en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

代向明,男,1997年生。硕士研究生,主要从事南海北部伸展构造定量解析和三维构造建模研究。E-mail:daixm3@mail2.sysu.edu.cn。

通讯作者:

李志刚,男,1986年生。博士,副教授,主要从事青藏高原周缘构造变形和南海北部活动断层及链生灾害研究。E-mail:lizhigang@mail.sysu.edu.cn。

参考文献
Ackermann R V, Schlische R W. 1997. Anticlustering of small normal faults around larger faults. Geology, 25(12): 1127~1130.
参考文献
Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research, 98(B4): 6299~6328.
参考文献
Cao Jinghe, Xia Shaohong, Sun Jinlong, Xu Huilong. 2014a. Comparison of fault structure characteristics in the north Pearl River mouth basin and its geological implication. Progress in Geophysics, 29(5): 2364~2369 (in Chinese with English abstract).
参考文献
Cao Jinghe, Sun Jinlong, Xu Huilong, Xia Shaohong. 2014b. Seismological features of the Littoral fault zone in the Pearl River Estuary. Chinese Journal of Geophysics, 57(2): 498~508 (in Chinese with English abstract).
参考文献
Cartwright J, Bouroullec R, James D, Johnson H. 1998. Polycyclic motion history of some gulf coast growth faults from high-resolution displacement analysis. Geology, 26(9): 819~822.
参考文献
Chen Jianjun, Ma Yanping, Chen Jianzhong, Sun Guibing. 2015. Tectonic dynamics of northern continental margin basins in South China Sea. Earth Science Frontiers, 22(3): 38~47 (in Chinese with English abstract).
参考文献
Claringbould J S, Bell R E, Jackson A L, Gawthorpe R L, Odinsen T. 2017. Pre-existing normal faults have limited control on the rift geometry of the northern North Sea. Earth and Planetary Science Letters, 475: 190~206.
参考文献
Collignon M, Fernandez N, Kaus B J P. 2015. Influence of surface processes and initial topography on lateral fold growth and fold linkage mode. Tectonics, 34: 1622~1645.
参考文献
Contreras J, Anders M H, Scholz C H. 2002. Growth of a normal fault system: observations from the Lake Malawi basin of the East Africa rift. Journal of Structural Geology, 22(2): 159~168.
参考文献
Cowie P A. 1998. A healing-reloading feedback control on the growth rate of seismogenic faults. Journal of Structural Geology, 20(8): 1075~1087.
参考文献
Cristallini E O, Giambiagi L, Allmendinger R W. 2004. True three-dimensional trishear: a kinematic model for strike-slip and oblique-slip deformation. GSA Bulletin, 116: 938~952.
参考文献
Cui Shasha, He Jiaxiong, Chen Shenghong, Zou Heping, Cui Jie. 2009. Development characteristics of Pearl River mouth basin and its geological conditions for oil and gas accumulation. Natural Gas Geoscience, 20(3): 384~391 (in Chinese with English abstract).
参考文献
Deng Hongdan, McClay K, Bilal A. 2020. 3D structure and evolution of an extensional fault network of the eastern dampier sub-basin, Northwest shelf of Australia. Journal of Structural Geology, 132: 103972.
参考文献
Feng Zhiqiang, Zeng Weijun. 1982. Tectonic evolution of Pearl River mouth basin and origin of South China Sea. Acta Geological Sinnica, 3: 212~222 (in Chinese with English abstract).
参考文献
Gao Yangdong, Wang Xudong, Lin Heming, Que Xiaoming, Xiao Zhangbo, Jia Liankai. 2021. Characteristics and significances of the tectono-sedimentary transitional unconformity in Enping Formation of Lufeng sag, Pearl River mouth basin. Natural Gas Geoscience, 32(7): 961~970 (in Chinese with English abstract).
参考文献
Gawthorpe R L, Jackson A L, Young M J, Sharp I R, Moustafa A R, Leppard C W. 2003. Normal fault growth, displacement localisation and the evolution of normal fault populations: the Hammam Faraun fault block, Suez rift, Egypt. Journal of Structural Geology, 25(8): 883~895.
参考文献
Ge Jiawang, Zhu Xiaomin, Zhang Xiangtao, Lei Yongchang, Niu Zicheng, Li Ming. 2018. Tectono-sedimentation of the Eocene Wenchang Formation in the Lufeng depression, Pearl River mouth basin. Journal of China University of Mining & Technology, 47(2): 308~322 (in Chinese with English abstract).
参考文献
Ge Jiawang, Zhu Xiaomin, Lei Yongchang, Yu Fusheng. 2021. Tectonic-sedimentary development of multiphase rift basins: an example of the Lufeng depression. Earth Science Frontiers, 28(1): 77~89 (in Chinese with English abstract).
参考文献
He Dengfa, Suppe J, Jia Chengzao. 2005. New advances in the theory and application of fault related folding. Earth Science Frontiers, 12(4): 353~364 (in Chinese with English abstract).
参考文献
He Jiaxiong, Chen Shenghong, Ma Wenhong, Gong Xiaofeng. 2012. The evolution, migration and accumulation regularity of oil and gas in Zhujiangkou basin, northeastern South China Sea. Geology in China, 39(1): 106~118 (in Chinese with English abstract).
参考文献
Hu Shouxiang, Alvese T M, Omosanya K O, Li Wei. 2021. Geometric and kinematic analysis of normal faults bordering continental shelves: a 3D seismic case study from the northwest South China Sea. Marine and Petroleum Geology, 133: 105263.
参考文献
Huang Zhongxian, Su Wei, Peng Y J, Zheng Yanju, Li Hongyi. 2003. Rayleigh wave tomography of China and adjacent regions. Journal of Geophysical Research Atmospheres, 108(B2): 2073.
参考文献
Jia Dong, Li Yiquan, Wang Maomao, Li Haibin. 2011. Three-dimensional structural geometry of fault-related folds: examples from 3-D seismic explored blocks in the western Sichuan Province, China. Acta Petrologica Sinica, 27(3): 732~740 (in Chinese with English abstract).
参考文献
Khalil S M, McClay K R. 2016. 3D geometry and kinematic evolution of extensional fault-related folds, NW Red Sea, Egypt. Geological Society London Special Publications, SP439. 11.
参考文献
Khalil S M, McClay K R. 2018. Extensional fault-related folding in the northwestern Red Sea, Egypt: segmented fault growth, fault linkages, corner folds and basin evolution. Geological Society London Special Publications, 476: 49~81.
参考文献
Lathrop B A, Jackson C A L, Bell R E, Rotevatn A. 2021. Normal fault kinematics and the role of lateral tip retreat: an example from offshore NW Australia. Tectonics, 40: e2020TC006631.
参考文献
Lei Baohua. 2012. Review of methods with quantitative studies of activity intensity of the growth fault. Advances in Earth Science, 27(9): 947~956 (in Chinese with English abstract).
参考文献
Li Xiaolin, Zhang Dongli, Zhang Peizheng, Li Zhigang, Hu Litian, Zheng Wenjun. 2020. Three-dimensional crustal structure in the northeaster South China Sea revealed by multi-source geophysical exploration data. Chinese Journal of Geophysics, 63(4): 1538~1552 (in Chinese with English abstract).
参考文献
Li Xuejie, Wang Zhe, Yao Yongjian, Gao Hongfang, Li Bo. 2017. The tectonic features and evolution of the West Pacific margin. Geology in China, 44(6): 1102~1114 (in Chinese with English abstract).
参考文献
Li Zhaoliang, Pan Mao, Han Dakuang, Liu Wenling, Hu Shuiqing, Liu Peigang, Yan Mei. 2016. Three-dimensional structural modeling technique. Earth Science, 14(12): 2136~2146 (in Chinese with English abstract).
参考文献
Liu Yin, Chen Qinghua, Wang Xi, Hu Kai, Cao Shaolei, Wu Lin, Gao Feng. 2017. Influence of normal fault growth and linkage on the evolution of a rift basin: a case from the Gaoyou depression of the Subei basin, eastern China. AAPG Bulletin, 101(2): 265~288.
参考文献
Lu Baoliang, Wang Pujun, Zhang Gongcheng, Zhang Bin, Sun Xiaomeng, Li Wuzhi, Lang Yuanqiang. 2011. Basement structures of an epicontinental basin in the north South China Sea and their significance in petroleum prospect. Acta Petrolei Sinica. 32(4): 580~587 (in Chinese with English abstract).
参考文献
Luan Xiwu, Zhang Liang. 2009. Tectonic evolution modes of South China Sea: passive spreading under complex actions. Marine Geology & Quaternary Geology, 29(6): 59~74 (in Chinese with English abstract).
参考文献
Mallet J L. 1992. Discrete smooth interpolation in geometric modeling. Computer-Aided Design, 8(2): 178~191.
参考文献
Marret R, Allmendinger R W. 1991. Estimates of strain due to brittle faulting: sampling of fault populations. Journal of Structural Geology, 13(6): 735~738.
参考文献
Morley C K. 1999. Patterns of displacement along large normal faults: implications for basin evolution and fault propagation, based on examples from East Africa. AAPG Bulletin, 83(4): 613~634.
参考文献
Morley C K. 2002. Evolution of large normal faults: evidence from seismic reflection data. AAPG Bulletin, 86(6): 961~978.
参考文献
Nicol A, Walsh J J, Watterson J, Underhill J R. 1997. Displacement rates of normal faults. Nature, 390: 157~159.
参考文献
Pubellier M, Meresse F. 2013. Phanerozoic growth of Asia: Geodynamic processes and evolution. Journal of Asian Earth Sciences, 72: 118~128.
参考文献
Que Xiaoming, Lei Yongchang, Zhang Xiangtao, Qiu Xinwei. 2022. Determination and geological significance of fault-depression transformation interface in the southern Lufeng area. Acta Geologica Sinica, 10. 19762/j. cnki. dizhixuebao. 2022286.
参考文献
Roberts G P, Michetti A M. 2004. Spatial and temporal variations in growth rates along active normal fault systems: an example from the Lazio-Abruzzo Apennines, central Italy. Journal of Structural Geology, 26(2): 339~376.
参考文献
Rotevatna A, Jacksonb C A L, Tvedtc A B M, Bellb R E, Blækkan I. 2019. How do normal faults grow? Journal of Structural Geology, 125: 174~184.
参考文献
Ru Ke, Pigott J D. 1986. Episodic rifting and subsidence in the South China Sea. AAPG Bulletin, 70 (9): 1136~1155.
参考文献
Shaw J H, Hook S C, Sitohang E P. 1997. Extensional fault-bend folding and synrift deposition: an example from the central Sumatra basin, Indonesia. AAPG Bulletin, 81(3): 367~379.
参考文献
Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98~119.
参考文献
Sun Weidong. 2016. Initiation and evolution of the South China Sea: an overview. Acta Geochimica, 35(3): 215~225.
参考文献
Sun Zhen, Ding Weiwei, Zhao Xixi, Qiu Ning, Lin Jian, Li Chunfeng. 2019. The latest spreading periods of the South China Sea: new constraints from macrostructure analysis of IODP expedition 349 cores and geophysical data. Journal of Geophysical Research: Solid Earth, 124(10): 9980~9998.
参考文献
Thorsen C E. 1963. Age of growth faulting in Southeast Louisiana. GCAGS Tansactions, 13: 103~110.
参考文献
Tian Wei, He Min, Yang Yajuan, Liu Hailun, Yuan Xun, Wu Sen, Zhu Dingwei, Mei Lianfu. 2015. Complex linkage and transformation of boundary faults of northern Huizhou sag in Pearl River mouth basin. Earth Science—Journal of China University of Geosciences, 40(12): 2037~2051 (in Chinese with English abstract).
参考文献
Vincenzo L B, Fabrizio A, Juliette L, Sophie V, Giacomo P. 2018. Fault growth mechanisms and scaling properties in foreland basin system: the case study of Monte Alpi, southern Apennines, Italy. Journal of Structural Geology, 116: 94~113.
参考文献
Walsh J J, Watterson J. 1987. Distributions of cumulative displacement and seismic slip on a single normal fault. Journal of Structural Geology, 9(8): 1039~1046.
参考文献
Wan Kuiyuan, Xia Shaohong, Cao Jinghe, Sun Jinlong, Xu Hhuilong. 2017. Deep seismic structure of the northeastern South China Sea: origin of a high-velocity layer in the lower crust. Journal of Geophysical Research: Solid Earth, 122: 2831~2858.
参考文献
Watterson J. 1986. Fault dimensions displacement and growth. Pure and Applied Geophysics, 124: 365~372.
参考文献
Wei Xinyuan, Luan Xiwu, Ran Weimin, Shi Yanfeng, Wang Kuo, Zhanghao. 2021. Fault characteristics and tectonic evolution model of the East Timor trough. Geological Bulletin of China, 40(2-3): 364~375 (in Chinese with English abstract).
参考文献
Wilkerson M S, Medwedeff D A, Marshak S. 1991. Geometrical modeling of fault-related folds: a pseudo three-dimensional approach. Journal of Structural Geology, 13(7): 801~812.
参考文献
Xia Bin, Cui Xuejun, Xie Jianhua, Wang Ran. 2004. Thinking about the dynamics mechanism study on formation and evolution of South China Sea. Geotectonica et Metallogenia, 28(3): 221~227 (in Chinese with English abstract).
参考文献
Xia Shaohong, Zhao Minghui, Qiu Xuelin. 2008. Situation and prospect of study on crustal structure beneath the onshore-offshore transitional zone in the northern margin of South China Sea. South China Journal of Selsmology, 28(4): 9~17 (in Chinese with English abstract).
参考文献
Xiao Hongbin, Suppe J. 1992. Origin of rollover. AAPG Bulletin, 76(4): 509~529.
参考文献
Xie Xinong, Ren Jianye, Wang Zhenfeng, Li Xushen, Lei Chao. 2015. Difference of tectonic evolution of continental basins of South China Sea and relationship with SCS spreading. Earth Science Frontiers, 22(1): 77~87 (in Chinese with English abstract).
参考文献
Xu Huilong, Ye Chunming, Qiu Xuelin, Sun Jinlong, Xia Shaohong. 2010. Studies on the Binhai fault zone in the northern South China Sea by the deep geophysical exploration and its seismogenic structure. South China Journal of Selsmology, 30(S1): 10~18 (in Chinese with English abstract).
参考文献
Yang Chaoqun, Lei Yongchang, Qiu Xinwei, Xiao Zhangbo. 2021. An integrated assessment of fault sealing for oilfield a in Lufeng sag of Pear River mouth basin. Marine Geology Frontiers, 37(2): 54~61 (in Chinese with English abstract).
参考文献
Yao Bochu, Wan Ling, Wu Nengyou. 2004. Cenozoic plate tectonic activities in the Great South China Sea area. Geology in China, 31(2): 113~122 (in Chinese with English abstract).
参考文献
Yu Fusheng, Koyi H, Zhang Xiangtao. 2016. Intersection patterns of normal faults in the Lufeng sag of Pearl River mouth basin, China: insights from 4D physical simulations. Journal of Structural Geology, 93: 67~90.
参考文献
Yu Fusheng, Koyi H. 2017. Theoretical and experimental estimation of geometric relationship of non-parallel conjugate normal faults. Tectonophysics, 703-704: 85~97.
参考文献
Yu Fusheng, Wang Xudong, Qiu Xinwei, Wang Dandan, Li Chao, Lu Xuyang, Wang Yiqun, Wang Yidan. 2019. Characteristics of fault structure and the genesis of herringbone structure in Lufeng sag, Pearl River Mouth basin. Acta Petrolei Sinica, 40(S1): 166~177 (in Chinese with English abstract).
参考文献
Zhao Minghui, Qiu Xuelin, Ye Chunming, Xia Jiyuan, Huang Ciliu, Xie Jianbo, Wang Ping. 2004. Analysis on deep crustal structure along the onshore-offshore seismic profile across the Binhai (Littoral) fault zone in northeastern South China Sea. Chinese Journal of Geophysics, 47(5): 845~853 (in Chinese with English abstract).
参考文献
Zhong Jianqiang. 1994. Characteristics of geologic structure and basin evolution in Pearl River mouth basin. Transactions of Oceanology and Limnology, 1: 1~8 (in Chinese with English abstract).
参考文献
Zhu Weilin, Zhong Kai, Li Youchuan, Xu Qiang, Fang Dianyong. 2012. Hydrocarbon accumulation and exploration in deep water zone of northern South China Sea. Chinese Science Bulletin, 57(20): 1833~1841 (in Chinese with English abstract).
参考文献
曹敬贺, 夏少红, 孙金龙, 徐辉龙. 2014a. 珠江口盆地北部断裂构造特征对比及其地质学意义. 地球物理学进展, 29(5): 2364~2369.
参考文献
曹敬贺, 孙金龙, 徐辉龙, 夏少红. 2014b. 珠江口盆地滨海断裂带的地震学特征. 地球物理学报, 57(2): 498~508.
参考文献
陈建军, 马艳萍, 陈建中, 孙贵宾. 2015. 南海北部陆缘盆地形成的构造动力学背景. 地学前缘, 22(3): 38~47.
参考文献
崔莎莎, 何家雄, 陈胜红, 邹和平, 崔洁. 2009. 珠江口盆地发育演化特征及其油气成藏地质条件. 天然气地球科学, 20(3): 384~391.
参考文献
冯志强, 曾维军. 1982. 珠江口盆地的构造演化与南海之形成. 地质学报, 3: 212~222.
参考文献
高阳东, 汪旭东, 林鹤鸣, 阙晓铭, 肖张波, 贾连凯. 2021. 珠江口盆地陆丰凹陷恩平组内部构造—沉积转换面识别及意义. 天然气地球科学, 32(7): 961~970.
参考文献
葛家旺, 朱筱敏, 雷永昌, 于福生. 2021. 多幕裂陷盆地构造—沉积响应及陆丰凹陷实例分析. 地学前缘, 28(1): 77~89.
参考文献
葛家旺, 朱筱敏, 张向涛, 雷永昌, 牛子铖, 黎明. 2018. 珠江口盆地陆丰凹陷文昌组构造—沉积演化模式. 中国矿业大学学报, 47(2): 308~322.
参考文献
何登发, Suppe J, 贾承造. 2005. 断层相关褶皱理论与应用研究新进展. 地学前缘. 12(4): 353~364.
参考文献
何家雄, 陈胜红, 马文宏, 龚晓峰. 2012. 南海东北部珠江口盆地成生演化与油气运聚成藏规律. 中国地质, 39(1): 106~118.
参考文献
贾东, 李一泉, 王毛毛, 李海滨. 2011. 断层相关褶皱的三维构造几何学分析: 以川西三维地震工区为例. 岩石学报, 27(3): 732~740.
参考文献
雷宝华. 2012. 生长断层活动强度定量研究的主要方法评述. 地球科学进展, 27(9): 947~956.
参考文献
李小林, 张冬丽, 张培震, 李志刚, 胡立天, 郑文俊. 2020. 多源探测数据揭示的南海东北部三维地壳结构特征. 地球物理学报, 63(4): 1538~1552.
参考文献
李学杰, 王哲, 姚永坚, 高红芳, 李波. 2017. 西太平洋边缘构造特征及其演化. 中国地质, 44(6): 1102~1114.
参考文献
李兆亮, 潘懋, 韩大匡, 刘文岭, 胡水清, 刘培刚, 颜玫. 2016. 三维构造建模技术. 地球科学, 41(12): 2136~2146.
参考文献
鲁宝亮, 王璞珺, 张功成, 张斌, 孙晓猛, 李伍志, 郎元强. 2011. 南海北部陆缘盆地基底结构及其油气勘探意义. 石油学报, 32(4): 580~587.
参考文献
栾锡武, 张亮. 2009. 南海构造演化模式: 综合作用下的被动扩张. 海洋地质与第四纪地质, 29(6): 59~74.
参考文献
阙晓铭, 雷永昌, 张向涛, 邱欣卫. 2022. 陆丰南地区断拗转换界面厘定及其地质意义. 地质学报, doi: 10. 19762/j. cnki. dizhixuebao. 2022286.
参考文献
田巍, 何敏, 杨亚娟, 刘海伦, 袁勋, 吴森, 朱定伟, 梅廉夫. 2015. 珠江口盆地惠州凹陷北部边界断层复合联接和转换. 地球科学(中国地质大学学报), 40(12): 2037~2051.
参考文献
魏新元, 栾锡武, 冉伟民, 石艳锋, 王阔, 张豪. 2021. 东帝汶海槽断层特征与构造演化模式. 地质通报, 40(Z1): 364~375.
参考文献
夏斌, 崔学军, 谢建华, 王冉. 2004. 关于南海构造演化动力学机制研究的一点思考. 大地构造与成矿学, 28(3): 221~227.
参考文献
夏少红, 赵明辉, 丘学林. 2008. 南海北部海陆过渡带地壳结构的研究现状及展望. 华南地震, 28(4): 9~17.
参考文献
解习农, 任建业, 王振峰, 李绪深, 雷超. 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系. 地学前缘, 22(1): 77~87.
参考文献
徐辉龙, 叶春明, 丘学林, 孙金龙, 夏少红. 2010. 南海北部滨海断裂带的深部地球物理探测及其发震构造研究. 华南地震, 30(S1): 10~18.
参考文献
杨超群, 雷永昌, 邱欣卫, 肖张波. 2021. 珠江口盆地陆丰凹陷A油田断层封堵性综合评价. 海洋地质前沿, 37(2): 54~61.
参考文献
姚伯初, 万玲, 吴能友. 2004. 大南海地区新生代板块构造活动. 中国地质, 31(2): 113~122.
参考文献
于福生, 汪旭东, 邱欣卫, 王丹丹, 李超, 吕旭阳, 王逸群, 王一丹. 2019. 珠江口盆地陆丰凹陷断层构造特征及“人”字型构造成因. 石油学报, 40(S1): 166~177.
参考文献
赵明辉, 丘学林, 叶春明, 夏戟原, 黄慈流, 谢剑波, 王平. 2004. 南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析. 地球物理学报, 47(5): 846~853.
参考文献
钟建强. 1994. 珠江口盆地的构造特征与盆地演化. 海洋湖沼通报, 1: 1~8.
参考文献
朱伟林, 钟锴, 李友川, 徐强, 房殿勇. 2012. 南海北部深水区油气成藏与勘探. 科学通报, 57(20): 1833~1841.
目录contents

