en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

朱光有,男,1973年生。博士,教授级高级工程师,主要从事油气地质与成藏研究。E-mail:zhuguangyou@petrochina.com.cn。

参考文献
Adams J E, Rhodes M L. 1960. Dolomitization by seepage refluxion. AAPG Bulletin, 44(12): 1912~1920.
参考文献
Arosi H A, Wilson M. 2015. Diagenesis and fracturing of a large-scale, syntectonic carbonate platform. Sedimentary Geology, 326(1): 109~134.
参考文献
Bi Dongjie, Zhai Shikui, Zhang Daojun, Liu Xiaofeng, Liu Xinyu, Jiang Longjie, Zhang Aibin. 2018. Constraints of fluid inclusions and C, O isotopic compositions on the origin of the dolomites in the Xisha Islands, South China Sea. Chemical Geology, 493: 504~517.
参考文献
Blättler C L, Miller N R, Higgins J A. 2015. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth and Planetary Science Letters, 419: 32~42.
参考文献
Cai Wenkai, Liu Jiahui, Zhou Chunhui, Keeling J, Glasmacher U A. 2021. Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas. Chemical Geology, 573: 120~191.
参考文献
Chang Biao, Li Chao, Liu Deng, Foster I, Tripati A, Lloyd M K, Maradiaga I, Luo Genming, An Zhihui, She Zhenbing, Xie Shucheng, Tong Jinnan, Huang Junhua, Algeo T J, Lyons T W, Immenhauser A. 2020. Massive formation of early diagenetic dolomite in the Ediacaran Ocean: Constraints on the “dolomite problem”. Proceedings of the National Academy of Sciences, 117(25): 14005~14014.
参考文献
Chen Haoru, Zheng Rongcai, Wen Huaguo, Li Wei, Chen Fangmin, Zhang Haijie, Wang Jiong. 2011. Sequence characteristics and lithofacies paleogeography of the Huanglong Formation in eastern Sichuan basin. Acta Geologica Sinica, 85(2): 246~255 (in Chinese with English abstract).
参考文献
Chen Zongqing. 1985. Sedimentary facies during Huanglong stage of Mid-carboniferous in eastern Sichuan and its correlation with oil and gas. Acta Sedimentologica Sinica, 3(1): 71~80 (in Chinese with English abstract).
参考文献
Davies G R, Smith L B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90(11): 1641~1690.
参考文献
Derry L A, Brasier M D, Corfield R E A, Rozanov A Y, Zhuravlev A Y. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth and Planetary Science Letters, 128(3-4): 671~681.
参考文献
Du Yang, Fan Tailiang, Machel H G, Gao Zhiqian. 2018. Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe Oilfield, Tarim basin, NW China: Several limitations from petrology, geochemistry, and fluid inclusions. Marine and Petroleum Geology, 91: 43~70.
参考文献
Fang Shaoxian, Hou Fanghao, Li Ling, Wang Xingzhi, Luo Yuhong, Wang Anping, Bai Yang. 2000. Reunderstanding of the sedimentary environment of the Carboniferous Huanglong Formation west of Huaying Mountain in Sichuan. Marine Origin Petroleum Geology, 5(2): 158~166 (in Chinese).
参考文献
Fantle M S, Higgins J. 2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg. Geochimica et Cosmochimica Acta, 142: 458~481.
参考文献
Galy A, Yoffe O, Janney P E, Williams R W, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon I D, Ramon E, Carignan J. 2003. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry, 18(11): 1352~1356.
参考文献
Garaguly I, Varga A, Raucsik B, Schubert F, Czuppon G, Frei R. 2018. Pervasive early diagenetic dolomitization, subsequent hydrothermal alteration, and late stage hydrocarbon accumulation in a Middle Triassic carbonate sequence (Szeged basin, SE Hungary). Marine and Petroleum Geology, 98: 270~290.
参考文献
Garzione C N. 2008. Surface uplift of Tibet and Cenozoic global cooling. Geology, 36(12): 1003~1004.
参考文献
Geske A, Zorlu J, Richter D K, Buhl D, Niedermayr A, Immenhauser A. 2012. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chemical Geology, 332: 45~64.
