en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李春麟,男,1983年生。博士,副研究员,从事构造地质学研究。E-mail:geolcl@163.com。

通讯作者:

张凯逊,男,1985年生。博士,副研究员,主要从事全球油气资源评价及储层地质学研究。E-mail:zhangkaixun@126.com。

参考文献
Alexeiev D V, Biske Y S, Djenchuraeva, Kröner A, Getman O F. 2019. Late Carboniferous (Kasimovian) closure of the South Tianshan Ocean: no Triassic subduction. Journal of Asian Earth Sciences, 173: 54~60.
参考文献
Bande A, Radjabov S, Sobel E R, Sim T. 2015. Cenozoic palaeoenvironmental and tectonic controls on the evolution of the northern Fergana Basin. In: Brunet M F, McCann T, Sobel E R, eds. Geological Evolution of Central Asian Basins and the Western Tien Shan Range. Geological Society London Special Publications, 427: 313~335.
参考文献
Cao Yong, Sun Zhiming, Li Haibing, Pei Junling, Liu Dongliang, Zhang Lei, Ye Xiaozhou, Zheng Yong, He Xiangli, Ge Chenglong, Wan Jiang. 2019. New paleomagnetic results from Middle Jurassic limestones of the Qiangtang terrane, Tibet: constraints on the evolution of the Bangong-Nujiang Ocean. Tectonics, 38: 215~232.
参考文献
Che Zicheng, Luo Jinhai, Liu Liang. 1997. The basic structure classification and genetic analyses of oil- and gas-bearing basins in Central Asia and northwestern China. Acta Geoscientia Sinica, 18(2): 113~121 (in Chinese with English abstract).
参考文献
Chen Qiang, Jin Qinghuan. 2018. Characteristics of hydrocarbon accumulation in Fergana basin and its controlling factors. Marine Geology Frontiers, 34(7): 9~14 (in Chinese with English abstract).
参考文献
Dolgopolova A, Seltmann R, Konopelko D, Biske Y S, Shatov V, Armstrong R, Belousova E, Pankhurst R, Koneev R, Divaev F. 2017. Geodynamic evolution of the western Tien Shan, Uzbekistan: Insights from U-Pb SHRIMP geochronology and Sr-Nd-Pb-Hf isotope mapping of granitoids. Gondwana Research, 47: 76~109.
参考文献
Feng Yangwei, Ren Yan, Qu Hongjun, Wang Yun, Jiang Ting. 2021. Permian hydrocarbon accumulation factors in the Jimunai-Zaysan basin, China-Kazakhstan border. Acta Geologica Sinica, 95(6): 1935~1948 (in Chinese with English abstract).
参考文献
Gao Bo, Long Shengxiang, Liu Bin. 2007. Analogy analysis on petroleum geological characteristics of the foreland basins between western China and Central Asia. Natural Gas Geoscience, 18(2): 187~223 (in Chinese with English abstract).
参考文献
George A D, Marshallsea S J, Wyrwoll K H, Chen Jie, Lu Yanchou. 2001. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology, 29(10): 939~942.
参考文献
Han Fengbin, Chen Zhengle, Han Shuqin, Wang Zongxiu, Zhang Kaixun, Xiao Weifeng, Takenov N, Halilov Z. Li Chunlin, Yu Xinqi, Liu Xiu. 2017. New understanding of Uranium deposit genesis in Mayly-Szi region on the north margin of Fergana basin: Cenozoic large-scale hydrocarbon escape and uranium mineralization. Geology in China, 44(4): 810~811 (in Chinese with English abstract).
参考文献
He Dengfa, Zhang Lei, Wu Songtao, Li Di, Zhen Yu. 2018. Tectonic evolution stages and features of the Junggar basin. Oil &Gas Geology, 39(5): 845~861 (in Chinese with English abstract).
参考文献
Hecker R T, Ossipova A I, Belskaya T N. 1963. Fergana gulf of Paleogene sea of Central Asia, its history, sediments, fauna and flora, their environment and evolution. AAPG Bulletin, 47(4): 617~631.
参考文献
Hou Ping, Tian Zuoji, Zheng Junzhang, Wang Zhaoping, Wu Yiping. 2014. Evaluation of conventional hydrocarbon resources in sedimentary basins of central Asia region. Earth Science Frontier, 21(3): 56~62 (in Chinese with English abstract).
参考文献
Huang Haiping, Fu Heng. 2008. Petroleum geology and hydrocarbon potential in the Zhezkazgan region of the Chu-Sarysu Basin, Kazakhstan. Sedimentary geology and Tethyan Geology, 28(2): 20~26 (in Chinese with English abstract).
参考文献
Ismail S A, Koshnaw R I, Barber D E, Humadi H A, Stockli D F. 2020. Generation and exhumation of granitoid intrusions in the Penjween ophiolite complex, NW Zagros of the Kurdistan region of Iraq: Implications for the geodynamic evolution of the Arabian-Eurasian collision zone. Lithos, 376~377: 105714.
参考文献
Ji Changjun, Wu Zhenhan, Liu Zhiwei, Zhao Zhen. 2019. Structural features of thrust nappes in the Qiangtang basin and hydrocarbon resources effect. Journal of Geomechanics, 26(S1): 66~71 (in Chinese with English abstract).
参考文献
Jiang Shengling, Li Bo, Zhang Jinchuan. 2015. Potential of the oil and gas resources of Fergana basin. Petroleum Geology and Engineering, 29(4): 47~50 (in Chinese with English abstract).
参考文献
Klett T R, Ulmishek G K, Wandrey C J, Agena, W F, U. S. Geological Survey-Afghanistan Ministry of Mines and Industry Joint Oil and Gas Resource Assessment Team. 2016. Assessment of undiscovered technically recoverable conventional petroleum resource of Northern Afghanistan. U. S. Geological Survey Open-file Report 2006-1253, Version 1. 0.
参考文献
Konopelko D, Wilde S A, Seltmann R, Romer R L, Biske Y S. 2018. Early Permian intrusions of the Alai Range: Understanding tectonic setting of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan. Lithos, 302-303: 405~420.
参考文献
Lei Jianshe. 2011. Seismic tomographic imaging of the crust and upper mantle under the central and western Tien Shan orogenic bel. Journal of Geophysical Research, 116: B09305.
参考文献
Li Yuwen, Yu Chaofeng, Xiong Shaoyun, Chen Nenggui, Qu Jianhua. 2011. Petroleum geology characteristics and exploration potential of Carboniferous rocks in Ili basin. Marine Origin Petroleum Geology, 16(3): 30~37 (in Chinese with English abstract).
参考文献
Liu Chuanpeng, Lin Chengyan, Zhao Yuhua, Zhang Jiaodong. 2008. Oil and gas potential and new exploration targets in Ferganskaya Dolina. Sedimentary Geology and Tethyan Geology, 28(1): 96~102 (in Chinese with English abstract).
参考文献
Liu Zhen, Wang Peng, Zhang Hongmei, Liang Quansheng, Cang Hui, Liu Ying. 2016. Formation and evolution of Fergana basin and its controlling effect on hydrocarbon accumulation. Xinjiang Petroleum Geology, 37(1): 120~124 (in Chinese with English abstract).
参考文献
Molnar P, Stock J M. 2009. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28: TC3001.
参考文献
Nurtaev B, Kharin V, Mccann T, Valdivia-Manchego M. 2013. The North Nuratau fault zone, Uzbekistan-structure and evolution of a Palaeozoic suture zone. Journal of Geodynamics, 64: 1~14.
参考文献
Pan Shubiao, Liao Yuhong, Jiang Bin, Wan Zhixiong, Wang Fu. 2022. Impact of natural weathering on source rocks: Organic and inorganic geochemical evidence from the Triassic Chang 7 outcrop profile in Tongchuan of the Southern Ordos basin (China). International Journal of Coal Geology, 263(1): 104119.
参考文献
Ritts B D, Yue Yongjun, Graham S A, Sobel E R, Abbink O A, Stockli D. 2008. From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan. American Journal of Science, 308(5): 657~678.
参考文献
Shakerardakani F, Neubauer F, Masoudi F, Mehrabi B, Liu Xiaoming, Dong Yunpeng, Mohajjel M, Monfaredi B, Friedl G. 2015. Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud-Azna region (NW Iran): Laser-ablation ICP-MS zircon ages and geochemistry. Tectonophysics, 647-648: 146~171.
参考文献
Taskyn A, Li Jianghai, Li Honglin, Li Weibo, Mao Xiang, Wang Honghao. 2014. Tectonic evolution and hydrocarbon potential of basins in Central Asia and its adjacent regions. Geoscience, 28(3): 573~584 (in Chinese with English abstract).
参考文献
Wang Xiaojun, Song Yong, Zheng Menglin, Ren Haijiao, Wu Haisheng, He Wenjun, Wang Tao, Wang Xiatian, Zhao Changyong, Guo Jianchen. 2021. Composite petroleum system and multi-stage hydrocarbon accumulation in Junggar basin. China Petroleum Exploration, 26(4): 29~43 (in Chinese with English abstract).
参考文献
Wang Zongxiu, Li Chunlin, Pak N, Yu Xinqi, Zhou Gaozhi, Xiao Weifeng, Han Shuqin, Halilov Z, Takenov N, Yan Xili. 2017. Tectonic division and Paleozoic ocean-continent transition in Western Tianshan Orogen. Geology in China, 44(4): 623~641 (in Chinese with English abstract).
参考文献
Wu Fuyuan, Wan Bo, Zhao Liang, Xiao Wenjiao, Zhu Rixiang. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627~1674 (in Chinese with English abstract).
参考文献
Xu Hong, Yang Yufeng. 2014. Ultra-deep petroleum accumulation systems in Fergana basin. Petroleum Geology and Experiment, 36(4): 450~458 (in Chinese with English abstract).
参考文献
Ye Fawang, Wang Jiangang, Qiu Junting, Zhang Chuan, Yu Xinqi, Liu Xiu. 2020. Study oncorrelation between total oroganic carbon, soluble hydrocarbon, pyrolytic hydrocarbon content and spectral index in source rocks. Spectroscopy and Spectral Analysis, 40(4): 1001~1006 (in Chinese with English abstract).
参考文献
Yu Yixin, Yin Jinyin, Zheng Junzhang, Li Feng, Tao Chongzhi, Xu Xiaolong, Wu Hang. 2015. Division and resources evaluation of hydrocarbon plays in the Amu Darya basin, Central Asia. Petroleum Exploration and Development, 42(6): 750~756 (in Chinese with English abstract).
参考文献
Yue Yongjun, Liou J G. 1999. Two-stage evolution model for the Altyn Tagh fault, China. Geology, 27(3): 227~230.
参考文献
Zhang Kaixun, Han Shuqin, Wang Zongxiu, Tao Chongzhi, Han Fengbin, Li Chunlin, Li Xiaoshi, Halilov Z, Takenov N, 2018. Characteristics of petroleum systems and resources potential in the Afghan-Tajik basin. Geology in China, 45(5): 920~930 (in Chinese with English abstract).
参考文献
Zhu Xiangfeng, Shen Chuanbo, Zhao Bin, Hu Shouzhi, Ge Xiang, Wang Liang. 2022. Multi-stage hydrocarbon migration and accumulation of Permian petroleum system in the Zaysan basin, NE Kazakhstan. Journal of Petroleum Science and Engineering, 208: 109291.
参考文献
Zhu Yixiu, Liu Luofu, Lin, Changsong. 2005. Petroleum geology of Fergana basin in Central Asia. Journal of Lanzhou University (Natural Sciences), 41(1): 25~31 (in Chinese with English abstract).
参考文献
Zhu Yixiu, Liu Luofu. 2005. Characteristics of structures and evolution in Fergana basin, Central Asia. Inner Mongolia Petrochemical Industry, 2: 92~94 (in Chinese with English abstract).
参考文献
Zuo Guochao, Zhang Zuoheng, Wang Zhiliang, Liu Min, Wang Longsheng. 2008. Tectonic division, stratigraphical system and the evolution of western Tianshan mountains, Xinjiang. Geological Reviews, 54(6): 731~751 (in Chinese with English abstract).
参考文献
Zuza A V, Yin A. 2017. Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains. Geosphere, 13(5): doi: 10. 1130/GES01463. 1.
参考文献
车自成, 罗金海, 刘良. 1997. 中亚与中国西北地区含油气盆地基本类型及成因分析. 地球学报, 18(2): 113~121.
参考文献
陈强, 金庆焕. 2018. 费尔干纳盆地油气成藏特征及其主控因素分析. 海洋地质前沿, 34(7): 9~14.
参考文献
冯杨伟, 任艳, 屈红军, 王云, 姜婷. 2021. 中哈边境吉木乃—斋桑盆地二叠系油气成藏要素. 地质学报, 95(6): 1935~1948.
参考文献
高波, 龙胜祥, 刘彬. 2007. 中国西部与中亚前陆盆地油气地质特征类比分析. 天然气地球科学, 18(2): 187~223.
参考文献
韩凤彬, 陈正乐, 韩淑琴, 王宗秀, 张凯逊, 肖伟峰, Takenov N, Halilov Z. 李春麟, 余心起, 刘秀. 2017. 费尔干纳盆地北缘Mayly-Szi地区铀矿成因新认识: 新生代大规模油气逸散与铀成矿. 中国地质, 44(4): 810~811.
参考文献
何登发, 张磊, 吴松涛, 李涤, 甄宇. 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845~861.
参考文献
侯平, 田作基, 郑俊章, 王兆平, 吴义平. 2014. 中亚沉积盆地常规油气资源评价. 地学前缘, 21(3): 66~62.
参考文献
黄海平, 傅恒. 2008. 哈萨克斯坦楚—萨雷苏盆地热兹卡兹甘地区石油地质特征及含油气远景评价. 沉积与特提斯地质, 28(2): 20~26.
参考文献
季长军, 吴珍汉, 刘志伟, 赵珍. 2019. 羌塘盆地逆冲推覆构造特征及油气资源效应. 地质力学学报, 25(S1): 66~71.
参考文献
姜生玲, 李博, 张金川. 2015. 费尔干纳盆地油气资源潜力再认识. 石油地质与工程, 29(4): 47~50.
参考文献
李玉文, 余朝丰, 熊绍云, 陈能贵, 瞿建华. 2011. 伊犁盆地石炭系石油地质特征与勘探潜力. 海相油气地质, 16(3): 30~37.
参考文献
刘传鹏, 林承焰, 赵玉华, 张交东. 2008. 费尔干纳盆地油气资源潜力与勘探新领域. 沉积与特提斯地质, 28(1): 96~102.
参考文献
刘阵, 王鹏, 张洪美, 梁全胜, 仓辉, 刘瑛. 2016. 费尔干纳盆地形成演化及其对油气成藏的控制作用. 新疆石油地质, 37(1): 120~124.
参考文献
塔斯肯, 李江海, 李洪林, 李维波, 毛翔, 王洪浩. 2014. 中亚与邻区盆地群构造演化及含油气性. 现代地质, 28(3): 573~584.
参考文献
王小军, 宋永, 郑孟林, 任海姣, 吴海生, 何文军, 王韬, 王霞田, 赵长永, 郭健辰. 2021. 准噶尔盆地复合含油气系统与复式聚集成藏. 中国石油勘探, 26(4): 29~43.
参考文献
王宗秀, 李春麟, Pak N, Ivleva E, 余心起, 周高志, 肖伟峰, 韩淑琴, Halilov Z, Takenov N, 鄢犀利. 2017. 西天山造山带构造单元划分及古生代洋陆转换过程. 中国地质, 44(4): 623~641.
参考文献
吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627~1674.
参考文献
徐洪, 杨玉峰. 2014. 费尔干纳盆地超深层油气成藏系统. 石油实验地质, 36(4): 450~458.
参考文献
叶发旺, 王建刚, 邱俊挺, 张川, 余心起, 刘秀. 2020. 烃源岩可溶烃、热解烃、总有机碳含量与光谱指数相关性研究. 光谱学与光谱分析, 40(4): 1001~1006.
参考文献
余一欣, 殷进垠, 郑俊章, 李锋, 陶崇智, 徐小龙, 吴航. 2015. 阿姆河盆地成藏组合划分与资源潜力评价. 石油勘探与开发, 42(6): 750~756.
参考文献
张凯逊, 韩淑琴, 王宗秀, 陶崇智, 韩凤彬, 李春麟, 李小诗, Halilov Z, Takenov N. 2018. 阿富汗—塔吉克盆地含油气系统特征与资源潜力. 中国地质, 45(05): 920~930.
参考文献
朱毅秀, 刘洛夫, 林畅松. 2005. 中亚地区费尔干纳盆地油气地质特征. 兰州大学学报(自然科学版), 41(1): 25~31.
参考文献
朱毅秀, 刘洛夫. 2005. 中亚地区费尔干纳盆地构造及其演化特征. 内蒙古石油化工, 2: 92~94.
参考文献
左国朝, 张作衡, 王志良, 刘敏, 王龙生. 2008. 新疆西天山地区构造单元划分、地层系统及其构造演化. 地质论评, 54(6): 731~751.
目录contents