    摘要

    正断层生长和侧向连接是最基本的三维地质构造问题,深入剖析其三维时-空演化过程对理解沉积盆地内正断层系统的形成与演化至关重要。南海扩张时间和影响范围一直是国内外地学界研究的热点问题之一。南海北部珠江口盆地陆丰凹陷发育大量正断层,并覆盖有高精度二维地震反射剖面,成为研究上述问题的理想地区之一。本研究以陆丰凹陷为研究对象,开展三维构造解析和建模研究,为正断层系统三维时-空演化过程提供一个实例。研究结果表明:陆丰凹陷主控断层F1的生长和连接过程主要分三个阶段:晚白垩世—早古新世,两条断层分别形成并以孤立断层模式分别向两侧生长;早古新世—早渐新世,断层发生侧向连接作用合并为F1断层,连接处发育侧断坡;晚渐新世—中中新世,F1断层继续向两侧生长。基于F1断层定量分析(生长指数和断距),发现F1断层活动强度表现为先增加然后突然降低,其转折时间对应于T60界面,~23 Ma,较好地对应了西北次海盆扩张终止时间,说明南海北部扩张已经影响到陆丰凹陷。结合前人对珠江口盆地构造变形和演化研究,初步认为南海北部扩张波及的范围已跨过陆丰凹陷向大陆方向继续延伸,其北部边界可能对应于华南大陆南缘的滨海断裂带。本研究可为正断层系统三维生长过程研究提供案例,同时为南海扩张过程研究提供基础数据支撑。

    Abstract

    The growth and lateral linkage of the normal faults are the most basic 3D geological structural problems. Deeply analysis of 3D temporal and spatial evolution processes of the normal faults is very important for the formation and evolution of normal fault system in sedimentary basin. The spreading time and affected regions of the South China Sea are the focus issues in the geological field. Lufeng sag, located in the Pearl River mouth basin in the northern South China Sea, has developed a large number of normal faults and covered with high ~ resolution 2D seismic profiles and drilling data, which has become one of the ideal areas to study the above problems. Through characterizing the 3D seismic interpretation and modeling of the Lufeng sag, this study aims to provide a detailed case of 3D temporal and spatial evolution processes of the normal fault system. The results reveal that the growth and linkage processes of the main fault F1 can be described as three periods: ① During Late Cretaceous to Early Paleocene, two isolated faults formed and grew, respectively; ② Those fault segments merged laterally into F1 fault, and the relay ramp developed at the connection place between Early Paleocene and Early Oligocene; ③ The F1 fault continues to grow laterally on both sides from Late Oligocene to the Middle Miocene. Moreover, the expansion index and fault displacement are used to analyze the activity intensity of the fault F1, and we find that the fault slip of the F1 increases first and then decreases abruptly, and its shifting time occurred at the T60 reflector, ~23 Ma, which better corresponds to the spreading termination of the northwest sub-basin, and highlighting that the spreading of the South China Sea has affected the Lufeng sag. Combined with previous studies on the Pearl River mouth basin, we preliminarily think that the spreading of the South China Sea has passed through the Lufeng sag, and its northernmost boundary may be corresponding to the Littoral fault zone, which located at the southern margin of the South China continent. Thus, our study enhanced our understanding of the 3D temporal and spatial evolution processes of normal fault system, and provide additional constraints for studies of the spreading processes of the South China Sea.