参考文献
Geske A, Goldstein R H, Mavromatis V, Richter D K, Buhl D, Kluge T, John C M, Immenhauser A. 2015a. The magnesium isotope (δ26Mg) signature of dolomites. Geochimica et Cosmochimica Acta, 149: 131~151.
参考文献
Geske A, Lokier S, Dietzel M, Richter D K, Buhl D, Immenhauser A. 2015b. Magnesium isotope composition of sabkha porewater and related (sub-) recent stoichiometric dolomites, Abu Dhabi (UAE). Chemical Geology, 393: 112~124.
参考文献
He Zhiliang, Ma Yongsheng, Zhang Juntao, Zhu Dongya, Qian Yixiong, Ding Qian, Chen Daizhao. 2020. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China. Oil & Gas Geology, 41(1): 1~14(in Chinese with English abstract).
参考文献
Higgins J A, Schrag D P. 2010. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochimica et Cosmochimica Acta, 74(17): 5039~5053.
参考文献
Higgins J A, Schrag D P. 2015. The Mg isotopic composition of Cenozoic seawater—evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth and Planetary Science Letters, 416: 73~81.
参考文献
Higgins J A, Blättler C L, Lundstrom E A, Santiago-Ramos D P, Akhtar A A, Ahm A C, Bialik O, Holmden C, Bradbury H, Murray S T, Swart P K. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochimica et Cosmochimica Acta, 220: 512~534.
参考文献
Horacek M, Brandner R, Abart R. 2007. Carbon isotope record of the P/T boundary and the Lower Triassic in the southern Alps: Evidence for rapid changes in storage of organic carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 347~354.
参考文献
Hou Mingcai, Jiang Wenjian, Xing Fengcun, Xu Shenglin, Liu Xinchun, Xiao C. 2016. Origin of dolomites in the Cambrian (upper 3rd-Furongian) formation, south-eastern Sichuan basin, China. Geofluids, 16(5): 856~876.
参考文献
Hsü K J, Siegenthaler C. 1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology, 12(1-2): 11~25.
参考文献
Hu Guangcan, Xie Yaoxiang. 1997. Carboniferous Gas Field of High-Steep Structure in Eastern Sichuan. Beijing: Petroleum Industry Press.
参考文献
Hu Mingyi, Deng Meng, Hu Zhonggui, Xue Dan. 2015. Reservoir characteristics and main control factors of Carboniferous Huanglong Formation in Sichuan basin. Earth Science Frontiers, 22(3): 310~321(in Chinese with English abstract).
参考文献
Hu Zhonggui, Zheng Rongcai, Wen Huaguo, Cai Jialan, Chen Shouchun, Hu Jiuzhen, Li Guili. 2008. Dolomite genesis of Huanglong Formation of the Carboniferous in Linshui of Sichuan-northern Chongqing area. Acta Petrologica Sinica, 24(6): 1369~1378 (in Chinese with English abstract).
参考文献
Hu Zhonggui, Zheng Rongcai, Hu Mingyi, Hu Jiuzhen, Zheng Chao. 2010. Sequence-based lithofacies and paleogeography of Carboniferous Huanglong Formation in Linshui (eastern Sichuan)-northern Chongqing area. Geology in China, 37(5): 1383~1392 (in Chinese with English abstract).
参考文献
Hu Zhongya, Hu Wenxuan, Liu Chuan, Sun Funing, Liu Yongli, Li Weiqiang. 2019. Conservative behavior of Mg isotopes in massive dolostones: From diagenesis to hydrothermal reworking. Sedimentary Geology, 381: 65~75.
参考文献
Huang Kangjun, Shen Bing, Lang Xianguo, Tang Wenbo, Peng Yang, Ke Shan, Kaufman A J, Ma Haoren, Li Fangbing. 2015. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates. Geochimica et Cosmochimica Acta, 164: 333~351.
参考文献
Jacobsen S B, Kaufman A J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161(1-3): 37~57.
参考文献
Jiang Lei, Cai Chunfang, Worden R H, Crowley S F, Jia Lianqi, Zhang Ke, Duncan I J. 2016. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim basin, North-West China. Sedimentology, 63: 2130~2157.
参考文献
Jones G D, Rostron B J. 2000. Analysis of fluid flow constraints in regional-scale reflux dolomitization: Constant versus variable-flux hydrogeological models. Bulletin of Canadian Petroleum Geology, 48(3): 230~245.