    摘要

    中亚地区油气资源丰富并且出口潜力巨大,加强与中亚国家的能源合作可以增加我国能源安全的系数。本文以中亚费尔干纳盆地为主要研究对象,通过野外构造变形的解析,发现盆缘发育典型的无序型逆冲断层。以此为基础,结合盆地的沉积环境更替,讨论了费尔干纳盆地中生代以来的构造演化。费尔干纳盆地的基底形成于晚古生代,与石炭纪末期南天山洋的关闭有关。三叠纪至侏罗纪,费尔干纳盆地进入了陆内坳陷阶段,沉积了一套河湖相碎屑岩。侏罗纪末期至白垩纪的早期,受中特提斯洋关闭的影响,费尔干纳盆地进入挤压阶段。白垩纪至古近纪,天山造山带以南地区受新特提斯洋扩张的影响,发生了区域性海侵事件,生物繁盛,沉积了优质的烃源岩。古近纪与新近纪之交,随着阿拉伯地块与欧亚大陆的碰撞,新特提斯洋最终关闭,盆地再次进入挤压阶段。新近纪至第四纪时期,盆地内沉积了巨厚的陆相碎屑,不整合地覆盖于古近系之上。受印度与欧亚大陆持续汇聚作用影响,费尔干纳盆地在第四纪进入了前陆盆地演化阶段。通过南天山板块缝合带南、北两侧含油气盆地生储盖组合及构造演化的对比,发现费尔干纳盆地上古生界具有较好的油气资源潜力。我们的研究扩展了费尔干纳盆地的油气前景。

    Abstract

    Central Asia is rich in oil and gas resources and has great export potential. Strengthening energy cooperation with Central Asian countries can increase the coefficient of China's energy security. In this paper, the Fergana basin in Central Asia is taken as the main research object. Through the analysis of structural deformation, it is found that the typical out-of-sequence thrust faults are developed in the margin of the Fergana basin. Combined with the sedimentary environment replacement of the basin, the tectonic evolution of the Fergana basin since the Mesozoic is reconstructed. The basement of Fergana basin was formed in the Late Paleozoic, which is related to the closure of the Southern Tianshan Ocean at the end of the Carboniferous. From Triassic to Jurassic period, Fergana basin entered the intracontinental depression stage and deposited a set of fluvial and lacustrine clastic rocks. Late Jurassic-early Cretaceous period, due to the closure of the Meso-Tethys, the Fergana basin turned into the compression stage. From Cretaceous to Paleogene, influenced by the expansion of the Neo-Tethys Ocean, a regional transgression event occurred in the south of the Tianshan Orogenic Belt. A large number of organisms developed, and high-quality source rocks were deposited in the basin. With the collision between the Arabian block and Eurasia continent across the Paleogene and Neogene transition, the Neo-Tethys Ocean finally closed, and the Fergana basin entered the compressional stage again. From Neogene to Quaternary period, a huge thickness of continental clastic deposit was deposited in the basin, and angular unconformity between Paleogene and Neogene was developed in the basin. Under the influence of continuous convergence between India and Eurasia continents, the Fergana basin began the foreland basin evolution stage during the Quaternary. Through the comparison of source-reservoir-cap rock assemblages and tectonic evolution of petroliferous basins in the northern and southern flanks of the South Tianshan Suture, it is found that the Upper Paleozoic of the Fergana basin has a good potential of oil and gas resources. Our research expands the prospects for oil and gas in the Fergana basin.