  • 单条正断层的成核(活化)、生长和多条正断层之间的侧向连接是最基本的三维地质构造问题,深入剖析三维时-空演化过程对其在沉积盆地正断层系统形成方面至关重要(Wilkerson et al., 1991; Cristallini et al., 2004; 何登发等, 2005; 贾东等, 2011; Collignon et al., 2015)。目前对正断层系统形成和演化相关研究多集中于二维的剖面几何学(Walsh et al., 1987;Marret et al., 1991)和运动学(Watterson, 1986; Nicol et al., 1997; Cowie, 1998; Morley, 1999; Gawthorpe et al., 2003; Roberts et al., 2004; 贾东等, 2011)的描述,例如伸展背景下的滚动背斜(Xiao et al., 1992)和断层转折褶皱(Shaw et al., 1997)的提出,或者是二维剖面上正断层的生长模式的研究(Ackermann et al., 1997; Contreras et al., 2002; Morley, 2002; Lathrop et al., 2021)。这些研究不断地推进正断层系统研究从二维向三维转化。但是,由于很多伸展背景区缺少三维地震数据,致使沉积盆地正断层系统研究案例比较稀缺(何登发等, 2005; Deng Hongdan et al., 2020; 图1),真正意义上的正断层系统的三维时-空演化过程尚未确立,还处于探索阶段,从而阻碍了对自然界真实的正断层系统的认识。

  • 图1 正断层生长和连接的三维理论模型(据Khalil et al., 2016修改)

  • Fig.1 3D theoretical model of normal fault growth and linkage (modified from Khalil et al., 2016)

  • (a)—断层段初始生长; (b)—断层段沿走向侧向生长; (c)—断层段由侧断坡侧向连接

  • (a)—Initial growth of isolated fault; (b)—fault segment grows laterally of along the strike; (c)—the fault segment is linked by lateral relay ramp

  • 南海扩张的时间、构造演化过程和扩张作用的影响范围一直是国内外学者研究的热点。南海处于NE向与NNW向海盆链的转折部位,位于欧亚、印度-澳大利亚和太平洋三大板块之间(Huang Zhongxian et al., 2003),同时受太平洋和特提斯两个构造域的共同影响和不同区域构造应力作用,具有复杂的构造地质背景并以“夭折”的大洋和现今西太平洋最大的边缘海为特征(夏斌等, 2004; 姚伯初等, 2004; 栾锡武等, 2009; Pubellier et al., 2013; 解习农等, 2015; 李学杰等, 2017)。南海在扩张过程中,在其周缘形成一系列由正断层控制的盆地及次级的凹陷和隆起区(陈建军等, 2015),如南海北部的珠江口盆地、琼东南盆地和北部湾盆地,这些区域正断层系统非常发育,可能记录着新生代南海扩张的全过程(朱伟林等, 2012; 曹敬贺等,2014a; Sun Weidong et al., 2016; Wan Kuiyuan et al., 2017)。珠江口盆地位于南海北部、华南大陆的南缘,呈NE走向,是目前我国在南海油气开采最多的中—新生代大型沉积盆地之一(朱伟林等, 2012;图2)。陆丰凹陷位于珠江口盆地中部,由于处于油气资源开发区域,覆盖有大量高精度二维地震剖面和钻井数据(图2b)。最新研究表明,陆丰凹陷内发育一系列的正断层(Yu Fusheng et al., 2016),为研究正断层的三维演化过程提供了数据支撑。因此,珠江口盆地陆丰凹陷成为研究正断层系统三维时-空演化过程和南海扩张过程和影响范围的理想地区之一。

  • 本研究选取珠江口盆地陆丰凹陷为研究对象,利用高精度二维地震反射剖面对正断层系统展开定量化、精细化的三维构造解析和建模研究,厘定正断层沿走向和倾向上的生长历史,以及平面上的连接过程,旨在为正断层系统的三维时-空演化过程研究提供一个实例分析。结合横跨研究区另一条地震反射剖面(高阳东等, 2021),检验陆丰凹陷三维构造建模结果。在此基础上,结合已发表的南海北部地区构造演化过程的认识,建立陆丰凹陷正断层系统的三维时-空演化模型,探讨南海扩张是否影响至研究区域。研究结果将为正断层理论研究提供研究案例,同时为南海扩张过程等科学问题奠定基础。

  • 1 区域构造背景

  • 珠江口盆地位于南海北部的大陆边缘,西邻北部湾盆地,东接台湾浅滩盆地,共同构成了一个绵延1200km的华南陆缘坳陷带,总面积约为30万km2(冯志强等, 1982),是一个晚中生代发育起来,蕴藏着丰富油气和矿产资源的中—新生代大型沉积盆地 (朱伟林等, 2012;图2)。珠江口盆地总体呈现为NE—SW走向展布的新生代大陆边缘伸展型盆地,整体呈“三隆两坳”的构造格局(图2a),从北向南依次为北部隆起带、北部坳陷带(含珠一坳陷带)、中央隆起带、南部坳陷带(含珠二坳陷带)和南部隆起带等5个一级构造单元,这些一级构造单元中又包含由多个凹陷和低隆起组成的二级构造单元(崔莎莎等, 2009; 葛家旺等, 2018; 于福生等, 2019; 杨超群等, 2021;阙晓铭等,2022)。

  • 图2 南海北部区域构造及珠江口盆地位置图(a)(陆丰凹陷位于图中红色区域)(据朱伟林等, 2012; Yu Fusheng et al., 2016; 李小林等, 2020修改)和陆丰凹陷Tg(基底顶部)构造图及主要地震剖面测线位置分布(b)(据Yu Fusheng et al., 2016修改)(M—M′为模型验证测线;据高阳东等, 2021)

  • Fig.2 Geological setting of the northern South China Sea and Pearl River mouth basin(a)(Lufeng sag is located in the red area) (modified from Zhu Weilin et al., 2012;Yu Fusheng et al., 2016;Li Xiaolin et al., 2020), Tg (the top of basement) reflector structure map and distribution of main seismic profile lines in Lufeng sag (b) (modified from Yu Fusheng et al., 2016)(M—M′ is the validation line of structural model; after Gao Yangdong et al., 2021)

  • 晚白垩世—早古新世,由于受到太平洋板块俯冲后撤及印度-欧亚板块碰撞的综合作用,发生神狐运动,珠江口盆地的应力场性质由挤压转变为伸展状态(曹敬贺等, 2014a; 葛家旺等, 2021),此时期珠江口盆地发育NNE—NE向基底断层(崔莎莎等, 2009);始新世早期,太平洋板块对欧亚板块俯冲由NNW向转变为NWW向,同时俯冲角度加大(夏斌等, 2004; 曹敬贺等, 2014a),在此作用下珠琼运动Ⅰ幕发生,NE向断层得到进一步发育;中始新世—早渐新世发生的珠琼运动Ⅱ幕,珠江口盆地产生近SN向张裂作用(Ru Ke et al., 1986),形成近EW向断层;晚渐新世至早中新世期间南海运动发生(Briais et al., 1993; Sibuet et al., 2016),该时期形成了一系列NEE—EW向张性断层;中中新世末期,东沙运动发生,期间产生了一系列NW向走滑断层,错断了早期形成的NE—NEE向的断层(钟建强等, 1994; 崔莎莎等, 2009; 鲁宝亮等, 2011; 何家雄等, 2012)。

  • 珠江口盆地新生代以来的沉积地层从下到上依次为文昌组、恩平组、珠海组、珠江组、韩江组、粤海组、万山组。陆丰凹陷经历了两幕次的裂陷旋回构造运动,断陷阶段可分别为裂陷Ⅰ幕(珠琼运动Ⅰ幕)和裂陷Ⅱ幕(珠琼运动Ⅱ幕)。裂陷Ⅰ幕和裂陷Ⅱ幕对应的沉积地层分别为文昌组和恩平组,断坳转换期沉积地层为珠海组,珠海组及以上是坳陷期的沉积地层(田魏等, 2015; 葛家旺等, 2021)。本研究涉及的地层主要为珠海组(T70~T60,E3zh)、珠江组(T60~T40,N1zh)、韩江组(T40~T32,N1h)、粤海组(T32~T30,N1ao),其中T70界面对应南海扩张运动开始界面,T60界面对应西北次海盆扩张运动结束时界面。

  • 陆丰凹陷是珠江口盆地中部珠一坳陷中的一个二级构造单元,南北分别被东沙隆起带和北部隆起带围限,东西分别与陆丰中低突起和惠陆低突起相接,覆盖面积约为7760km2(葛家旺等, 2018)。陆丰凹陷主要经历了晚白垩世—早渐新世裂陷、晚渐新世—早中新世的裂后坳陷及中中新世晚期至今的新构造运动及热沉降拗陷三大构造演化阶段 (曹敬和等, 2014a; Wan Kuiyuan et al., 2017),并其周缘发育一系列的正断层(Yu Fusheng et al., 2016;图2)。多期构造的叠加使珠江口盆地陆丰凹陷演化非常复杂,并且在晚新生代还处于强烈的活动中,具有含油气构造成藏和破坏的双重可能,因此需要研究者从多个角度对其几何学和运动学历史提供约束。

  • 2 数据来源与处理

  • 本研究所使用的数据主要来源于已经发表的12条地震反射剖面数据和钻井分层数据(Yu Fusheng et al., 2016, 2017; 于福生等, 2019)。这些地震剖面覆盖了陆丰凹陷内主要的主控断层和次级断层,各剖面之间间距小、均匀分布在研究区内,横跨主控断层。早期地震剖面中沉积地层和构造解释工作揭示了主控断层“人”字型构造样式及其形成机制问题。本研究重新解释了这12条地震剖面,核查了研究区内沉积地层空间延续性特征,厘清了主体构造和主控断层之间的相互关系,为定量化研究正断层系统构造几何学、运动学,以及三维构造解析和建模研究工作提供了基础条件。主要研究方法包括:

  • (1)定量解析正断层系统——生长指数法:断层生长指数分析方法由Thorsen(1963)提出,被广泛用于约束同沉积断层的生长史(Thorsen, 1963; Cartwright et al., 1998; Liu Yin et al., 2017; Deng Hongdan et al., 2020)。断层上、下盘沉积厚度的差异是同生长构造最显著的特征,也是生长指数法理论基础。断层上盘的厚度与下盘的厚度之比称为生长指数,即断层生长指数(EI)=上盘厚度(H)/下盘厚度(h)。采用该方法对断层上、下盘厚度进行提取时,应在垂直于断层走向的剖面上测量,并尽可能靠近断层,以获得最大厚度。不同时期构造活动强度不同会导致断层上下盘差异沉积,根据不同时期的断层生长指数分布情况可以了解断层在不同时代活动强度变化特征。具体来说包括以下三种情形(雷宝华等, 2012; Liu Yin et al., 2017; 魏新元等, 2021):① EI=1时,表明断层上下盘厚度相等,断层不活动;② EI >1时,上盘厚度大于下盘厚度,断层活动强度与其呈现正相关;③ EI <1时,上盘厚度小于下盘厚度,此时断层的性质发生反转,构造环境由伸展环境转换为挤压环境。此时对应的EI值越小,表明构造活动强度越大。

  • (2)定量解析正断层系统——断距分析:断距作为断层活动特性的最直接的判定指标,对定量解析正断层系统十分重要(Vincenzo et al., 2018),根据断距在垂向上(Hu Shouxiang et al., 2021)和沿走向(Rotevatna et al., 2019)的分布特点研究断层在垂向活动过程,以及断层的是横向连接过程。利用断层活动特征在断距上所反映出的特点,分别对研究区的主控断层F1的沿走向和倾向上的断距进行了分析,绘制出主控断层F1断距变化规律折线图,断层活动性发生转折对应的时间节点可能暗示相应的构造运动事件的发生。

  • (3)三维构造建模:为了能构建研究区断层分布的真实状况,本研究中采用由法国南西大学开发的GoCAD软件进行模型构建(Mallet, 1992)。该软件可根据矢量化的点位和地震信息构建空间模型,研究中模型构建采用以下流程进行:① 剖面数据的解译:对获取的二维地震剖面进行解译,解译出研究区的地层线和断层线形态特征(Claringbould et al., 2017),结合前人研究的基础,对这些剖面进行再次解译,对具有明显标志层的地层进行加密解译,绘制出完整剖面信息(图3)。② 地震剖面矢量化:根据获取的各剖面位置信息,我们可以定位到每个剖面的分布位置,利用ArcGIS软件对地震剖面位置进行定位和校正。对每个剖面端点位置进行校正定位,从而限定剖面线分布位置,利于后续点位提取。各剖面点位提取前应进行坐标转换,使用统一的大地坐标系。随后提取各地层厚度、所处深度、断层深度信息等,整理分类成对应的数据集。③ 构建三维模型:对同一地层但位于不同剖面的数据进行整合归纳,按照不同地层类型和断层,将获取的三维数据信息导入GoCAD软件,绘制地层、断层面(李兆亮等, 2016)。由于建模数据源可能出现的稀疏性,使得构建出的三维地质面模型较为粗糙,需要运用建模软件中的平滑功能,进行面模型的平滑。

