐岩样品; M—块状玄武岩; Am—杏仁状玄武岩; H/B—玻基斑状玄武岩/角砾岩

  • Sampling locations were marked by arrows, the black arrows correspond to the igneous rock samples illustrated in Fig.4, and the blue ones correspond to carbonate samples presented in Fig.9; M—massive basalt; Am—amygdaloidal basalt; H/B—hyaloclastite/breccia

  • 图4 桑托斯盆地L区块火成岩薄片镜下特征(样品位置见图3井壁取心标注)

  • Fig.4 The microphotographs of igneous rocks in Block L, Santos basin (samples' locations are marked by arrows in Fig.3)

  • (a1)—块状玄武岩(PP),4442.6 m;(a2)—块状玄武岩(XP),4535.0 m;(b1)—杏仁状玄武岩(PP),4470.1 m;(b2)—杏仁状玄武岩(PP),4470.1 m;(c1)—玻基斑状玄武岩(PP),4243.9 m;(c2)—玻基斑状玄武岩(PP),4243.9 m;(d1)—再沉积玻基斑状玄武岩(PP),4437.1 m;(d2)—再沉积玻基斑状玄武岩(PP),4106.9 m;(e1)—辉绿岩(XP),4487.0 m;(e2)—辉绿岩(XP),4498.9 m;(f1)—煌斑岩(XP),4169.9 m;(f2)—煌斑岩(XP),4169.9 m(此样品来自图2中In.9层位,不属于图3深度范围,所以无法在图3中标注); Pl—斜长石; Px—辉石; Py—黄铁矿; Cal—方解石; Ol—橄榄石; XP为正交偏光照片; PP为单偏光照片

  • (a1) —massive basalt (PP) , 4442.6 m; (a2) —massive basalt (XP) , 4535.0 m; (b1) —amygdaloidal basalt (PP) , 4470.1 m; (b2) —amygdaloidal basalt PP) , 4470.1 m; (c1) —hyaloclastite (PP) , 4243.9 m; (c2) —hyaloclastite (PP) , 4243.9 m; (d1) —redeposited hyaloclastite (PP) , 4437.1 m; (d2) —redeposited hyaloclastite (PP) , 4106.9 m; (e1) —diabase (XP) , 4487.0 m; (e2) —diabase (XP) , 4498.9 m; (f1) —lamprophyre (XP) , 4169.9 m; (f2) —lamprophyre (XP) , 4169.9 m (samples (f1) and (f2) are from the In.9 zone igneous rock in Fig.2, and out of the depth range of Fig.3, so it cannot be marked in Fig.3) ; Pl—plagioclase; Px—pyroxene; Py—pyrite; Cal—calcite; Ol—olivine; XP—crossed polarized light microphotographs; PP—plane polarized light microphotographs

  • 火山岩薄片镜下具如下典型特征:① 火山玻璃含量高,具有较高玻璃/晶体比(图4a1、a2,图4b1、b2,图4c1、c2),暗示了岩浆较快的冷却速率; ② 晶粒细小,呈细粒针状和燕尾状淬火晶体(图4b2,图4c1),也可见中空晶体和球晶等(图4a1,图4a2),亦表明高冷却速率; ③ 不同岩性截然或过渡接触,常见杏仁状玄武岩向薄层玻基斑状玄武岩过渡或被玻基斑状玄武岩包裹,同一薄片内可见两者不规则接触(图4b1,图4d1)。垂向上,从图3可见Ex2和Ex3两套火山岩顶、底部都出现了玻基斑状玄武岩,且以顶部常见; 火山岩内部则以杏仁状玄武岩和块状玄武岩为主,发育玻基斑状玄武岩-杏仁状玄武岩-块状玄武岩组合。成像测井在Ex3中部、Ex2顶部和中部观察到厚度不等的枕状熔岩构造,厚度常小于5 m(图5a~c)。因此,玻基斑状玄武岩(包括再沉积玻基斑状玄武岩)和枕状构造可作为岩浆水下火山淬火的关键标志。

  • 需要说明的是,单层火山岩并不意味着岩浆单次喷发。事实上,岩石学和测井曲线综合分析均表明有些火山岩层应是岩浆多次喷发形成的,如Ex3火山岩顶部和中部均见到了玻基斑状玄武岩和枕状构造,测井曲线在玻基斑状玄武岩顶面也出现明显突变,表明其至少经历了2次喷发过程,本研究将其描述为2个旋回,并分别命名为Ex3a旋回和Ex3b旋回(图3)。

  • 图5 桑托斯盆地L区块玄武岩枕状构造成像特征(a)~(c)(位置见图3)

  • Fig.5 Basalt pillow structure (a) ~ (c) revealed by imaging logging in Block L, Santos basin (the locations are marked in Fig.3)

