en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吕红华,男,1978年生。博士,教授,构造地貌学专业,主要在天山地区开展研究工作。E-mail:hhlv@geo.ecnu.edu.cn。

参考文献
Avouac J P, Tapponnier P, Bai M, You H, Wang G. 1993. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of Tarim relative to Dzungaria and Kazakhstan. Journal of Geophysical Research, 98(B4): 6755~6804.
参考文献
Bender A M, Lease R O, Corbett L B, Bierman P R, Caffee M W. 2018. Ongoing bedrock incision of the Fortymile River driven by Pliocene-Pleistocene Yukon River capture, eastern Alaska, USA, and Yukon, Canada. Geology, 46(7): 635~638.
参考文献
Bender A M, Lease R O, Corbett L B, Bierman P R, Caffee M W, Rittenour T M. 2020. Late Cenozoic climate change paces landscape adjustments to Yukon River capture. Nature Geoscience, 13: 571~575.
参考文献
Burbank D W. 2005. Cracking the Himalaya. Nature, 434: 963~964.
参考文献
Burbank D W, Anderson R S. 2012. Tectonic Geomorphology (Second Edition). New Jersey: Wiley-Blackwell.
参考文献
Cao Xilin, Hu Xiaofei, Pan Baotian, Zhang Jian, Wang Wei, Mao Junwei, Liu Xiaopeng. 2019. A fluvial record of fault-propagation folding along the northern Qilian Shan front, NE Tibetan Plateau. Tectonophysics, 755: 35~46.
参考文献
Cao Xilin, Hu Xiaofei, Pan Baotian, Zhao Qiming, Chen Taian, Ji Xianghe, Zhao Zhijun. 2021. Using fluvial terraces as distributed deformation offset markers: implications for deformation kinematics of the North Qilian Shan Fault. Geomorphology, 386: 107750.
参考文献
Cui Zhijiu, Xiong Heigang, Liu Gengnian, Zhu Cheng, Yi Chaolu. 1998. Geomorphic Processes and Sedimentary Characters of the Cryosphere in the Central Tian Shan. Shijiazhuang: Science and Technology Press (in Chinese).
参考文献
Deng Qidong, Feng Xianyue, Zhang Peizhen, Xu Xiwei, Yang Xiaoping, Peng Sizhen, Li Jun. 2000. Active Tectonics of the Tian Shan Mountains. Beijing: Seismology Press (in Chinese).
参考文献
Fu Xiao, Li Shenghua, Li Bo, Fu Bihong. 2017. A fluvial terrace record of late Quaternary folding rate of the Anjihai anticline in the northern piedmont of Tian Shan, China. Geomorphology, 278: 91~104.
参考文献
Gong Zhijun, Li Shenghua, Li Bo. 2014. The evolution of a terrace sequence along the Manas River in the northern foreland basin of Tian Shan, China, as inferred from optical dating. Geomorphology, 213: 201~212.
参考文献
He Honglin, Song Fangmin, Li Chuanyou. 1999. Topographic survey of micro faulted landform and estimation of strike slip rate for the Zemuhe fault, Sichuan Province. Seismology and Geology, 21(4): 361~369 (in Chinese with English abstract).
参考文献
Hu Xiaofei, Pan Baotian, Gao Hongshan, Hu Zhenbo, Cao Bo, Li Qingyang, Geng Haopeng. 2013. Development of Holocene fluvial terraces in the eastern Qilianshan Mountains and its relationship with climate changes. Quaternary Sciences, 33(4): 1~14 (in Chinese with English abstract).
参考文献
Jolivet M, Barrier L, Dominguez S, Guerit L, Heilbronn G, Fu Bihong. 2014. Unbalanced sediment budgets in the catchment-alluvial fan system of the Kuitun River (northern Tian Shan, China): implications for mass-balance estimates, denudation and sedimentation rates in orogenic systems. Geomorphology, 214: 168~182.
参考文献
Jolivet M, Braucher R, Dovchintseren D, Hocquet S, Schmitt J M, ASTER Team. 2021. Erosion around a large-scale topographic high in a semi-arid sedimentary basin: interactions between fluvial erosion, aeolian erosion and aeolian transport. Geomorphology, 386: 107747.
参考文献
Lease R O, Ehlers T A. 2016. Incision into the eastern Andean Plateau during Pliocene cooling. Science, 341: 774~776.
参考文献
Li Tao, Chen Jie. 2014. Using deformed fluvial terraces to constrain growth mechanism and rates of thrust related fold: methods and recognition. Seismology and Geology, 36(2): 478~488 (in Chinese with English abstract).
参考文献
Li Xuemei, Zhang Huiping. 2017. Transient fluvial landscape: features, processes and its implication for tectonic-climate interaction. Quaternary Sciences, 37(2): 416~430 (in Chinese with English abstract).
参考文献
Li Youli, Si Supei, Lü Shenghua, Wang Yiran. 2012. Tectonic and climatic controls on the development of the Kuitun River terraces in the northern piedmont of Tianshan Mountains. Quaternary Sciences, 32(5): 880~890 (in Chinese with English abstract).
参考文献
Liu Jing, Zhang Jinyu, Ge Yukui, Wang Wei, Lin Xu. 2018. Tectonic geomorphology: an interdisciplinary study of the interaction among tectonic climatic and surface processes. Chinese Science Bulletin, 63(30): 3070~3088 (in Chinese).
参考文献
Liu Qingri, Li Youli, Zhang Huiping, Huang Feipeng, Zhao Xudong, Lei Jinghao, Xin Weilin, Xiong Jianguo, Zhang Peizhen. 2021. Effects of erosion and deposition on constraining vertical slip rates of thrust faults: a case study of the Minle-Damaying fault in the north Qilian Shan, NE Tibetan Plateau. Frontiers in Earth Science, 9: 635702.
参考文献
Liu Ya, Wang Xianyan, Su Qi, Yi Shuangwen, Miao Xiaodong, Li Yiquan, Lu Huayu. 2021a. Late Quaternary terrace formation from knickpoint propagation in the headwaters of the Yellow River, NE Tibetan Plateau. Earth Surface Processes and Landform, 46(14): 2788~2806.
参考文献
Lu Honghua, Burbank D W, Li Youli. 2010. Alluvial sequence in the north piedmont of the Chinese Tian Shan over the past 550 kyr and its relationship to climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(3-4): 343~353.
参考文献
Lu Honghua, Wang Zhen, Zhang Tianqi, Zhao Junxiang, Zheng Xiangmin, Li Youli. 2015. Latest Miocene to Quaternary deformation in the southern Chaiwopu basin, northern Chinese Tian Shan foreland. Journal of Geophysical Research-Solid Earth, 120(12): 8656~8671.
参考文献
Lu Honghua, Wu Dengyun, Cheng Lu, Zhang Tianqi, Xiong Jianguo, Zheng Xiangmin, Li Youli. 2017. Late Quaternary drainage evolution in response to fold growth in the northern Chinese Tian Shan foreland. Geomorphology, 299: 12~23.
参考文献
Lu Honghua, Cheng Lu, Wang Zhen, Zhang Tianqi, Zheng Xiangmin. 2018. Latest Quaternary rapid river incision across an inactive fold in the northern Chinese Tian Shan foreland. Quaternary Science Review, 179: 167~181.
参考文献
Lu Honghua, Li Bingjing, Wu Dengyun, Zhao Junxiang, Zheng Xiangmin, Xiong Jianguo, Li Youli. 2019. Spatiotemporal patterns of the late Quaternary deformation across the northern Chinese Tian Shan foreland. Earth-Science Reviews, 194: 19~37.
参考文献
Lu Honghua, Wu Dengyun, Zhang Huiping, Ma Yuanxu, Li Youli. 2020. Spatial patterns of Late Quaternary river incision along the northern Tian Shan foreland. Geomorphology, 357: 107100.
参考文献
Lü Honghua, Li Youli. 2020. Development of tectonic geomorphology study promoted by new methods in China: a viewpoint from reviewing the Tian Shan researches. Advances in Earth Science, 35(6): 594~606 (in Chinese with English abstract).
参考文献
Ma Yan, Zheng Dewen, Zhang Huiping, Pang Jianzhang, Wang Weitao, Wang Yizhou, Wu Ying, He Huaiyu, Stuart F M, Xu Sheng. 2021. Plio-Pleistocene establishemtn of Irtysh River in Junggar, Northwest China: implications for Siberian-Arctic river system evolution and resulting climate impact. Geophysical Research Letters, 48(12): e2021GL093217.
参考文献
Malatesta L C, AvouacJ P, Brown N D, Breitenbach S F M, Pan Jiawei, Chevalier M L, Rhodes E, Saint-Carlier D, Zhang Wenjing, Charreau J, Lavé J, Blard P H. 2018. Lag and mixing during sediment transfer across the Tian Shan piedmont caused by climate-driven aggradation-incision cycles. Basin Research, 30: 613~635.
参考文献
Molnar P, Brown E T, Burchfiel B C, Deng Qidong, Feng Xianyue, Li Jun, Raisbeck G M, Shi Jianbang, Wu Zhangming, Yiou F, You Huichuan. 1994. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tianshan, China. Journal of Geology, 102: 583~602.
参考文献
Nie Junsheng, Ruetenik G, Gallagher K, Hoke G, Garzione C N, Wang Weitao, Stockli D, Hu Xiaofei, Wang Zhao, Wang Ying, Stevens T, Danišík M, Liu Shanpin. 2018. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience, 11: 944~948.
参考文献
Pan Baotian, Burbank D W, Wang Yixiang, Wu Guangjian, Li Jijun, Guan Qingyu. 2003. A 900 k. y. record of strath terrace formation during glacial-interglacial transitions in northwest China. Geology, 31: 957~960.
参考文献
Pan Baotian, Hu Zhenbo, Hu Xiaofei, Zhang Cheng, Li Fuqiang. 2012. Time-slice of the fluvial elution in the northern Jinshaan gorge during Late Cenozoic. Quaternary Sciences, 32(1): 111~121 (in Chinese with English abstract).
参考文献
Pan Baotian, Hu Xiaofei, Gao Hongshan, Hu Zhenbo, Cao Bo, Geng Haopeng, Li Qiong. 2013. Late quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan Mountain, China. Geomorphology, 184 (430): 84~97.
参考文献
Pan Jiawei, Li Haibing, Chevalier M L, Bai Mingkun, Liu Fucai, Zheng Yong, Lu Haijian, Zhao Zhongbao. 2020. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: the South Mugecuo fault. Acta Geologica Sinica, 94(11): 3178~3188 (in Chinese with English abstract).
参考文献
Pang Lichen, Lu Honghua, Wu Dengyun, Guan Xue, Li Youli. 2021. Late Pleistocene uniform rate of thrusting along the fault strike: a case study from the northern Tian Shan foreland. Tectonics, 40(4): e2021TC006726.
参考文献
Poisson B, Avouac J P, 2004. Holocene hydrological changes inferred from alluvial stream entrenchment in north Tian Shan (northwestern China). Journal of Geology, 112: 231~249.
参考文献
Ren Zhikun, Chen Tao, Zhang Huiping, Zheng Wenjun, Zhang Peizhen. 2014. LiDAR survey in active tectonics studies: an introduction and overview. Acta Geologica Sinica, 88(6): 1196~1207 (in Chinese with English abstract).
参考文献
Su Peng, He Honglin, Wei Zhanyu, Lu Renqi, Shi Feng, Sun Haoyue, Tan Xibin, Hao Haijian. 2018. A new shortening rate across the Dushanzi anticline in the northern Tian Shan mountains, China from lidar data and a seismic reflection profile. Journal of Asian Earth Science, 163: 131~141.
参考文献
Wang Nailiang, Han Mukang. 1984. Theory, method, application and trend of tectonic geomorphology. In: Selected Conference Papers of the First Symposium on Tectonic Geomorphology of Chinese Geographical Society. Beijing: Science Press (in Chinese).
参考文献
Wu Zhonghai, Zhang Yongshuang, Hu Daogong, Zhao Xitao, Ye Peisheng. 2007. Quaternary normal faulting and its dynamics of the oiga graben in south-eastern Tibet. Acta Geologica Sinica, 81(10): 1328~1239 (in Chinese with English abstract).
参考文献
Xinjiang Institute of Geography of Chinese Academy of Sciences. 1986. Evolutions of the Tianshan Mountains. Beijing: Science Press (in Chinese).
参考文献
Xiong Jianguo, Li Youli, Zhong Yuezhi, Lu Honghua, Lei Jinhao, Xin Weilin, Wang L, Hu Xiu, Zhang Peizhen. 2017. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the eastern Qilian Shan, NE Tibetan Plateau. Tectonics, 36: 2973~2986.
参考文献
Yang Jingchun. 1983. Relationship between morphotectonic evolution and Quaternary tectonic stress state in north and northeastern China. Acta Geographica Sinica, 38(3): 218~228 (in Chinese with English abstract).
参考文献
Yang Jingchun, Tan Lihua, Li Youli, Duan Fengjun. 1998. River terraces and neotectonic evolution at north margin of the Qilianshan mountains. Quaternary Sciences, 18(3): 229~237 (in Chinese with English abstract).
参考文献
Yang Jingchun, Li Youli. 2011. Active Tectonic Geomorphology. Beijing: Peking University Press (in Chinese).
参考文献
Yang Jingchun, Li Youli. 2012. The Principle of Geomorphology (3rd). Beijing: Peking University Press (in Chinese).
参考文献
Yang Xiaoping, Li An, Huang Weiliang. 2012. Uplift differential of active fold zones during the late Quaternary, northern piedmonts of the Tianshan Mountains, China. Science China: Earth Science, 42(12): 1877~1888.
参考文献
Yuan Qingdong, Guo Zhaojie, Zhang Zhicheng, Wu Chaodong, Fang Shihu. 2006. The Late Cenozoic deformation of terraces on the north flank of Tian Shan Mountains and the tectonic evolution. Acta Geologica Sinica, 80(2): 210~216 (in Chinese with English abstract).
参考文献
Zhang Huiping, Zhang Peizhen, Champagnac J D, Molnar P, Anderson R. 2014. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau. Geology, 42(4): 303~306.
参考文献
Zhang Ke, Cai Jianbo. 2006. Preliminary result of the dating by TCN technique of the highest terrace of the Heishanxia gorge mouth, northeast margin of Tibetan Plateau and its expression of neotectonics movement in that area. Quaternary Sciences, 26(1): 85~91 (in Chinese with English abstract).
参考文献
Zhang Peizhen. 2003. Late Cenozoic tectonic deformation in the Tian Shan and its foreland basins. Chinese Science Bulletin, 48(24): 2499~2450 (in Chinese).
参考文献
Zhang Peizhen, Deng Qidong, Xu Xiwei, Yang Xiaoping, Wu Zhangmin, Feng Xianyue, Li Jun, Zhao Ruibin, Tang Wei. 1993. Tectonic deformation, crustal shortening, and slip rate estimation along the Manas reverse fault-fold zone in the northern flank of the Tian Shan Mountains. In: Editing Committee of the Research of Active Fault, eds. Research of Active Fault (III). Beijing: Seismology Press, 18~32 (in Chinese with English abstract).
参考文献
Zhang Peizhen, Deng Qidong, Yang Xiaoping, Feng Xianyue, Peng Sizhen, Zhao Ruibin. 1995. Glaciofluvial fan and neotectonic movement along the north piedmont of Tian Shan Mountains. In: Editing Committee of the Research of Active fault, eds. Research of Active Fault (IV). Beijing: Seismology Press, 63~78 (in Chinese with English abstract).
参考文献
Zhang Shimin, Ren Junjie, Nie Gaozhong. 2007. Paragenesisia of Quaternary pediments and river terraces on north piedmont of Wutai mountains. Chinese Science Bulletin, 52(2): 215~222 (in Chinese).
参考文献
Zhang Tianqi, Lü Honghua, Zhao Junxiang, Zheng Xiangmin. 2014. Fluvial terrace formation and tectonic uplift rate——a case study of Late Quaternary fluvial process in the north piedmont of the Tian Shan, northwestern China. Quaternary Sciences, 34(2): 281~291 (in Chinese with English abstract).
参考文献
Zheng Wenjun, Zhang Peizhen, Yuan Daoyang, Ge Weipeng, Liu Jianhui. 2009. Discovery of surface rupture zone on the south of Helishan in Gaotai, Gansu Province. Seismology and Geology, 31(2): 247~255 (in Chinese with English abstract).
参考文献
崔之久, 熊黑钢, 刘耕年, 朱诚, 易朝璐. 1998. 中天山冰冻圈地貌过程与沉积特征. 石家庄: 河北科技出版社.
参考文献
邓起东, 冯先岳, 张培震, 徐锡伟, 杨晓平, 彭斯震, 李军. 2000. 天山活动构造. 北京: 地震出版社.
参考文献
何宏林, 宋方敏, 李传友. 1999. 四川则木河断裂带微断层地貌的地形测量和走滑速率的估算. 地震地质, 21(4): 361~369.
参考文献
胡小飞, 潘保田, 高红山, 胡振波, 曹泊, 李清洋, 耿豪鹏. 2013. 祁连山东段全新世河流阶地发育及其与气候变化的关系研究. 第四纪研究, 33(4): 1~14.
参考文献
李涛, 陈杰. 2014. 利用河流阶地限定活动逆断层相关褶皱晚第四纪变形机制和速率: 方法和认识. 第四纪研究, 36(2): 478~488.
参考文献
李雪梅, 张会平. 2017. 河流瞬时地貌: 特征、过程及其构造-气候相互作用内涵. 第四纪研究, 37(2): 416~430.
参考文献
李有利, 司苏沛, 吕胜华, 王怡然. 2012. 构造运动和气候变化对天山北麓奎屯河阶地发育的影响作用. 第四纪研究, 32(5): 880~890.
参考文献
刘静, 张金玉, 葛玉魁, 王伟, 林旭. 2018. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究. 科学通报, 63(30): 3070~3088.
参考文献
吕红华, 李有利. 2020. 不断融入新元素的我国构造地貌学研究: 以天山为例. 地球科学进展, 35(6): 594~606.
参考文献
潘保田, 胡振波, 胡小飞, 张忱, 李富强. 2012. 晋陕峡谷北段晚新生代河流演化初步研究. 第四纪研究, 32(1): 111~121.
参考文献
潘家伟, 李海兵, Chevalier M L, 白明坤, 刘富财, 刘栋梁, 郑勇, 卢海建, 赵中宝. 2020. 鲜水河断裂带色拉哈-康定段新发现的活动断层: 木格措南断裂. 地质学报, 94(11): 3178~3188.
参考文献
任治坤, 陈涛, 张会平, 郑文俊, 张培震. 2014. LiDAR技术在活动构造研究中的应用. 地质学报, 88(6): 1196~1207.
参考文献
王乃樑, 韩慕康. 1984. 构造地貌学的理论、方法、运用与动向//中国地理学会第一次构造地貌学术讨论会论文选集. 北京: 科学出版社.
参考文献
吴中海, 张永双, 胡道功, 赵希涛, 叶培盛. 2007. 西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨. 地质学报, 81(10): 1328~1339.
参考文献
杨景春. 1983. 中国北部和东北部构造地貌发育和第四纪构造应力状态的关系. 地理学报, 38(3): 218~228.
参考文献
杨景春, 谭利华, 李有利, 段烽军. 1998. 祁连山北麓河流阶地与新构造演化. 第四纪研究, 18(3): 229~237.
参考文献
杨景春, 李有利. 2011. 活动构造地貌学. 北京: 北京大学出版社.
参考文献
杨景春, 李有利. 2012. 地貌学原理(第三版). 北京: 北京大学出版社.
参考文献
杨晓平, 李安, 黄伟亮. 2012. 天山北麓活动褶皱带晚第四纪时期隆升的差异性. 中国科学: 地球科学, 42(12): 1877~1888.
参考文献
袁庆东, 郭召杰, 张志诚, 吴朝东, 方式虎. 2006. 天山北缘河流阶地形成及构造变形定量分析. 地质学报, 80(2): 210~216.
参考文献
张珂, 蔡剑波. 2006. 黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动. 第四纪研究, 26(1): 85~91.
参考文献
张培震. 2003. 天山及其前陆盆地的晚新生代构造变形. 科学通报, 48(24): 2499~2450.
参考文献
张培震, 邓起东, 徐锡伟, 杨晓平, 吴章明, 冯先岳, 李军, 赵瑞斌, 唐巍. 1993. 天山北麓玛纳斯活动逆断裂-褶皱带的变形特征与构造演化. 见: 活动断裂研究编辑委员会, 活动断裂研究 (Ⅲ), 北京: 地震出版社, 18~32.
参考文献
张培震, 邓起东, 杨晓平, 冯先岳, 彭斯震, 赵瑞斌. 1995. 天山北麓的冰水冲洪积扇与新构造运动. 见: 活动断裂研究编辑委员会, 活动断裂研究 (Ⅳ), 北京: 地震出版社, 63~78.
参考文献
张天琪, 吕红华, 赵俊香, 郑祥民. 2014. 河流阶地演化与构造抬升速率——以天山北麓晚第四纪河流作用为例. 第四纪研究, 34(2): 281~291.
参考文献
张世民, 任俊杰, 聂高众. 2007. 五台山北麓第四纪麓原面与河流阶地的共生关系. 科学通报, 52(2): 215~222.
参考文献
郑文俊, 张培震, 袁道阳, 葛伟鹏, 刘建辉. 2009. 甘肃高台合黎山南缘发现地震地表破裂带. 地震地质, 31(2): 247~255.
参考文献
中国科学院新疆地理研究所. 1986. 天山山体演化. 北京: 科学出版社.
目录contents