  • 3 研究区断层构造特征

  • 陆丰凹陷内整体沉积地层特征:主干地震剖面解释结果显示陆丰凹陷沉积地层整体北高南低,向海方向倾斜。T60界面以下,断层较为发育,表现为一系列的北断南超或南断北超的半地堑式沉积格局,断层上盘沉积同构造生长地层;T60以上,整体沉积地层厚度较为稳定。沉积特征说明陆丰凹陷主要经历了两个阶段:Tg~T60表现为明显的同裂谷沉积阶段;T60之后表现为裂谷后沉积阶段。

  • 陆丰凹陷内部整体构造特征(“两坳陷夹一隆”构造格局):陆丰凹陷中部主要由两条主控断层F1和F2控制,南倾的F1断层和北倾的F2断层分别控制南部和北部的坳陷区,二者之间为隆起区。次级断层F3和F4分别对上述隆起区和坳陷区有进一步的改造作用(图2b,图3)。

  • 3.1 主控断层F1

  • 平面断层分布图(图2b)约束断层F1延伸约为23km,东西向近弧形分布。剖面揭示断面的形式为铲式、坪坡式,同时还发现该断层走向从西向东由NE向转变为NWW向。据断层F1的走向和断面形式的差异性,自西向东将断层F1划分为三段:① 走向为近EW向,断面为铲式断层,断层纵向延伸较短;② 走向为近NW向,断面表现为坪坡式,为F1中部连接段;③ 走向为NWW向,断面形式表现为铲状,断层纵向延伸较长,继续向东为断层F1的末端。断层F1在各剖面中其终止位置自西向东表现为波浪式的变化趋势(图3):剖面A—A′至D—D′,断层F1最初消失位置位于T70界面附近,至剖面D—D′于T30界面附近消失;剖面E—E′至H—H′,断层F1除在剖面E—E′于T32界面附近消失,在其余剖面均在T30界面以上消失;剖面I—I′至L—L′,断层F1消失界面具有向下变化的趋势,剖面J—J′消失界面所处位置与临近剖面所表现出来的差异性,可能是由于周围的次级断层的出现所造成的影响,同时在此区间也可以看出断层F1具有远离断层F2向东继续发展的趋势。

  • 主控断层F1在走向上不同的分段特征表明,断层F1形成之初并非只是由单个断层演化而来,暗示了其前期可能由两个单一断层孤立发展,后期由于构造动力条件的变化,经侧断坡连接后形成一条断层共同发展。

  • 3.2 断层F2

  • 断层F2被约束的延伸长度约25km,断面的主要形式表现为铲式,整体走向表现为近NEE向,断层F2控制着其外侧物源沉积作用。结合断层F2周围地层变形特征和标志层,笔者认为断层F2可能并没有向上延伸与断层F3相连。断层F2在各剖面上消失界面自西向东整体表现为先升后降的趋势,于剖面I—I′处位置距离地表最近,随后逐渐远离地表。

  • 断层F2滑移分布特征的“铃铛形”分布特征表明,断层F2可能由最初由孤立断层逐渐生长演化而来。

  • 3.3 断层F3、F4

  • 断层F3为断层F2外侧形成的一条次级断层,本文解释认为其形成于T70界面之上,测线间F3约束长度约16km,走向为近SN向。剖面B—B′中的断层F3距离地表最近,向东距离逐渐增大并于剖面F—F′消失,其向西也具有相同的趋势,断层F3临近主控断层F1。

  • 图3 过陆丰凹陷的12条地震剖面重新解释结果(A—A′~L—L′)(据Yu Fusheng et al., 2016修改)

  • Fig.3 Reinterpretation results of 12seismic section in the Lufeng sag (A—A′~L—L′) (modified from Yu Fusheng et al., 2016)

  • T30—粤海组(N1ao)的顶部;T32—韩江组(N1h)的顶部;T40—珠江组(N1zh)的顶部;T60—珠海组(E3zh)的顶部;T70—恩平组(E3en)的顶部;T80—文昌组顶部(E2w);Tg—基底的顶部;T40-1、T40-2—珠海组加密地层;T60-1—珠江组加密地层

  • T30—Top of Yuehai Formation (N1ao);T32—top of Hanjiang Formation (N1h);T40—top of Zhujiang Formation (N1zh);T60—top of Zhuhai Formation (E3zh),;T70—top of Enping Formation (E3en);T80—top of Wenchang Formation (E2w);Tg—top of basement;T40-1and T40-2—strata between Zhujiang Formation;T60-1—strata among Zhuhai Formation

  • 断层F4的位置介于F1与F2间,测线间约束长度约8km,走向表现为近EW向。二维地震剖面解释结果表明,断层F4出现于剖面K—K′,表明F4向西可能终止于剖面J—J′、K—K′间,断层消失界面向东呈现向下趋势,表明其向东有进一步生长和发展。F4于T40界面上方与F2发生连接作用。

  • 4 陆丰凹陷主控断层二维生长的定量分析

  • 4.1 主控断层F1生长指数分析

  • 根据对主控断层F1在各剖面中靠近各地层断层的厚度和断距进行统计,计算得出不同剖面沿垂向上断距分布图(图4a)和生长指数的分布图(图4b)。断距分布图表明断距在T60界面之下具有明显的递增转折趋势,生长指数分布结果整体表现出类似于“L”型的分布特征,同样于T60界面附近发生转折。断距整体特征以T60界面可分为上下两部分,T60界面之上同一剖面不同深度的断距变化不明显,断层两端的剖面处的断距多集中在30~70m之间,而中部剖面断距集中于80~110m之间;T60界面之下,各层位间断距值相比上半段变化明显,断层端部剖面揭示的断距值集中于25~200m不等,断层中部剖面揭示的断距值分布于100~250m不等。生长指数“L”型分布曲线的上半段,各剖面的生长指数分布十分集中,其中剖面H—H′和E—E′生长指数的分布出现小范围内波动,可能是由于周围次级断层出现的影响,但整体上各剖面中的生长指数均分布于1.01~1.05区间,表明此区间主控断层F1仍然在活动,但整体活动性不强;“L”型分布曲线的下半段,位于T60界面以下,各剖面生长指数变化十分明显,剖面E—E′到H—H′变化幅度最为突出,由于断层F3向东扩张于剖面G—G′处消失,断层F3端部向东继续生长,断层所承担的区域构造应力会随断层长度的减小而降低,而区域构造应力整体不会发生改变,因此认为这使得主控断层F1活动性有所增强。“L”型生长指数上下两段分布的显著特征表明,主控断层前期具有强烈的构造活动,而后期其活动性较弱,这两个阶段间对应的分界面为T60。

  • 图4 陆丰凹陷主控断层F1生长指数分布图

  • Fig.4 Expansion index of the main fault F1in the Lufeng sag

  • (a)—不同地层界面沿垂向上断距分布图,虚线表示主要地层界面,红色虚线代表转换界面T60;(b)—各剖面生长指数分布图,红色虚线对应生长指数为1,黑色实线表示生长指数对应的长度值;(c)—断层F1各剖面沿走向位置分布图

  • (a)—Fault distance vertical distribution of different stratigraphic interface, the dotted lines represent the main formation, the T60conversion interface is highlighted by red dotted line; (b)—the expansion index of different seismic section, the dotted red line corresponds to expansion index of 1,the solid black line shows the length value of expansion index; (c)—different seismic section distribution map of fault F1along the strike

  • 4.2 主控断层F1断距分析

  • 结合前人的研究(Yu Fusheng et al., 2016),笔者在对研究区断层进行重新解释后,对主控断层F1沿走向的断距进行了重新统计(图5),断距分布的整体分布趋势与前人的工作具有相似性,整体的变化呈现出“M”型曲线。分布曲线大致可以分为以下四部分:剖面C—C′至G—G′,断距呈上升趋势;剖面G—G′至H—H′,断距表现为下降;剖面H—H′至I—I′,曲线再次呈现为上升;剖面I—I′至L—L′,曲线下降。剖面G—G′、I—I′处断距对应为两个高点,H—H′断距对应为二者之间的低点,以H—H′为分界线可将断距分布图划分为两部分,而左右两部分均符合单条正断层生长时断距分布特点,表明该断层最初可能由两条断层单独生长发展,后经连接后共同发展,断层的连接区域位于剖面H—H′附近。

  • 5 陆丰凹陷正断层系统三维时-空演化过程

  • 5.1 三维构造建模结果

  • 结合矢量化的三维数据,本文构建了研究区的三维构造模型(图6、7)。从模型的结果可以看出,断层F1、F2断面形态在空间呈现出上陡下缓的铲形,F1两端在三维空间呈现出不同的走向,中间表现出侧向连接的特征,F2整体走向一致。主断层F1、F2自西向东表现逐渐远离扩张的分布,次级断层F3分布于断层F1倾向方向外侧,整体走向呈现为近EW向,而断层F4则分布于F1、F2之间,靠近断层F2内侧,并与F2发生连接。

  • 为了能直观展示不同地层断距分布情况,自上而下依次选取了T30、T32、T40、T60、T70这5套地层模型分布平面图(图7a)和两个断层模型的三维视角图(图6),地层模型显示断层F1断距自T70至T60界面,断距整体变化较小。自T60界面往上,具有明显减小的变化,同时也可以观察到断层F1端部的走向具有明显的差异性。断层F2、F4具有与F1类似特征,F4向上终止于T32与T40之间。断层F3自T60界面往上,平面分布长度逐渐变短,断距逐渐减小。结合T70界面俯视图(图7b)可以看出断层F1外侧具有两个沉降中心,两个沉降中心间有一个微突起,这再次表明断层F1的分段性。断层F2控制着一个沉降中心,符合单条断层生长发展特征。断层F4自T60界面向上发展,可以看出其控制与断层F1间区域的沉降中心的发展,并且越往上该特征越明显。断层F4相对于其他断层,整体活动性弱,且临近断层F2,模型中未见明显沉降中心。

  • 图5 陆丰凹陷主控断层F1沿走向断距分布图(黑色矩形虚线框为断距突降点)

  • Fig.5 The fault throw distribution of main fault F1along the strike in the Lufeng sag (the black rectangle dotted line represents the suddenly decrease of the fault throw)

  • 5.2 断层连接三维演化过程

  • 断层的生长和连接与区域内构造应力变化密切相关,研究区位于南海北部珠江口盆地,珠江口盆地发展演化的过程影响着分布在其中的断层演化。珠江口盆地从形成之初到现今的状态,经历过多期次构造运动:神狐运动、珠琼运动(Ⅰ幕、Ⅱ幕)、南海运动、白云运动和东沙运动,这些构造运动的发生影响着区域内的断层变化特征,综合根据珠江口盆地发展演化的过程,可以推导出研究区主控断层F1发展的时空尺度(图8)。

  • 结合地震剖面解释(图3)可以看出,断层F1形成于Tg界面附近,晚白垩世末期发生的神狐运动使得南海北部陆缘的基底发生张裂作用,该时期可能对应为主控断层F1的形成时期。此时期珠江口盆地开始发生裂陷作用,受到太平洋板块俯冲后撤及欧亚大陆板块碰撞的共同影响,研究区内的应力由挤压转变为NW—SE向的伸展环境,断层F1表现为两条单一断层孤立发展;早始新世—中始新世,区域构造应力背景暗示着初期两条单一断层的进一步发展与珠琼运动Ⅰ幕相关,期间太平洋板块俯冲角度开始发生变化,两条单一断层的端部生长方向具有一定变化,期间主控断层F1仍然以NW—SE向的伸展环境为主;中始新世末期—早渐新世,珠琼运动Ⅱ幕发生于此期间,由于太平洋板块对华南板块继续进行的NWW向的俯冲(陈建军等,2015),区域构造应力在此情况下发生偏转,在其影响区域内形成NNW向的张裂应力场,此时的南海北部形成近SN向的张裂作用(Ru Ke et al., 1986),断层F1的端部生长方向发生变化,使得两个单一断层发生侧向连接作用,二者之间由侧断坡进行连接,进而合并为一条断层生长发展;晚渐新世—早中新世,该时期研究区处于南海扩张运动期间,连接后的断层在该运动期间得到进一步发展,此时研究区继续以近SN向的伸展;中中新世至今,由于南海北部西北次海盆扩张运动的结束(Briais et al., 1993; 解习农等, 2015),断层F1的活动性突降,断层的生长发展受限。

  • 图6 陆丰凹陷主要断层三维建模结果

  • Fig.6 3D structural modeling results of main faults in the Lufeng sag

  • (a)、(b)—主要断层在三维空间不同视角显示效果

  • (a), (b)—The display effects of major faults from different angles in 3D space

  • 图7 陆丰凹陷主要断层和地层的三维模型图(a)及T70地层面俯视图(b)(M1、M2为断层F1外侧的两个沉降中心)

  • Fig.7 3D model diagram of main faults and strata in the Lufeng sag(a) and the vertical view of T70(b)(M1and M2are the subsidence center)