参考文献
Kaczmarek S E, Gregg J M, Bish D L, Machel H G, Fouke B W. 2017. Dolomite, very-high magnesium calcite, and microbes: Implications for the microbial model of dolomitization. In Characterization and Modeling of Carbonates-Mountjoy Symposium, 1: 7~20.
参考文献
Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27~49.
参考文献
Knauth L P, Kennedy M J. 2009. The Late Precambrian greening of the Earth. Nature, 460(7256): 728~732.
参考文献
Land L S. 1985. The origin of massive dolomite. Journal of Geological Education, 33(2): 112~125.
参考文献
Li Chun. 1998. Diagenesis of Upper Carboniferous carbonate rocks in eastern Sichuan. Journal of the University of Petroleum, China(Edition of Natural Science), 22(5): 19~22 (in Chinese with English abstract).
参考文献
Li Fangbing, Teng Fangzhen, Chen Jitao, Huang Kangjun, Wang Shuijiong, Lang Xianguo, Ma Haoren, Peng Yongbo, Shen B. 2016. Constraining ribbon rock dolomitization by Mg isotopes: Implications for the dolomite problem. Chemical Geology, 445: 208~220.
参考文献
Li Wei, Zhang Zhijie, Dang Lurui. 2011. Depositional systems and evolution of the Upper Carboniferous Huanglong Formation in the eastern Sichuan basin. Petroleum Exploration and Development, 38(4): 400~408 (in Chinese with English abstract).
参考文献
Li Weiqiang, Beard B L, Li Chengxiang, Xu Huifang, Johnson C M. 2015. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochimica et Cosmochimica Acta, 157: 164~181.
参考文献
Li Weiqiang, Bialik O M, Wang Xiaomin, Yang Tao, Hu Zhongya, Huang Qingyu, Zhao Shufao, Waldmann N D. 2019. Effects of early diagenesis on Mg isotopes in dolomite: The roles of Mn (IV)-reduction and recrystallization. Geochimica et Cosmochimica Acta, 250: 1~17.
参考文献
Li Zhong, Lei Xue, Yan Li. 2005. Sequence stratigraphic division and reservoir characteristics analysis of Carboniferous Huanglong Formation in eastern Sichuan. Geophysical Prospecting for Petroleum, 44(1): 39~43 (in Chinese with English abstract).
参考文献
Liu Deng, Xu Yangyang, Papineau D, Yu Na, Fan Qigao, Qiu Xuan, Wang Hongmei. 2019. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals. Geochimica et Cosmochimica Acta, 247: 83~95.
参考文献
Liu Shiyu, Hu Mingyi, Hu Zhonggui, Dai Weiyan. 2015. Dolomite genesis of Carboniferous Huanglong Formation in eastern Sichuan basin. Lithologic Reservoirs, 27(4): 40~46 (in Chinese with English abstract).
参考文献
Lumsden D N, Caudle G C. 2001. Origin of massive dolostone: The Upper Knox model. Journal of Sedimentary Research, 71(3): 400~409.
参考文献
Machel H G. 2004. Concepts and models of dolomitization: A critical reappraisal. Geological Society, London, Special Publications, 235(1): 7~63.
参考文献
Machel H G, Burton E A. 1994. Golden Grove dolomite, Barbados: Origin from modified seawater. Journal of Sedimentary Research, 64(4a): 741~751.
参考文献
Mavromatis V, Meister P, Oelkers E H. 2014. Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin. Chemical Geology, 385: 84~91.
参考文献
Meister P, Mckenzie J A, Bernasconi S M, Brack P. 2013. Dolomite formation in the shallow seas of the Alpine Triassic. Sedimentology, 60(1): 270~291.
参考文献
Mresah M H. 1998. The massive dolomitization of platformal and basinal sequences: Proposed models from the Paleocene, Northeast Sirte basin, Libya. Sedimentary Geology, 116(3-4): 199~226.
参考文献
Ngia N R, Hu Mingyi, Gao Da. 2019. Tectonic and geothermal controls on dolomitization and dolomitizing fluid flows in the Cambrian-Lower Ordovician carbonate successions in the western and central Tarim basin, NW China. Journal of Asian Earth Sciences, 172: 359~382.