    摘要

    河流地貌,特别是河流阶地是新构造与构造地貌、活动构造研究的一个重要对象,常用来刻画下伏构造变形的速率与时空模式,但利用河流地貌约束构造变形速率存在潜在的不确定性。基于十多年在天山北麓开展的构造地貌研究,认为不确定性主要包括以下4个方面:① 与阶地定年策略有关的不确定性。对于晚更新世末—全新世的年轻阶地,利用阶地沉积顶部年龄和上覆堆积底界年龄分别约束得到的变形速率可能存在比较大的差异,本研究中这种差异为50%;对于更老阶地,用这两个年龄限定的变形速率差异不大。② 与阶地对比有关的不确定性。沿背斜走向,河流过程对构造活动(如背斜基岩抬升)的响应存在时间上的不同步性。因此,对于发育在同一背斜构造上的不同河流,用某条河流已定年阶地的年龄,基于河流间的阶地对比确定另一条河未定年阶地的年龄,可能会导致阶地年龄不可忽视的偏差,进而造成对变形速率及其时空模式的误判。③ 与河流阶地位相相关的不确定性。不同成因的阶地均能呈现特定的阶地位相(向下游收敛或发散),这不利于基于阶地拔河高度的上下游阶地对比,也不利于利用阶地探讨构造活动的空间特征。④ 对于跨背斜或者断层的地貌面,由于背斜翼部或断层下降盘相对构造下沉,早期形成的地貌面将被后期的沉积物埋藏,这增加了利用该地貌面准确刻画下伏构造变形特征的难度,相关工作也要求构造两侧的变形参考面为同级地貌面。以上不确定性在利用河流地貌刻画逆断裂-褶皱构造变形特征的研究中需要予以注意。

    Abstract

    Fluvial geomorphology, especially river terrace, is commonly used as the reference to constrain the magnitude, timing, rate, and spatiotemporal patterns of deformation of the underlying structure in the studies of neotectonics, tectonic geomorphology, and active tectonics. Based on many years of research work in the north piedmont of the Chinese Tianshan Mountains, it is found that there are some potential uncertainties of deformation rate deriving from fluvial geomorphology. ① The uncertainty related to the strategy dating terrace formation age. For young terraces (especially having an age of Latest Pleistocene—Holocene), the deformation rates constrained by the age of the top of terrace deposits and the basal age of the overlying loess could be significantly different from each other. The difference between the two rates for the Sangequan River terrace T2 in the northern Chinese Tianshan foreland is up to 50%. In contrast, for older terraces, the difference between the rates of deformation derived from the age of the top of terrace deposits and the basal age of the overlying loess could be negligible. ② The uncertainty related to terrace correlation among rivers. Along the strike of a structure, the response of river processes (such as sedimentation and terrace formation owing to river incision) to tectonic activation (bedrock uplift of the folds) is not synchronous. Therefore, for different rivers developed over the same anticline structure, using the age of a dated terrace of one river to determine the age of an undated terrace of another river based on terrace correlation between rivers may lead to a possible deviation of terrace age that cannot be ignored, and then lead to the misunderstanding of the spatial distribution characteristics of deformation rate. ③ The uncertainty related to the longitudinal profiles of river terraces. The ages and the heights above riverbed of different genetic terraces will show different spatial distribution characteristics along the river courses. For example, when the erosion wave caused by river capture extends upstream, i. e. retrogressive erosion, the age and the heights above riverbed of the resultant terraces will gradually decrease upstream, displaying upstream convergence. In this case, it should be careful to not only determine the terrace sequences of the target river by the correlation between the upstream and downstream terraces, but also examine the spatial pattern of deformation by utilizing the depth and rate of river incision. ④ The old geomorphic surfaces would be buried due to the relative subsidence in the anticlinal wing or the footwall of a fault. It would be difficult to accurately characterize deformation of the underlying structure (the anticline or the fault) by using such geomorphologic surfaces as the references. Understanding the above uncertainties of deformation rates deriving from fluvial geomorphological investigations is helpful for more reliable estimation of deformation rate and further revealing its spatiotemporal patterns as well as the mechanism of deformation.