  • 同样地,其他火山岩层也存在类似的多次喷发过程,发育多个旋回,共识别出11个旋回(图2)。因此,钻井揭示的7层火山岩,应该是岩浆至少11次喷发的结果,其中有7次不连续喷发和4次连续喷发。这些火山岩多为水下喷发,熔岩流动形成枕状构造,岩浆与湖水接触发生淬火,形成了薄层玻基斑状玄武岩、熔岩玻屑或熔岩岩屑等,成为火山碎屑岩沉积物源。同时,由于岩浆表面和内部冷却速度不同,随着携带气体的逐步释放,最终造成火成岩的结晶程度、晶粒大小、气孔(杏仁体)含量及蚀变程度等从内向外呈规律性变化,形成了多个玻基斑状玄武岩-杏仁状玄武岩-块状玄武岩组合。

  • 2.3 火成岩Ar-Ar测年及岩石地化特征

  • 为确定火成岩形成时间,分别在Ex3顶部、中部,Ex4下部及Ex7底部等针对不同类型火山岩取样,并进行年龄测试。样品制备在澳大利亚昆士兰大学UQ-AGES实验室完成,测试质谱仪型号为MAP215-50。数据处理过程中,使用了MassSpec Version 8.133自动化处理及校正系统,并分别进行了Ar-Ar热谱坪年龄、积分年龄、年龄概率曲线及等时线年龄等四种年龄的计算,本文采用重复性较好的Ar-Ar坪年龄作为最终结果。例如,Ex7全岩样品的两组坪年龄分别为114.4±0.2 Ma和114.2±0.2 Ma(图6)。

  • 本研究共获得6个深度火山岩Ar-Ar年龄数据(表1),其年龄范围在116.6±0.6~101.4±0.5 Ma之间。其中最浅层(也应是最晚一期喷发的)Ex7层火山岩的年龄为114.3±0.2 Ma,表明这些火山岩都属于Aptian期。侵入岩Ar-Ar测年结果显示,除了年龄在83.5±0.7~82.5±0.5 Ma范围内的In.9层煌斑岩属Santonian期—Campanian期外,其余侵入岩年龄均在126.4±2.6~121.3±0.7 Ma范围内(表1),与Aptian期火山岩形成时间基本一致。

  • 纵观整个井段火成岩Ar-Ar年龄分布范围,可以发现年龄为125.8±0.7~125.1±0.9 Ma的In.8侵入岩,出现在年龄为116.6±0.6~101.4±0.5 Ma的Ex3和Ex4火山岩之上。该结果从理论上讲是不合理的,这可能与Ar-Ar测年方法、测试精度和样品蚀变程度等有关。尽管如此,这并不影响其参考价值,因为火成岩相态及垂向分布关系可对此异常进行限制。

  • 表1 桑托斯盆地L区块火成岩Ar-Ar地质测年及年龄统计表

  • Table1 Ar-Ar geological ages of igneous rocks in Block L, Santos basin

  • 注:Ar-Ar年龄测试样品制备及测试在澳大利亚昆士兰大学UQ-AGES实验室完成。

  • 为明确Aptian期火山岩与侵入岩之间相互关系,研究中对火成岩进行了岩石地球化学测试,结果显示岩石烧失量(LOI)在5%~19%之间,表明蚀变严重。研究中选择了蚀变程度较弱的样本(或同一层段样品中选择LOI最低值),最终筛选出6个侵入岩样点和1个火山岩样点(取样点见图2)进行主量元素测试(表2),然后再进行TAS投图(图7)。图7可见,In.9层地质年龄~80 Ma的煌斑岩属碱性岩,包括辉绿岩和玄武岩在内的~120 Ma火成岩基本以亚(钙)碱性岩为主。结合岩相特征和成像测井等,笔者认为Aptian期侵入岩属于同期火山岩的伴生浅成侵入岩,辉绿岩相可能代表了同火山期岩浆通道。

  • 图6 桑托斯盆地L区块喷发岩全岩Ar-Ar测年及坪年龄(Ex7)

  • Fig.6 The Ar-Ar incremental-heating spectra and plateaus ages of whole rock of Ex7 igneous rock in Block L, Santos basi

  • 表2 桑托斯盆地L区块火成岩主量元素(%)统计表

  • Table2 Major elements (%) for igneous rocks in Block L, Santos basin, Santos basin

  • 图7 桑托斯盆地L区块火成岩全碱-二氧化硅(TAS)图解( 据Maitre et al.,2002

  • Fig.7 Total alkali vs. silica (TAS) diagram of the igneous rocks in the Block L, Santos basin

  • TAS底图据Maitre et al.(2002); 样品符号代码及位置见表2和图2对应颜色和形状的符号

  • TAS diagram modified from Le Maitre et al. (2002) ; sample legends and their location are shown in Table2 and Fig.2