  • 随着经济的快速发展,“十四五”时期,我国将会继续推进能源结构转型,油气资源在我国能源消费总量中的占比将持续攀升。与此同时,我国油气资源对外的依存度也会持续走高,加强海外油气资源的合作和供应,保障进口油气的运力是未来油气工作的重点。中亚地区毗邻我国的西部,油气储备丰富,加强与中亚国家的合作对于保障我国经济发展和能源安全具有重大的意义。

  • 费尔干纳盆地是中亚地区重要的含油气盆地之一,行政区划上属乌兹别克斯坦、吉尔吉斯斯坦和塔吉克斯坦三国共有。盆地北缘通过NE向北费尔干纳断裂与中天山相邻,盆地南缘通过近东西向南费尔干纳断裂与南天山相接,盆地东缘被NW向塔拉斯—费尔干纳右行走滑断裂限制,在平面上盆地呈现出一个向右打开的喇叭状(车自成等,1997)。费尔干纳盆地油气勘探工作始于19世纪末,1880年在盆地西南缘的邵尔苏地区首先发现了古近系油藏,1904年在盆地内找到了第一个具有工业开采价值的油田——奇米翁油田(朱毅秀和刘洛夫,2005; 陈强和金庆焕,2018)。截至目前,费尔干纳盆地的勘探结果揭示了盆地在中、新生界油气方面具有巨大的资源潜力(朱毅秀等,2005)。值得注意的是,近年来在同处于中亚造山带西南缘的含油气盆地(如斋桑盆地、伊犁盆地、楚萨雷苏盆地)上古生界油气取得了诸多新发现(黄海平和傅恒,2008; 李玉文等,2011; 冯杨伟等,2021),这些含油气盆地同费尔干纳盆地的形成与演化是否具有相似性?费尔干纳盆地上古生界是否具有油气潜力?这些问题亟需解决。

  • 在中国地质科学院地质力学研究所基本科研业务费和中国地质调查局地质调查项目的联合资助下,中国地质科学院地质力学研究所中亚能源潜力评价研究团队同乌兹别克斯坦地质与地球物理研究所和乌兹别克斯坦国立大学开展了深入合作,本文以盆缘野外地质考察为手段,结合盆地内部沉积建造的特点,建立了费尔干纳盆地自形成以来的构造演化过程。同时,对盆缘发育的上古生界泥岩、泥灰岩等进行了总有机碳测定,初步分析了费尔干纳盆地上古生界的油气前景。

  • 1 地质概况

  • 费尔干纳盆地位于中亚造山带的西南缘(图1a),属天山造山带的西端。盆地东西长约270 km,南北最宽处位于凯尔本—卡达姆扎伊一线,约150 km,面积约38000 km2。晚古生代(石炭纪末期)随着南天山洋的最终闭合(Dolgopolova et al.,2017; Alexeiev et al.,2019),南天山地块与中天山地块发生碰撞,形成了费尔干纳盆地的基底。中生代,盆地经历了两次大规模的海侵作用(Hecker et al.,1963; 高波等,2007),沉积了大量的碎屑岩及碳酸盐岩,其中侏罗纪—白垩纪的沉积最大厚度可达1.2 km。古近纪,盆地开始强烈的沉降,最大沉积厚度可达5 km(车自成等,1997)。新近纪早期,随着新特提斯洋的最终关闭,费尔干纳盆地受南北向的挤压作用,在盆地的边缘形成了大规模的逆冲推覆构造,致使盆地古生代基底逆冲在中、新生代地层之上(Bande et al.,2015)。受这次构造作用的影响,盆地内的构造格架以NEE向为主(图1b)。新近纪造山作用之后,盆地内沉积了厚度达6 km的碎屑岩和磨拉石建造(朱毅秀等,2005)。此外,费尔干纳盆地南、北缘出露的岩石地层单元具有显著的差异,盆地南缘主要为早古生代海相碳酸盐岩和少量的晚古生代碎屑岩,而盆地北缘则主要以石炭纪—二叠纪海相碎屑岩、碳酸盐岩和火山侵入杂岩为主(图1c)。

  • 图1 费尔干纳盆地大地构造位置图(a); 费尔干纳盆地构造纲要图(b); 费尔干纳盆地地质简图(c)

  • Fig.1 Simplified tectonic map showing the location of Fergana basin (a) ; tectonic map of Fergana basin (b) ; geological map of Fergana basin (c)

  • 2 构造变形特征

  • 本文共观察了三条盆缘构造剖面。第一条为费尔干纳盆地北缘上古生界—新生界剖面。剖面位于纳曼干市西北部的瓦齐兹地区(图2a)。剖面北端下二叠统碎屑岩逆冲到上二叠统紫红色火山岩之上,二叠系与上覆白垩系呈不整合接触。由北向南,新生代地层产状逐渐变缓(图2b)。古近系顶部与新近系紫红色粉砂岩呈角度不整合接触(图3a)。作为费尔干纳盆地主力烃源岩的古近系海相泥岩、泥灰岩产状稳定,均以中等倾角倾向盆地内部(图3b),泥灰岩中发育大量生物化石(图3c)。古近系与白垩系连续沉积,白垩系为一套自下而上由粗变细的碎屑岩沉积,白垩系上部含砾砂岩发育斜层理(图3d),下部砾石含量逐渐增加,底部砾岩中的砾石含量高、磨圆度好、分选程度高(图3e)。白垩系之下为晚二叠世紫红色火山岩,其与下二叠统土黄色碎屑岩呈断层接触,断层总体走向为NEE,断层面倾向NW(图3f)。

  • 图2 费尔干纳盆地北缘瓦齐兹地区地质简图(a); 费尔干纳盆地北缘近南北向构造剖面图(b)

  • Fig.2 Simplified geological map of the Varzyz area in the north margin of Fergana basin (a) ; sub-S-N trending cross-section of the north margin of Fergana basin (b)

  • 图3 费尔干纳盆地北缘瓦齐兹地区野外照片

  • Fig.3 Representative photos of the Varzyz area in the north margin of Fergana basin

  • (a)—古近系与新近系不整合界面;(b)—古近系灰岩产状;(c)—古近系生物灰岩;(d)—白垩系顶部含砾砂岩中发育的斜层理;(e)—白垩系底部发育的砾岩;(f)—北费尔干纳断裂带(红色虚线)呈现出下二叠统逆冲到二叠纪火山岩之上(镜头向北)

  • (a) —angular unconformity between the Paleogene grayish-white limestone and Neogene burgundy siltstone; (b) —Paleogene limestone; (c) —Paleogene biologic limestone; (d) —inclined bedding developed at the top of the Cretaceous strata; (e) —conglomerate at the bottom of the Cretaceous strata; (f) —north Fergana fault zone (red dashed line) showing the Lower Permian strata overthrusting to the Permian volcanic rocks (camera facing north)

  • 第二条剖面位于费尔干纳盆地北缘的马扎地区,距第一条剖面向西约20 km,该地区发育大量的石炭—二叠纪花岗岩,中、新生代地层与花岗岩均呈断层接触关系(图4)。出露的白垩系以砾岩和含砾砂岩为主,含砾砂岩中亦发育斜层理(图5a)。古近系以巨厚状灰白色生物灰岩为主,地层产状走向NE,倾向盆地内(图5b)。野外观察发现,古近系灰白色生物灰岩上覆为新近系薄层紫红色粉砂岩,二者的接触带中可见古近系灰岩碎块,并与紫红色粉砂岩混合,推测为断层接触(图5c)。新近系之上为石炭纪中粗粒花岗斑岩(图5d),二者亦为断层接触。据此认为石炭纪花岗斑岩、新近系紫红色粉砂岩和古近系生物灰岩共同组成了叠瓦式逆冲断层。根据野外构造剖面的特征,推测费尔干纳盆地北缘马扎地区中、新生代以来至少经历了三期逆冲推覆事件,分别发生在侏罗纪—白垩纪之交,古近纪—新近纪之交和第四纪(图6)。三期逆冲推覆的方向可能一致,属于典型的无序逆冲构造。值得注意的是,虽然同处于费尔干纳盆地北缘、且相距约20 km的马扎和瓦齐兹地区发育相同的中、新生代地层,但是它们在地表高程上却相差了近800 m,我们认为正是叠瓦式逆冲断层在纵向上的堆垛造成了地貌上的差异。

  • 第三条剖面位于费尔干纳盆地的南缘,为费尔干纳市西部的卡拉巴克地区。不同于费尔干纳盆地北缘,该地区中生代地层发育齐全,三叠系和侏罗系均有出露(图7a),可能与当时的沉积盆地中心位于盆地南缘有关。从地层的接触关系上看,三叠系不整合覆盖在前中生界之上(图7a,b)。野外考察发现,费尔干纳盆地南缘的古近系同样为一套含大量海相化石的泥灰岩夹泥岩,其上部与新近系紫红色粉砂岩呈角度不整合接触(图8a),这一特点与费尔干纳盆地北缘的特征一致。从构造变形的样式上看,三叠系—古近系均发生了褶皱作用,褶皱轴以近东西走向为主(图8b),与区域内逆冲断层的走向一致(图7a)。参考盆地北缘构造变形分析的结果,推测这期褶皱作用应发生在古近纪—新近纪之交。此外,此剖面还记录了二叠纪火山岩自南向北逆冲在侏罗系之上,又被白垩系覆盖(图7a),推测这期逆冲事件可能发生在侏罗纪—白垩纪之交。

  • 图4 费尔干纳盆地北缘马扎地区地质简图

  • Fig.4 Simplified geological map of the Mazar area in the north margin of Fergana basin

  • 图5 费尔干纳盆地北缘马扎地区野外照片

  • Fig.5 Representative photos of the Mazar area in the north margin of Fergana basin

  • (a)—白垩系含砾砂岩中发育的斜层理;(b)—古近系灰白色生物灰岩;(c)—石炭纪花岗斑岩和新近系粉砂岩逆冲在古近系灰岩之上,构成叠瓦式逆冲断层(镜头向北);(d)—石炭纪花岗斑岩

  • (a) —inclined bedding developed in the Cretaceous conglomerate; (b) —Paleogene limestone; (c) —Carboniferous granite porphyry and Neogene burgundy siltstone overthrusting to the Paleogene grayish-white limestone, forming an imbricated thrusting (camera facing north) ; (d) —Carboniferous granite porphyry

  • 近年来,费尔干纳盆地在深部探测方面取得了一些新的进展(Lei Jianshe,2011)。其中,二维地震解译方面揭示了费尔干纳盆地三叠纪—古近纪地层是连续沉积的,其中三叠纪—白垩纪地层的沉积中心位于盆地的南部,而古近纪,盆地的沉积中心向北发生了迁移(Bande et al.,2015)。此外,地震解译还揭示了费尔干纳盆地新生代发育生长地层,新生代盆地的构造变形是从南、北两侧逐渐向盆地中央扩展的,盆地南、北缘构造带的古生界基底均以叠瓦扇的样式向盆内逆冲(Bande et al.,2015)。盆地边缘深部的构造样式与我们野外的构造观测基本一致。

  • 3 费尔干纳盆地构造演化过程

  • 费尔干纳盆地的构造演化过程前人进行过总结,但绝大多数是从盆地的沉积演化对油气成藏控制的角度出发的(朱毅秀和刘洛夫,2005; 徐洪和杨玉峰,2014; 刘阵等,2016),缺少盆地野外的地质证据。本文正是在基于野外地质考察的背景下,结合盆地沉积环境的更替及盆地深部资料,构建了费尔干纳盆地自形成以来的构造演化过程。