  • 地球表面发育众多的河流系统,其中,流域面积超过106 km2的河流有20个。这些河流系统对于塑造地表形态起到了非常重要的作用。无论是在平原、山地、高原、还是干旱区等不同地貌类型与气候区,河流都能通过侵蚀、堆积等方式不断改造地表形态(Burbank,2005; 杨景春等,2012; Burbank et al.,2012; Jolivet et al.,20142021; Zhang Huiping et al.,2014; Lease et al.,2016; Nie Junsheng et al.,2018)。在塑造地表形态的过程中,河流对于构造、气候、基准面等内外因素的变化,就像水准泡一样敏感,由此导致河流过程做出响应,河流侵蚀与堆积过程也因此不断相互转化,从而形成深切河谷、阶地、冲积扇(洪积扇)等地形特征、地貌序列(Pan Baotian et al.,2003; Lu Honghua et al.,2010; 潘保田等,2012; Lease et al.,2016; 李雪梅等,2017; Bender et al.,20182020; Liu Ya et al.,2021a)。这些河流地貌由于记录了最近地质历史时期的气候变化与构造活动等信息,因此备受地貌学、构造地貌学、活动构造学研究关注(杨景春,1983; 王乃樑等,1984; 吴中海等,2007; 张世民等,2007; 郑文俊等,2009; Burbank et al.,2012; 李有利等,2012; 胡小飞等,2013; Malatesta et al.,2018; 吕红华等,2020; 潘家伟等,2020)。

  • 在挤压构造背景下的活动造山带山前,伴随逆断裂变形累积,背斜逐渐生长、扩展。背斜生长与河流作用之间存在复杂的相互作用关系,其一方面可以导致河流改道(Burbank et al.,2012; Lu Honghua et al.,2017),另一方面也能造成发育在背斜区的河流阶地逐渐发生断错和拱曲变形,阶地形成越早,其记录的变形量也越大(杨景春等,2011; Burbank et al.,2012; 李涛等,2014; Lu Honghua et al.,2019)。因此,河流阶地序列常被用来评估逆断裂及其相关背斜构造变形的幅度、时间、速率以及模式(Avouac et al.,1993; 张培震等,1993; 杨景春等,1998; 何宏林等,1999; 邓起东等,2000; Pan Baotian et al.,2013; 张天琪等,2014; Cao Xilin et al.,20192021; Lu Honghua et al.,2019; Pang Lichen et al.,2021)。现在,诸如机载激光雷达扫描系统(LiDAR)、无人机测量系统等一些新技术、新手段已被广泛用于精细刻画地形特征、确定变形量(任志坤等,2014; Xiong Jianguo et al.,2017; 刘静等,2018)。地貌面的发育年代已能用宇宙成因核素(主要为10Be、26Al、21Ne)定年、光释光(OSL)定年等测年方法予以很好的确定(张珂等,2006; Lu Honghua et al.,2018; Malatesta et al.,2018; Ma Yan et al.,2021)。尽管如此,利用河流地貌限定的构造变形速率仍可能存在一些不确定性。本文主要结合笔者最近十多年在天山北麓开展的构造地貌研究,探讨由阶地定年策略、阶地对比、特定阶地位相、阶地局部侵蚀与堆积等造成的变形速率的不确定性,以期有助于利用河流地貌刻画逆冲挤压构造背景下的构造变形特征研究。考虑到本文主要基于天山北麓的研究实例进行分析讨论,下面将首先介绍天山北麓构造与河流地貌的基本特征,并简要呈现逆冲构造背景下利用河流阶地评估构造变形特征的基本方法,以便于读者更好地理解以上可能带来构造变形速率不确定性的4个方面。

  • 1 天山北麓构造与地貌基本特征

  • 天山是大陆内部典型的新生代复活型造山带,山体东西展布约2500 km,南北宽250~350 km。山地主要由古生界组成,中生界分布相对局限,新生界则主要分布在山间盆地和前陆盆地,其最大厚度超过5 km; 岩浆岩分布比较广泛,在地表出露面积约占山地面积的10%(中国科学院新疆地理研究所,1986)。天山在地质历史时期曾经历过多期次、不同方式的构造变形,具有十分复杂的演化历史(邓起东等,2000; 张培震,2003)。经过中生代至新生代早期的侵蚀,形成于古生代的古天山逐渐被夷平(中国科学院新疆地理研究所,1986)。新生代印度-欧亚板块碰撞使得天山地区构造复活再造山(邓起东等,2000),山体向南、北两侧前陆盆地双向逆冲,导致在山麓发育多列走向与山体近于平行的逆断裂-背斜带(邓起东等,2000; 张培震,2003)。在我国境内的天山北麓,这样的构造带至少包括:以托斯台-南安集海-南玛纳斯-齐古背斜为主的山麓背斜带、以霍尔果斯-玛纳斯-吐谷鲁背斜为主的第Ⅱ排背斜带、以独山子-安集海背斜为主的第Ⅲ排背斜带(邓起东等,2000)(图1)。天山北麓主要发育11条河,其中玛纳斯河山地流域面积最大,为约5100 km2,其他河流的山地流域面积多在1000~2000 km2之间。这些河流大多南北流向,在山前横切近东西走向的背斜构造(图1),发育多期冲积扇和多级河流阶地(Lu Honghua et al.,20102020)。

  • 2 限定逆冲-褶皱构造变形速率的地貌学方法

  • 对于发育在背斜之上的河流,河流地貌对背斜生长、扩展的响应主要表现为河流改道,或者河流保持原有河道不变而持续下切。无论哪种情况,河流发育的阶地将可能发生拱曲和断错变形(杨景春等,2011; Burbank et al.,2012)(图2)。在先成河阶段,河流过程暂未受到背斜基岩抬升的影响(图2a)。随着背斜持续生长并开始形成明显的正地形,若河流下切速率超过背斜基岩抬升速率,则河流下切形成阶地(图2b)。所形成的阶地由于受到背斜进一步生长扩展而产生拱曲变形,阶地形成时间越早,其记录的累积变形幅度也越大(图2c、d)。由此,常利用背斜区发育保留的河流阶地分析下伏逆断裂-背斜的变形特征(杨景春等,2011; Burbank et al.,2012)。通过跨构造的阶地地形剖面实测,结合构造几何特征和变形模型(邓起东等,2000; 李涛等,2014),可以确定下伏构造变形的幅度(背斜地壳缩短量与基岩垂直抬升量、断层滑动量等),进一步结合阶地年龄,就能限定下伏构造的活动速率(杨景春等,2011; Lu Honghua et al.,2019)。

  • 3 利用河流阶地限定逆冲-褶皱构造变形速率的不确定性

  • 3.1 与阶地定年策略相关的不确定性

  • 河流阶地是约束下伏构造变形幅度、时间和速率的重要参考面,而阶地年龄则是相关分析的重要前提。河流阶地年龄是指河流下切侵蚀,导致原先的河谷底部(河漫滩或河床)超过一般洪水位以上、形成阶地的时间(杨景春等,2012)。一般用阶地沉积顶部的样品来约束阶地形成年龄。比如用阶地面暴露的漂砾的宇宙成因核素(如10Be、26Al等)年龄来确定,或者用阶地沉积顶部样品的光释光年龄进行约束。若阶地沉积没有合适的测年材料(赋含石英或长石的细颗粒砂、含石英的小砾石、炭屑等)用于定年,则利用阶地沉积的上覆堆积等进行确定,比如用阶地上覆黄土堆积的底界年龄确定阶地形成年龄。基于以上方法确定的阶地年龄,应该是阶地年龄的偏大值或偏小值。若用其中一个年龄约束阶地年龄,进而计算构造变形速率,可能导致变形速率偏小或者偏大。对于年轻阶地(晚更新世末—全新世)而言,这种偏差可能较大,也就是变形速率可能存在较大的不确定性。

  • 图1 北天山及其山麓基本构造格局、地形与河流系统

  • Fig.1 Characteristics of tectonics, topography and river systems in the northern Chinese Tianshan Mountains

  • 图2 逆断裂相关背斜生长、扩展及其河流地貌响应(部分基于Avouac et al.,1993; Lu Honghua et al.,2019

  • Fig.2 Growth of the thrust-related fold and its fluvial geomorphological response (partially based on Avouac et al., 1993; Lu Honghua et al., 2019)

  • (a)—先成河阶段,背斜未出露地表;(b)—背斜基岩抬升、出露地表,河流下切、形成阶地;(c)—伴随背斜发生显著的生长扩展,背斜区发育的河流阶地发生拱曲变形;(d)—年龄越老的阶地,其所记录的累积变形幅度越大

  • (a) —Stage of antecedent river when the underlying structure has not surface topographic expression; (b) —as river incision caused by significant rock uplift of the fold, the terraces are formed; (c) —the terraces will be folded in response to significant growth and propagation of the fold; (d) —the older terraces will document more deformation

  • 图3 天山北麓三个泉河T2阶地年代样品采样剖面(测年结果据Pang Lichen et al.,2021

  • Fig.3 The sampled profile where three OSL samples were taken to date the abandonment age of the Sangequan River terrace T2 in the northern Chinese Tianshan foreland (the dating data after Pang Lichen et al., 2021)

  • (a)—2017年于阶地沉积顶部的极细砂夹层采集光释光样品SGQ5;(b)—2018年于同一采样剖面采集光释光样品,其中样品 SGQ9a与SGQ5采于同一层位,SGQ10a采于阶地上覆黄土堆积的底部

  • (a) —Sample SGQ5 was taken from the layer of very fine sand at the top of terrace deposits during the year 2017; (b) —sample SGQ9a was taken from the same layer of SGQ5 in 2018, and sample SGQ10a was taken from the base of the loess covering the terrace sediments

  • 以天山北麓三个泉河T2阶地为例说明这种潜在的不确定性。三个泉河流域面积不大,其由南向北穿过天山北麓第II排构造带的霍尔果斯背斜东端,在背斜区共发育3级阶地(T1~T3)。霍尔果斯逆断裂活动已造成两级高阶地(T2、T3)发生明显的断错变形(Pang Lichen et al.,2021)。基于实测的阶地砾石层顶部高程剖面,确定T2阶地自废弃以来记录的累积垂直位错量为8.0±1.0 m,T3阶地记录的垂直位错量31±3.1 m。基于40°的断层倾角,确定T2、T3阶地各自记录的断层累计滑动量分别为12.4±1.6 m、48.2±4.7 m(Pang Lichen et al.,2021)。为确定阶地年龄,2017年在T2阶地沉积顶部的极细砂层中采集了一个光释光(OSL)样品SGQ5,测年结果为18.0±5.7 ka(图3a)。为更好地约束阶地年龄,2018年又在同一剖面采集了两个OSL样品,其中一个与SGQ5的采样层位相同,另一个在上覆黄土的底部(图3b)。结果显示,新采的极细砂样品年龄与2017年样品的结果非常一致,为17.8±2.4 ka(Pang Lichen et al.,2021),由此认为测年结果是非常可靠的。在其他两个T2阶地沉积剖面中,上部细砂夹层的OSL年龄分别为17.9±2.8 ka、18.6±2.8 ka(Pang Lichen et al.,2021)。基于4个阶地沉积顶部年龄,确定T2阶地的形成年龄不老于18.1 +1.86/-1.79 ka。上覆黄土底界样品的年龄为12.2±1.6 ka(图3b),由此确定T2阶地的年龄不小于12 ka。T2阶地最大年龄与最小年龄相差约6 ka。基于T2阶地记录的12.4±1.6 m的断层滑动量,用这两个年龄通过蒙特卡洛模拟得到的断层滑动速率分别为0.69±0.12 mm/a和1.02+0.22/-0.19 mm/a。显然,用黄土底界年龄(T2阶地最小可能年龄)得到的变形速率比由阶地沉积顶部年龄(T2阶地最大可能年龄)得到的速率增大了约50%。