  • 综上可见,区内大部分侵入岩与Aptian期火山岩属同期岩浆活动产物。换言之,Aptian期岩浆不仅多次喷发,而且伴有多期次侵入,造成多层侵入岩分布。为弄清这些侵入岩侵位次序,研究中利用岩性测试和测井资料,并结合其空间位置等进行了综合判断,具体步骤如下:① 单层侵入岩未必意味着单次侵入,首先对其进行活动期次划分,譬如依据测井曲线In.1等至少包括2期侵入过程,全井段共计10个侵入层; ② Aptian期浅成侵入岩只能位于同期火山岩下部; ③ 源自同一期岩浆的侵入岩和火山岩具有更相似的地球化学特征和测井响应特征。综合利用测井和岩矿分析资料,对侵入岩和火山岩亲缘关系进行对比,从而将9个侵入岩层归类分为3组,意味着至少3次伴生侵入过程。

  • 2.4 岩浆活动过程及活动期次恢复

  • 在上文分别对火山岩和侵入岩亲缘关系及活动次序判识基础上,不难梳理出该区岩浆整个活动过程,除少量Santonian期—Campanian期岩浆晚期侵入外,钻井揭示的~460 m巨厚火成岩基本都属于Aptian期,由至少11次岩浆喷发和3次岩浆侵入累积而成。具体而言,钻井揭示的7层火山岩至少由岩浆7次不连续喷发和4次连续喷发而形成。同时,在第3、第4和第6期岩浆喷发过程中还伴有岩浆浅成侵入,其中In.1b、In.6、In.7和In.8属Ex6火山岩的伴生侵入岩,而In.1a、In.2和In.3属Ex3火山岩的伴生侵入岩,In.4、In.5属Ex4火山岩的伴生侵入岩(图8)。

  • 3 介壳灰岩发育特征

  • 3.1 介壳灰岩沉积环境和演化

  • 基于上文岩浆活动期次恢复,不难理解L区块钻井中的13个碳酸盐岩,碳酸盐层统改为碳酸盐岩层应是6期沉积作用的结果(图2),只是这些碳酸盐岩层被后期侵入岩分隔开。以图3中碳酸盐岩层为例,选择两期火山岩之间碳酸盐岩作为一个沉积单元,对其从下向上取样(取样位置见图3),然后观察其沉积演化特征。

  • 盆内Itapema组介壳灰岩与双壳类、介形亚纲类及腹足类生物活动相关,是这些生物死后发生沉积成岩作用后而形成的一类岩石。因此,介壳灰岩是一类岩石的统称,有着复杂的分类和命名体系(Dunham et al.,1962; Chinelatto et al.,2018; Vinicius et al.,2019)。本研究不进行岩石命名方面的详细探讨,仅从介壳颗粒大小、完整程度、泥质含量高低以及介壳堆积排列方式等方面进行描述,简单对其命名为泥岩、含介壳泥岩、泥质介壳灰岩和介壳灰岩等(图9)。

  • 观察表明,在~8 m厚的碳酸盐岩,碳酸盐地层统改为碳酸盐岩地层中,底部为细粒泥灰岩(图9a、a1、a2),往上开始出现介壳,但介壳颗粒破碎,富含泥质,多为基质支撑,铸磨孔不发育(图9b、b1、b2),之后出现大颗粒介壳,形态相对完整,但介壳颗粒筛选较差,分布杂乱,颗粒支撑与基质支撑并存,富含灰泥质,发育少量溶蚀孔或铸模孔(图9c、c1、c2),之后介壳越来越多,越来越大,形态完整,泥质含量越来越少,颗粒支撑,分布相对杂乱(图9d、d1、d2),顶部则完全变为介壳灰岩层,泥质含量较低,颗粒筛选均匀,且定向排列(图9e、e1、e2)。这些沉积特征可通过图3中的岩性素描直观展现。

  • 图8 桑托斯盆地L区块岩浆活动期次及火成岩相互关系图

  • Fig.8 The diagram showing the relationship among different cycles of igneous rocks in Block L, Santos basin

  • 图9 桑托斯盆地L区块介壳灰岩岩性垂向变化特征(样品位置见图3井壁取芯中蓝色箭头)

  • Fig.9 Vertical variation of lithological characteristics of carbonate in Block L, Santos basin

  • (a)~(e)—井壁取芯样品;(a1)~(e1)—单偏光显微照片;(a2)~(e2)—正交偏光显微照片; 蓝色为铸体薄片,染色以观察其孔隙结构和连通性;(a)、(a1)、(a2)—泥岩,4515.3 m;(b)、(b1)、(b2)—含介壳颗粒泥灰岩,4513.7 m;(c)、(c1)、(c2)—泥质介壳灰岩,4513.0 m;(d)、(d1)、(d2)—含泥介壳灰岩,4512.7 m;(e)、(e1)、(e2)—介壳灰岩4511.5 m