参考文献
Ning Meng, Huang Kangjun, Shen Bing. 2018. Applications and advances of the magnesium isotope on the ‘dolomite problem’. Acta Petrologica Sinica, 34(12): 3690~3708 (in Chinese with English abstract).
参考文献
Ning Meng, Huang Kangjun, Lang Xianguo, Ma Haoran, Yuan Honglin, Peng Yang, Peng Yongbo, Shen Bing. 2019. Can crystal morphology indicate different generations of dolomites? Evidence from magnesium isotopes. Chemical Geology, 516: 1~17.
参考文献
Ning Meng, Lang Xianguo, Huang Kangjun, Li Chao, Huang Tianzheng, Yuan Honglin, Xing Chaochao, Yang Runyu, Shen Bing. 2020. Towards understanding the origin of massive dolostones. Earth and Planetary Science Letters, 545: 116403.
参考文献
Peng Bo, Li Zongxing, Li Guorong, Liu Chenglin, Zhu Shifa, Zhang Wang, Zou Yinhui, Guo Yingchun, Wei Xiaojie. 2018. Multiple dolomitization and fluid flow events in the Precambrian Dengying Formation of Sichuan basin, southwestern China. Acta Geologica Sinica (English Edition), 92(1): 311~332.
参考文献
Peng Yang, Shen Bing, Lang Xianguo, Huang Kangjun, Chen Jitao, Yan Zhen, Tang Wenbo, Ke Shan, Ma Haoren, Li Fangbing. 2016. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation, North China. Geochemistry, Geophysics, Geosystems, 17(3): 1109~1129.
参考文献
Petrash D A, Bialik O M, Bontognali T R, Vasconcelos C, Roberts J A, McKenzie J A, Konhauser K O. 2017. Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Science Reviews, 171: 558~582.
参考文献
Pinilla C, Blanchard M, Balan E, Natarajan S K, Vuilleumier R, Mauri F. 2015. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics. Geochimica et Cosmochimica Acta, 163: 126~139.
参考文献
Qian Zheng. 1999. Discussion on sedimentary environment of Carboniferous carbonate rocks in eastern Sichuan. Natural Gas Industry, 19(4): 19~22 (in Chinese with English abstract).
参考文献
Shen Bing, Jacobsen B, Lee C A, Yin Qingzhu, Morton D M. 2009. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proceedings of the National Academy of Sciences, 106(49): 20652~20657.
参考文献
Sun Jian, Fang Nan, Li Shizhen, Chen Yuelong, Zhu Xiangkun. 2012. Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit. Acta Petrologica Sinica, 28(9): 2890~2902 (in Chinese with English abstract).
参考文献
Teng Fangzhen. 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219~287.
参考文献
Vahrenkamp V C, Swart P K. 1990. New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology, 18(5): 387~391.
参考文献
Vasconcelos C, McKenzie J A, Bernasconi S, Grujic D, Tiens A J. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377(6546): 220~222.
参考文献
Wang Kun, Li Wei, Lu Jin, Zhang Chaojun. 2011. Carbon, oxygen, strontium isotope characteristics and cause analysis of Carboniferous carbonate rocks in the eastern Sichuan basin. Geochimica, 40(4): 351~362 (in Chinese with English abstract).
参考文献
Warren J. 2000. Dolomite: Occurrence, evolution and economically important associations. Earth-Science Reviews, 52(1-3): 1~81.
参考文献
Wen Huaguo, Zheng Rongcai, Shen Zhongmin. 2011. Sedimentary-diagenetic system of carbonatite reservoir in the Huanglong Formation, eastern Sichuan basin. Earth Science—Journal of China University of Geosciences, 36(1): 111~121 (in Chinese with English abstract).
参考文献
Wen Huaguo, Zheng Rongcai, Qing Hairong, Fan Mingtao, Li Yanan, Gong Boshi. 2013. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan basin on the northern Tibetan Plateau. Science China Earth Sciences, 56(12): 2080~2093.
参考文献
Xiong Lianqiang, Yao Genshun, Xiong Shaoyun, Wang Jian, Ni Chao, Shen Anjiang, Hao Yi. 2018. Origin of dolomite in the Middle Devonian Guanwushan Formation of the western Sichuan basin, western China. Palaeogeography, Palaeoclimatology, Palaeoecology, 495: 113~126.