  • 当阶地年龄更老时,分别用阶地沉积顶部年龄和上覆堆积底界年龄约束阶地年龄,进而计算得到的变形速率是否也可能存在较明显的差异?假定某一更老阶地的阶地沉积顶部年龄为30 ka、上覆黄土底界年龄为24 ka(上覆黄土底界年龄和阶地沉积顶部年龄存在和上面实测年龄结果相似的时间差),该阶地也记录了同样的断层滑移量(12.4±1.6 m),由此得到两个相当的滑动速率,分别为0.41 mm/a、0.52 mm/a。由此可见,对于年轻阶地(晚更新世末—全新世),利用阶地沉积顶部年龄、上覆黄土底界年龄得到的变形速率可能存在比较大的差异,对于天山北麓三个泉河的T2阶地,这种差异为50%; 对于更老的阶地,这两个速率则基本一样。基于此,为更好地利用年轻阶地约束下伏构造的变形速率,理想情况是基于阶地沉积顶部年龄和上覆堆积的底界年龄获得变形速率的最可能区间。

  • 进一步联合三个泉河T3阶地约束霍尔果斯断裂的滑动速率。根据T2阶地沉积底部样品的测年结果,估计河流下切导致T3阶地废弃不晚于60±6 ka(Pang Lichen et al.,2021)。自该级阶地废弃以来霍尔果斯断裂的累积滑动量为48.2±4.7 m(Pang Lichen et al.,2021)。结合T2阶地的数据,通过蒙特卡洛模拟得到的霍尔果斯逆断裂晚第四纪的平均活动速率为0.8 mm/a(图4)。假定构造变形速率在晚第四纪保持不变,该估计值接近于由T2阶地沉积顶部年龄约束的变形速率(0.69±0.12 mm/a),而明显小于由T2阶地上覆黄土的底界年龄约束的变形速率(1.02+0.22/-0.19 mm/a)。因此认为,若现实条件不允许用多级阶地约束构造活动速率(如没有多级阶地保留,或者仅部分阶地沉积有适合测年的材料),用某级阶地沉积顶部年龄约束得到的变形速率可能更加接近于真实值,或者说不确定性相对较小。

  • 3.2 与河流间阶地横向对比有关的不确定性

  • 有时会通过河流间阶地横向对比,基于某条河已定年阶地的年龄确定另一条河未定年阶地的形成年龄。但在背斜构造不断横向生长扩展的背景下,这种估计阶地年龄的方法可能带来很大的不确定性。图5中发育三条河流a、b、c,均流经潜在的背斜发育区(背斜为下伏构造)。在背斜生长未在地表形成明显的正地形、未对河流过程造成明显的影响之前,这些河流均表现为一样的加积过程(图5中的阶段1)。当背斜进一步生长扩展,其最先在累积变形最大的地点出露于地表、形成正地形,从而影响河流b的沉积过程,背斜区基岩抬升、河流下切形成阶地,发育形成的阶地随后受到背斜生长而产生拱曲变形,但此时河流a和c尚未受到背斜生长的影响(图5中的阶段2)。随着背斜进一步生长、扩展至河流a和c流经的地区,河流a和c对背斜生长的响应将与之前河流b一样,主要的加积过程停止,河流下切、阶地形成(图5中的阶段3)。相对而言,河流b发育的最老阶地由于遭受变形的时间更长,因此变形幅度最大。总体来看,沿构造走向,河流过程对构造活动(逆断裂相关背斜的生长、扩展)的响应存在非同步性。在此情况下,基于河流间阶地的横向对比,由已定年阶地确定未定年阶地年龄的做法,可能产生阶地年龄的不确定性,据此得到的变形速率也将存在潜在的不确定性。

  • 图4 基于三个泉河T2、T3阶地数据,通过蒙特卡洛模拟得到的霍尔果斯逆断裂滑动速率

  • Fig.4 The rate of thrusting on the Huoerguos fault constrained by terraces T2 and T3 of the Sangequan river by using the Monte Carlo modeling

  • 以天山北麓背斜区发育的晚第四纪河流地貌为例进行探讨。天山北麓的河流多发育于山内的冰川冰缘区,在山前发育的河流地貌的宏观结构具有很强的相似性(Lu Honghua et al.,20102020)(图6)。基于多年的工作以及前人的认识(张培震等,1995; Lu Honghua et al.,20102020),认为天山北麓的河流主要发育3期冲积扇,分别为图6中咖啡色(FP)、黄色(FeH)、草绿色(FlH)标识的范围,再往外侧就是洪积平原(图6); 每一期冲积扇对应一级主要的阶地。天山北麓河流间宏观河流地貌结构的相似性,已被认为是晚第四纪区域性气候变化的结果(Molnar et al.,1994; 张培震等,1995; Lu Honghua et al.,20102020)。相似的宏观地貌结构,是否允许通过不同河流阶地序列之间的横向对比,基于某一河流阶地的已知年龄,来估计另一条河流未定年阶地的年龄?以在第II排构造带的霍尔果斯背斜区发育的河流阶地为例进行探讨。金沟河、三个泉河分别横切霍尔果斯背斜中部和东端(图1、6)。从宏观地貌结构上看,这两条河在背斜区发育同一期冲积扇FeH,即图6中黄色标记的范围。这期冲积扇分别对应于金沟河在背斜区发育的T5阶地、三个泉河在背斜区发育的T2阶地(Lu Honghua et al.,2020; Pang Lichen et al.,2021)。在野外能够非常容易地观察到:这两级阶地面平坦、宽阔,沿河流连续分布; 过背斜后阶地面呈现为FeH冲积扇扇面。OSL测年结果表明,金沟河T5阶地年龄应稍晚于12 ka(Lu Honghua et al.,2010)。若通过河流间阶地对比,似乎可以确定三个泉河T2阶地也形成于这一时间,但实际的OSL测年结果表明该阶地年龄在12~18 ka之间(Pang Lichen et al.,2021)(图3)。

  • 实际上,现有的测年结果也揭示,尽管天山北麓各河流的宏观地貌结构相似,但各河流发育的主要地貌单元(冲积扇和对应的河流阶地)的废弃年龄存在一定差异。目前已对这三期冲积扇发育与废弃时间开展了不少年代学工作(Molnar et al.,1994; 邓起东等,2000; Poisson et al.,2004; 袁庆东等,2006; Lu Honghua et al.,20102015201720182020; 杨晓平等,2012; Gong Zhijun et al.,2014; Fu Xiao et al.,2017; Malatesta et al.,2018; Su Peng et al.,2018)。年代数据显示,天山北麓三期冲积扇废弃时间分别为中—晚更新世(FP)、更新世末期—全新世早期(FeH)、以及晚全新世(FlH)(Lu Honghua et al.,2020),可见每期主要冲积扇的废弃(对应的阶地形成)时间存在一定范围,即:各河流下切存在时间上的不完全同步性。这种不同步性,或许是测年方法自身缺陷或误差产生的表面上的不等时性,但也可能缘于不同河流在流域面积、局部构造背景等方面的差异,抑或是河流动态演化过程的复杂性所致。综合来看,气候变化(如冰期-间冰期气候旋回)(Bender et al.,20182020; Lu Honghua et al.,2020)、区域整体构造抬升或掀斜(杨景春等,2011; Burbank et al.,2012; Pan Baotian et al.,2013),能够形成区域性的宏观地貌结构,这便于河流间的地貌序列对比。但局部生长构造(如生长背斜)的存在(图6),将使得通过河流间阶地对比确定的某一未定年阶地的年龄变得不那么可靠。

  • 图5 逆断裂及其相关背斜生长和扩展的河流响应(沉积加积、阶地形成、阶地面变形)(T1、T2是河流阶地)(据Pang Lichen et al.,2021修改)

  • Fig.5 Fluvial responses (sediment accumulation, terrace formation, and deformation of geomorphic surface) to growth and propagation of a thrust fault and its overlying fold (T1 and T2 are river terraces) (modified from Pang Lichen et al., 2021)

  • 图6 天山北麓主要河流发育的三期冲积扇(基于谷歌地球影像),其废弃时间分别为中—晚更新世(FP)、更新世末—全新世早期(FeH)、以及晚全新世(FlH)(据Lu Honghua et al.,2020修改)

  • Fig.6 Three main episodes of alluvial fan growth of the main rivers in the northern Chinese Tianshan foreland (based on the Google Earth images) . Fans are designated FP (Middle—Late Pleistocene fans) , FeH (Latest Pleistocene—Early Holocene fans) , and FlH (Late Holocene fans) (modified from Lu Honghua et al., 2020)

  • 3.3 特定(收敛/发散)阶地位相的指示意义

  • 在天山北麓,河流出山后多形成深切河谷,如山麓西侧的奎屯河出山口,河流下切可达300 m,在金沟河出山口,最大下切深度近200 m。在祁连山北麓也存在相似的深切河谷(Pan Baotian et al.,2013; Xiong Jianguo et al.,2017),如山麓西侧的北大河、洪水坝河,东侧的洪水河、童子坝河,其中洪水坝河在山前的最大下切深度达120 m。这些河谷的下切深度是否存在沿程变化?为此,利用基于参考阶地面重建古地貌面(河流下切前的古河床面)的方法(Burbank et al.,2012),得到了四条河流(奎屯河、金沟河、玛纳斯河、乌鲁木齐河)出山后河流下切深度的沿程变化特征(Lu Honghua et al.,2020),即:自出山口向盆地方向,基于参考阶地的河流下切深度从最大值逐渐减小至0。也就是说,在河流出山口,阶地拔河高度最大,向下游同一级阶地的拔河高度逐渐减小(图7); 阶地位相呈现向盆地方向收敛的特征。进一步结合参考阶地的年龄得到的下切速率也呈现相似的变化,比如奎屯河在出山口的下切速率达到25 mm/a,向盆地方向逐渐减小至0 mm/a(Lu Honghua et al.,2020)。河流下切速率的这种空间差异(图7),是否能够用来揭示构造变形速率的空间差异,即:靠近山地一侧的构造抬升速率大,而向盆地一侧构造抬升速率小?