  • 图8 陆丰凹陷正断层系统三维时-空演化示意图

  • Fig.8 3D temporal and spatial evolution diagram of normal fault system in the Lufeng sag

  • (a)—主控断层F1最初表现为两条孤立断层; (b)—断层F1发生连接作用; (c)—断层F2与F4发生连接作用

  • (a)—The main fault F1displayed as two isolate fault in the beginning; (b)—those fault segments merged laterally into F1fault; (c)—the fault F2connects with fault F4

  • 6 讨论

  • 6.1 三维构造模型的验证

  • 基于二维地震剖面所构建的三维构造模型,模型所得结果的不确定性主要源自剖面的解释。虽然我们在对二维地震剖面重新解释的过程中存在不确定性,但是通过地层模型分布与前人的研究对比(葛家旺等, 2021)以及三维构造模型的切面验证(高阳东等, 2021),证明了本文模型结果的可行性,进而能够对研究区主控断层开展定量构造解析工作。但当我们对解释结果进行量化分析和构造解析时,依旧需要考虑其中的客观的因素。首先,本文构建模型所使用的数据为基于时间域剖面进行的时-深转换数据,转换速率按照研究区周围平均速率1950m/s进行转换,由此产生的模型所得到的不确定性,并不能完全替代一个自然实例。其次,在进行模型构建时本文忽略了周围小型次级断层,以及研究区所处区域内的沉积压实作用。虽然存在上述不确定性的客观因素,但上述因素对研究区主体的构造形态影响较小,并不影响基于这种背景下的构造分析。除此之外,还应该指出的是在解释地震剖面信息时,由于个人倾向而产生解释结果的不确定性也应当进行适当考虑。前人对研究区内分布的断层解释的结果认为主控断层的形态自西向东由“人”字型向“入”字型转变,中间位置断层形态为介于这两种形态间的“X”型断层(Yu Fusheng et al., 2016)。笔者结合断层周围地层延续性特征变化,在前人工作的基础上有了进一步的认识。本文解释结果认为,主控断层F1、F2并未发生相交作用(图3:剖面A—A′至H—H′),断层F1外侧分布为次级断层F3(图3:剖面B—B′至F—F′),主控断层F2并未向上沿伸与F3相连。同时为了进一步验证本文解释的可行性,笔者结合前人斜跨研究区地震剖面M—M′以及他们的解释结果(高阳东等, 2021),将其与构造模型中对应位置的切面进行对比验证(图2b,图9),对比结果表明模型中地层分布特征与前人的解释结果具有一致性,断层F1、F2处于未交叉形态也同样具有一致性;另外本文结合前人发表的研究区主控断层F1外侧沉积厚度分布图(葛家旺等, 2021),厚度分布图表明主控断层F1外侧分布这两个沉积中心,与地层模型揭示的结果一致,断层模型的界面验证和研究区地层模型的对比结果暗示着三维构造建模的结果在研究区内的可靠性。综合上述多重考虑,认为本文的模型结果能够支持我们对研究区构造特征解释的合理性做出客观的判断。

  • 图9 三维构造模型与验证剖面对比图

  • Fig.9 The comparison between the validation section and model’s section at the same place

  • (a)—三维构造模型结果中切出的验证剖面,T40至T70间的地层和断层F1、F2为验证对象; (b)—穿越研究区地震剖面(据高阳东等, 2021修改)

  • (a)—The validation section of structural model, the strata line from T40to T70and the fault F1,F2are the verification object; (b)—the seismic section that cross study area (modified from Gao Yangdong et al., 2021)

  • 6.2 正断层系统的三维生长和连接

  • Khalil et al.(2016)通过对位于埃及红海西北部与伸展断层相关的褶皱研究,提出单条正断层沿走向上三维的生长过程理论模型,随后提出了两条走向相同的断层段各自孤立发展后,经侧断坡连接合并形成一条正断层的三维演化理论模型,将本文对正断层生长连接演化过程的认识由二维平面过渡到三维空间状态(Khalil et al., 2018)。然而自然界中正断层系统真实演化的过程及演化后的形态往往是更加错综复杂,很多断层段的连接并非具有相同的走向。

  • 通过对陆丰凹陷主控正断层F1的断距、沉降中心分布研究发现,该断层发展过程可以分为三个阶段:晚白垩世—早古新世,初始断层段的形成并得到进一步生长;早古新世—早渐新世,由于区域构造应力的偏转致使断层的端部发生连接作用,连接形成一条断层;晚渐新世—中中新世,连接后的断层得到进一步生长。针对断层的连接模式,相对于前人的研究(Khalil et al., 2018),陆丰凹陷主控断层F1最初由两条走向不同的断层段连接而成,断层段在区域构造应力发生偏转时,断层的端部的应力状态相对于仅沿走向发展时提前达到临界状态,于端部发生连接作用。由此可以看出研究区的区域构造应力的变化(伸展、旋转)对断层段的连接起到一定促进作用。结合主控断层F1断距“M”型变化曲线和南海北部构造运动背景,笔者认为在断层段F1发生连接过程中,区域构造应力偏转作用使得断层活动性增强,加速端部应力值变化,从而加速了断层连接过程,形成现今弯曲平面形态的主控断层F1。通过对断层F1生长连接过程的研究,我们可以为伸展背景下正断层理论研究提供研究案例,研究中正断层的生长连接的主要过程同样也适用于研究区周缘其他正断层。

  • 6.3 陆丰凹陷正断层系统三维时-空演化过程对南海北部陆缘伸展的指示意义

  • 南海北部的扩张时间前人综合多源证据,现认为其扩张开始的时间为32Ma,西北次海盆于23Ma左右结束扩张作用(Briais et al., 1993; 解习农等, 2015;Sibuet et al., 2016)。关于南海北部扩张相关问题的研究,目前主要集中于其扩张时间和扩张方向的变化(Sun Zhen et al., 2019),而关于南海北部扩张边界位置涉及较少,当前南海北部的扩张运动的结束时所对应的位置分布状况依旧不清晰。

  • 陆丰凹陷三维建模结果和主控断层F1生长指数分析表明,地震反射界面T60以下,断层具有较强的活动特性,T60以上,断层活动性突降。暗示T60界面可能对应为南海扩张运动活动性的转换界面。结合前人对惠州凹陷北部边界断层(田魏等, 2015)和陆丰凹陷西北部断层(葛家旺等, 2021)的研究,发现它们都具有相似的连接特征,断层的发展过程都经过珠琼运动Ⅰ、Ⅱ幕,并且在相同的伸展构造背景下共同发展。综合研究区周围断层连接过程的相似性以及主控断层F1的定量分析,本文认为南海北部的扩张运动已经影响到陆丰凹陷,并且在陆丰凹陷西北方向的“雁式断层”也可能受到该影响。

  • 作为华南地块和南海地块的分界线滨海断裂带(赵明辉等, 2004; 夏少红等, 2008; 徐辉龙等, 2010),其两侧地壳具有明显不同的结构特征(曹敬贺等, 2014b),靠近华南大陆一侧地层表现出连续沉积的特点,而向海方向的地层自基底不整合界面往上,南海北部扩张运动期间所对应的地层形态复杂。同时前人利用多源数据建立的南海东北部三维地层模型结果表明(李小林等, 2020),沿着滨海断层带向华南大陆方向,沉积层厚度趋于均值,地层的沉积活动受构造运动扰动小,而向海方向地层厚度则表现为明显差异性,构造活动强烈。因此,本文认为南海北部的扩张运动可能穿越研究区向华南大陆延伸,在华南大陆与陆丰凹陷间分布着滨海断裂带,作为华南大陆滨海区域最大的断裂带,其可能是南海北部扩张运动的分界断层。

  • 7 结论

  • 本文结合覆盖研究区的二维地震剖面,构建了南海北部珠江口盆地陆丰凹陷三维构造模型,通过分析主控断层F1的生长指数和沿走向、倾向断距分布特征,得以下初步认识:

  • (1) 主控断层F1的形成经历以下三个阶段:晚白垩世—早古新世,断层以两条断层段的形式各自孤立发展,分别向两侧生长;早古新世—早渐新世,两条断层段由侧断坡连接后合并为F1断层;晚渐新世—中中新世,F1断层继续向两侧生长。

  • (2)主控断层F1生长指数和沿倾向上的断距表明,断层活动发生转折时对应的界面为T60(~23Ma)界面,该界面向下活动性强度表现为逐渐增加,该界面向上则表现为突然减低,说明南海北部的扩张运动已经影响到陆丰凹陷。

  • (3) 研究区临近区域正断层分布特征的相似性以及南海东北部地层沉积厚度的差异性,表明南海北部扩张涉及的范围跨过陆丰凹陷向大陆方向继续延伸,华南大陆南缘的滨海断裂带可能对应于扩张的北部边界。

  • 致谢:感谢审稿老师对文章提出的宝贵的建议。

  • 参考文献

    • Ackermann R V, Schlische R W. 1997. Anticlustering of small normal faults around larger faults. Geology, 25(12): 1127~1130.

    • Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research, 98(B4): 6299~6328.

    • Cao Jinghe, Xia Shaohong, Sun Jinlong, Xu Huilong. 2014a. Comparison of fault structure characteristics in the north Pearl River mouth basin and its geological implication. Progress in Geophysics, 29(5): 2364~2369 (in Chinese with English abstract).

    • Cao Jinghe, Sun Jinlong, Xu Huilong, Xia Shaohong. 2014b. Seismological features of the Littoral fault zone in the Pearl River Estuary. Chinese Journal of Geophysics, 57(2): 498~508 (in Chinese with English abstract).

    • Cartwright J, Bouroullec R, James D, Johnson H. 1998. Polycyclic motion history of some gulf coast growth faults from high-resolution displacement analysis. Geology, 26(9): 819~822.

    • Chen Jianjun, Ma Yanping, Chen Jianzhong, Sun Guibing. 2015. Tectonic dynamics of northern continental margin basins in South China Sea. Earth Science Frontiers, 22(3): 38~47 (in Chinese with English abstract).

    • Claringbould J S, Bell R E, Jackson A L, Gawthorpe R L, Odinsen T. 2017. Pre-existing normal faults have limited control on the rift geometry of the northern North Sea. Earth and Planetary Science Letters, 475: 190~206.

    • Collignon M, Fernandez N, Kaus B J P. 2015. Influence of surface processes and initial topography on lateral fold growth and fold linkage mode. Tectonics, 34: 1622~1645.

    • Contreras J, Anders M H, Scholz C H. 2002. Growth of a normal fault system: observations from the Lake Malawi basin of the East Africa rift. Journal of Structural Geology, 22(2): 159~168.

    • Cowie P A. 1998. A healing-reloading feedback control on the growth rate of seismogenic faults. Journal of Structural Geology, 20(8): 1075~1087.

    • Cristallini E O, Giambiagi L, Allmendinger R W. 2004. True three-dimensional trishear: a kinematic model for strike-slip and oblique-slip deformation. GSA Bulletin, 116: 938~952.

    • Cui Shasha, He Jiaxiong, Chen Shenghong, Zou Heping, Cui Jie. 2009. Development characteristics of Pearl River mouth basin and its geological conditions for oil and gas accumulation. Natural Gas Geoscience, 20(3): 384~391 (in Chinese with English abstract).

    • Deng Hongdan, McClay K, Bilal A. 2020. 3D structure and evolution of an extensional fault network of the eastern dampier sub-basin, Northwest shelf of Australia. Journal of Structural Geology, 132: 103972.

    • Feng Zhiqiang, Zeng Weijun. 1982. Tectonic evolution of Pearl River mouth basin and origin of South China Sea. Acta Geological Sinnica, 3: 212~222 (in Chinese with English abstract).

    • Gao Yangdong, Wang Xudong, Lin Heming, Que Xiaoming, Xiao Zhangbo, Jia Liankai. 2021. Characteristics and significances of the tectono-sedimentary transitional unconformity in Enping Formation of Lufeng sag, Pearl River mouth basin. Natural Gas Geoscience, 32(7): 961~970 (in Chinese with English abstract).

    • Gawthorpe R L, Jackson A L, Young M J, Sharp I R, Moustafa A R, Leppard C W. 2003. Normal fault growth, displacement localisation and the evolution of normal fault populations: the Hammam Faraun fault block, Suez rift, Egypt. Journal of Structural Geology, 25(8): 883~895.

    • Ge Jiawang, Zhu Xiaomin, Zhang Xiangtao, Lei Yongchang, Niu Zicheng, Li Ming. 2018. Tectono-sedimentation of the Eocene Wenchang Formation in the Lufeng depression, Pearl River mouth basin. Journal of China University of Mining & Technology, 47(2): 308~322 (in Chinese with English abstract).

    • Ge Jiawang, Zhu Xiaomin, Lei Yongchang, Yu Fusheng. 2021. Tectonic-sedimentary development of multiphase rift basins: an example of the Lufeng depression. Earth Science Frontiers, 28(1): 77~89 (in Chinese with English abstract).