  • 费尔干纳盆地的构造演化可分为三大阶段,分别为:前三叠纪盆地基底演化阶段、中生代至新生代早期盆地裂陷—坳陷阶段和新生代晚期前陆盆地阶段。

  • 图6 费尔干纳盆地北缘马扎地区无序逆冲断层形成模式图

  • Fig.6 Model of the development of the out-of-sequence thrust faults in the Mazar area, northern margin of Fergana basin

  • (a)—侏罗纪,盆地北缘沉积地层覆盖在晚古生代花岗岩之上,虚线断层代表了即将形成的逆冲断层;(b)—侏罗纪与白垩纪之交的造山作用(第一次挤压)造成了石炭纪花岗岩和二叠纪花岗岩分别逆冲到二叠纪花岗岩和侏罗系之上;(c)—古近纪与新近纪之交的造山事件(第二次挤压)造成了石炭纪花岗岩和白垩系分别逆冲在古近系和二叠纪花岗岩之上;(d)—第四纪,盆地北缘经历了第三次挤压事件,最终形成了无序逆冲断层

  • (a) —the Late Paleozoic granites were overlaid with the Jurassic strata, the dotted line faults represent the future thrust faults; (b) —the orogeny at the boundary of the Jurassic and Cretaceous (the first compression) caused the Carboniferous granites and the Permian granites to thrust to the NW upon the Permian granites and the Jurassic strata, respectively; (c) —the orogeny at the boundary of the Paleogene and Neogene (the second compression) caused the Carboniferous granites and Cretaceous strata to thrust to the NW upon the Paleogene strata and Permian granites, respectively; (d) —during the Quaternary, the north margin of the Fergana basin experienced the third compressional event, and finally formed the out-of-sequence thrust faults

  • 前三叠纪盆地基底演化阶段主要受古亚洲洋构造域的控制。新元古代,随着罗迪尼亚超大陆开始裂解,在华北—塔里木—卡拉库姆—波罗地陆块群与西伯利亚—哈萨克斯坦陆块群之间形成了古亚洲洋(Zuza et al.,2017)。古亚洲洋在寒武纪—中奥陶世沉积了一套以浅海相碳酸盐岩和碎屑岩为主的建造(左国朝等,2008)。晚奥陶世—泥盆纪,古亚洲洋逐渐演化成一个多岛洋盆,并开始向塔里木—卡拉库姆陆块之下俯冲,沿着现今突厥斯坦—阿赖山—科克萨利—哈尔克山—额尔宾山一线形成一条上千千米长的岛弧岩浆岩带(王宗秀等,2017)。到了晚石炭世,哈萨克斯坦陆块与塔里木—卡拉库姆陆块发生碰撞,作为古亚洲洋西南缘一部分的南天山洋最终闭合(Nurtaev et al.,2013; Alexeiev et al.,2019),费尔干纳盆地的基底雏形形成。早二叠世时期(290~280 Ma),大量的过铝质、碱性岩浆作用沿着南天山板块缝合带侵位,标志着天山造山带进入了后碰撞阶段(Konopelko et al.,2018)。

  • 中生代至新生代早期盆地裂陷—坳陷阶段分别受古、中、新特提斯洋的演化所控制。晚二叠世—早三叠世,古特提斯洋是一个被冈瓦纳大陆、劳亚大陆和华力西造山带围限的残留洋,海水一直到晚三叠世—早侏罗世才全部退出(吴福元等,2020),费尔干纳盆地此时内部发育箕状地堑沉积(刘阵等,2016)。晚三叠世—中侏罗世期间,费尔干纳盆地进一步拉张,沉积了一套较厚的湖相、沼泽相泥岩和煤系地层。晚侏罗世—早白垩世期间,中特提斯洋闭合(Cao Yong et al.,2019),费尔干纳盆地进入了构造抬升期,上侏罗统底部发育砂砾岩,下白垩统底部在靠近造山带一侧发育陆相磨拉石沉积,盆地内部上侏罗统和下白垩统不同程度的剥蚀。晚白垩世—古近纪,新特提斯洋不断扩张,费尔干纳盆地开始持续沉降,盆地内沉积了一套浅海相碳酸盐岩沉积。古近纪与新近纪之交,随着南部中伊朗地块与阿拉伯地块沿着扎格罗斯造山带碰撞拼合,新特提斯洋最终关闭(Shakerardakani et al.,2015; Ismail et al.,2020)。费尔干纳盆地进入挤压阶段,中生界—古近系发生褶皱,古生界基底逆冲至中、新生界之上。

  • 图7 费尔干纳盆地南缘卡拉巴克地区地质简图(a); 费尔干纳盆地南缘NNW—SSE向构造剖面(b)

  • Fig.7 Simplified geological map of the Kara-Bak area in the south margin of Fergana basin (a) ; NNW-SSE trending cross-section of the south margin of Fergana basin (b)

  • 图8 费尔干纳盆地南缘Kara-Bak地区野外照片

  • Fig.8 Representative photos of the Kara-Bak area in the south margin of Fergana basin

  • (a)—古近系与新近系角度不整合;(b)—古近纪地层中发育的向斜

  • (a) —angular unconformity between the Paleogene and Neogene strata; (b) —syncline developed in the Paleogene strata

  • 新生代晚期前陆盆地阶段主要受控于印度与欧亚大陆之间的持续汇聚作用。进入新近纪,欧亚大陆在印度大陆持续的挤压作用下,青藏高原(包括祁连山和柴达木盆地)开始全面的隆升(Yue Yongjun and Liou,1999; George et al.,2001; Ritts et al.,2008; Molnar and Stock,2009)。费尔干纳盆地南、北缘发生大规模逆冲作用,盆缘发育典型的无序型逆冲断层。与此同时,造山带的快速隆升造成费尔干纳盆地内沉积了厚达6000米的磨拉石建造(朱毅秀等,2005),并造成了古近系与新近系之间的角度不整合。关于费尔干纳盆地中生代以来的沉积—构造演化过程可详见图9。

  • 4 费尔干纳盆地含油气系统

  • 依据现今的勘探结果,费尔干纳盆地主要发育两套大的含油气系统,分别为:侏罗系—白垩系含油气系统和古近系—新近系含油气系统。

  • 侏罗系—白垩系含油气系统主要以含气为主,烃源岩以中、下侏罗统湖相、沼泽相泥页岩为主,总有机碳含量平均为0.46%,有机质属腐殖型,从盆地边缘到盆地中部,有机碳含量逐渐降低,氯仿沥青增高,腐殖质含量减小。上白垩统浅海相泥岩也形成了部分油气,有机碳含量介于0.26%~0.3%之间,有机质类型属腐泥—腐殖型。该套含油气系统的储层包括了中、上侏罗统砂岩和白垩系砂岩及灰岩。中、上侏罗统砂岩总厚度约230 m,有效厚度介于80~110 m,孔隙度为16%~22%,渗透率0.3×10-3~305×10-3 μm2朱毅秀等,2005)。白垩系储层主要为砂岩,局部为灰岩,总厚度约300 m,有效厚度为150~180 m,的孔隙度变化较大,最低为6%,最高可达35%,渗透率自盆地中心向盆地边缘逐渐增大,介于10.3×10-3~5403×10-3 μm2之间(朱毅秀等,2005)。盖层主要由古新世—始新世泥岩、膏岩层构成的区域性盖层组成。

  • 古近系—新近系含油气系统以油藏为主,烃源岩以下始新统海相泥岩、泥灰岩为主,是盆地的主力烃源岩。总有机碳含量为0.4%~0.8%,平均0.59%,有机质属腐泥型。值得注意的是,费尔干纳盆地内大部分油源均来自于下始新统Suzak组。Suzak组烃源岩生烃和运移始于中新世的中晚期,新近纪磨拉石快速堆积导致了烃源岩成熟度不断增加。到了早上新世,烃源岩达到生油高峰,生成的油气从古近纪烃源岩垂向和侧向运移至古近系和新近系背斜圈闭中聚集成藏(Klett et al.,2016)。该套油气系统的储层主要为古近系砂岩,总厚度约85~200 m。储层有效厚度从盆缘到中心逐渐增厚,介于40~76 m。储层的孔隙度为10%~30%,渗透率0~611.6×10-3 μm2朱毅秀等,2005)。该套储层集中了盆地内主要的石油可采储量,具有巨大的油气潜力。新近系陆相砂砾岩及粗粒砂岩亦是储层,厚度最高可达150 m,储集物性差异大,孔隙度为4%~30%,渗透率61×10-3~305×10-3 μm2朱毅秀等,2005)。盖层为中新统—上新统的局部或区域性盖层,岩性以泥岩和膏岩层为主。

  • 5 费尔干纳盆地油气成藏模式

  • 通过对费尔干纳盆地油气藏形成的基础条件和盆地构造演化的综合分析,认为油气成藏模式可分为三种基本类型:背斜构造型、断裂—背斜复合型和岩性/地层遮挡型。新生代时期,在印度与欧亚大陆持续汇聚的背景下,构造应力驱动油气发生大规模运移,分别在盆地内部的背斜核部(如明布拉克油田)、盆地南北缘逆冲断层下盘地层弯曲的部位(如帕尔万塔什油田、康塞什油田)以及盆内古近系与新近系角度不整合面之下(如安集延油田)发生聚集,分别形成了背斜构造型、断裂—背斜复合型和岩性/地层遮挡型油气成藏模式(图10)。新生代强烈的挤压作用造成费尔干纳盆地形成了一系列近东西走向的逆冲断层,逆冲断层虽然在一定程度上破坏了油气藏,但是在烃源岩二次生烃及构造圈闭的过程中也可以扮演重要的角色(季长军等,2019)。

  • 图9 费尔干纳盆地地层综合柱状图及盆地构造演化模式图

  • Fig.9 Late Paleozoic-Cenozoic stratigraphic columnar section and Meso-and Cenozoic tectonic evolution of Fergana basin