  • 最近的工作进一步表明,晚第四纪以来,天山北麓山麓背斜带构造上不活动,变形集中在靠盆地一侧的背斜构造,即第II排、第III排逆断裂-背斜带; 整个山麓地区全新世南北向地壳缩短速率为2~4 mm/a(Lu Honghua et al.,2019)。进一步结合1~2 mm/a的断层活动速率(Avouac et al.,1993; Pang Lichen et al.,2021),这样的构造活动速率显然不能解释河流在山前最高约25 mm/a的下切速率。反过来说,天山北麓河流下切(深度和速率)的空间差异(向盆地方向减小),不能等同于构造变形(幅度与速率)的空间差异。研究表明,天山晚第四纪经历了多期冰川发育过程(崔之久等,1998),而天山北麓的主要河流均发育于冰川冰缘区。由此认为,天山北麓向盆地呈收敛状的阶地位相,可能主要是气候变化(冰期-间冰期气候变化)导致的河床坡度变化的结果,而后者本质上缘于碎屑物质与河流流量比率的变化(Poisson et al.,2004; Malatesta et al.,2018; Lu Honghua et al.,2020)。冰期时冰川侵蚀产生大量粗碎屑物质。在冰期向间冰期转化初期,河流搬运碎屑物质堆积在山前,形成地形坡度相对较大的冲积扇。伴随碎屑物质减少(碎屑物质与河流流量比率变小),河流下切能力增强,河流下切导致冲积扇废弃、阶地形成,同时降低河床坡度、在下游形成新的冲积扇,最终导致在整个山麓地区河流阶地位相呈现向盆地方向收敛的特征。对于跨背斜发育保留的河流阶地所呈现的向背斜两翼收敛的位相特征,则一定是构造成因,其记录了下伏背斜的变形历史(图2)。这种局部的阶地位相特征,会对整个山麓地区的阶地位相造成一定调整,但不会改变阶地位相整体上呈现向下游收敛的趋势(Lu Honghua et al.,2020)。

  • 相似的收敛状阶地位相也见于北美阿拉斯加的Fortymile河(Bender et al.,20182020)。这条河主要发育两级河流阶地(T1、T2),其均沿河流干流和北、西两个支流连续分布(Bender et al.,20182020)。阶地位相分析结果显示,高阶地T1拔河高度向上游逐渐减小,即呈现向上游收敛的特征; 低阶地T2的拔河高度地则上下游基本一致,阶地面与河床纵剖面平行。基于宇宙成因核素埋藏定年结果和区域气候与地貌研究,作者发现,由于2.4 Ma时的Yukon河袭夺,造成了Fortymile河在此时的强烈下切、侵蚀波溯源逐渐形成了T1阶地,从而使得该阶地的拔河高度向上游逐渐减小; 上游段该级阶地的年龄为1.8 Ma,溯源速率为270 km/Ma(Bender et al.,20182020)。而Fortymile河T2阶地的形成则响应于1 Ma左右的区域气候转型(中更新世气候革命)而导致的全流域下切,从而使得该阶地沿程年龄和拔河高度均一致(Bender et al.,20182020)。这由此引发一个问题:若阶地沿河分布不连续,根据阶地拔河高度与年龄的长距离阶地对比,并依此划分阶地序列的做法是否可行?至少就本研究来说,需要慎重。

  • 图7 天山北麓河流下切深度与速率的空间模式(据Lu Honghua et al.,2020修改)

  • Fig.7 Spatial patterns of depth and rates of river incision in the northern Chinese Tianshan foreland (modified from Lu Honghua et al., 2020)

  • 河流在山前发育洪积扇,随后河流下切、形成多级阶地; 洪积扇扇面沿河床表现为一级河流阶地。在整个山麓带地区,各河流的主要下切过程均呈现时间上的大致同步性,表明气候对阶地发育的控制作用。河流下切深度与速率向盆地方向呈现逐渐减小的趋势,则不能视之为指示差异性的构造活动。河流A的T1~T3阶地分别对应于河流B的Ta~Tc阶地

  • Along the mountain front of active orogenic belts, alluvial fans are abandoned due to intensive river incision and the fan surfaces are geomorphologically presented as terraces. Here, terraces T1~T3 of river A correspond to terraces Ta~Tc of river B, respectively. Across the foreland, the approximate synchronization of river incision may reveal the main control of climate on incision and terrace formation. However, the general trend of depth and rate of river incision of decreasing basinward could not be interpreted to be indicative of differential tectonic activity outward from the mountain to the foreland basin

  • 3.4 基于参考地貌面的变形量低估造成的变形速率的不确定性

  • 在造山带山前,河流地貌,如阶地或者洪积扇常跨背斜发育,或者断层穿过这些地貌单元形成地形陡坎。通过无人机测量或者LiDAR获取地貌面变形区域的高精度地形(任志坤等,2014; Xiong Jianguo et al.,2017),或者利用差分GPS实测垂直于构造走向的地形剖面(Cao Xilin et al.,20192021; Pang Lichen et al.,2021),可以确定自地貌面形成以来下伏背斜的地壳缩短量或基岩抬升量,断裂的垂直滑动量。但由于背斜翼部或者断层下降盘的相对构造下沉,早期的地貌面将可能被埋藏(图8)。若利用在背斜区或者断层上升盘保留的地貌面为变形参考面,将难以准确确定下伏构造的变形量。变通的方法之一是基于区域晚新生代沉积速率,基于地貌面的年龄反推埋藏地貌面的深度(Fu Xiao et al.,2017),进而估计基于该参考地貌面的变形量。考虑到沉积过程和速率可能存在时间和空间上的变化,而活动构造区河流地貌面的年龄一般偏年轻(年龄上一般为晚第四纪),因此这样的估计就可能存在较大的不确定性。另外,自地貌面形成后的局部侵蚀(如阶地面上的小型冲沟侵蚀与坡面侵蚀,Liu Qingri et al.,2021b)或沉积作用(如阶地面上的次级小型冲积扇堆积,Pang Lichen et al.,2021),也会改变其形态,从而在一定程度上增加利用地貌面准确刻画下伏构造变形特征的难度。

  • 图8 活动造山带山前逆断裂相关背斜核部和两翼差异性的河流阶地发育。背斜翼部,由于相对构造下沉导致老阶地被埋藏

  • Fig.8 Different types of river terraces in the wings and core of the anticline in the mountain front of an active orogenic belt. Terraces are buried in the anticlinal wings owing to sedimentation caused by relative subsidence

  • 4 结论

  • 利用河流地貌面作为变形参考面刻画下伏构造的变形特征,是构造地貌、活动构造研究的常用方法,但该方法在具体运用时可能会产生一些不确定性。在逆冲构造背景下,笔者认为需要特别注意以下几个方面的不确定性:

  • (1)利用阶地沉积顶部年龄、上覆堆积底界年龄分别得到的阶地年龄,为阶地年龄的偏大值和偏小值。对于天山北麓三个泉河的T2阶地,这两者的差值为约6 ka。对于晚更新世末—全新世的年轻阶地而言,由上述阶地年龄得到的变形速率可能相差较大,本研究结果为50%。但对于更老阶地,这两个速率可能差别不大。建议用多级阶地约束下伏构造连续速率的最可能区间,或者用阶地沉积顶部年龄约束变形速率,其不确定性可能相对较小。

  • (2)逆断裂相关褶皱处于不断生长、扩展过程中。在利用河流阶地精细刻画构造变形速率时,对于同一背斜构造上发育的不同河流,用某条河已定年阶地的年龄,基于阶地对比确定另一河流未定年阶地的年龄,需要慎重。

  • (3)造山带山前或山内的河流下切深度/速率呈现的特定空间特征,可能并不一定具有明确的构造意义,或者说构造因素的贡献不一定占主导。

  • (4)对于跨背斜或者断层的地貌面,由于背斜翼部或断层下降盘相对构造下沉,早期地貌面将可能被埋藏,这增加了利用该地貌面精细刻画下伏构造变形特征的难度。

  • 致谢:感谢评审专家和期刊编辑的意见和建议!本文涉及的工作经历10余年,先后有司苏沛、张天琪、王振、程璐、李冰晶、关雪等参与。

  • 参考文献

    • Avouac J P, Tapponnier P, Bai M, You H, Wang G. 1993. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of Tarim relative to Dzungaria and Kazakhstan. Journal of Geophysical Research, 98(B4): 6755~6804.

    • Bender A M, Lease R O, Corbett L B, Bierman P R, Caffee M W. 2018. Ongoing bedrock incision of the Fortymile River driven by Pliocene-Pleistocene Yukon River capture, eastern Alaska, USA, and Yukon, Canada. Geology, 46(7): 635~638.

    • Bender A M, Lease R O, Corbett L B, Bierman P R, Caffee M W, Rittenour T M. 2020. Late Cenozoic climate change paces landscape adjustments to Yukon River capture. Nature Geoscience, 13: 571~575.

    • Burbank D W. 2005. Cracking the Himalaya. Nature, 434: 963~964.

    • Burbank D W, Anderson R S. 2012. Tectonic Geomorphology (Second Edition). New Jersey: Wiley-Blackwell.

    • Cao Xilin, Hu Xiaofei, Pan Baotian, Zhang Jian, Wang Wei, Mao Junwei, Liu Xiaopeng. 2019. A fluvial record of fault-propagation folding along the northern Qilian Shan front, NE Tibetan Plateau. Tectonophysics, 755: 35~46.

    • Cao Xilin, Hu Xiaofei, Pan Baotian, Zhao Qiming, Chen Taian, Ji Xianghe, Zhao Zhijun. 2021. Using fluvial terraces as distributed deformation offset markers: implications for deformation kinematics of the North Qilian Shan Fault. Geomorphology, 386: 107750.

    • Cui Zhijiu, Xiong Heigang, Liu Gengnian, Zhu Cheng, Yi Chaolu. 1998. Geomorphic Processes and Sedimentary Characters of the Cryosphere in the Central Tian Shan. Shijiazhuang: Science and Technology Press (in Chinese).

    • Deng Qidong, Feng Xianyue, Zhang Peizhen, Xu Xiwei, Yang Xiaoping, Peng Sizhen, Li Jun. 2000. Active Tectonics of the Tian Shan Mountains. Beijing: Seismology Press (in Chinese).

    • Fu Xiao, Li Shenghua, Li Bo, Fu Bihong. 2017. A fluvial terrace record of late Quaternary folding rate of the Anjihai anticline in the northern piedmont of Tian Shan, China. Geomorphology, 278: 91~104.

    • Gong Zhijun, Li Shenghua, Li Bo. 2014. The evolution of a terrace sequence along the Manas River in the northern foreland basin of Tian Shan, China, as inferred from optical dating. Geomorphology, 213: 201~212.

    • He Honglin, Song Fangmin, Li Chuanyou. 1999. Topographic survey of micro faulted landform and estimation of strike slip rate for the Zemuhe fault, Sichuan Province. Seismology and Geology, 21(4): 361~369 (in Chinese with English abstract).

    • Hu Xiaofei, Pan Baotian, Gao Hongshan, Hu Zhenbo, Cao Bo, Li Qingyang, Geng Haopeng. 2013. Development of Holocene fluvial terraces in the eastern Qilianshan Mountains and its relationship with climate changes. Quaternary Sciences, 33(4): 1~14 (in Chinese with English abstract).

    • Jolivet M, Barrier L, Dominguez S, Guerit L, Heilbronn G, Fu Bihong. 2014. Unbalanced sediment budgets in the catchment-alluvial fan system of the Kuitun River (northern Tian Shan, China): implications for mass-balance estimates, denudation and sedimentation rates in orogenic systems. Geomorphology, 214: 168~182.

    • Jolivet M, Braucher R, Dovchintseren D, Hocquet S, Schmitt J M, ASTER Team. 2021. Erosion around a large-scale topographic high in a semi-arid sedimentary basin: interactions between fluvial erosion, aeolian erosion and aeolian transport. Geomorphology, 386: 107747.

    • Lease R O, Ehlers T A. 2016. Incision into the eastern Andean Plateau during Pliocene cooling. Science, 341: 774~776.

    • Li Tao, Chen Jie. 2014. Using deformed fluvial terraces to constrain growth mechanism and rates of thrust related fold: methods and recognition. Seismology and Geology, 36(2): 478~488 (in Chinese with English abstract).

    • Li Xuemei, Zhang Huiping. 2017. Transient fluvial landscape: features, processes and its implication for tectonic-climate interaction. Quaternary Sciences, 37(2): 416~430 (in Chinese with English abstract).

    • Li Youli, Si Supei, Lü Shenghua, Wang Yiran. 2012. Tectonic and climatic controls on the development of the Kuitun River terraces in the northern piedmont of Tianshan Mountains. Quaternary Sciences, 32(5): 880~890 (in Chinese with English abstract).

    • Liu Jing, Zhang Jinyu, Ge Yukui, Wang Wei, Lin Xu. 2018. Tectonic geomorphology: an interdisciplinary study of the interaction among tectonic climatic and surface processes. Chinese Science Bulletin, 63(30): 3070~3088 (in Chinese).

    • Liu Qingri, Li Youli, Zhang Huiping, Huang Feipeng, Zhao Xudong, Lei Jinghao, Xin Weilin, Xiong Jianguo, Zhang Peizhen. 2021. Effects of erosion and deposition on constraining vertical slip rates of thrust faults: a case study of the Minle-Damaying fault in the north Qilian Shan, NE Tibetan Plateau. Frontiers in Earth Science, 9: 635702.