  • (a) ~ (e) —side wall cores; (a1) ~ (e1) —photomicrographs under plane polarized light; (a2) ~ (e2) —photomicrographs under cross polarized light; (a) , (a1) , (a2) —mudstone, 4515.3 m; (b) , (b1) , (b2) —shell-particles-bearing mudstone, 4513.7 m; (c) , (c1) , (c2) —muddy coquinas limestone, 4513.0 m; (d) , (d1) , (d2) —mud-bearing coquinas limestone, 4512.7 m; (e) , (e1) , (e2) —coquinas limestone, 4511.5 m

  • 同样地,对其他6个碳酸盐碳层段(图10中分别以①~⑥标注)的沉积特征和测井曲线进行综合分析后发现不同层段介壳灰岩时间上具先后顺序,但粒序上彼此没有“衔接”关系。除了④、 ⑤层段受侵入岩(图10中岩性柱中粉色部分)影响测井曲线局部异常外,其他层段测井曲线比较清楚。每个介壳灰岩层都是一个独立沉积体系,层内还可继续分辨出更小的沉积旋回:有些介壳灰岩发育单沉积旋回,如层③; 有些介壳灰岩发育2~3个旋回,分别以a、b等标记之,如④-a和④-b; 也有些仅发育单个旋回的一部分,如⑥和⑦等。研究中,从下向上分别对①、④、⑤段内单旋回进行岩性素描,可以发现每个沉积旋回均表现出与图3中③层段介壳灰岩旋回相似的沉积特征:底部以泥质为主,介壳从无到有,从少到多,泥质含量快速减少,介壳颗粒由基质支撑转变为颗粒支撑,在单旋回顶部可看到几乎纯净的介壳,有些介壳发育溶蚀、铸模孔,有些介壳颗粒定向排列(图10),反映了水体深度的频繁多变。

  • 图10 桑托斯盆地L区块不同层段介壳灰岩发育特征及沉积旋回

  • Fig.10 Characteristics of coquinas limestone for different intervals showing the sedimentary cycles

  • 结合盆地构造演化和裂陷初期沉积环境进一步分析后发现Itapema组沉积期间整体为湖盆快速裂陷发育阶段,水体整体较深,地层以泥质、细粒泥质为主(Chang et al.,1992)。Aptian期岩浆喷发造成湖底地形上拱,成为局部高点,为双壳类、腹足类和介形类生物生长提供了必要条件; 岩浆喷发间歇期,介壳生物开始生长发育,经历从无到有,从少到多的发育过程,地形上拱和介壳生物快速繁殖发育相叠加,使得水体快速变浅,水动能增加,对介壳进行淘洗筛选和定向排列,泥质含量也大大降低。之后,岩浆喷发,覆盖介壳,造成介壳生物原地死亡并沉积成岩。岩浆停止喷发后,又开始新一轮介壳生物发育和繁衍。依此类推,循环重复了至少七个旋回。期间,如果岩浆喷发规模过大,则形成的火山岩会露出水面,此时介壳生物无法发育,下期岩浆便直接覆盖在该期火山岩之上,如Ex3和Ex4等。如果岩浆喷发规模过小,喷发间歇期过短,而水体又较深,则难以形成完整的沉积旋回,如Ex5~Ex7。整体上看,在Ex1~Ex7岩浆喷发间歇期,介壳灰岩沉积具机械沉积特征。在Ex7岩浆喷发之后,在⑦层内开始形成少量薄层微生物灰岩(图10),沉积作用也由机械沉积向化学沉积转变。地层由Itapema组介壳灰岩向Barra Velha组微生物灰岩过渡。碳-氧同位素测试也表明,此时水体也由淡水向咸水进行转化(贾怀存等,2021)。

  • 3.2 介壳灰岩储层特征

  • 根据上述介壳灰岩形成环境和发育过程分析,可以研判出以下几个地质过程:① Itapema组沉积时,整体属深水细粒沉积,岩性以泥岩、纹层状泥岩为主; ② 岩浆喷发造成的局部构造凸起以及岩浆带来的营养成分,为介壳类生物生长发育提供了条件; ③ 介壳生物发育周期和规模则明显受控于岩浆喷发频率和持续时间。

  • 从储层连通性角度看,介壳灰岩本身的展布范围和规模受限于古地形、古地貌,呈“甜点式”分布在古地貌高点区域。受自身沉积旋回和泥质夹层发育的影响,其垂向连通性欠佳; 部分介壳灰岩被火成岩所分隔,空间上被完整包裹或半包裹,垂向连通性更差。横向上,其相变十分明显,常由厚层优质介壳灰岩过渡到低能薄层泥晶灰岩,类似于泥岩地层中的砂岩透镜体储层。