参考文献
Yang Leilei, Yu Linjiao, Liu Keyu, Jia Jihui, Zhu Guangyou, Liu Qi. 2022a. Coupled effects of temperature and solution compositions on metasomatic dolomitization: Significance and implication for the formation mechanism of carbonate reservoir. Journal of Hydrology, 604: 127199.
参考文献
Yang Leilei, Zhu Guangyou, Li Xinwei, Liu Keyu, Yu Linjiao, Gao Zhiye. 2022b. Influence of crystal nucleus and lattice defects on dolomite growth: Geological implications for carbonate reservoirs. Chemical Geology, 587: 120631.
参考文献
You Donghua, Wang Liang, Hu Wenxuan, Qian Yixiong, Wang Xiaolin, Chen Qianglu, Zhang Juntao. 2018. Formation of deep dolomite reservoir of well TS1: Insights from diagenesis and alteration investigations. Acta Petrologica et Mineralogy, 37(1): 34~46 (in Chinese with English abstract).
参考文献
Zhang Shunli, Lv Zhengxiang, Wen Yi, Liu Sibing. 2018. Origins and geochemistry of dolomites and their dissolution in the middle Triassic Leikoupo Formation, western Sichuan basin, China. Minerals, 8(7): 289.
参考文献
Zhao Wenzhi, Shen Anjiang, Qiao Zhanfeng, Pan Liyin, Hu Anping, Zhang Jie. 2018. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs. Petroleum Exploration and Development, 45(6): 983~997.
参考文献
Zheng Haofu, Ma Yongsheng, Chi Guoxiang, Qing Hairuo, Liu Bo, Zhang Xuefeng, Shen Yingchun, Liu Jianqiang, Wang Yuanchong. 2019. Stratigraphic and structural control on hydrothermal dolomitization in the middle Permian carbonates, southwestern Sichuan basin (China). Minerals, 9(1): 32.
参考文献
Zheng Rongcai, Li Demin, Zhang Zongnan. 1995. A study on sequence stratigraphy of Huanglong Formation, Upper Caboniferous in eastern Sichuan. Acta Sedimentologica Sinica, 13(S1): 1~9 (in Chinese with English abstract).
参考文献
Zheng Rongcai, Peng Jun, Gao Hongcan. 2003. Paleokarst-related characteristics and cycles of carbonate reservoirs in Huanglong Formation, Upper Caboniferous, eastern Chongqing. Geology-Geochemistry, 31(1): 28~35 (in Chinese with English abstract).
参考文献
Zhu Guangyou, Zhang Shuichang, Liang Yingbo, Ma Yongsheng, Dai Jinxing, Li Jian, Zhou Guoyuan. 2006. The characteristics of natural gas in Sichuan basin and its sources. Earth Science Frontiers, 13(2): 234~248 (in Chinese with English abstract).
参考文献
陈浩如, 郑荣才, 文华国, 李伟, 陈方敏, 张海杰, 王炯. 2011. 川东地区黄龙组层序岩相古地理特征. 地质学报, 85(2): 246~255.
参考文献
陈宗清. 1985. 川东中石炭世黄龙期沉积相及其与油气的关系. 沉积学报, 3(1) : 71~80.
参考文献
方少仙, 侯方浩, 李凌, 王兴志, 罗玉宏, 王安平, 白洋. 2000. 四川华蓥山以西石炭系黄龙组沉积环境的再认识. 海相油气地质, 5(2): 158~166.
参考文献
何治亮, 马永生, 张军涛, 朱东亚, 钱一雄, 丁茜, 陈代钊. 2020. 中国的白云岩与白云岩储层: 分布, 成因与控制因素. 石油与天然气地质, 41(1): 1~14.
参考文献
胡光灿, 谢姚祥. 1997. 中国四川东部高陡构造石炭系气田. 北京: 石油工业出版社.
参考文献
胡明毅, 邓猛, 胡忠贵, 薛丹. 2015. 四川盆地石炭系黄龙组储层特征及主控因素分析. 地学前缘, 22(3): 310~321.