    • Liu Ya, Wang Xianyan, Su Qi, Yi Shuangwen, Miao Xiaodong, Li Yiquan, Lu Huayu. 2021a. Late Quaternary terrace formation from knickpoint propagation in the headwaters of the Yellow River, NE Tibetan Plateau. Earth Surface Processes and Landform, 46(14): 2788~2806.

    • Lu Honghua, Burbank D W, Li Youli. 2010. Alluvial sequence in the north piedmont of the Chinese Tian Shan over the past 550 kyr and its relationship to climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(3-4): 343~353.

    • Lu Honghua, Wang Zhen, Zhang Tianqi, Zhao Junxiang, Zheng Xiangmin, Li Youli. 2015. Latest Miocene to Quaternary deformation in the southern Chaiwopu basin, northern Chinese Tian Shan foreland. Journal of Geophysical Research-Solid Earth, 120(12): 8656~8671.

    • Lu Honghua, Wu Dengyun, Cheng Lu, Zhang Tianqi, Xiong Jianguo, Zheng Xiangmin, Li Youli. 2017. Late Quaternary drainage evolution in response to fold growth in the northern Chinese Tian Shan foreland. Geomorphology, 299: 12~23.

    • Lu Honghua, Cheng Lu, Wang Zhen, Zhang Tianqi, Zheng Xiangmin. 2018. Latest Quaternary rapid river incision across an inactive fold in the northern Chinese Tian Shan foreland. Quaternary Science Review, 179: 167~181.

    • Lu Honghua, Li Bingjing, Wu Dengyun, Zhao Junxiang, Zheng Xiangmin, Xiong Jianguo, Li Youli. 2019. Spatiotemporal patterns of the late Quaternary deformation across the northern Chinese Tian Shan foreland. Earth-Science Reviews, 194: 19~37.

    • Lu Honghua, Wu Dengyun, Zhang Huiping, Ma Yuanxu, Li Youli. 2020. Spatial patterns of Late Quaternary river incision along the northern Tian Shan foreland. Geomorphology, 357: 107100.

    • Lü Honghua, Li Youli. 2020. Development of tectonic geomorphology study promoted by new methods in China: a viewpoint from reviewing the Tian Shan researches. Advances in Earth Science, 35(6): 594~606 (in Chinese with English abstract).

    • Ma Yan, Zheng Dewen, Zhang Huiping, Pang Jianzhang, Wang Weitao, Wang Yizhou, Wu Ying, He Huaiyu, Stuart F M, Xu Sheng. 2021. Plio-Pleistocene establishemtn of Irtysh River in Junggar, Northwest China: implications for Siberian-Arctic river system evolution and resulting climate impact. Geophysical Research Letters, 48(12): e2021GL093217.

    • Malatesta L C, AvouacJ P, Brown N D, Breitenbach S F M, Pan Jiawei, Chevalier M L, Rhodes E, Saint-Carlier D, Zhang Wenjing, Charreau J, Lavé J, Blard P H. 2018. Lag and mixing during sediment transfer across the Tian Shan piedmont caused by climate-driven aggradation-incision cycles. Basin Research, 30: 613~635.

    • Molnar P, Brown E T, Burchfiel B C, Deng Qidong, Feng Xianyue, Li Jun, Raisbeck G M, Shi Jianbang, Wu Zhangming, Yiou F, You Huichuan. 1994. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tianshan, China. Journal of Geology, 102: 583~602.

    • Nie Junsheng, Ruetenik G, Gallagher K, Hoke G, Garzione C N, Wang Weitao, Stockli D, Hu Xiaofei, Wang Zhao, Wang Ying, Stevens T, Danišík M, Liu Shanpin. 2018. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience, 11: 944~948.

    • Pan Baotian, Burbank D W, Wang Yixiang, Wu Guangjian, Li Jijun, Guan Qingyu. 2003. A 900 k. y. record of strath terrace formation during glacial-interglacial transitions in northwest China. Geology, 31: 957~960.

    • Pan Baotian, Hu Zhenbo, Hu Xiaofei, Zhang Cheng, Li Fuqiang. 2012. Time-slice of the fluvial elution in the northern Jinshaan gorge during Late Cenozoic. Quaternary Sciences, 32(1): 111~121 (in Chinese with English abstract).

    • Pan Baotian, Hu Xiaofei, Gao Hongshan, Hu Zhenbo, Cao Bo, Geng Haopeng, Li Qiong. 2013. Late quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan Mountain, China. Geomorphology, 184 (430): 84~97.

    • Pan Jiawei, Li Haibing, Chevalier M L, Bai Mingkun, Liu Fucai, Zheng Yong, Lu Haijian, Zhao Zhongbao. 2020. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: the South Mugecuo fault. Acta Geologica Sinica, 94(11): 3178~3188 (in Chinese with English abstract).

    • Pang Lichen, Lu Honghua, Wu Dengyun, Guan Xue, Li Youli. 2021. Late Pleistocene uniform rate of thrusting along the fault strike: a case study from the northern Tian Shan foreland. Tectonics, 40(4): e2021TC006726.

    • Poisson B, Avouac J P, 2004. Holocene hydrological changes inferred from alluvial stream entrenchment in north Tian Shan (northwestern China). Journal of Geology, 112: 231~249.

    • Ren Zhikun, Chen Tao, Zhang Huiping, Zheng Wenjun, Zhang Peizhen. 2014. LiDAR survey in active tectonics studies: an introduction and overview. Acta Geologica Sinica, 88(6): 1196~1207 (in Chinese with English abstract).

    • Su Peng, He Honglin, Wei Zhanyu, Lu Renqi, Shi Feng, Sun Haoyue, Tan Xibin, Hao Haijian. 2018. A new shortening rate across the Dushanzi anticline in the northern Tian Shan mountains, China from lidar data and a seismic reflection profile. Journal of Asian Earth Science, 163: 131~141.

    • Wang Nailiang, Han Mukang. 1984. Theory, method, application and trend of tectonic geomorphology. In: Selected Conference Papers of the First Symposium on Tectonic Geomorphology of Chinese Geographical Society. Beijing: Science Press (in Chinese).

    • Wu Zhonghai, Zhang Yongshuang, Hu Daogong, Zhao Xitao, Ye Peisheng. 2007. Quaternary normal faulting and its dynamics of the oiga graben in south-eastern Tibet. Acta Geologica Sinica, 81(10): 1328~1239 (in Chinese with English abstract).

    • Xinjiang Institute of Geography of Chinese Academy of Sciences. 1986. Evolutions of the Tianshan Mountains. Beijing: Science Press (in Chinese).

    • Xiong Jianguo, Li Youli, Zhong Yuezhi, Lu Honghua, Lei Jinhao, Xin Weilin, Wang L, Hu Xiu, Zhang Peizhen. 2017. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the eastern Qilian Shan, NE Tibetan Plateau. Tectonics, 36: 2973~2986.

    • Yang Jingchun. 1983. Relationship between morphotectonic evolution and Quaternary tectonic stress state in north and northeastern China. Acta Geographica Sinica, 38(3): 218~228 (in Chinese with English abstract).

    • Yang Jingchun, Tan Lihua, Li Youli, Duan Fengjun. 1998. River terraces and neotectonic evolution at north margin of the Qilianshan mountains. Quaternary Sciences, 18(3): 229~237 (in Chinese with English abstract).

    • Yang Jingchun, Li Youli. 2011. Active Tectonic Geomorphology. Beijing: Peking University Press (in Chinese).

    • Yang Jingchun, Li Youli. 2012. The Principle of Geomorphology (3rd). Beijing: Peking University Press (in Chinese).

    • Yang Xiaoping, Li An, Huang Weiliang. 2012. Uplift differential of active fold zones during the late Quaternary, northern piedmonts of the Tianshan Mountains, China. Science China: Earth Science, 42(12): 1877~1888.

    • Yuan Qingdong, Guo Zhaojie, Zhang Zhicheng, Wu Chaodong, Fang Shihu. 2006. The Late Cenozoic deformation of terraces on the north flank of Tian Shan Mountains and the tectonic evolution. Acta Geologica Sinica, 80(2): 210~216 (in Chinese with English abstract).

    • Zhang Huiping, Zhang Peizhen, Champagnac J D, Molnar P, Anderson R. 2014. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau. Geology, 42(4): 303~306.

    • Zhang Ke, Cai Jianbo. 2006. Preliminary result of the dating by TCN technique of the highest terrace of the Heishanxia gorge mouth, northeast margin of Tibetan Plateau and its expression of neotectonics movement in that area. Quaternary Sciences, 26(1): 85~91 (in Chinese with English abstract).

    • Zhang Peizhen. 2003. Late Cenozoic tectonic deformation in the Tian Shan and its foreland basins. Chinese Science Bulletin, 48(24): 2499~2450 (in Chinese).

    • Zhang Peizhen, Deng Qidong, Xu Xiwei, Yang Xiaoping, Wu Zhangmin, Feng Xianyue, Li Jun, Zhao Ruibin, Tang Wei. 1993. Tectonic deformation, crustal shortening, and slip rate estimation along the Manas reverse fault-fold zone in the northern flank of the Tian Shan Mountains. In: Editing Committee of the Research of Active Fault, eds. Research of Active Fault (III). Beijing: Seismology Press, 18~32 (in Chinese with English abstract).

    • Zhang Peizhen, Deng Qidong, Yang Xiaoping, Feng Xianyue, Peng Sizhen, Zhao Ruibin. 1995. Glaciofluvial fan and neotectonic movement along the north piedmont of Tian Shan Mountains. In: Editing Committee of the Research of Active fault, eds. Research of Active Fault (IV). Beijing: Seismology Press, 63~78 (in Chinese with English abstract).

    • Zhang Shimin, Ren Junjie, Nie Gaozhong. 2007. Paragenesisia of Quaternary pediments and river terraces on north piedmont of Wutai mountains. Chinese Science Bulletin, 52(2): 215~222 (in Chinese).

    • Zhang Tianqi, Lü Honghua, Zhao Junxiang, Zheng Xiangmin. 2014. Fluvial terrace formation and tectonic uplift rate——a case study of Late Quaternary fluvial process in the north piedmont of the Tian Shan, northwestern China. Quaternary Sciences, 34(2): 281~291 (in Chinese with English abstract).

    • Zheng Wenjun, Zhang Peizhen, Yuan Daoyang, Ge Weipeng, Liu Jianhui. 2009. Discovery of surface rupture zone on the south of Helishan in Gaotai, Gansu Province. Seismology and Geology, 31(2): 247~255 (in Chinese with English abstract).

    • 崔之久, 熊黑钢, 刘耕年, 朱诚, 易朝璐. 1998. 中天山冰冻圈地貌过程与沉积特征. 石家庄: 河北科技出版社.

    • 邓起东, 冯先岳, 张培震, 徐锡伟, 杨晓平, 彭斯震, 李军. 2000. 天山活动构造. 北京: 地震出版社.

    • 何宏林, 宋方敏, 李传友. 1999. 四川则木河断裂带微断层地貌的地形测量和走滑速率的估算. 地震地质, 21(4): 361~369.

    • 胡小飞, 潘保田, 高红山, 胡振波, 曹泊, 李清洋, 耿豪鹏. 2013. 祁连山东段全新世河流阶地发育及其与气候变化的关系研究. 第四纪研究, 33(4): 1~14.

    • 李涛, 陈杰. 2014. 利用河流阶地限定活动逆断层相关褶皱晚第四纪变形机制和速率: 方法和认识. 第四纪研究, 36(2): 478~488.

    • 李雪梅, 张会平. 2017. 河流瞬时地貌: 特征、过程及其构造-气候相互作用内涵. 第四纪研究, 37(2): 416~430.

    • 李有利, 司苏沛, 吕胜华, 王怡然. 2012. 构造运动和气候变化对天山北麓奎屯河阶地发育的影响作用. 第四纪研究, 32(5): 880~890.

    • 刘静, 张金玉, 葛玉魁, 王伟, 林旭. 2018. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究. 科学通报, 63(30): 3070~3088.

    • 吕红华, 李有利. 2020. 不断融入新元素的我国构造地貌学研究: 以天山为例. 地球科学进展, 35(6): 594~606.

    • 潘保田, 胡振波, 胡小飞, 张忱, 李富强. 2012. 晋陕峡谷北段晚新生代河流演化初步研究. 第四纪研究, 32(1): 111~121.