  • 由于介壳生物生长发育受基底地形、水深、阳光和洋流等多种因素影响和控制,具有客观规律性(Thompson et al.,2015; Mizuno et al.,2018; Vinicius et al.,2019),所以对区内介壳灰岩的区域展布和储层特征的认识应具有普适性。事实上,勘探也已证实盆内Itapema组介壳灰岩与火成岩大量共生,常分布在基底古隆或断阶(坡)等区域。

  • 4 认识与结论

  • 桑托斯盆地L区块主要发育包括早白垩世Aptian期和晚白垩世Santonian期—Campanian期两期岩浆活动,其中Aptian期岩浆规模大,占主导地位,形成了不仅包括块状玄武岩、杏仁状玄武岩和玻基斑状玄武岩等喷发相火成岩,也形成了辉绿岩等侵入相火成岩。Aptian期岩浆至少经历了7次不连续喷发过程和3次伴生浅成侵入过程。

  • Aptian期岩浆喷发构筑古地貌高点,为介壳生物发育和之后的沉积成岩提供了必要条件。岩浆喷发间歇期形成了一个或多个沉积旋回的介壳灰岩滩体,每个沉积旋回底部以泥质和含介壳灰泥为主,之后快速相变为泥质介壳灰岩和“干净”(不含泥质或含极少量泥质)的,甚至具定向排列的介壳灰岩。岩浆持续活动与介壳灰岩沉积交互进行,相互叠加,形成了一个厚度达~620 m火成岩-介壳灰岩复合体。

  • 介壳灰岩呈“甜点式”分布在古地貌高点区域。垂向上受自身沉积旋回、泥质夹层甚至火成岩包裹等,其流体连通性欠佳。横向上,其延伸范围有限、相变迅速,类似于砂岩透镜体储层。另外,岩浆或火山作用只是盆地早期诸多古地貌重塑地质作用中的一种,断层活动和基底构造古隆也同样可以为介壳灰岩发育提供古地貌条件。因此,Aptian期盆内古隆、古断阶(坡)等也是介壳灰岩理想发育区。

  • 参考文献

    • Aslanian D, Maryline M, Jean-Louis O, Unternehr P, Matias L, François B, Marina R, Hervé N, Frauke K, Isabelle C, Cinthia L. 2009. Brazilian and African passive margins of the central segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics, 468: 98~112.

    • Baba K, Chen J, Sommer M, Utada H, Geissler WH, Jokat W, Jegen M. 2017. Marine magnetotellurics imaged no distinct plume beneath the Tristan da Cunha hotspot in the southern Atlantic Ocean. Tectonophysics, 716: 52~63.

    • Carvalho M D, Praça U M, Silva-Telles A C, Jahnert R, Dias J L. 2000. Bioclastic carbonate lacustrine facies models in the Campos Basin (Lower Cretaceous), Brazil. AAPG Studies in Geology, 46: 245~256.

    • Chang H K, Kowsmann R O, Figueiredo A M F, Bender A. 1992. Tectonics and stratigraphy of the East Brazil Rift system: An overview. Tectonophysics, 213: 97~138.

    • Cheng Tao, Kang Hongquan, Liang Jianshe, Jia Huaicun, Bai Bo, Li Minggang. 2019. Genetic classfication and activity periods analysis of magmatic rocks in Santos Basin, Brazil. China Offshore Oil and Gas, 31(4): 55~66 (in Chinese with English abstract).

    • Chinelatto G F, Vidal A C, Kuroda M C, Basilici G. 2018. A taphofacies model for coquina sedimentation in lakes (Lower Cretaceous, Morro do Chaves Formation, NE Brazil). Cretaceous Research. 85: 1~19.

    • Costa deOliveira L, Rancan C C, Oliveira M J R. 2019. Sill emplacement mechanisms and their relationship with the pre-salt stratigraphic framework of the Libra Area (Santos Basin, Brazil). In: Abstracts of LASI 6 Conference: 83~84.

    • Dickson W, Schiefeelbein C, Zumberge J, Odegard M. 2005. Basin analysis in Brazilian and West African conjugates: Combining disciplines to deconstruct petroleum systems. In: Paul J P, Norman C R, Donald L O, Stephen L P, Kevin T L, Geoffrey B N, eds. Petroleum Systems of Divergent Continental Margin Basins. SEPM Society for Sedimentary Geology, ISBN electronic.

    • Dunham R J. 1962. Classification of carbonate rocks according to depositional texture. In: Ham W E, eds. Classification of Carbonate Rocks—A Symposium. AAPG Memoir, 1: 108~121.

    • Fairhead J, Wilson M. 2005. Plate tectonic processes in the South Atlantic Ocean: Do we need deep mantle plumes? In: Foulger G R, Natland J H, Presnall D C, Anderson D L, Eds. Plates, Plumes, and Paradigms. Geological Society of America, 537~554.

    • Fodor R V, McKee E H, Asmus H E. 1983. K-Ar ages and the opening of the South Atlantic Ocean: Basaltic rock from the Brazilian margin. Marine Geology, 54: M1~M8.