参考文献
胡忠贵, 郑荣才, 文华国, 蔡家兰, 陈守春, 胡九珍, 李瑰丽. 2008. 川东邻水—渝北地区石炭系黄龙组白云岩成因. 岩石学报, 24(6): 1369~1378.
参考文献
胡忠贵, 郑荣才, 胡明毅, 胡九珍, 郑超. 2010. 川东邻水-渝北地区石炭系层序-岩相古地理特征. 中国地质, 37(5): 1383~1392.
参考文献
李淳. 1998. 川东地区上石炭统碳酸盐岩成岩作用. 石油大学学报: 自然科学版, 22(5): 19~22.
参考文献
李伟, 张志杰, 党录瑞. 2011. 四川盆地东部上石炭统黄龙组沉积体系及其演化. 石油勘探与开发, 38(4): 400~408.
参考文献
李忠, 雷雪, 晏礼. 2005. 川东石炭系黄龙组层序地层划分及储层特征分析. 石油物探, 44(1): 39~43.
参考文献
刘诗宇, 胡明毅, 胡忠贵, 戴危艳. 2015. 四川盆地东部石炭系黄龙组白云岩成因. 岩性油气藏, 27(4): 40~46.
参考文献
甯濛, 黄康俊, 沈冰. 2018. 镁同位素在 “白云岩问题” 研究中的应用及进展. 岩石学报, 34(12): 3690~3708.
参考文献
钱峥. 1999. 川东石炭系碳酸盐岩沉积环境探讨. 天然气工业, 19(4): 19~22.
参考文献
孙剑, 房楠, 李世珍, 陈岳龙, 朱祥坤. 2012. 白云鄂博矿床成因的Mg同位素制约. 岩石学报, 28(9): 2890~2902.
参考文献
王坤, 李伟, 陆进, 张朝军. 2011. 川东地区石炭系碳酸盐岩碳、氧、锶同位素特征及其成因分析. 地球化学, 40(4): 351~362.
参考文献
文华国, 郑荣才, 沈忠民. 2011. 四川盆地东部黄龙组碳酸盐岩储层沉积-成岩系统. 地球科学(中国地质大学学报), 36(1): 111~121.
参考文献
尤东华, 王亮, 胡文瑄, 钱一雄, 王小林, 陈强路, 张军涛. 2018. 从成岩-蚀变特征探讨塔深1井白云岩储层成因. 岩石矿物学杂志, 37(1): 34~46.
参考文献
郑荣才, 李德敏, 张梢楠. 1995. 川东黄龙组天然气储层的层序地层学研究. 沉积学报, 13(S1): 1~9.
参考文献
郑荣才, 彭军, 高红灿. 2003. 渝东黄龙组碳酸盐岩储层的古岩溶特征和岩溶旋回. 地质地球化学, 31(1): 28~35.
参考文献
朱光有, 张水昌, 梁英波, 马永生, 戴金星, 李剑, 周国源. 2006. 四川盆地天然气特征及其气源. 地学前缘, 13(2): 234~248.
目录contents

    摘要

    镁(Mg)是组成白云石的核心元素,直接参与了白云石化过程,因此白云岩Mg同位素能够用于示踪白云岩成因和白云石化流体迁移路径。四川盆地东部上石炭统黄龙组白云岩发育,也是重要储集层。通过对黄龙组连续取芯的七里53井开展详细的沉积学研究,系统选取样品开展元素地球化学和Mg同位素分析,发现Mg同位素波动变化与沉积旋回存在密切关联,旋回边界为白云石化流体迁移界面,即白云石化流体迁移通道;依据Mg同位素值垂向演化规律,识别出黄龙组白云岩5个流体交换界面通道,逐层白云石化。因此,厚层白云岩是由若干个薄层灰岩层逐层白云石化叠加而成。这一发现为预测白云岩成因及储层分布提供了重要理论依据。

    Abstract

    Magnesium (Mg) is the core element of dolomite, which is directly involved in the dolomitization process. Therefore, Mg isotope of dolomite may be used to trace the origin of dolomite and the migration path of dolomitization fluid. The dolomite of Upper Carboniferous Huanglong Formation is developed in the eastern Sichuan basin, which is also an important reservoir. Through the detailed sedimentology study of Qili53 well of Huanglong Formation, the element geochemistry and Mg isotope analysis of samples were systematically selected. It is found that the fluctuation of Mg isotope is closely related to the sedimentary cycle, and the cycle boundary is the migration interface of dolomitization fluid, that is, the migration channel of dolomitization fluid. According to the vertical evolution of Mg isotope values, five fluid exchange interface channels are identified and stratified in the dolomite of Huanglong Formation. Therefore, thick dolostone is composed of several thin limestone layers superimposed by layer-by-layer cloud. This discovery provides an important theoretical basis for the prediction of dolomite genesis and reservoir distribution.