    • 潘家伟, 李海兵, Chevalier M L, 白明坤, 刘富财, 刘栋梁, 郑勇, 卢海建, 赵中宝. 2020. 鲜水河断裂带色拉哈-康定段新发现的活动断层: 木格措南断裂. 地质学报, 94(11): 3178~3188.

    • 任治坤, 陈涛, 张会平, 郑文俊, 张培震. 2014. LiDAR技术在活动构造研究中的应用. 地质学报, 88(6): 1196~1207.

    • 王乃樑, 韩慕康. 1984. 构造地貌学的理论、方法、运用与动向//中国地理学会第一次构造地貌学术讨论会论文选集. 北京: 科学出版社.

    • 吴中海, 张永双, 胡道功, 赵希涛, 叶培盛. 2007. 西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨. 地质学报, 81(10): 1328~1339.

    • 杨景春. 1983. 中国北部和东北部构造地貌发育和第四纪构造应力状态的关系. 地理学报, 38(3): 218~228.

    • 杨景春, 谭利华, 李有利, 段烽军. 1998. 祁连山北麓河流阶地与新构造演化. 第四纪研究, 18(3): 229~237.

    • 杨景春, 李有利. 2011. 活动构造地貌学. 北京: 北京大学出版社.

    • 杨景春, 李有利. 2012. 地貌学原理(第三版). 北京: 北京大学出版社.

    • 杨晓平, 李安, 黄伟亮. 2012. 天山北麓活动褶皱带晚第四纪时期隆升的差异性. 中国科学: 地球科学, 42(12): 1877~1888.

    • 袁庆东, 郭召杰, 张志诚, 吴朝东, 方式虎. 2006. 天山北缘河流阶地形成及构造变形定量分析. 地质学报, 80(2): 210~216.

    • 张珂, 蔡剑波. 2006. 黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动. 第四纪研究, 26(1): 85~91.

    • 张培震. 2003. 天山及其前陆盆地的晚新生代构造变形. 科学通报, 48(24): 2499~2450.

    • 张培震, 邓起东, 徐锡伟, 杨晓平, 吴章明, 冯先岳, 李军, 赵瑞斌, 唐巍. 1993. 天山北麓玛纳斯活动逆断裂-褶皱带的变形特征与构造演化. 见: 活动断裂研究编辑委员会, 活动断裂研究 (Ⅲ), 北京: 地震出版社, 18~32.

    • 张培震, 邓起东, 杨晓平, 冯先岳, 彭斯震, 赵瑞斌. 1995. 天山北麓的冰水冲洪积扇与新构造运动. 见: 活动断裂研究编辑委员会, 活动断裂研究 (Ⅳ), 北京: 地震出版社, 63~78.

    • 张天琪, 吕红华, 赵俊香, 郑祥民. 2014. 河流阶地演化与构造抬升速率——以天山北麓晚第四纪河流作用为例. 第四纪研究, 34(2): 281~291.

    • 张世民, 任俊杰, 聂高众. 2007. 五台山北麓第四纪麓原面与河流阶地的共生关系. 科学通报, 52(2): 215~222.

    • 郑文俊, 张培震, 袁道阳, 葛伟鹏, 刘建辉. 2009. 甘肃高台合黎山南缘发现地震地表破裂带. 地震地质, 31(2): 247~255.

    • 中国科学院新疆地理研究所. 1986. 天山山体演化. 北京: 科学出版社.

  • 参考文献

    • Avouac J P, Tapponnier P, Bai M, You H, Wang G. 1993. Active thrusting and folding along the northern Tien Shan and Late Cenozoic rotation of Tarim relative to Dzungaria and Kazakhstan. Journal of Geophysical Research, 98(B4): 6755~6804.

    • Bender A M, Lease R O, Corbett L B, Bierman P R, Caffee M W. 2018. Ongoing bedrock incision of the Fortymile River driven by Pliocene-Pleistocene Yukon River capture, eastern Alaska, USA, and Yukon, Canada. Geology, 46(7): 635~638.

    • Bender A M, Lease R O, Corbett L B, Bierman P R, Caffee M W, Rittenour T M. 2020. Late Cenozoic climate change paces landscape adjustments to Yukon River capture. Nature Geoscience, 13: 571~575.

    • Burbank D W. 2005. Cracking the Himalaya. Nature, 434: 963~964.

    • Burbank D W, Anderson R S. 2012. Tectonic Geomorphology (Second Edition). New Jersey: Wiley-Blackwell.

    • Cao Xilin, Hu Xiaofei, Pan Baotian, Zhang Jian, Wang Wei, Mao Junwei, Liu Xiaopeng. 2019. A fluvial record of fault-propagation folding along the northern Qilian Shan front, NE Tibetan Plateau. Tectonophysics, 755: 35~46.

    • Cao Xilin, Hu Xiaofei, Pan Baotian, Zhao Qiming, Chen Taian, Ji Xianghe, Zhao Zhijun. 2021. Using fluvial terraces as distributed deformation offset markers: implications for deformation kinematics of the North Qilian Shan Fault. Geomorphology, 386: 107750.

    • Cui Zhijiu, Xiong Heigang, Liu Gengnian, Zhu Cheng, Yi Chaolu. 1998. Geomorphic Processes and Sedimentary Characters of the Cryosphere in the Central Tian Shan. Shijiazhuang: Science and Technology Press (in Chinese).

    • Deng Qidong, Feng Xianyue, Zhang Peizhen, Xu Xiwei, Yang Xiaoping, Peng Sizhen, Li Jun. 2000. Active Tectonics of the Tian Shan Mountains. Beijing: Seismology Press (in Chinese).

    • Fu Xiao, Li Shenghua, Li Bo, Fu Bihong. 2017. A fluvial terrace record of late Quaternary folding rate of the Anjihai anticline in the northern piedmont of Tian Shan, China. Geomorphology, 278: 91~104.

    • Gong Zhijun, Li Shenghua, Li Bo. 2014. The evolution of a terrace sequence along the Manas River in the northern foreland basin of Tian Shan, China, as inferred from optical dating. Geomorphology, 213: 201~212.

    • He Honglin, Song Fangmin, Li Chuanyou. 1999. Topographic survey of micro faulted landform and estimation of strike slip rate for the Zemuhe fault, Sichuan Province. Seismology and Geology, 21(4): 361~369 (in Chinese with English abstract).

    • Hu Xiaofei, Pan Baotian, Gao Hongshan, Hu Zhenbo, Cao Bo, Li Qingyang, Geng Haopeng. 2013. Development of Holocene fluvial terraces in the eastern Qilianshan Mountains and its relationship with climate changes. Quaternary Sciences, 33(4): 1~14 (in Chinese with English abstract).

    • Jolivet M, Barrier L, Dominguez S, Guerit L, Heilbronn G, Fu Bihong. 2014. Unbalanced sediment budgets in the catchment-alluvial fan system of the Kuitun River (northern Tian Shan, China): implications for mass-balance estimates, denudation and sedimentation rates in orogenic systems. Geomorphology, 214: 168~182.

    • Jolivet M, Braucher R, Dovchintseren D, Hocquet S, Schmitt J M, ASTER Team. 2021. Erosion around a large-scale topographic high in a semi-arid sedimentary basin: interactions between fluvial erosion, aeolian erosion and aeolian transport. Geomorphology, 386: 107747.

    • Lease R O, Ehlers T A. 2016. Incision into the eastern Andean Plateau during Pliocene cooling. Science, 341: 774~776.

    • Li Tao, Chen Jie. 2014. Using deformed fluvial terraces to constrain growth mechanism and rates of thrust related fold: methods and recognition. Seismology and Geology, 36(2): 478~488 (in Chinese with English abstract).

    • Li Xuemei, Zhang Huiping. 2017. Transient fluvial landscape: features, processes and its implication for tectonic-climate interaction. Quaternary Sciences, 37(2): 416~430 (in Chinese with English abstract).

    • Li Youli, Si Supei, Lü Shenghua, Wang Yiran. 2012. Tectonic and climatic controls on the development of the Kuitun River terraces in the northern piedmont of Tianshan Mountains. Quaternary Sciences, 32(5): 880~890 (in Chinese with English abstract).

    • Liu Jing, Zhang Jinyu, Ge Yukui, Wang Wei, Lin Xu. 2018. Tectonic geomorphology: an interdisciplinary study of the interaction among tectonic climatic and surface processes. Chinese Science Bulletin, 63(30): 3070~3088 (in Chinese).

    • Liu Qingri, Li Youli, Zhang Huiping, Huang Feipeng, Zhao Xudong, Lei Jinghao, Xin Weilin, Xiong Jianguo, Zhang Peizhen. 2021. Effects of erosion and deposition on constraining vertical slip rates of thrust faults: a case study of the Minle-Damaying fault in the north Qilian Shan, NE Tibetan Plateau. Frontiers in Earth Science, 9: 635702.

    • Liu Ya, Wang Xianyan, Su Qi, Yi Shuangwen, Miao Xiaodong, Li Yiquan, Lu Huayu. 2021a. Late Quaternary terrace formation from knickpoint propagation in the headwaters of the Yellow River, NE Tibetan Plateau. Earth Surface Processes and Landform, 46(14): 2788~2806.

    • Lu Honghua, Burbank D W, Li Youli. 2010. Alluvial sequence in the north piedmont of the Chinese Tian Shan over the past 550 kyr and its relationship to climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(3-4): 343~353.

    • Lu Honghua, Wang Zhen, Zhang Tianqi, Zhao Junxiang, Zheng Xiangmin, Li Youli. 2015. Latest Miocene to Quaternary deformation in the southern Chaiwopu basin, northern Chinese Tian Shan foreland. Journal of Geophysical Research-Solid Earth, 120(12): 8656~8671.

    • Lu Honghua, Wu Dengyun, Cheng Lu, Zhang Tianqi, Xiong Jianguo, Zheng Xiangmin, Li Youli. 2017. Late Quaternary drainage evolution in response to fold growth in the northern Chinese Tian Shan foreland. Geomorphology, 299: 12~23.

    • Lu Honghua, Cheng Lu, Wang Zhen, Zhang Tianqi, Zheng Xiangmin. 2018. Latest Quaternary rapid river incision across an inactive fold in the northern Chinese Tian Shan foreland. Quaternary Science Review, 179: 167~181.

    • Lu Honghua, Li Bingjing, Wu Dengyun, Zhao Junxiang, Zheng Xiangmin, Xiong Jianguo, Li Youli. 2019. Spatiotemporal patterns of the late Quaternary deformation across the northern Chinese Tian Shan foreland. Earth-Science Reviews, 194: 19~37.

    • Lu Honghua, Wu Dengyun, Zhang Huiping, Ma Yuanxu, Li Youli. 2020. Spatial patterns of Late Quaternary river incision along the northern Tian Shan foreland. Geomorphology, 357: 107100.

    • Lü Honghua, Li Youli. 2020. Development of tectonic geomorphology study promoted by new methods in China: a viewpoint from reviewing the Tian Shan researches. Advances in Earth Science, 35(6): 594~606 (in Chinese with English abstract).

    • Ma Yan, Zheng Dewen, Zhang Huiping, Pang Jianzhang, Wang Weitao, Wang Yizhou, Wu Ying, He Huaiyu, Stuart F M, Xu Sheng. 2021. Plio-Pleistocene establishemtn of Irtysh River in Junggar, Northwest China: implications for Siberian-Arctic river system evolution and resulting climate impact. Geophysical Research Letters, 48(12): e2021GL093217.

    • Malatesta L C, AvouacJ P, Brown N D, Breitenbach S F M, Pan Jiawei, Chevalier M L, Rhodes E, Saint-Carlier D, Zhang Wenjing, Charreau J, Lavé J, Blard P H. 2018. Lag and mixing during sediment transfer across the Tian Shan piedmont caused by climate-driven aggradation-incision cycles. Basin Research, 30: 613~635.

    • Molnar P, Brown E T, Burchfiel B C, Deng Qidong, Feng Xianyue, Li Jun, Raisbeck G M, Shi Jianbang, Wu Zhangming, Yiou F, You Huichuan. 1994. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tianshan, China. Journal of Geology, 102: 583~602.

    • Nie Junsheng, Ruetenik G, Gallagher K, Hoke G, Garzione C N, Wang Weitao, Stockli D, Hu Xiaofei, Wang Zhao, Wang Ying, Stevens T, Danišík M, Liu Shanpin. 2018. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience, 11: 944~948.