    • Fornero S A, Marins G M, Lobo J T, Freire A F M. 2019. Characterization of subaerial volcanic facies using acoustic image logs: Lithofacies and log-facies of a lava-flow deposit in the Brazilian pre-salt, deepwater of Santos basin. Marine and Petroleum Geology, 99: 156~174.

    • Foulger G. 2017. Origin of the South Atlantic igneous province. Journal of Volcanology and Geothermal Research, 355: 2~20.

    • Fromm T, Planert L, Jokat W, Ryberg T, Behrmann J H, Weber M H, Haberland C. 2015. South Atlantic opening: A plume-induced breakup? Geology, 43: 931~934.

    • Geraldes M C, Motoki A, Costa A, Mota C E, Mohriak W U. 2013. Geochronology (Ar/Ar and K-Ar) of the South Atlantic post-break-up magmatism. In: Mohriak W U, Danforth A, Post P J, Brown D E, Tari G C, Nemčok M, Sinha S T, eds. Conjugate Divergent Margins. London: Geological Society, 41~74.

    • Herz N. 1977. Timing of spreading in the South Atlantic: Information from Brazilian alkalic rocks. Geological Society of America Bulletin, 88(1): 101~112.

    • Jia Huaicun, Kang Hongquan, Liang Jianshe, Cheng Tao, Zhang Shixin. 2021. Lacustrine carbonate characteristic and developmental controlled factors of pre-salt, Santos basin. Journal of Southwest Petroleum University (Science & Technology Edition), 43(2): 1~9(in Chinese with English abstract).

    • Maitre L E, Streckeisen A, Zanettin B. 2002. Igneous Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences Sub-commission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press.

    • Moreira J L P, Madeira C V, Gil J A, Machado M A P. 2007. Bacia de Santos. Boletim de Geociencias da Petrobras, 15: 531~549.

    • Mizuno T A, Mizusaki A M P, Lykawka R. 2018. Facies and paleoenvironments of the Coqueiros Formation (lower Cretaceous, Campos Basin): A high frequency stratigraphic model to support pre-salt “coquinas” reservoir development in the Brazilian continental margin. Journal of South American Earth Sciences, 88: 107~117.

    • Penna R, Araújo S, Geisslinger A, Sansonowski R, Oliveira L, Rosseto J, Matos M. 2019. Carbonate and igneous rock characterization through reprocessing, FWI imaging, and elastic inversion of a legacy seismic data set in Brazilian pre-salt province. The Leading Edge, 38(1): 11~19.

    • Ren Kangxu, Oliveira M J R, Zhao Junfeng, Zhao Jian, Leonardo C O, Cristiano C R, Isabela O C, Deng Qicai. 2019. Using wireline logging and thin section to identify igneous contact metamorphism and hydrothermal influence on pre-salt limestone reservoirs in Libra Block, Santos Basin. Offshore Technology Conference Brasil (OTC). Rio de Janeiro, Brazil.

    • Santos E V, Cerqueira J R, Prinzhofer A. 2012. Origin of CO2 in Brazilian Basins. AAPG Annual Convention and Exhibition. Article #40969.

    • Schattner U, Mahiques M. 2020. Post-rift regional volcanism in southern Santos basin and the uplift of the adjacent South American coastal range. Journal of South American Earth Sciences, 104: 102855.

    • Thompson D L, Stilwell J D, Hall M. 2015. Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: Pre-salt coquinas of Brazil and West Africa. Gondwana Research, 28(1): 26~51.

    • Vinicius C B O, Carlos M A S, Leonardo F B, Ismar S C. 2019, Lacustrine coquinas and hybrid deposits from rift phase: Pre-salt, lower Cretaceous, Campos Basin, Brazil. Journal of South American Earth Sciences, 95: 1~31.

    • Wan L K, Wu Y P, Ji Z F, Wen Z X. 2018. Formation mechanism of the Shell Beach in the East Sea of Brazil-a case of the Itapema formation in the Santos basin. Applied Ecology and Environmental Research, 17(1): 383~394.

    • Wright V P. 2012, Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition. Geological Society, London, Special Publications, 370(1): 39~47.

    • William G D, Fryklund R E, Odegard M E, Green C M. 2003. Constraints for plate reconstruction using gravity data-implications for source and reservoir distribution in Brazilian and West African margin basins. Marine and Petroleum Geology, 20(3-4): 309~322.

    • Zhao Jian, Maria J R O, Zhao Junfeng, Ren Kangxu, Oliveira L C, Carmo I O, Rancan C C, Deng Qicai. 2019. Fault activity and its influences on distribution of igneous rocks in Libra Block, Santos Basin: Semi-quantitative to quantitative assessment of fault activity based on high-resolution 3D seismic data. Offshore Technology Conference Brasil (OTC), Rio de Janeiro, Brazil.