  • 6 费尔干纳盆地油气远景

  • 前人对中亚地区诸多含油气盆地进行过油气资源潜力评价,评价结果认为中亚大区待发现的油气资源量巨大(侯平等,2014)。根据乌兹别克斯坦地质与地球物理研究所提供的相关资料,费尔干纳盆地总的资源量为30多亿吨,全部为中、新生代烃源岩。但从目前油气资源的发现来看,古近系油气发现率为2.5%,中生界油气发现率为5.6%,探明率均极低(刘传鹏等,2008)。韩凤彬等(2017)认为造成这一局面的主要原因可能是新生代构造运动造成盆地内油气大规模逸散。结合费尔干纳盆地的构造演化及油气成藏模式,认为新生代造山作用对盆地油气的逸散作用可能仅仅体现在盆地边缘(断-背复合型被破坏),而盆内(岩性/地层遮挡型)仍然保存着大量的油气资源。盆地内部发育的新生代构造(背斜构造型)可能更有利于油气的二次成藏。此外,苏联解体以来,乌兹别克斯坦对费尔干纳盆地的勘探投入一直不高,仅有个别国外油气公司注入资金。因此,费尔干纳盆地的低勘探现状也是造成油气发现率极低的一个主要原因。

  • 图10 费尔干纳盆地油气成藏模式(据陈强和金庆焕,2018修改)

  • Fig.10 Conceptual model for hydrocarbon accumulation in Fergana Basin (modified by Chen Qiang and Jin Qinghuan, 2018)

  • 天山造山带及其南、北缘发育了多个含油气盆地。通过对比它们的生储盖组合,发现南天山板块缝合带北侧的盆地群以发育上古生界烃源岩为主。随着与南天山板块缝合带的逐渐拉近,盆地内逐渐出现了中、新生代的烃源岩。如准噶尔盆地发育的下侏罗统、下白垩统及古近系烃源岩(图11)。南天山板块缝合带南侧的盆地群以发育中、新生界烃源岩为主,古生界情况受勘探程度的制约,目前还不清楚。通过对区域构造演化过程的分析,认为南天山板块缝合带南侧盆地群中、新生界油气资源较北侧盆地群具有优势的原因主要与晚白垩世—古近纪天山南部的新特提斯洋不断扩张有关。

  • 另外,费尔干纳盆地古生界是否具有油气潜力一直以来是大家比较关心的问题。姜生玲等(2015)曾报道过费尔干纳盆地周缘多条古生界剖面发育液态油、石蜡以及沥青,认为古生界可能存在巨大潜力。从沉积环境的演化角度出发,费尔干纳盆地周缘除了发育石炭纪火山岩和二叠纪花岗岩外,还发育有河流相、湖相和沼泽相的泥页岩、砂岩及含煤地层,有机质含量丰富,生气生油的条件较为优越。本文对费尔干纳周缘发育的石炭系—二叠系烃源岩进行了考察,发现盆地西北缘二叠系发育非常好的黑色泥岩(图12a),在盆地的东北缘,下石炭统为中薄层黑色页岩与泥灰岩互层(图12b),仅露头上的厚度就能达到20 m(图12c)。

  • 对上述泥灰岩、页岩进行了可溶烃、热解烃纪和总有机碳质量分数测定,测试工作是在长江大学资源与环境学院分析测试研究所进行的,热解分析依据GB T18602—2012执行,总有机碳分析依据GB T19145—2003执行。具体的分析流程见叶发旺等(2020)。测试结果显示,费尔干纳盆地周缘石炭系—二叠系烃源岩的可溶烃含量集中在0.02~0.11 mg/g的范围,热解烃含量分布在0.02~0.15 mg/g的区间内,总有机碳含量集中在0.146%~0.401%范围内,平均为0.266%,整体不高(表1)。考虑到上古生界剥露时间长,风化作用容易造成挥发性烃类组分的散失。Pan Shubiao et al.(2022)研究了自然风化作用对近地表(2米以浅)的烃源岩的影响,发现随着风化作用的增强,烃源岩的有机质丰度明显减小,其中总有机碳损失了41%,生烃潜力(S1+S2)则损失了63%。因此,本次测试样品的总有机碳含量测试结果可能会偏低。上古生界泥灰岩、页岩的总有机碳质量分数明显低于侏罗系和下始新统烃源岩平均值(分别为0.46%和0.59%),但与上白垩统浅海相泥岩、泥灰岩的有机碳质量分数(0.26%~0.3%)相当。结合前人在盆地周缘发现的古生界液态油、石蜡以及沥青等事实,我们推断费尔干纳盆地上古生界具有较好的油气资源潜力。

  • 图11 费尔干纳盆地周缘重要含油气盆地生储盖组合对比图(资料据:高波等,2007; 黄海平和傅恒,2008; 余一欣等,2015; 张凯逊等,2018; 冯杨伟等,2021; 王小军等,2021; Zhu Xiangfeng et al.,2022

  • Fig.11 Comparison chart of source-reservoir-cap-rock combinations in these oil-and gas-bearing basins around Fergana basin (data from Gao Bo et al., 2007; Huang Haiping and Fu Heng, 2008; Yu Yixin et al., 2015; Zhang Kaixun et al., 2018; Feng Yangwei et al., 2021; Wang Xiaojun et al., 2021; Zhu Xiangfeng et al., 2022)

  • 图12 费尔干纳盆地周缘石炭系—二叠系泥页岩野外照片

  • Fig.12 Field photos of the Carboniferous-Permian shale in the periphery of Fergana basin

  • (a)—二叠系黑色泥页岩;(b)—下石炭统泥灰岩夹层的黑色页岩;(c)—下石炭统黑色页岩露头

  • (a) —Permian black shale; (b) —lower Carboniferous black shale; (c) —lower Carboniferous black shale in outcrop

  • 为了更进一步的探讨费尔干纳盆地上古生界油气远景,本文重新梳理了南天山板块缝合带南、北两侧含油气盆地的构造演化,发现中亚地区含油气盆地的构造演化分别与南天山洋、古特提斯洋、中特提斯洋和新特提斯洋的演化有关(图13)。中亚地区含油气盆地的基底均形成于晚古生代晚期至中生代早期,具有北老南新的特点。费尔干纳盆地与南天山板块缝合带北侧的盆地群具有相似的沉积演化过程。根据北侧准噶尔盆地、斋桑盆地及楚萨雷苏盆地上古生界油气勘探成果,并参考本次研究的盆缘上古生界烃源岩的总有机碳测试结果,认为费尔干纳盆地上古生界油气资源具有巨大的潜力。盆地基底形成以后,盆地群陆续进入了陆内裂陷—坳陷阶段。南天山板块缝合带北侧盆地群这一阶段一直延续至古近纪末,而南天山板块缝合带南侧盆地群仅延续至白垩纪初期。这一差异主要是受天山南部新特提斯洋扩张的影响。此外,南天山板块缝合带南侧的盆地群在白垩纪至古近纪普遍发育海侵事件。这次海侵作用形成了盆地主力的烃源岩,而这套烃源岩在南天山板块缝合带北侧的含油气盆地内是不发育的(图13)。新近纪之后,随着印度和欧亚大陆的持续汇聚作用,中亚绝大多数含油气盆地进入了前陆盆地演化阶段。

  • 表1 费尔干纳盆地周缘石炭—二叠系泥页岩总有机碳测定结果(据叶发旺等,2020

  • Table1 Results of the total organic carbon in the Carboniferous-Permian shale in the periphery of Fergana Basin (from Ye Fawang et al., 2020)

  • 综上所述,费尔干纳盆地不仅在中、新生界具有良好的油气前景,而且上古生界很可能具备发现大油田的可能。

  • 7 结论

  • 费尔干纳盆地的构造演化可分成三个阶段,分别为:前三叠纪盆地基底演化阶段、中生代至新生代早期盆地裂陷—坳陷阶段和新生代晚期前陆盆地阶段。盆地基底形成于石炭纪末期,与南天山洋的关闭有关。三叠纪至侏罗纪,费尔干纳盆地进入了陆内坳陷阶段,沉积了一套河湖相碎屑岩。侏罗纪末期至白垩纪早期,费尔干纳盆地进入挤压阶段。白垩纪至古近纪,受新特提斯洋扩张的影响,发生了区域性海侵事件,生物繁盛,沉积了优质的烃源岩。古近纪与新近纪之交,随着新特提斯洋的关闭,盆地再次进入挤压阶段。新近纪至第四纪时期,受印度与欧亚大陆持续汇聚作用的影响,费尔干纳盆地进入了前陆盆地演化阶段,盆内沉积了巨厚的陆相碎屑岩。

  • 图13 费尔干纳盆地周缘重要含油气盆地形成与演化对比图(盆地演化资料据:黄海平和傅恒,2008; 塔斯肯等,2014; 余一欣等,2015; 何登发等,2018; 张凯逊等,2018; 冯杨伟等,2021

  • Fig.13 Comparison chart of formation and evolution of these oil-and gas-bearing basins around Fergana basin (basin data modified from HuangHaiping and Fu Heng, 2008; Taskyn et al., 2014; Yu Yixin et al., 2015; He Dengfa et al., 2018; Zhang Kaixun et al., 2018; Feng Yangwei et al., 2021)

  • 通过费尔干纳盆地与周缘含油气盆地构造演化和含油气系统的对比分析,认为费尔干纳盆地不仅在中、新生界具有良好的油气资源潜力,而且上古生界具有发现大型油田的可能。这一认识,扩展了费尔干纳盆地的油气远景。

  • 致谢:感谢审稿人对本文提出的建设性意见。参加野外考察的人员还包括:吉尔吉斯斯坦地球物理勘探大队的Zailabidin Halilov,吉尔吉斯斯坦国家工业委员会能源和表层土壤利用中心的Nurgazy Takenov,中国地质大学(北京)余心起教授,刘秀博士以及中国地质科学院地质力学研究所马寅生研究员、韩凤彬副研究员、张林炎高级工程师,在此一并表示感谢。

  • 参考文献

    • Alexeiev D V, Biske Y S, Djenchuraeva, Kröner A, Getman O F. 2019. Late Carboniferous (Kasimovian) closure of the South Tianshan Ocean: no Triassic subduction. Journal of Asian Earth Sciences, 173: 54~60.

    • Bande A, Radjabov S, Sobel E R, Sim T. 2015. Cenozoic palaeoenvironmental and tectonic controls on the evolution of the northern Fergana Basin. In: Brunet M F, McCann T, Sobel E R, eds. Geological Evolution of Central Asian Basins and the Western Tien Shan Range. Geological Society London Special Publications, 427: 313~335.

    • Cao Yong, Sun Zhiming, Li Haibing, Pei Junling, Liu Dongliang, Zhang Lei, Ye Xiaozhou, Zheng Yong, He Xiangli, Ge Chenglong, Wan Jiang. 2019. New paleomagnetic results from Middle Jurassic limestones of the Qiangtang terrane, Tibet: constraints on the evolution of the Bangong-Nujiang Ocean. Tectonics, 38: 215~232.

    • Che Zicheng, Luo Jinhai, Liu Liang. 1997. The basic structure classification and genetic analyses of oil- and gas-bearing basins in Central Asia and northwestern China. Acta Geoscientia Sinica, 18(2): 113~121 (in Chinese with English abstract).