    • He Dengfa, Suppe J, Jia Chengzao. 2005. New advances in the theory and application of fault related folding. Earth Science Frontiers, 12(4): 353~364 (in Chinese with English abstract).

    • He Jiaxiong, Chen Shenghong, Ma Wenhong, Gong Xiaofeng. 2012. The evolution, migration and accumulation regularity of oil and gas in Zhujiangkou basin, northeastern South China Sea. Geology in China, 39(1): 106~118 (in Chinese with English abstract).

    • Hu Shouxiang, Alvese T M, Omosanya K O, Li Wei. 2021. Geometric and kinematic analysis of normal faults bordering continental shelves: a 3D seismic case study from the northwest South China Sea. Marine and Petroleum Geology, 133: 105263.

    • Huang Zhongxian, Su Wei, Peng Y J, Zheng Yanju, Li Hongyi. 2003. Rayleigh wave tomography of China and adjacent regions. Journal of Geophysical Research Atmospheres, 108(B2): 2073.

    • Jia Dong, Li Yiquan, Wang Maomao, Li Haibin. 2011. Three-dimensional structural geometry of fault-related folds: examples from 3-D seismic explored blocks in the western Sichuan Province, China. Acta Petrologica Sinica, 27(3): 732~740 (in Chinese with English abstract).

    • Khalil S M, McClay K R. 2016. 3D geometry and kinematic evolution of extensional fault-related folds, NW Red Sea, Egypt. Geological Society London Special Publications, SP439. 11.

    • Khalil S M, McClay K R. 2018. Extensional fault-related folding in the northwestern Red Sea, Egypt: segmented fault growth, fault linkages, corner folds and basin evolution. Geological Society London Special Publications, 476: 49~81.

    • Lathrop B A, Jackson C A L, Bell R E, Rotevatn A. 2021. Normal fault kinematics and the role of lateral tip retreat: an example from offshore NW Australia. Tectonics, 40: e2020TC006631.

    • Lei Baohua. 2012. Review of methods with quantitative studies of activity intensity of the growth fault. Advances in Earth Science, 27(9): 947~956 (in Chinese with English abstract).

    • Li Xiaolin, Zhang Dongli, Zhang Peizheng, Li Zhigang, Hu Litian, Zheng Wenjun. 2020. Three-dimensional crustal structure in the northeaster South China Sea revealed by multi-source geophysical exploration data. Chinese Journal of Geophysics, 63(4): 1538~1552 (in Chinese with English abstract).

    • Li Xuejie, Wang Zhe, Yao Yongjian, Gao Hongfang, Li Bo. 2017. The tectonic features and evolution of the West Pacific margin. Geology in China, 44(6): 1102~1114 (in Chinese with English abstract).

    • Li Zhaoliang, Pan Mao, Han Dakuang, Liu Wenling, Hu Shuiqing, Liu Peigang, Yan Mei. 2016. Three-dimensional structural modeling technique. Earth Science, 14(12): 2136~2146 (in Chinese with English abstract).

    • Liu Yin, Chen Qinghua, Wang Xi, Hu Kai, Cao Shaolei, Wu Lin, Gao Feng. 2017. Influence of normal fault growth and linkage on the evolution of a rift basin: a case from the Gaoyou depression of the Subei basin, eastern China. AAPG Bulletin, 101(2): 265~288.

    • Lu Baoliang, Wang Pujun, Zhang Gongcheng, Zhang Bin, Sun Xiaomeng, Li Wuzhi, Lang Yuanqiang. 2011. Basement structures of an epicontinental basin in the north South China Sea and their significance in petroleum prospect. Acta Petrolei Sinica. 32(4): 580~587 (in Chinese with English abstract).

    • Luan Xiwu, Zhang Liang. 2009. Tectonic evolution modes of South China Sea: passive spreading under complex actions. Marine Geology & Quaternary Geology, 29(6): 59~74 (in Chinese with English abstract).

    • Mallet J L. 1992. Discrete smooth interpolation in geometric modeling. Computer-Aided Design, 8(2): 178~191.

    • Marret R, Allmendinger R W. 1991. Estimates of strain due to brittle faulting: sampling of fault populations. Journal of Structural Geology, 13(6): 735~738.

    • Morley C K. 1999. Patterns of displacement along large normal faults: implications for basin evolution and fault propagation, based on examples from East Africa. AAPG Bulletin, 83(4): 613~634.

    • Morley C K. 2002. Evolution of large normal faults: evidence from seismic reflection data. AAPG Bulletin, 86(6): 961~978.

    • Nicol A, Walsh J J, Watterson J, Underhill J R. 1997. Displacement rates of normal faults. Nature, 390: 157~159.

    • Pubellier M, Meresse F. 2013. Phanerozoic growth of Asia: Geodynamic processes and evolution. Journal of Asian Earth Sciences, 72: 118~128.

    • Que Xiaoming, Lei Yongchang, Zhang Xiangtao, Qiu Xinwei. 2022. Determination and geological significance of fault-depression transformation interface in the southern Lufeng area. Acta Geologica Sinica, 10. 19762/j. cnki. dizhixuebao. 2022286.

    • Roberts G P, Michetti A M. 2004. Spatial and temporal variations in growth rates along active normal fault systems: an example from the Lazio-Abruzzo Apennines, central Italy. Journal of Structural Geology, 26(2): 339~376.

    • Rotevatna A, Jacksonb C A L, Tvedtc A B M, Bellb R E, Blækkan I. 2019. How do normal faults grow? Journal of Structural Geology, 125: 174~184.

    • Ru Ke, Pigott J D. 1986. Episodic rifting and subsidence in the South China Sea. AAPG Bulletin, 70 (9): 1136~1155.

    • Shaw J H, Hook S C, Sitohang E P. 1997. Extensional fault-bend folding and synrift deposition: an example from the central Sumatra basin, Indonesia. AAPG Bulletin, 81(3): 367~379.

    • Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98~119.

    • Sun Weidong. 2016. Initiation and evolution of the South China Sea: an overview. Acta Geochimica, 35(3): 215~225.

    • Sun Zhen, Ding Weiwei, Zhao Xixi, Qiu Ning, Lin Jian, Li Chunfeng. 2019. The latest spreading periods of the South China Sea: new constraints from macrostructure analysis of IODP expedition 349 cores and geophysical data. Journal of Geophysical Research: Solid Earth, 124(10): 9980~9998.

    • Thorsen C E. 1963. Age of growth faulting in Southeast Louisiana. GCAGS Tansactions, 13: 103~110.

    • Tian Wei, He Min, Yang Yajuan, Liu Hailun, Yuan Xun, Wu Sen, Zhu Dingwei, Mei Lianfu. 2015. Complex linkage and transformation of boundary faults of northern Huizhou sag in Pearl River mouth basin. Earth Science—Journal of China University of Geosciences, 40(12): 2037~2051 (in Chinese with English abstract).

    • Vincenzo L B, Fabrizio A, Juliette L, Sophie V, Giacomo P. 2018. Fault growth mechanisms and scaling properties in foreland basin system: the case study of Monte Alpi, southern Apennines, Italy. Journal of Structural Geology, 116: 94~113.

    • Walsh J J, Watterson J. 1987. Distributions of cumulative displacement and seismic slip on a single normal fault. Journal of Structural Geology, 9(8): 1039~1046.

    • Wan Kuiyuan, Xia Shaohong, Cao Jinghe, Sun Jinlong, Xu Hhuilong. 2017. Deep seismic structure of the northeastern South China Sea: origin of a high-velocity layer in the lower crust. Journal of Geophysical Research: Solid Earth, 122: 2831~2858.

    • Watterson J. 1986. Fault dimensions displacement and growth. Pure and Applied Geophysics, 124: 365~372.

    • Wei Xinyuan, Luan Xiwu, Ran Weimin, Shi Yanfeng, Wang Kuo, Zhanghao. 2021. Fault characteristics and tectonic evolution model of the East Timor trough. Geological Bulletin of China, 40(2-3): 364~375 (in Chinese with English abstract).

    • Wilkerson M S, Medwedeff D A, Marshak S. 1991. Geometrical modeling of fault-related folds: a pseudo three-dimensional approach. Journal of Structural Geology, 13(7): 801~812.

    • Xia Bin, Cui Xuejun, Xie Jianhua, Wang Ran. 2004. Thinking about the dynamics mechanism study on formation and evolution of South China Sea. Geotectonica et Metallogenia, 28(3): 221~227 (in Chinese with English abstract).

    • Xia Shaohong, Zhao Minghui, Qiu Xuelin. 2008. Situation and prospect of study on crustal structure beneath the onshore-offshore transitional zone in the northern margin of South China Sea. South China Journal of Selsmology, 28(4): 9~17 (in Chinese with English abstract).

    • Xiao Hongbin, Suppe J. 1992. Origin of rollover. AAPG Bulletin, 76(4): 509~529.

    • Xie Xinong, Ren Jianye, Wang Zhenfeng, Li Xushen, Lei Chao. 2015. Difference of tectonic evolution of continental basins of South China Sea and relationship with SCS spreading. Earth Science Frontiers, 22(1): 77~87 (in Chinese with English abstract).

    • Xu Huilong, Ye Chunming, Qiu Xuelin, Sun Jinlong, Xia Shaohong. 2010. Studies on the Binhai fault zone in the northern South China Sea by the deep geophysical exploration and its seismogenic structure. South China Journal of Selsmology, 30(S1): 10~18 (in Chinese with English abstract).

    • Yang Chaoqun, Lei Yongchang, Qiu Xinwei, Xiao Zhangbo. 2021. An integrated assessment of fault sealing for oilfield a in Lufeng sag of Pear River mouth basin. Marine Geology Frontiers, 37(2): 54~61 (in Chinese with English abstract).

    • Yao Bochu, Wan Ling, Wu Nengyou. 2004. Cenozoic plate tectonic activities in the Great South China Sea area. Geology in China, 31(2): 113~122 (in Chinese with English abstract).

    • Yu Fusheng, Koyi H, Zhang Xiangtao. 2016. Intersection patterns of normal faults in the Lufeng sag of Pearl River mouth basin, China: insights from 4D physical simulations. Journal of Structural Geology, 93: 67~90.

    • Yu Fusheng, Koyi H. 2017. Theoretical and experimental estimation of geometric relationship of non-parallel conjugate normal faults. Tectonophysics, 703-704: 85~97.

    • Yu Fusheng, Wang Xudong, Qiu Xinwei, Wang Dandan, Li Chao, Lu Xuyang, Wang Yiqun, Wang Yidan. 2019. Characteristics of fault structure and the genesis of herringbone structure in Lufeng sag, Pearl River Mouth basin. Acta Petrolei Sinica, 40(S1): 166~177 (in Chinese with English abstract).

    • Zhao Minghui, Qiu Xuelin, Ye Chunming, Xia Jiyuan, Huang Ciliu, Xie Jianbo, Wang Ping. 2004. Analysis on deep crustal structure along the onshore-offshore seismic profile across the Binhai (Littoral) fault zone in northeastern South China Sea. Chinese Journal of Geophysics, 47(5): 845~853 (in Chinese with English abstract).

    • Zhong Jianqiang. 1994. Characteristics of geologic structure and basin evolution in Pearl River mouth basin. Transactions of Oceanology and Limnology, 1: 1~8 (in Chinese with English abstract).

    • Zhu Weilin, Zhong Kai, Li Youchuan, Xu Qiang, Fang Dianyong. 2012. Hydrocarbon accumulation and exploration in deep water zone of northern South China Sea. Chinese Science Bulletin, 57(20): 1833~1841 (in Chinese with English abstract).

    • 曹敬贺, 夏少红, 孙金龙, 徐辉龙. 2014a. 珠江口盆地北部断裂构造特征对比及其地质学意义. 地球物理学进展, 29(5): 2364~2369.

    • 曹敬贺, 孙金龙, 徐辉龙, 夏少红. 2014b. 珠江口盆地滨海断裂带的地震学特征. 地球物理学报, 57(2): 498~508.

    • 陈建军, 马艳萍, 陈建中, 孙贵宾. 2015. 南海北部陆缘盆地形成的构造动力学背景. 地学前缘, 22(3): 38~47.

    • 崔莎莎, 何家雄, 陈胜红, 邹和平, 崔洁. 2009. 珠江口盆地发育演化特征及其油气成藏地质条件. 天然气地球科学, 20(3): 384~391.

    • 冯志强, 曾维军. 1982. 珠江口盆地的构造演化与南海之形成. 地质学报, 3: 212~222.

    • 高阳东, 汪旭东, 林鹤鸣, 阙晓铭, 肖张波, 贾连凯. 2021. 珠江口盆地陆丰凹陷恩平组内部构造—沉积转换面识别及意义. 天然气地球科学, 32(7): 961~970.

    • 葛家旺, 朱筱敏, 雷永昌, 于福生. 2021. 多幕裂陷盆地构造—沉积响应及陆丰凹陷实例分析. 地学前缘, 28(1): 77~89.