    • Zhao Jian, ZhaoJunfeng, Ren Kangxu, Wang Tongkui, Xu Bifeng. 2021. Distribution and main controlling factors of CO2 in Santos Basin, Brazil. Earth Science, 46(9): 3217~3229(in Chinese with English abstract).

    • 程涛, 康洪全, 梁建设, 贾怀存, 白博, 李明刚. 2019. 巴西桑托斯盆地岩浆岩成因类型划分与活动期次分析. 中国海上油气, 31(4): 55~66.

    • 贾怀存, 康洪全, 梁建设, 程涛, 张世鑫. 2021. 桑托斯盆地湖相碳酸盐岩储层特征及控制因素. 西南石油大学学报(自然科学版), 43(2): 1~9.

    • 赵健, 赵俊峰, 任康绪, 王童奎, 许必锋. 2021. 巴西桑托斯盆地CO2 区域分布及主控因素. 地球科学, 46(9): 3217~3229.

  • 参考文献

    • Aslanian D, Maryline M, Jean-Louis O, Unternehr P, Matias L, François B, Marina R, Hervé N, Frauke K, Isabelle C, Cinthia L. 2009. Brazilian and African passive margins of the central segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics, 468: 98~112.

    • Baba K, Chen J, Sommer M, Utada H, Geissler WH, Jokat W, Jegen M. 2017. Marine magnetotellurics imaged no distinct plume beneath the Tristan da Cunha hotspot in the southern Atlantic Ocean. Tectonophysics, 716: 52~63.

    • Carvalho M D, Praça U M, Silva-Telles A C, Jahnert R, Dias J L. 2000. Bioclastic carbonate lacustrine facies models in the Campos Basin (Lower Cretaceous), Brazil. AAPG Studies in Geology, 46: 245~256.

    • Chang H K, Kowsmann R O, Figueiredo A M F, Bender A. 1992. Tectonics and stratigraphy of the East Brazil Rift system: An overview. Tectonophysics, 213: 97~138.

    • Cheng Tao, Kang Hongquan, Liang Jianshe, Jia Huaicun, Bai Bo, Li Minggang. 2019. Genetic classfication and activity periods analysis of magmatic rocks in Santos Basin, Brazil. China Offshore Oil and Gas, 31(4): 55~66 (in Chinese with English abstract).

    • Chinelatto G F, Vidal A C, Kuroda M C, Basilici G. 2018. A taphofacies model for coquina sedimentation in lakes (Lower Cretaceous, Morro do Chaves Formation, NE Brazil). Cretaceous Research. 85: 1~19.

    • Costa deOliveira L, Rancan C C, Oliveira M J R. 2019. Sill emplacement mechanisms and their relationship with the pre-salt stratigraphic framework of the Libra Area (Santos Basin, Brazil). In: Abstracts of LASI 6 Conference: 83~84.

    • Dickson W, Schiefeelbein C, Zumberge J, Odegard M. 2005. Basin analysis in Brazilian and West African conjugates: Combining disciplines to deconstruct petroleum systems. In: Paul J P, Norman C R, Donald L O, Stephen L P, Kevin T L, Geoffrey B N, eds. Petroleum Systems of Divergent Continental Margin Basins. SEPM Society for Sedimentary Geology, ISBN electronic.

    • Dunham R J. 1962. Classification of carbonate rocks according to depositional texture. In: Ham W E, eds. Classification of Carbonate Rocks—A Symposium. AAPG Memoir, 1: 108~121.

    • Fairhead J, Wilson M. 2005. Plate tectonic processes in the South Atlantic Ocean: Do we need deep mantle plumes? In: Foulger G R, Natland J H, Presnall D C, Anderson D L, Eds. Plates, Plumes, and Paradigms. Geological Society of America, 537~554.

    • Fodor R V, McKee E H, Asmus H E. 1983. K-Ar ages and the opening of the South Atlantic Ocean: Basaltic rock from the Brazilian margin. Marine Geology, 54: M1~M8.

    • Fornero S A, Marins G M, Lobo J T, Freire A F M. 2019. Characterization of subaerial volcanic facies using acoustic image logs: Lithofacies and log-facies of a lava-flow deposit in the Brazilian pre-salt, deepwater of Santos basin. Marine and Petroleum Geology, 99: 156~174.

    • Foulger G. 2017. Origin of the South Atlantic igneous province. Journal of Volcanology and Geothermal Research, 355: 2~20.

    • Fromm T, Planert L, Jokat W, Ryberg T, Behrmann J H, Weber M H, Haberland C. 2015. South Atlantic opening: A plume-induced breakup? Geology, 43: 931~934.

    • Geraldes M C, Motoki A, Costa A, Mota C E, Mohriak W U. 2013. Geochronology (Ar/Ar and K-Ar) of the South Atlantic post-break-up magmatism. In: Mohriak W U, Danforth A, Post P J, Brown D E, Tari G C, Nemčok M, Sinha S T, eds. Conjugate Divergent Margins. London: Geological Society, 41~74.