    • Chen Qiang, Jin Qinghuan. 2018. Characteristics of hydrocarbon accumulation in Fergana basin and its controlling factors. Marine Geology Frontiers, 34(7): 9~14 (in Chinese with English abstract).

    • Dolgopolova A, Seltmann R, Konopelko D, Biske Y S, Shatov V, Armstrong R, Belousova E, Pankhurst R, Koneev R, Divaev F. 2017. Geodynamic evolution of the western Tien Shan, Uzbekistan: Insights from U-Pb SHRIMP geochronology and Sr-Nd-Pb-Hf isotope mapping of granitoids. Gondwana Research, 47: 76~109.

    • Feng Yangwei, Ren Yan, Qu Hongjun, Wang Yun, Jiang Ting. 2021. Permian hydrocarbon accumulation factors in the Jimunai-Zaysan basin, China-Kazakhstan border. Acta Geologica Sinica, 95(6): 1935~1948 (in Chinese with English abstract).

    • Gao Bo, Long Shengxiang, Liu Bin. 2007. Analogy analysis on petroleum geological characteristics of the foreland basins between western China and Central Asia. Natural Gas Geoscience, 18(2): 187~223 (in Chinese with English abstract).

    • George A D, Marshallsea S J, Wyrwoll K H, Chen Jie, Lu Yanchou. 2001. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology, 29(10): 939~942.

    • Han Fengbin, Chen Zhengle, Han Shuqin, Wang Zongxiu, Zhang Kaixun, Xiao Weifeng, Takenov N, Halilov Z. Li Chunlin, Yu Xinqi, Liu Xiu. 2017. New understanding of Uranium deposit genesis in Mayly-Szi region on the north margin of Fergana basin: Cenozoic large-scale hydrocarbon escape and uranium mineralization. Geology in China, 44(4): 810~811 (in Chinese with English abstract).

    • He Dengfa, Zhang Lei, Wu Songtao, Li Di, Zhen Yu. 2018. Tectonic evolution stages and features of the Junggar basin. Oil &Gas Geology, 39(5): 845~861 (in Chinese with English abstract).

    • Hecker R T, Ossipova A I, Belskaya T N. 1963. Fergana gulf of Paleogene sea of Central Asia, its history, sediments, fauna and flora, their environment and evolution. AAPG Bulletin, 47(4): 617~631.

    • Hou Ping, Tian Zuoji, Zheng Junzhang, Wang Zhaoping, Wu Yiping. 2014. Evaluation of conventional hydrocarbon resources in sedimentary basins of central Asia region. Earth Science Frontier, 21(3): 56~62 (in Chinese with English abstract).

    • Huang Haiping, Fu Heng. 2008. Petroleum geology and hydrocarbon potential in the Zhezkazgan region of the Chu-Sarysu Basin, Kazakhstan. Sedimentary geology and Tethyan Geology, 28(2): 20~26 (in Chinese with English abstract).

    • Ismail S A, Koshnaw R I, Barber D E, Humadi H A, Stockli D F. 2020. Generation and exhumation of granitoid intrusions in the Penjween ophiolite complex, NW Zagros of the Kurdistan region of Iraq: Implications for the geodynamic evolution of the Arabian-Eurasian collision zone. Lithos, 376~377: 105714.

    • Ji Changjun, Wu Zhenhan, Liu Zhiwei, Zhao Zhen. 2019. Structural features of thrust nappes in the Qiangtang basin and hydrocarbon resources effect. Journal of Geomechanics, 26(S1): 66~71 (in Chinese with English abstract).

    • Jiang Shengling, Li Bo, Zhang Jinchuan. 2015. Potential of the oil and gas resources of Fergana basin. Petroleum Geology and Engineering, 29(4): 47~50 (in Chinese with English abstract).

    • Klett T R, Ulmishek G K, Wandrey C J, Agena, W F, U. S. Geological Survey-Afghanistan Ministry of Mines and Industry Joint Oil and Gas Resource Assessment Team. 2016. Assessment of undiscovered technically recoverable conventional petroleum resource of Northern Afghanistan. U. S. Geological Survey Open-file Report 2006-1253, Version 1. 0.

    • Konopelko D, Wilde S A, Seltmann R, Romer R L, Biske Y S. 2018. Early Permian intrusions of the Alai Range: Understanding tectonic setting of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan. Lithos, 302-303: 405~420.

    • Lei Jianshe. 2011. Seismic tomographic imaging of the crust and upper mantle under the central and western Tien Shan orogenic bel. Journal of Geophysical Research, 116: B09305.

    • Li Yuwen, Yu Chaofeng, Xiong Shaoyun, Chen Nenggui, Qu Jianhua. 2011. Petroleum geology characteristics and exploration potential of Carboniferous rocks in Ili basin. Marine Origin Petroleum Geology, 16(3): 30~37 (in Chinese with English abstract).

    • Liu Chuanpeng, Lin Chengyan, Zhao Yuhua, Zhang Jiaodong. 2008. Oil and gas potential and new exploration targets in Ferganskaya Dolina. Sedimentary Geology and Tethyan Geology, 28(1): 96~102 (in Chinese with English abstract).

    • Liu Zhen, Wang Peng, Zhang Hongmei, Liang Quansheng, Cang Hui, Liu Ying. 2016. Formation and evolution of Fergana basin and its controlling effect on hydrocarbon accumulation. Xinjiang Petroleum Geology, 37(1): 120~124 (in Chinese with English abstract).

    • Molnar P, Stock J M. 2009. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28: TC3001.

    • Nurtaev B, Kharin V, Mccann T, Valdivia-Manchego M. 2013. The North Nuratau fault zone, Uzbekistan-structure and evolution of a Palaeozoic suture zone. Journal of Geodynamics, 64: 1~14.

    • Pan Shubiao, Liao Yuhong, Jiang Bin, Wan Zhixiong, Wang Fu. 2022. Impact of natural weathering on source rocks: Organic and inorganic geochemical evidence from the Triassic Chang 7 outcrop profile in Tongchuan of the Southern Ordos basin (China). International Journal of Coal Geology, 263(1): 104119.

    • Ritts B D, Yue Yongjun, Graham S A, Sobel E R, Abbink O A, Stockli D. 2008. From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan. American Journal of Science, 308(5): 657~678.

    • Shakerardakani F, Neubauer F, Masoudi F, Mehrabi B, Liu Xiaoming, Dong Yunpeng, Mohajjel M, Monfaredi B, Friedl G. 2015. Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud-Azna region (NW Iran): Laser-ablation ICP-MS zircon ages and geochemistry. Tectonophysics, 647-648: 146~171.

    • Taskyn A, Li Jianghai, Li Honglin, Li Weibo, Mao Xiang, Wang Honghao. 2014. Tectonic evolution and hydrocarbon potential of basins in Central Asia and its adjacent regions. Geoscience, 28(3): 573~584 (in Chinese with English abstract).

    • Wang Xiaojun, Song Yong, Zheng Menglin, Ren Haijiao, Wu Haisheng, He Wenjun, Wang Tao, Wang Xiatian, Zhao Changyong, Guo Jianchen. 2021. Composite petroleum system and multi-stage hydrocarbon accumulation in Junggar basin. China Petroleum Exploration, 26(4): 29~43 (in Chinese with English abstract).

    • Wang Zongxiu, Li Chunlin, Pak N, Yu Xinqi, Zhou Gaozhi, Xiao Weifeng, Han Shuqin, Halilov Z, Takenov N, Yan Xili. 2017. Tectonic division and Paleozoic ocean-continent transition in Western Tianshan Orogen. Geology in China, 44(4): 623~641 (in Chinese with English abstract).

    • Wu Fuyuan, Wan Bo, Zhao Liang, Xiao Wenjiao, Zhu Rixiang. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627~1674 (in Chinese with English abstract).

    • Xu Hong, Yang Yufeng. 2014. Ultra-deep petroleum accumulation systems in Fergana basin. Petroleum Geology and Experiment, 36(4): 450~458 (in Chinese with English abstract).

    • Ye Fawang, Wang Jiangang, Qiu Junting, Zhang Chuan, Yu Xinqi, Liu Xiu. 2020. Study oncorrelation between total oroganic carbon, soluble hydrocarbon, pyrolytic hydrocarbon content and spectral index in source rocks. Spectroscopy and Spectral Analysis, 40(4): 1001~1006 (in Chinese with English abstract).

    • Yu Yixin, Yin Jinyin, Zheng Junzhang, Li Feng, Tao Chongzhi, Xu Xiaolong, Wu Hang. 2015. Division and resources evaluation of hydrocarbon plays in the Amu Darya basin, Central Asia. Petroleum Exploration and Development, 42(6): 750~756 (in Chinese with English abstract).

    • Yue Yongjun, Liou J G. 1999. Two-stage evolution model for the Altyn Tagh fault, China. Geology, 27(3): 227~230.

    • Zhang Kaixun, Han Shuqin, Wang Zongxiu, Tao Chongzhi, Han Fengbin, Li Chunlin, Li Xiaoshi, Halilov Z, Takenov N, 2018. Characteristics of petroleum systems and resources potential in the Afghan-Tajik basin. Geology in China, 45(5): 920~930 (in Chinese with English abstract).

    • Zhu Xiangfeng, Shen Chuanbo, Zhao Bin, Hu Shouzhi, Ge Xiang, Wang Liang. 2022. Multi-stage hydrocarbon migration and accumulation of Permian petroleum system in the Zaysan basin, NE Kazakhstan. Journal of Petroleum Science and Engineering, 208: 109291.

    • Zhu Yixiu, Liu Luofu, Lin, Changsong. 2005. Petroleum geology of Fergana basin in Central Asia. Journal of Lanzhou University (Natural Sciences), 41(1): 25~31 (in Chinese with English abstract).

    • Zhu Yixiu, Liu Luofu. 2005. Characteristics of structures and evolution in Fergana basin, Central Asia. Inner Mongolia Petrochemical Industry, 2: 92~94 (in Chinese with English abstract).

    • Zuo Guochao, Zhang Zuoheng, Wang Zhiliang, Liu Min, Wang Longsheng. 2008. Tectonic division, stratigraphical system and the evolution of western Tianshan mountains, Xinjiang. Geological Reviews, 54(6): 731~751 (in Chinese with English abstract).

    • Zuza A V, Yin A. 2017. Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains. Geosphere, 13(5): doi: 10. 1130/GES01463. 1.

    • 车自成, 罗金海, 刘良. 1997. 中亚与中国西北地区含油气盆地基本类型及成因分析. 地球学报, 18(2): 113~121.