    • 葛家旺, 朱筱敏, 张向涛, 雷永昌, 牛子铖, 黎明. 2018. 珠江口盆地陆丰凹陷文昌组构造—沉积演化模式. 中国矿业大学学报, 47(2): 308~322.

    • 何登发, Suppe J, 贾承造. 2005. 断层相关褶皱理论与应用研究新进展. 地学前缘. 12(4): 353~364.

    • 何家雄, 陈胜红, 马文宏, 龚晓峰. 2012. 南海东北部珠江口盆地成生演化与油气运聚成藏规律. 中国地质, 39(1): 106~118.

    • 贾东, 李一泉, 王毛毛, 李海滨. 2011. 断层相关褶皱的三维构造几何学分析: 以川西三维地震工区为例. 岩石学报, 27(3): 732~740.

    • 雷宝华. 2012. 生长断层活动强度定量研究的主要方法评述. 地球科学进展, 27(9): 947~956.

    • 李小林, 张冬丽, 张培震, 李志刚, 胡立天, 郑文俊. 2020. 多源探测数据揭示的南海东北部三维地壳结构特征. 地球物理学报, 63(4): 1538~1552.

    • 李学杰, 王哲, 姚永坚, 高红芳, 李波. 2017. 西太平洋边缘构造特征及其演化. 中国地质, 44(6): 1102~1114.

    • 李兆亮, 潘懋, 韩大匡, 刘文岭, 胡水清, 刘培刚, 颜玫. 2016. 三维构造建模技术. 地球科学, 41(12): 2136~2146.

    • 鲁宝亮, 王璞珺, 张功成, 张斌, 孙晓猛, 李伍志, 郎元强. 2011. 南海北部陆缘盆地基底结构及其油气勘探意义. 石油学报, 32(4): 580~587.

    • 栾锡武, 张亮. 2009. 南海构造演化模式: 综合作用下的被动扩张. 海洋地质与第四纪地质, 29(6): 59~74.

    • 阙晓铭, 雷永昌, 张向涛, 邱欣卫. 2022. 陆丰南地区断拗转换界面厘定及其地质意义. 地质学报, doi: 10. 19762/j. cnki. dizhixuebao. 2022286.

    • 田巍, 何敏, 杨亚娟, 刘海伦, 袁勋, 吴森, 朱定伟, 梅廉夫. 2015. 珠江口盆地惠州凹陷北部边界断层复合联接和转换. 地球科学(中国地质大学学报), 40(12): 2037~2051.

    • 魏新元, 栾锡武, 冉伟民, 石艳锋, 王阔, 张豪. 2021. 东帝汶海槽断层特征与构造演化模式. 地质通报, 40(Z1): 364~375.

    • 夏斌, 崔学军, 谢建华, 王冉. 2004. 关于南海构造演化动力学机制研究的一点思考. 大地构造与成矿学, 28(3): 221~227.

    • 夏少红, 赵明辉, 丘学林. 2008. 南海北部海陆过渡带地壳结构的研究现状及展望. 华南地震, 28(4): 9~17.

    • 解习农, 任建业, 王振峰, 李绪深, 雷超. 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系. 地学前缘, 22(1): 77~87.

    • 徐辉龙, 叶春明, 丘学林, 孙金龙, 夏少红. 2010. 南海北部滨海断裂带的深部地球物理探测及其发震构造研究. 华南地震, 30(S1): 10~18.

    • 杨超群, 雷永昌, 邱欣卫, 肖张波. 2021. 珠江口盆地陆丰凹陷A油田断层封堵性综合评价. 海洋地质前沿, 37(2): 54~61.

    • 姚伯初, 万玲, 吴能友. 2004. 大南海地区新生代板块构造活动. 中国地质, 31(2): 113~122.

    • 于福生, 汪旭东, 邱欣卫, 王丹丹, 李超, 吕旭阳, 王逸群, 王一丹. 2019. 珠江口盆地陆丰凹陷断层构造特征及“人”字型构造成因. 石油学报, 40(S1): 166~177.

    • 赵明辉, 丘学林, 叶春明, 夏戟原, 黄慈流, 谢剑波, 王平. 2004. 南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析. 地球物理学报, 47(5): 846~853.

    • 钟建强. 1994. 珠江口盆地的构造特征与盆地演化. 海洋湖沼通报, 1: 1~8.

    • 朱伟林, 钟锴, 李友川, 徐强, 房殿勇. 2012. 南海北部深水区油气成藏与勘探. 科学通报, 57(20): 1833~1841.

  • 参考文献

    • Ackermann R V, Schlische R W. 1997. Anticlustering of small normal faults around larger faults. Geology, 25(12): 1127~1130.

    • Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research, 98(B4): 6299~6328.

    • Cao Jinghe, Xia Shaohong, Sun Jinlong, Xu Huilong. 2014a. Comparison of fault structure characteristics in the north Pearl River mouth basin and its geological implication. Progress in Geophysics, 29(5): 2364~2369 (in Chinese with English abstract).

    • Cao Jinghe, Sun Jinlong, Xu Huilong, Xia Shaohong. 2014b. Seismological features of the Littoral fault zone in the Pearl River Estuary. Chinese Journal of Geophysics, 57(2): 498~508 (in Chinese with English abstract).

    • Cartwright J, Bouroullec R, James D, Johnson H. 1998. Polycyclic motion history of some gulf coast growth faults from high-resolution displacement analysis. Geology, 26(9): 819~822.

    • Chen Jianjun, Ma Yanping, Chen Jianzhong, Sun Guibing. 2015. Tectonic dynamics of northern continental margin basins in South China Sea. Earth Science Frontiers, 22(3): 38~47 (in Chinese with English abstract).

    • Claringbould J S, Bell R E, Jackson A L, Gawthorpe R L, Odinsen T. 2017. Pre-existing normal faults have limited control on the rift geometry of the northern North Sea. Earth and Planetary Science Letters, 475: 190~206.

    • Collignon M, Fernandez N, Kaus B J P. 2015. Influence of surface processes and initial topography on lateral fold growth and fold linkage mode. Tectonics, 34: 1622~1645.

    • Contreras J, Anders M H, Scholz C H. 2002. Growth of a normal fault system: observations from the Lake Malawi basin of the East Africa rift. Journal of Structural Geology, 22(2): 159~168.

    • Cowie P A. 1998. A healing-reloading feedback control on the growth rate of seismogenic faults. Journal of Structural Geology, 20(8): 1075~1087.

    • Cristallini E O, Giambiagi L, Allmendinger R W. 2004. True three-dimensional trishear: a kinematic model for strike-slip and oblique-slip deformation. GSA Bulletin, 116: 938~952.

    • Cui Shasha, He Jiaxiong, Chen Shenghong, Zou Heping, Cui Jie. 2009. Development characteristics of Pearl River mouth basin and its geological conditions for oil and gas accumulation. Natural Gas Geoscience, 20(3): 384~391 (in Chinese with English abstract).

    • Deng Hongdan, McClay K, Bilal A. 2020. 3D structure and evolution of an extensional fault network of the eastern dampier sub-basin, Northwest shelf of Australia. Journal of Structural Geology, 132: 103972.

    • Feng Zhiqiang, Zeng Weijun. 1982. Tectonic evolution of Pearl River mouth basin and origin of South China Sea. Acta Geological Sinnica, 3: 212~222 (in Chinese with English abstract).

    • Gao Yangdong, Wang Xudong, Lin Heming, Que Xiaoming, Xiao Zhangbo, Jia Liankai. 2021. Characteristics and significances of the tectono-sedimentary transitional unconformity in Enping Formation of Lufeng sag, Pearl River mouth basin. Natural Gas Geoscience, 32(7): 961~970 (in Chinese with English abstract).

    • Gawthorpe R L, Jackson A L, Young M J, Sharp I R, Moustafa A R, Leppard C W. 2003. Normal fault growth, displacement localisation and the evolution of normal fault populations: the Hammam Faraun fault block, Suez rift, Egypt. Journal of Structural Geology, 25(8): 883~895.

    • Ge Jiawang, Zhu Xiaomin, Zhang Xiangtao, Lei Yongchang, Niu Zicheng, Li Ming. 2018. Tectono-sedimentation of the Eocene Wenchang Formation in the Lufeng depression, Pearl River mouth basin. Journal of China University of Mining & Technology, 47(2): 308~322 (in Chinese with English abstract).

    • Ge Jiawang, Zhu Xiaomin, Lei Yongchang, Yu Fusheng. 2021. Tectonic-sedimentary development of multiphase rift basins: an example of the Lufeng depression. Earth Science Frontiers, 28(1): 77~89 (in Chinese with English abstract).

    • He Dengfa, Suppe J, Jia Chengzao. 2005. New advances in the theory and application of fault related folding. Earth Science Frontiers, 12(4): 353~364 (in Chinese with English abstract).

    • He Jiaxiong, Chen Shenghong, Ma Wenhong, Gong Xiaofeng. 2012. The evolution, migration and accumulation regularity of oil and gas in Zhujiangkou basin, northeastern South China Sea. Geology in China, 39(1): 106~118 (in Chinese with English abstract).

    • Hu Shouxiang, Alvese T M, Omosanya K O, Li Wei. 2021. Geometric and kinematic analysis of normal faults bordering continental shelves: a 3D seismic case study from the northwest South China Sea. Marine and Petroleum Geology, 133: 105263.

    • Huang Zhongxian, Su Wei, Peng Y J, Zheng Yanju, Li Hongyi. 2003. Rayleigh wave tomography of China and adjacent regions. Journal of Geophysical Research Atmospheres, 108(B2): 2073.

    • Jia Dong, Li Yiquan, Wang Maomao, Li Haibin. 2011. Three-dimensional structural geometry of fault-related folds: examples from 3-D seismic explored blocks in the western Sichuan Province, China. Acta Petrologica Sinica, 27(3): 732~740 (in Chinese with English abstract).

    • Khalil S M, McClay K R. 2016. 3D geometry and kinematic evolution of extensional fault-related folds, NW Red Sea, Egypt. Geological Society London Special Publications, SP439. 11.

    • Khalil S M, McClay K R. 2018. Extensional fault-related folding in the northwestern Red Sea, Egypt: segmented fault growth, fault linkages, corner folds and basin evolution. Geological Society London Special Publications, 476: 49~81.

    • Lathrop B A, Jackson C A L, Bell R E, Rotevatn A. 2021. Normal fault kinematics and the role of lateral tip retreat: an example from offshore NW Australia. Tectonics, 40: e2020TC006631.

    • Lei Baohua. 2012. Review of methods with quantitative studies of activity intensity of the growth fault. Advances in Earth Science, 27(9): 947~956 (in Chinese with English abstract).

    • Li Xiaolin, Zhang Dongli, Zhang Peizheng, Li Zhigang, Hu Litian, Zheng Wenjun. 2020. Three-dimensional crustal structure in the northeaster South China Sea revealed by multi-source geophysical exploration data. Chinese Journal of Geophysics, 63(4): 1538~1552 (in Chinese with English abstract).

    • Li Xuejie, Wang Zhe, Yao Yongjian, Gao Hongfang, Li Bo. 2017. The tectonic features and evolution of the West Pacific margin. Geology in China, 44(6): 1102~1114 (in Chinese with English abstract).

    • Li Zhaoliang, Pan Mao, Han Dakuang, Liu Wenling, Hu Shuiqing, Liu Peigang, Yan Mei. 2016. Three-dimensional structural modeling technique. Earth Science, 14(12): 2136~2146 (in Chinese with English abstract).

    • Liu Yin, Chen Qinghua, Wang Xi, Hu Kai, Cao Shaolei, Wu Lin, Gao Feng. 2017. Influence of normal fault growth and linkage on the evolution of a rift basin: a case from the Gaoyou depression of the Subei basin, eastern China. AAPG Bulletin, 101(2): 265~288.

    • Lu Baoliang, Wang Pujun, Zhang Gongcheng, Zhang Bin, Sun Xiaomeng, Li Wuzhi, Lang Yuanqiang. 2011. Basement structures of an epicontinental basin in the north South China Sea and their significance in petroleum prospect. Acta Petrolei Sinica. 32(4): 580~587 (in Chinese with English abstract).

    • Luan Xiwu, Zhang Liang. 2009. Tectonic evolution modes of South China Sea: passive spreading under complex actions. Marine Geology & Quaternary Geology, 29(6): 59~74 (in Chinese with English abstract).

    • Mallet J L. 1992. Discrete smooth interpolation in geometric modeling. Computer-Aided Design, 8(2): 178~191.

    • Marret R, Allmendinger R W. 1991. Estimates of strain due to brittle faulting: sampling of fault populations. Journal of Structural Geology, 13(6): 735~738.

    • Morley C K. 1999. Patterns of displacement along large normal faults: implications for basin evolution and fault propagation, based on examples from East Africa. AAPG Bulletin, 83(4): 613~634.

    • Morley C K. 2002. Evolution of large normal faults: evidence from seismic reflection data. AAPG Bulletin, 86(6): 961~978.