    • Herz N. 1977. Timing of spreading in the South Atlantic: Information from Brazilian alkalic rocks. Geological Society of America Bulletin, 88(1): 101~112.

    • Jia Huaicun, Kang Hongquan, Liang Jianshe, Cheng Tao, Zhang Shixin. 2021. Lacustrine carbonate characteristic and developmental controlled factors of pre-salt, Santos basin. Journal of Southwest Petroleum University (Science & Technology Edition), 43(2): 1~9(in Chinese with English abstract).

    • Maitre L E, Streckeisen A, Zanettin B. 2002. Igneous Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences Sub-commission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press.

    • Moreira J L P, Madeira C V, Gil J A, Machado M A P. 2007. Bacia de Santos. Boletim de Geociencias da Petrobras, 15: 531~549.

    • Mizuno T A, Mizusaki A M P, Lykawka R. 2018. Facies and paleoenvironments of the Coqueiros Formation (lower Cretaceous, Campos Basin): A high frequency stratigraphic model to support pre-salt “coquinas” reservoir development in the Brazilian continental margin. Journal of South American Earth Sciences, 88: 107~117.

    • Penna R, Araújo S, Geisslinger A, Sansonowski R, Oliveira L, Rosseto J, Matos M. 2019. Carbonate and igneous rock characterization through reprocessing, FWI imaging, and elastic inversion of a legacy seismic data set in Brazilian pre-salt province. The Leading Edge, 38(1): 11~19.

    • Ren Kangxu, Oliveira M J R, Zhao Junfeng, Zhao Jian, Leonardo C O, Cristiano C R, Isabela O C, Deng Qicai. 2019. Using wireline logging and thin section to identify igneous contact metamorphism and hydrothermal influence on pre-salt limestone reservoirs in Libra Block, Santos Basin. Offshore Technology Conference Brasil (OTC). Rio de Janeiro, Brazil.

    • Santos E V, Cerqueira J R, Prinzhofer A. 2012. Origin of CO2 in Brazilian Basins. AAPG Annual Convention and Exhibition. Article #40969.

    • Schattner U, Mahiques M. 2020. Post-rift regional volcanism in southern Santos basin and the uplift of the adjacent South American coastal range. Journal of South American Earth Sciences, 104: 102855.

    • Thompson D L, Stilwell J D, Hall M. 2015. Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: Pre-salt coquinas of Brazil and West Africa. Gondwana Research, 28(1): 26~51.

    • Vinicius C B O, Carlos M A S, Leonardo F B, Ismar S C. 2019, Lacustrine coquinas and hybrid deposits from rift phase: Pre-salt, lower Cretaceous, Campos Basin, Brazil. Journal of South American Earth Sciences, 95: 1~31.

    • Wan L K, Wu Y P, Ji Z F, Wen Z X. 2018. Formation mechanism of the Shell Beach in the East Sea of Brazil-a case of the Itapema formation in the Santos basin. Applied Ecology and Environmental Research, 17(1): 383~394.

    • Wright V P. 2012, Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition. Geological Society, London, Special Publications, 370(1): 39~47.

    • William G D, Fryklund R E, Odegard M E, Green C M. 2003. Constraints for plate reconstruction using gravity data-implications for source and reservoir distribution in Brazilian and West African margin basins. Marine and Petroleum Geology, 20(3-4): 309~322.

    • Zhao Jian, Maria J R O, Zhao Junfeng, Ren Kangxu, Oliveira L C, Carmo I O, Rancan C C, Deng Qicai. 2019. Fault activity and its influences on distribution of igneous rocks in Libra Block, Santos Basin: Semi-quantitative to quantitative assessment of fault activity based on high-resolution 3D seismic data. Offshore Technology Conference Brasil (OTC), Rio de Janeiro, Brazil.

    • Zhao Jian, ZhaoJunfeng, Ren Kangxu, Wang Tongkui, Xu Bifeng. 2021. Distribution and main controlling factors of CO2 in Santos Basin, Brazil. Earth Science, 46(9): 3217~3229(in Chinese with English abstract).

    • 程涛, 康洪全, 梁建设, 贾怀存, 白博, 李明刚. 2019. 巴西桑托斯盆地岩浆岩成因类型划分与活动期次分析. 中国海上油气, 31(4): 55~66.

    • 贾怀存, 康洪全, 梁建设, 程涛, 张世鑫. 2021. 桑托斯盆地湖相碳酸盐岩储层特征及控制因素. 西南石油大学学报(自然科学版), 43(2): 1~9.

    • 赵健, 赵俊峰, 任康绪, 王童奎, 许必锋. 2021. 巴西桑托斯盆地CO2 区域分布及主控因素. 地球科学, 46(9): 3217~3229.