    • 陈强, 金庆焕. 2018. 费尔干纳盆地油气成藏特征及其主控因素分析. 海洋地质前沿, 34(7): 9~14.

    • 冯杨伟, 任艳, 屈红军, 王云, 姜婷. 2021. 中哈边境吉木乃—斋桑盆地二叠系油气成藏要素. 地质学报, 95(6): 1935~1948.

    • 高波, 龙胜祥, 刘彬. 2007. 中国西部与中亚前陆盆地油气地质特征类比分析. 天然气地球科学, 18(2): 187~223.

    • 韩凤彬, 陈正乐, 韩淑琴, 王宗秀, 张凯逊, 肖伟峰, Takenov N, Halilov Z. 李春麟, 余心起, 刘秀. 2017. 费尔干纳盆地北缘Mayly-Szi地区铀矿成因新认识: 新生代大规模油气逸散与铀成矿. 中国地质, 44(4): 810~811.

    • 何登发, 张磊, 吴松涛, 李涤, 甄宇. 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845~861.

    • 侯平, 田作基, 郑俊章, 王兆平, 吴义平. 2014. 中亚沉积盆地常规油气资源评价. 地学前缘, 21(3): 66~62.

    • 黄海平, 傅恒. 2008. 哈萨克斯坦楚—萨雷苏盆地热兹卡兹甘地区石油地质特征及含油气远景评价. 沉积与特提斯地质, 28(2): 20~26.

    • 季长军, 吴珍汉, 刘志伟, 赵珍. 2019. 羌塘盆地逆冲推覆构造特征及油气资源效应. 地质力学学报, 25(S1): 66~71.

    • 姜生玲, 李博, 张金川. 2015. 费尔干纳盆地油气资源潜力再认识. 石油地质与工程, 29(4): 47~50.

    • 李玉文, 余朝丰, 熊绍云, 陈能贵, 瞿建华. 2011. 伊犁盆地石炭系石油地质特征与勘探潜力. 海相油气地质, 16(3): 30~37.

    • 刘传鹏, 林承焰, 赵玉华, 张交东. 2008. 费尔干纳盆地油气资源潜力与勘探新领域. 沉积与特提斯地质, 28(1): 96~102.

    • 刘阵, 王鹏, 张洪美, 梁全胜, 仓辉, 刘瑛. 2016. 费尔干纳盆地形成演化及其对油气成藏的控制作用. 新疆石油地质, 37(1): 120~124.

    • 塔斯肯, 李江海, 李洪林, 李维波, 毛翔, 王洪浩. 2014. 中亚与邻区盆地群构造演化及含油气性. 现代地质, 28(3): 573~584.

    • 王小军, 宋永, 郑孟林, 任海姣, 吴海生, 何文军, 王韬, 王霞田, 赵长永, 郭健辰. 2021. 准噶尔盆地复合含油气系统与复式聚集成藏. 中国石油勘探, 26(4): 29~43.

    • 王宗秀, 李春麟, Pak N, Ivleva E, 余心起, 周高志, 肖伟峰, 韩淑琴, Halilov Z, Takenov N, 鄢犀利. 2017. 西天山造山带构造单元划分及古生代洋陆转换过程. 中国地质, 44(4): 623~641.

    • 吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627~1674.

    • 徐洪, 杨玉峰. 2014. 费尔干纳盆地超深层油气成藏系统. 石油实验地质, 36(4): 450~458.

    • 叶发旺, 王建刚, 邱俊挺, 张川, 余心起, 刘秀. 2020. 烃源岩可溶烃、热解烃、总有机碳含量与光谱指数相关性研究. 光谱学与光谱分析, 40(4): 1001~1006.

    • 余一欣, 殷进垠, 郑俊章, 李锋, 陶崇智, 徐小龙, 吴航. 2015. 阿姆河盆地成藏组合划分与资源潜力评价. 石油勘探与开发, 42(6): 750~756.

    • 张凯逊, 韩淑琴, 王宗秀, 陶崇智, 韩凤彬, 李春麟, 李小诗, Halilov Z, Takenov N. 2018. 阿富汗—塔吉克盆地含油气系统特征与资源潜力. 中国地质, 45(05): 920~930.

    • 朱毅秀, 刘洛夫, 林畅松. 2005. 中亚地区费尔干纳盆地油气地质特征. 兰州大学学报(自然科学版), 41(1): 25~31.

    • 朱毅秀, 刘洛夫. 2005. 中亚地区费尔干纳盆地构造及其演化特征. 内蒙古石油化工, 2: 92~94.

    • 左国朝, 张作衡, 王志良, 刘敏, 王龙生. 2008. 新疆西天山地区构造单元划分、地层系统及其构造演化. 地质论评, 54(6): 731~751.

  • 参考文献

    • Alexeiev D V, Biske Y S, Djenchuraeva, Kröner A, Getman O F. 2019. Late Carboniferous (Kasimovian) closure of the South Tianshan Ocean: no Triassic subduction. Journal of Asian Earth Sciences, 173: 54~60.

    • Bande A, Radjabov S, Sobel E R, Sim T. 2015. Cenozoic palaeoenvironmental and tectonic controls on the evolution of the northern Fergana Basin. In: Brunet M F, McCann T, Sobel E R, eds. Geological Evolution of Central Asian Basins and the Western Tien Shan Range. Geological Society London Special Publications, 427: 313~335.

    • Cao Yong, Sun Zhiming, Li Haibing, Pei Junling, Liu Dongliang, Zhang Lei, Ye Xiaozhou, Zheng Yong, He Xiangli, Ge Chenglong, Wan Jiang. 2019. New paleomagnetic results from Middle Jurassic limestones of the Qiangtang terrane, Tibet: constraints on the evolution of the Bangong-Nujiang Ocean. Tectonics, 38: 215~232.

    • Che Zicheng, Luo Jinhai, Liu Liang. 1997. The basic structure classification and genetic analyses of oil- and gas-bearing basins in Central Asia and northwestern China. Acta Geoscientia Sinica, 18(2): 113~121 (in Chinese with English abstract).

    • Chen Qiang, Jin Qinghuan. 2018. Characteristics of hydrocarbon accumulation in Fergana basin and its controlling factors. Marine Geology Frontiers, 34(7): 9~14 (in Chinese with English abstract).

    • Dolgopolova A, Seltmann R, Konopelko D, Biske Y S, Shatov V, Armstrong R, Belousova E, Pankhurst R, Koneev R, Divaev F. 2017. Geodynamic evolution of the western Tien Shan, Uzbekistan: Insights from U-Pb SHRIMP geochronology and Sr-Nd-Pb-Hf isotope mapping of granitoids. Gondwana Research, 47: 76~109.

    • Feng Yangwei, Ren Yan, Qu Hongjun, Wang Yun, Jiang Ting. 2021. Permian hydrocarbon accumulation factors in the Jimunai-Zaysan basin, China-Kazakhstan border. Acta Geologica Sinica, 95(6): 1935~1948 (in Chinese with English abstract).

    • Gao Bo, Long Shengxiang, Liu Bin. 2007. Analogy analysis on petroleum geological characteristics of the foreland basins between western China and Central Asia. Natural Gas Geoscience, 18(2): 187~223 (in Chinese with English abstract).

    • George A D, Marshallsea S J, Wyrwoll K H, Chen Jie, Lu Yanchou. 2001. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology, 29(10): 939~942.

    • Han Fengbin, Chen Zhengle, Han Shuqin, Wang Zongxiu, Zhang Kaixun, Xiao Weifeng, Takenov N, Halilov Z. Li Chunlin, Yu Xinqi, Liu Xiu. 2017. New understanding of Uranium deposit genesis in Mayly-Szi region on the north margin of Fergana basin: Cenozoic large-scale hydrocarbon escape and uranium mineralization. Geology in China, 44(4): 810~811 (in Chinese with English abstract).

    • He Dengfa, Zhang Lei, Wu Songtao, Li Di, Zhen Yu. 2018. Tectonic evolution stages and features of the Junggar basin. Oil &Gas Geology, 39(5): 845~861 (in Chinese with English abstract).

    • Hecker R T, Ossipova A I, Belskaya T N. 1963. Fergana gulf of Paleogene sea of Central Asia, its history, sediments, fauna and flora, their environment and evolution. AAPG Bulletin, 47(4): 617~631.

    • Hou Ping, Tian Zuoji, Zheng Junzhang, Wang Zhaoping, Wu Yiping. 2014. Evaluation of conventional hydrocarbon resources in sedimentary basins of central Asia region. Earth Science Frontier, 21(3): 56~62 (in Chinese with English abstract).

    • Huang Haiping, Fu Heng. 2008. Petroleum geology and hydrocarbon potential in the Zhezkazgan region of the Chu-Sarysu Basin, Kazakhstan. Sedimentary geology and Tethyan Geology, 28(2): 20~26 (in Chinese with English abstract).

    • Ismail S A, Koshnaw R I, Barber D E, Humadi H A, Stockli D F. 2020. Generation and exhumation of granitoid intrusions in the Penjween ophiolite complex, NW Zagros of the Kurdistan region of Iraq: Implications for the geodynamic evolution of the Arabian-Eurasian collision zone. Lithos, 376~377: 105714.

    • Ji Changjun, Wu Zhenhan, Liu Zhiwei, Zhao Zhen. 2019. Structural features of thrust nappes in the Qiangtang basin and hydrocarbon resources effect. Journal of Geomechanics, 26(S1): 66~71 (in Chinese with English abstract).

    • Jiang Shengling, Li Bo, Zhang Jinchuan. 2015. Potential of the oil and gas resources of Fergana basin. Petroleum Geology and Engineering, 29(4): 47~50 (in Chinese with English abstract).

    • Klett T R, Ulmishek G K, Wandrey C J, Agena, W F, U. S. Geological Survey-Afghanistan Ministry of Mines and Industry Joint Oil and Gas Resource Assessment Team. 2016. Assessment of undiscovered technically recoverable conventional petroleum resource of Northern Afghanistan. U. S. Geological Survey Open-file Report 2006-1253, Version 1. 0.

    • Konopelko D, Wilde S A, Seltmann R, Romer R L, Biske Y S. 2018. Early Permian intrusions of the Alai Range: Understanding tectonic setting of Hercynian post-collisional magmatism in the South Tien Shan, Kyrgyzstan. Lithos, 302-303: 405~420.

    • Lei Jianshe. 2011. Seismic tomographic imaging of the crust and upper mantle under the central and western Tien Shan orogenic bel. Journal of Geophysical Research, 116: B09305.