    • Pan Baotian, Burbank D W, Wang Yixiang, Wu Guangjian, Li Jijun, Guan Qingyu. 2003. A 900 k. y. record of strath terrace formation during glacial-interglacial transitions in northwest China. Geology, 31: 957~960.

    • Pan Baotian, Hu Zhenbo, Hu Xiaofei, Zhang Cheng, Li Fuqiang. 2012. Time-slice of the fluvial elution in the northern Jinshaan gorge during Late Cenozoic. Quaternary Sciences, 32(1): 111~121 (in Chinese with English abstract).

    • Pan Baotian, Hu Xiaofei, Gao Hongshan, Hu Zhenbo, Cao Bo, Geng Haopeng, Li Qiong. 2013. Late quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan Mountain, China. Geomorphology, 184 (430): 84~97.

    • Pan Jiawei, Li Haibing, Chevalier M L, Bai Mingkun, Liu Fucai, Zheng Yong, Lu Haijian, Zhao Zhongbao. 2020. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: the South Mugecuo fault. Acta Geologica Sinica, 94(11): 3178~3188 (in Chinese with English abstract).

    • Pang Lichen, Lu Honghua, Wu Dengyun, Guan Xue, Li Youli. 2021. Late Pleistocene uniform rate of thrusting along the fault strike: a case study from the northern Tian Shan foreland. Tectonics, 40(4): e2021TC006726.

    • Poisson B, Avouac J P, 2004. Holocene hydrological changes inferred from alluvial stream entrenchment in north Tian Shan (northwestern China). Journal of Geology, 112: 231~249.

    • Ren Zhikun, Chen Tao, Zhang Huiping, Zheng Wenjun, Zhang Peizhen. 2014. LiDAR survey in active tectonics studies: an introduction and overview. Acta Geologica Sinica, 88(6): 1196~1207 (in Chinese with English abstract).

    • Su Peng, He Honglin, Wei Zhanyu, Lu Renqi, Shi Feng, Sun Haoyue, Tan Xibin, Hao Haijian. 2018. A new shortening rate across the Dushanzi anticline in the northern Tian Shan mountains, China from lidar data and a seismic reflection profile. Journal of Asian Earth Science, 163: 131~141.

    • Wang Nailiang, Han Mukang. 1984. Theory, method, application and trend of tectonic geomorphology. In: Selected Conference Papers of the First Symposium on Tectonic Geomorphology of Chinese Geographical Society. Beijing: Science Press (in Chinese).

    • Wu Zhonghai, Zhang Yongshuang, Hu Daogong, Zhao Xitao, Ye Peisheng. 2007. Quaternary normal faulting and its dynamics of the oiga graben in south-eastern Tibet. Acta Geologica Sinica, 81(10): 1328~1239 (in Chinese with English abstract).

    • Xinjiang Institute of Geography of Chinese Academy of Sciences. 1986. Evolutions of the Tianshan Mountains. Beijing: Science Press (in Chinese).

    • Xiong Jianguo, Li Youli, Zhong Yuezhi, Lu Honghua, Lei Jinhao, Xin Weilin, Wang L, Hu Xiu, Zhang Peizhen. 2017. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the eastern Qilian Shan, NE Tibetan Plateau. Tectonics, 36: 2973~2986.

    • Yang Jingchun. 1983. Relationship between morphotectonic evolution and Quaternary tectonic stress state in north and northeastern China. Acta Geographica Sinica, 38(3): 218~228 (in Chinese with English abstract).

    • Yang Jingchun, Tan Lihua, Li Youli, Duan Fengjun. 1998. River terraces and neotectonic evolution at north margin of the Qilianshan mountains. Quaternary Sciences, 18(3): 229~237 (in Chinese with English abstract).

    • Yang Jingchun, Li Youli. 2011. Active Tectonic Geomorphology. Beijing: Peking University Press (in Chinese).

    • Yang Jingchun, Li Youli. 2012. The Principle of Geomorphology (3rd). Beijing: Peking University Press (in Chinese).

    • Yang Xiaoping, Li An, Huang Weiliang. 2012. Uplift differential of active fold zones during the late Quaternary, northern piedmonts of the Tianshan Mountains, China. Science China: Earth Science, 42(12): 1877~1888.

    • Yuan Qingdong, Guo Zhaojie, Zhang Zhicheng, Wu Chaodong, Fang Shihu. 2006. The Late Cenozoic deformation of terraces on the north flank of Tian Shan Mountains and the tectonic evolution. Acta Geologica Sinica, 80(2): 210~216 (in Chinese with English abstract).

    • Zhang Huiping, Zhang Peizhen, Champagnac J D, Molnar P, Anderson R. 2014. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau. Geology, 42(4): 303~306.

    • Zhang Ke, Cai Jianbo. 2006. Preliminary result of the dating by TCN technique of the highest terrace of the Heishanxia gorge mouth, northeast margin of Tibetan Plateau and its expression of neotectonics movement in that area. Quaternary Sciences, 26(1): 85~91 (in Chinese with English abstract).

    • Zhang Peizhen. 2003. Late Cenozoic tectonic deformation in the Tian Shan and its foreland basins. Chinese Science Bulletin, 48(24): 2499~2450 (in Chinese).

    • Zhang Peizhen, Deng Qidong, Xu Xiwei, Yang Xiaoping, Wu Zhangmin, Feng Xianyue, Li Jun, Zhao Ruibin, Tang Wei. 1993. Tectonic deformation, crustal shortening, and slip rate estimation along the Manas reverse fault-fold zone in the northern flank of the Tian Shan Mountains. In: Editing Committee of the Research of Active Fault, eds. Research of Active Fault (III). Beijing: Seismology Press, 18~32 (in Chinese with English abstract).

    • Zhang Peizhen, Deng Qidong, Yang Xiaoping, Feng Xianyue, Peng Sizhen, Zhao Ruibin. 1995. Glaciofluvial fan and neotectonic movement along the north piedmont of Tian Shan Mountains. In: Editing Committee of the Research of Active fault, eds. Research of Active Fault (IV). Beijing: Seismology Press, 63~78 (in Chinese with English abstract).

    • Zhang Shimin, Ren Junjie, Nie Gaozhong. 2007. Paragenesisia of Quaternary pediments and river terraces on north piedmont of Wutai mountains. Chinese Science Bulletin, 52(2): 215~222 (in Chinese).

    • Zhang Tianqi, Lü Honghua, Zhao Junxiang, Zheng Xiangmin. 2014. Fluvial terrace formation and tectonic uplift rate——a case study of Late Quaternary fluvial process in the north piedmont of the Tian Shan, northwestern China. Quaternary Sciences, 34(2): 281~291 (in Chinese with English abstract).

    • Zheng Wenjun, Zhang Peizhen, Yuan Daoyang, Ge Weipeng, Liu Jianhui. 2009. Discovery of surface rupture zone on the south of Helishan in Gaotai, Gansu Province. Seismology and Geology, 31(2): 247~255 (in Chinese with English abstract).

    • 崔之久, 熊黑钢, 刘耕年, 朱诚, 易朝璐. 1998. 中天山冰冻圈地貌过程与沉积特征. 石家庄: 河北科技出版社.

    • 邓起东, 冯先岳, 张培震, 徐锡伟, 杨晓平, 彭斯震, 李军. 2000. 天山活动构造. 北京: 地震出版社.

    • 何宏林, 宋方敏, 李传友. 1999. 四川则木河断裂带微断层地貌的地形测量和走滑速率的估算. 地震地质, 21(4): 361~369.

    • 胡小飞, 潘保田, 高红山, 胡振波, 曹泊, 李清洋, 耿豪鹏. 2013. 祁连山东段全新世河流阶地发育及其与气候变化的关系研究. 第四纪研究, 33(4): 1~14.

    • 李涛, 陈杰. 2014. 利用河流阶地限定活动逆断层相关褶皱晚第四纪变形机制和速率: 方法和认识. 第四纪研究, 36(2): 478~488.

    • 李雪梅, 张会平. 2017. 河流瞬时地貌: 特征、过程及其构造-气候相互作用内涵. 第四纪研究, 37(2): 416~430.

    • 李有利, 司苏沛, 吕胜华, 王怡然. 2012. 构造运动和气候变化对天山北麓奎屯河阶地发育的影响作用. 第四纪研究, 32(5): 880~890.

    • 刘静, 张金玉, 葛玉魁, 王伟, 林旭. 2018. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究. 科学通报, 63(30): 3070~3088.

    • 吕红华, 李有利. 2020. 不断融入新元素的我国构造地貌学研究: 以天山为例. 地球科学进展, 35(6): 594~606.

    • 潘保田, 胡振波, 胡小飞, 张忱, 李富强. 2012. 晋陕峡谷北段晚新生代河流演化初步研究. 第四纪研究, 32(1): 111~121.

    • 潘家伟, 李海兵, Chevalier M L, 白明坤, 刘富财, 刘栋梁, 郑勇, 卢海建, 赵中宝. 2020. 鲜水河断裂带色拉哈-康定段新发现的活动断层: 木格措南断裂. 地质学报, 94(11): 3178~3188.

    • 任治坤, 陈涛, 张会平, 郑文俊, 张培震. 2014. LiDAR技术在活动构造研究中的应用. 地质学报, 88(6): 1196~1207.

    • 王乃樑, 韩慕康. 1984. 构造地貌学的理论、方法、运用与动向//中国地理学会第一次构造地貌学术讨论会论文选集. 北京: 科学出版社.

    • 吴中海, 张永双, 胡道功, 赵希涛, 叶培盛. 2007. 西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨. 地质学报, 81(10): 1328~1339.

    • 杨景春. 1983. 中国北部和东北部构造地貌发育和第四纪构造应力状态的关系. 地理学报, 38(3): 218~228.

    • 杨景春, 谭利华, 李有利, 段烽军. 1998. 祁连山北麓河流阶地与新构造演化. 第四纪研究, 18(3): 229~237.

    • 杨景春, 李有利. 2011. 活动构造地貌学. 北京: 北京大学出版社.

    • 杨景春, 李有利. 2012. 地貌学原理(第三版). 北京: 北京大学出版社.

    • 杨晓平, 李安, 黄伟亮. 2012. 天山北麓活动褶皱带晚第四纪时期隆升的差异性. 中国科学: 地球科学, 42(12): 1877~1888.

    • 袁庆东, 郭召杰, 张志诚, 吴朝东, 方式虎. 2006. 天山北缘河流阶地形成及构造变形定量分析. 地质学报, 80(2): 210~216.

    • 张珂, 蔡剑波. 2006. 黄河黑山峡口最高阶地宇宙核素的初步年龄及所反映的新构造运动. 第四纪研究, 26(1): 85~91.

    • 张培震. 2003. 天山及其前陆盆地的晚新生代构造变形. 科学通报, 48(24): 2499~2450.

    • 张培震, 邓起东, 徐锡伟, 杨晓平, 吴章明, 冯先岳, 李军, 赵瑞斌, 唐巍. 1993. 天山北麓玛纳斯活动逆断裂-褶皱带的变形特征与构造演化. 见: 活动断裂研究编辑委员会, 活动断裂研究 (Ⅲ), 北京: 地震出版社, 18~32.

    • 张培震, 邓起东, 杨晓平, 冯先岳, 彭斯震, 赵瑞斌. 1995. 天山北麓的冰水冲洪积扇与新构造运动. 见: 活动断裂研究编辑委员会, 活动断裂研究 (Ⅳ), 北京: 地震出版社, 63~78.

    • 张天琪, 吕红华, 赵俊香, 郑祥民. 2014. 河流阶地演化与构造抬升速率——以天山北麓晚第四纪河流作用为例. 第四纪研究, 34(2): 281~291.

    • 张世民, 任俊杰, 聂高众. 2007. 五台山北麓第四纪麓原面与河流阶地的共生关系. 科学通报, 52(2): 215~222.

    • 郑文俊, 张培震, 袁道阳, 葛伟鹏, 刘建辉. 2009. 甘肃高台合黎山南缘发现地震地表破裂带. 地震地质, 31(2): 247~255.

    • 中国科学院新疆地理研究所. 1986. 天山山体演化. 北京: 科学出版社.