    • Nicol A, Walsh J J, Watterson J, Underhill J R. 1997. Displacement rates of normal faults. Nature, 390: 157~159.

    • Pubellier M, Meresse F. 2013. Phanerozoic growth of Asia: Geodynamic processes and evolution. Journal of Asian Earth Sciences, 72: 118~128.

    • Que Xiaoming, Lei Yongchang, Zhang Xiangtao, Qiu Xinwei. 2022. Determination and geological significance of fault-depression transformation interface in the southern Lufeng area. Acta Geologica Sinica, 10. 19762/j. cnki. dizhixuebao. 2022286.

    • Roberts G P, Michetti A M. 2004. Spatial and temporal variations in growth rates along active normal fault systems: an example from the Lazio-Abruzzo Apennines, central Italy. Journal of Structural Geology, 26(2): 339~376.

    • Rotevatna A, Jacksonb C A L, Tvedtc A B M, Bellb R E, Blækkan I. 2019. How do normal faults grow? Journal of Structural Geology, 125: 174~184.

    • Ru Ke, Pigott J D. 1986. Episodic rifting and subsidence in the South China Sea. AAPG Bulletin, 70 (9): 1136~1155.

    • Shaw J H, Hook S C, Sitohang E P. 1997. Extensional fault-bend folding and synrift deposition: an example from the central Sumatra basin, Indonesia. AAPG Bulletin, 81(3): 367~379.

    • Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98~119.

    • Sun Weidong. 2016. Initiation and evolution of the South China Sea: an overview. Acta Geochimica, 35(3): 215~225.

    • Sun Zhen, Ding Weiwei, Zhao Xixi, Qiu Ning, Lin Jian, Li Chunfeng. 2019. The latest spreading periods of the South China Sea: new constraints from macrostructure analysis of IODP expedition 349 cores and geophysical data. Journal of Geophysical Research: Solid Earth, 124(10): 9980~9998.

    • Thorsen C E. 1963. Age of growth faulting in Southeast Louisiana. GCAGS Tansactions, 13: 103~110.

    • Tian Wei, He Min, Yang Yajuan, Liu Hailun, Yuan Xun, Wu Sen, Zhu Dingwei, Mei Lianfu. 2015. Complex linkage and transformation of boundary faults of northern Huizhou sag in Pearl River mouth basin. Earth Science—Journal of China University of Geosciences, 40(12): 2037~2051 (in Chinese with English abstract).

    • Vincenzo L B, Fabrizio A, Juliette L, Sophie V, Giacomo P. 2018. Fault growth mechanisms and scaling properties in foreland basin system: the case study of Monte Alpi, southern Apennines, Italy. Journal of Structural Geology, 116: 94~113.

    • Walsh J J, Watterson J. 1987. Distributions of cumulative displacement and seismic slip on a single normal fault. Journal of Structural Geology, 9(8): 1039~1046.

    • Wan Kuiyuan, Xia Shaohong, Cao Jinghe, Sun Jinlong, Xu Hhuilong. 2017. Deep seismic structure of the northeastern South China Sea: origin of a high-velocity layer in the lower crust. Journal of Geophysical Research: Solid Earth, 122: 2831~2858.

    • Watterson J. 1986. Fault dimensions displacement and growth. Pure and Applied Geophysics, 124: 365~372.

    • Wei Xinyuan, Luan Xiwu, Ran Weimin, Shi Yanfeng, Wang Kuo, Zhanghao. 2021. Fault characteristics and tectonic evolution model of the East Timor trough. Geological Bulletin of China, 40(2-3): 364~375 (in Chinese with English abstract).

    • Wilkerson M S, Medwedeff D A, Marshak S. 1991. Geometrical modeling of fault-related folds: a pseudo three-dimensional approach. Journal of Structural Geology, 13(7): 801~812.

    • Xia Bin, Cui Xuejun, Xie Jianhua, Wang Ran. 2004. Thinking about the dynamics mechanism study on formation and evolution of South China Sea. Geotectonica et Metallogenia, 28(3): 221~227 (in Chinese with English abstract).

    • Xia Shaohong, Zhao Minghui, Qiu Xuelin. 2008. Situation and prospect of study on crustal structure beneath the onshore-offshore transitional zone in the northern margin of South China Sea. South China Journal of Selsmology, 28(4): 9~17 (in Chinese with English abstract).

    • Xiao Hongbin, Suppe J. 1992. Origin of rollover. AAPG Bulletin, 76(4): 509~529.

    • Xie Xinong, Ren Jianye, Wang Zhenfeng, Li Xushen, Lei Chao. 2015. Difference of tectonic evolution of continental basins of South China Sea and relationship with SCS spreading. Earth Science Frontiers, 22(1): 77~87 (in Chinese with English abstract).

    • Xu Huilong, Ye Chunming, Qiu Xuelin, Sun Jinlong, Xia Shaohong. 2010. Studies on the Binhai fault zone in the northern South China Sea by the deep geophysical exploration and its seismogenic structure. South China Journal of Selsmology, 30(S1): 10~18 (in Chinese with English abstract).

    • Yang Chaoqun, Lei Yongchang, Qiu Xinwei, Xiao Zhangbo. 2021. An integrated assessment of fault sealing for oilfield a in Lufeng sag of Pear River mouth basin. Marine Geology Frontiers, 37(2): 54~61 (in Chinese with English abstract).

    • Yao Bochu, Wan Ling, Wu Nengyou. 2004. Cenozoic plate tectonic activities in the Great South China Sea area. Geology in China, 31(2): 113~122 (in Chinese with English abstract).

    • Yu Fusheng, Koyi H, Zhang Xiangtao. 2016. Intersection patterns of normal faults in the Lufeng sag of Pearl River mouth basin, China: insights from 4D physical simulations. Journal of Structural Geology, 93: 67~90.

    • Yu Fusheng, Koyi H. 2017. Theoretical and experimental estimation of geometric relationship of non-parallel conjugate normal faults. Tectonophysics, 703-704: 85~97.

    • Yu Fusheng, Wang Xudong, Qiu Xinwei, Wang Dandan, Li Chao, Lu Xuyang, Wang Yiqun, Wang Yidan. 2019. Characteristics of fault structure and the genesis of herringbone structure in Lufeng sag, Pearl River Mouth basin. Acta Petrolei Sinica, 40(S1): 166~177 (in Chinese with English abstract).

    • Zhao Minghui, Qiu Xuelin, Ye Chunming, Xia Jiyuan, Huang Ciliu, Xie Jianbo, Wang Ping. 2004. Analysis on deep crustal structure along the onshore-offshore seismic profile across the Binhai (Littoral) fault zone in northeastern South China Sea. Chinese Journal of Geophysics, 47(5): 845~853 (in Chinese with English abstract).

    • Zhong Jianqiang. 1994. Characteristics of geologic structure and basin evolution in Pearl River mouth basin. Transactions of Oceanology and Limnology, 1: 1~8 (in Chinese with English abstract).

    • Zhu Weilin, Zhong Kai, Li Youchuan, Xu Qiang, Fang Dianyong. 2012. Hydrocarbon accumulation and exploration in deep water zone of northern South China Sea. Chinese Science Bulletin, 57(20): 1833~1841 (in Chinese with English abstract).

    • 曹敬贺, 夏少红, 孙金龙, 徐辉龙. 2014a. 珠江口盆地北部断裂构造特征对比及其地质学意义. 地球物理学进展, 29(5): 2364~2369.

    • 曹敬贺, 孙金龙, 徐辉龙, 夏少红. 2014b. 珠江口盆地滨海断裂带的地震学特征. 地球物理学报, 57(2): 498~508.

    • 陈建军, 马艳萍, 陈建中, 孙贵宾. 2015. 南海北部陆缘盆地形成的构造动力学背景. 地学前缘, 22(3): 38~47.

    • 崔莎莎, 何家雄, 陈胜红, 邹和平, 崔洁. 2009. 珠江口盆地发育演化特征及其油气成藏地质条件. 天然气地球科学, 20(3): 384~391.

    • 冯志强, 曾维军. 1982. 珠江口盆地的构造演化与南海之形成. 地质学报, 3: 212~222.

    • 高阳东, 汪旭东, 林鹤鸣, 阙晓铭, 肖张波, 贾连凯. 2021. 珠江口盆地陆丰凹陷恩平组内部构造—沉积转换面识别及意义. 天然气地球科学, 32(7): 961~970.

    • 葛家旺, 朱筱敏, 雷永昌, 于福生. 2021. 多幕裂陷盆地构造—沉积响应及陆丰凹陷实例分析. 地学前缘, 28(1): 77~89.

    • 葛家旺, 朱筱敏, 张向涛, 雷永昌, 牛子铖, 黎明. 2018. 珠江口盆地陆丰凹陷文昌组构造—沉积演化模式. 中国矿业大学学报, 47(2): 308~322.

    • 何登发, Suppe J, 贾承造. 2005. 断层相关褶皱理论与应用研究新进展. 地学前缘. 12(4): 353~364.

    • 何家雄, 陈胜红, 马文宏, 龚晓峰. 2012. 南海东北部珠江口盆地成生演化与油气运聚成藏规律. 中国地质, 39(1): 106~118.

    • 贾东, 李一泉, 王毛毛, 李海滨. 2011. 断层相关褶皱的三维构造几何学分析: 以川西三维地震工区为例. 岩石学报, 27(3): 732~740.

    • 雷宝华. 2012. 生长断层活动强度定量研究的主要方法评述. 地球科学进展, 27(9): 947~956.

    • 李小林, 张冬丽, 张培震, 李志刚, 胡立天, 郑文俊. 2020. 多源探测数据揭示的南海东北部三维地壳结构特征. 地球物理学报, 63(4): 1538~1552.

    • 李学杰, 王哲, 姚永坚, 高红芳, 李波. 2017. 西太平洋边缘构造特征及其演化. 中国地质, 44(6): 1102~1114.

    • 李兆亮, 潘懋, 韩大匡, 刘文岭, 胡水清, 刘培刚, 颜玫. 2016. 三维构造建模技术. 地球科学, 41(12): 2136~2146.

    • 鲁宝亮, 王璞珺, 张功成, 张斌, 孙晓猛, 李伍志, 郎元强. 2011. 南海北部陆缘盆地基底结构及其油气勘探意义. 石油学报, 32(4): 580~587.

    • 栾锡武, 张亮. 2009. 南海构造演化模式: 综合作用下的被动扩张. 海洋地质与第四纪地质, 29(6): 59~74.

    • 阙晓铭, 雷永昌, 张向涛, 邱欣卫. 2022. 陆丰南地区断拗转换界面厘定及其地质意义. 地质学报, doi: 10. 19762/j. cnki. dizhixuebao. 2022286.

    • 田巍, 何敏, 杨亚娟, 刘海伦, 袁勋, 吴森, 朱定伟, 梅廉夫. 2015. 珠江口盆地惠州凹陷北部边界断层复合联接和转换. 地球科学(中国地质大学学报), 40(12): 2037~2051.

    • 魏新元, 栾锡武, 冉伟民, 石艳锋, 王阔, 张豪. 2021. 东帝汶海槽断层特征与构造演化模式. 地质通报, 40(Z1): 364~375.

    • 夏斌, 崔学军, 谢建华, 王冉. 2004. 关于南海构造演化动力学机制研究的一点思考. 大地构造与成矿学, 28(3): 221~227.

    • 夏少红, 赵明辉, 丘学林. 2008. 南海北部海陆过渡带地壳结构的研究现状及展望. 华南地震, 28(4): 9~17.

    • 解习农, 任建业, 王振峰, 李绪深, 雷超. 2015. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系. 地学前缘, 22(1): 77~87.

    • 徐辉龙, 叶春明, 丘学林, 孙金龙, 夏少红. 2010. 南海北部滨海断裂带的深部地球物理探测及其发震构造研究. 华南地震, 30(S1): 10~18.

    • 杨超群, 雷永昌, 邱欣卫, 肖张波. 2021. 珠江口盆地陆丰凹陷A油田断层封堵性综合评价. 海洋地质前沿, 37(2): 54~61.

    • 姚伯初, 万玲, 吴能友. 2004. 大南海地区新生代板块构造活动. 中国地质, 31(2): 113~122.

    • 于福生, 汪旭东, 邱欣卫, 王丹丹, 李超, 吕旭阳, 王逸群, 王一丹. 2019. 珠江口盆地陆丰凹陷断层构造特征及“人”字型构造成因. 石油学报, 40(S1): 166~177.

    • 赵明辉, 丘学林, 叶春明, 夏戟原, 黄慈流, 谢剑波, 王平. 2004. 南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析. 地球物理学报, 47(5): 846~853.

    • 钟建强. 1994. 珠江口盆地的构造特征与盆地演化. 海洋湖沼通报, 1: 1~8.

    • 朱伟林, 钟锴, 李友川, 徐强, 房殿勇. 2012. 南海北部深水区油气成藏与勘探. 科学通报, 57(20): 1833~1841.