    • Li Yuwen, Yu Chaofeng, Xiong Shaoyun, Chen Nenggui, Qu Jianhua. 2011. Petroleum geology characteristics and exploration potential of Carboniferous rocks in Ili basin. Marine Origin Petroleum Geology, 16(3): 30~37 (in Chinese with English abstract).

    • Liu Chuanpeng, Lin Chengyan, Zhao Yuhua, Zhang Jiaodong. 2008. Oil and gas potential and new exploration targets in Ferganskaya Dolina. Sedimentary Geology and Tethyan Geology, 28(1): 96~102 (in Chinese with English abstract).

    • Liu Zhen, Wang Peng, Zhang Hongmei, Liang Quansheng, Cang Hui, Liu Ying. 2016. Formation and evolution of Fergana basin and its controlling effect on hydrocarbon accumulation. Xinjiang Petroleum Geology, 37(1): 120~124 (in Chinese with English abstract).

    • Molnar P, Stock J M. 2009. Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28: TC3001.

    • Nurtaev B, Kharin V, Mccann T, Valdivia-Manchego M. 2013. The North Nuratau fault zone, Uzbekistan-structure and evolution of a Palaeozoic suture zone. Journal of Geodynamics, 64: 1~14.

    • Pan Shubiao, Liao Yuhong, Jiang Bin, Wan Zhixiong, Wang Fu. 2022. Impact of natural weathering on source rocks: Organic and inorganic geochemical evidence from the Triassic Chang 7 outcrop profile in Tongchuan of the Southern Ordos basin (China). International Journal of Coal Geology, 263(1): 104119.

    • Ritts B D, Yue Yongjun, Graham S A, Sobel E R, Abbink O A, Stockli D. 2008. From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan. American Journal of Science, 308(5): 657~678.

    • Shakerardakani F, Neubauer F, Masoudi F, Mehrabi B, Liu Xiaoming, Dong Yunpeng, Mohajjel M, Monfaredi B, Friedl G. 2015. Panafrican basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud-Azna region (NW Iran): Laser-ablation ICP-MS zircon ages and geochemistry. Tectonophysics, 647-648: 146~171.

    • Taskyn A, Li Jianghai, Li Honglin, Li Weibo, Mao Xiang, Wang Honghao. 2014. Tectonic evolution and hydrocarbon potential of basins in Central Asia and its adjacent regions. Geoscience, 28(3): 573~584 (in Chinese with English abstract).

    • Wang Xiaojun, Song Yong, Zheng Menglin, Ren Haijiao, Wu Haisheng, He Wenjun, Wang Tao, Wang Xiatian, Zhao Changyong, Guo Jianchen. 2021. Composite petroleum system and multi-stage hydrocarbon accumulation in Junggar basin. China Petroleum Exploration, 26(4): 29~43 (in Chinese with English abstract).

    • Wang Zongxiu, Li Chunlin, Pak N, Yu Xinqi, Zhou Gaozhi, Xiao Weifeng, Han Shuqin, Halilov Z, Takenov N, Yan Xili. 2017. Tectonic division and Paleozoic ocean-continent transition in Western Tianshan Orogen. Geology in China, 44(4): 623~641 (in Chinese with English abstract).

    • Wu Fuyuan, Wan Bo, Zhao Liang, Xiao Wenjiao, Zhu Rixiang. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627~1674 (in Chinese with English abstract).

    • Xu Hong, Yang Yufeng. 2014. Ultra-deep petroleum accumulation systems in Fergana basin. Petroleum Geology and Experiment, 36(4): 450~458 (in Chinese with English abstract).

    • Ye Fawang, Wang Jiangang, Qiu Junting, Zhang Chuan, Yu Xinqi, Liu Xiu. 2020. Study oncorrelation between total oroganic carbon, soluble hydrocarbon, pyrolytic hydrocarbon content and spectral index in source rocks. Spectroscopy and Spectral Analysis, 40(4): 1001~1006 (in Chinese with English abstract).

    • Yu Yixin, Yin Jinyin, Zheng Junzhang, Li Feng, Tao Chongzhi, Xu Xiaolong, Wu Hang. 2015. Division and resources evaluation of hydrocarbon plays in the Amu Darya basin, Central Asia. Petroleum Exploration and Development, 42(6): 750~756 (in Chinese with English abstract).

    • Yue Yongjun, Liou J G. 1999. Two-stage evolution model for the Altyn Tagh fault, China. Geology, 27(3): 227~230.

    • Zhang Kaixun, Han Shuqin, Wang Zongxiu, Tao Chongzhi, Han Fengbin, Li Chunlin, Li Xiaoshi, Halilov Z, Takenov N, 2018. Characteristics of petroleum systems and resources potential in the Afghan-Tajik basin. Geology in China, 45(5): 920~930 (in Chinese with English abstract).

    • Zhu Xiangfeng, Shen Chuanbo, Zhao Bin, Hu Shouzhi, Ge Xiang, Wang Liang. 2022. Multi-stage hydrocarbon migration and accumulation of Permian petroleum system in the Zaysan basin, NE Kazakhstan. Journal of Petroleum Science and Engineering, 208: 109291.

    • Zhu Yixiu, Liu Luofu, Lin, Changsong. 2005. Petroleum geology of Fergana basin in Central Asia. Journal of Lanzhou University (Natural Sciences), 41(1): 25~31 (in Chinese with English abstract).

    • Zhu Yixiu, Liu Luofu. 2005. Characteristics of structures and evolution in Fergana basin, Central Asia. Inner Mongolia Petrochemical Industry, 2: 92~94 (in Chinese with English abstract).

    • Zuo Guochao, Zhang Zuoheng, Wang Zhiliang, Liu Min, Wang Longsheng. 2008. Tectonic division, stratigraphical system and the evolution of western Tianshan mountains, Xinjiang. Geological Reviews, 54(6): 731~751 (in Chinese with English abstract).

    • Zuza A V, Yin A. 2017. Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains. Geosphere, 13(5): doi: 10. 1130/GES01463. 1.

    • 车自成, 罗金海, 刘良. 1997. 中亚与中国西北地区含油气盆地基本类型及成因分析. 地球学报, 18(2): 113~121.

    • 陈强, 金庆焕. 2018. 费尔干纳盆地油气成藏特征及其主控因素分析. 海洋地质前沿, 34(7): 9~14.

    • 冯杨伟, 任艳, 屈红军, 王云, 姜婷. 2021. 中哈边境吉木乃—斋桑盆地二叠系油气成藏要素. 地质学报, 95(6): 1935~1948.

    • 高波, 龙胜祥, 刘彬. 2007. 中国西部与中亚前陆盆地油气地质特征类比分析. 天然气地球科学, 18(2): 187~223.

    • 韩凤彬, 陈正乐, 韩淑琴, 王宗秀, 张凯逊, 肖伟峰, Takenov N, Halilov Z. 李春麟, 余心起, 刘秀. 2017. 费尔干纳盆地北缘Mayly-Szi地区铀矿成因新认识: 新生代大规模油气逸散与铀成矿. 中国地质, 44(4): 810~811.

    • 何登发, 张磊, 吴松涛, 李涤, 甄宇. 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845~861.

    • 侯平, 田作基, 郑俊章, 王兆平, 吴义平. 2014. 中亚沉积盆地常规油气资源评价. 地学前缘, 21(3): 66~62.

    • 黄海平, 傅恒. 2008. 哈萨克斯坦楚—萨雷苏盆地热兹卡兹甘地区石油地质特征及含油气远景评价. 沉积与特提斯地质, 28(2): 20~26.

    • 季长军, 吴珍汉, 刘志伟, 赵珍. 2019. 羌塘盆地逆冲推覆构造特征及油气资源效应. 地质力学学报, 25(S1): 66~71.

    • 姜生玲, 李博, 张金川. 2015. 费尔干纳盆地油气资源潜力再认识. 石油地质与工程, 29(4): 47~50.

    • 李玉文, 余朝丰, 熊绍云, 陈能贵, 瞿建华. 2011. 伊犁盆地石炭系石油地质特征与勘探潜力. 海相油气地质, 16(3): 30~37.

    • 刘传鹏, 林承焰, 赵玉华, 张交东. 2008. 费尔干纳盆地油气资源潜力与勘探新领域. 沉积与特提斯地质, 28(1): 96~102.

    • 刘阵, 王鹏, 张洪美, 梁全胜, 仓辉, 刘瑛. 2016. 费尔干纳盆地形成演化及其对油气成藏的控制作用. 新疆石油地质, 37(1): 120~124.

    • 塔斯肯, 李江海, 李洪林, 李维波, 毛翔, 王洪浩. 2014. 中亚与邻区盆地群构造演化及含油气性. 现代地质, 28(3): 573~584.

    • 王小军, 宋永, 郑孟林, 任海姣, 吴海生, 何文军, 王韬, 王霞田, 赵长永, 郭健辰. 2021. 准噶尔盆地复合含油气系统与复式聚集成藏. 中国石油勘探, 26(4): 29~43.

    • 王宗秀, 李春麟, Pak N, Ivleva E, 余心起, 周高志, 肖伟峰, 韩淑琴, Halilov Z, Takenov N, 鄢犀利. 2017. 西天山造山带构造单元划分及古生代洋陆转换过程. 中国地质, 44(4): 623~641.

    • 吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627~1674.

    • 徐洪, 杨玉峰. 2014. 费尔干纳盆地超深层油气成藏系统. 石油实验地质, 36(4): 450~458.

    • 叶发旺, 王建刚, 邱俊挺, 张川, 余心起, 刘秀. 2020. 烃源岩可溶烃、热解烃、总有机碳含量与光谱指数相关性研究. 光谱学与光谱分析, 40(4): 1001~1006.

    • 余一欣, 殷进垠, 郑俊章, 李锋, 陶崇智, 徐小龙, 吴航. 2015. 阿姆河盆地成藏组合划分与资源潜力评价. 石油勘探与开发, 42(6): 750~756.

    • 张凯逊, 韩淑琴, 王宗秀, 陶崇智, 韩凤彬, 李春麟, 李小诗, Halilov Z, Takenov N. 2018. 阿富汗—塔吉克盆地含油气系统特征与资源潜力. 中国地质, 45(05): 920~930.

    • 朱毅秀, 刘洛夫, 林畅松. 2005. 中亚地区费尔干纳盆地油气地质特征. 兰州大学学报(自然科学版), 41(1): 25~31.

    • 朱毅秀, 刘洛夫. 2005. 中亚地区费尔干纳盆地构造及其演化特征. 内蒙古石油化工, 2: 92~94.

    • 左国朝, 张作衡, 王志良, 刘敏, 王龙生. 2008. 新疆西天山地区构造单元划分、地层系统及其构造演化. 地质论评, 54(6): 731~751.