  • 白云岩在古代碳酸盐岩台地中广泛分布,但在全新世以来的地层中却十分罕见。与此同时,在常温常压的近地表条件下仍无法成功合成有序白云石。上述关于白云岩的独特现象被地质学家称为“白云岩问题”(Warren,2000; Machel,2004; Chang Biao et al.,2020; Cai Wenkai et al.,2021)。

  • “白云岩问题”的本质涉及两个关键内容:① 白云岩形成过程问题,即由于海水中Mg2+的水合效应抑制白云石的沉淀,原生白云石是如何从天然水体环境中析出的。关于形成过程问题,可以通过微生物诱导(Vasconcelos et al.,1995; Petrash et al.,2017; Yang Leilei et al.,2022a2022b)、黏土矿物催化(Liu Deng et al.,2019)等理论解释; ② 富Mg2+来源及流体迁移规律问题,即由于白云岩的形成需要白云石化流体中的Mg2+交代灰岩中的Ca2+,白云石化过程中富Mg2+流体从何而来,又是如何迁移的。尤其是,对于台地规模的古代厚层白云岩,更是需要足够的富Mg2+流体的长期供给。针对Mg2+的来源和迁移问题,前人提出了多种白云石化模式来解释白云岩形成的流体来源和地质过程。如近地表白云石化(Warren,2000)、埋藏白云石化(Jiang Lei et al.,2016; Xiong Lianqiao et al.,2018)和热液白云石化(Davies et al.,2006)等,但由于白云岩的形成受到流体化学、热力学、动力学等因素的影响趋于复杂(Peng Bo et al.,2018),单一的白云石化模式通常受到一定的环境限制,仅凭某种单一白云石化模式难以完全解释古代厚层白云岩的成因(Zhao Wenzhi et al.,2018)。目前普遍认同,古代厚层白云岩是由灰岩与富Mg2+流体大规模交代形成(Land,1985; Machel,2004; Kaczmarek et al.,2017)。因此,想要理清厚层白云岩形成机制,需要示踪白云石化流体的Mg2+来源及其迁移规律(Vahrenkamp et al.,1990; Machel et al.,1994; Warren,2000)。

  • Mg作为白云岩的核心元素之一,直接参与整个白云石化过程,是白云石化流体与白云岩之间物质传递的重要媒介(甯濛等,2018)。早先由于Mg同位素分析测试精度不高和对Mg同位素分馏机理的认识不足,限制了Mg同位素在白云岩成因问题中的应用。近年来,随着高精度Mg同位素测试技术(MC-ICP-MS)的发展(Galy et al.,2003),以及Mg同位素地球化学体系研究的不断深入(孙剑等,2012; Huang Kangjun et al.,2015; Li Fangbing et al.,2016; Peng Yang et al.,2016; 甯濛等,2018),利用Mg同位素研究白云岩的成因已趋于成熟(Teng Fangzhen,2017)。首先,海水、沉积物、地下水、大气淡水和热液等镁储库的Mg同位素组成各不相同(Geske et al.,2015a2015b; Higgins et al.,2015; Teng Fangzhen,2017)。大量碳酸盐岩的Mg同位素数据分析结果表明,白云岩的Mg同位素(δ26Mg=3.5‰~0.5‰)组成比灰岩(δ26Mg=5‰~3‰)系统偏正,二者差值约为2‰(Fantle et al.,2014; Mavromatis et al.,2014; Blättler et al.,2015; Geske et al.,2015a; Li Weiqiang et al.,20152019; Higgins et al.,2018)。造成二者差异的主要原因可能是Mg同位素分馏差异,二者具有不同的Mg同位素体系:灰岩形成于开放体系,白云岩形成于开放体系或半封闭—封闭体系,同时在白云岩化过程中,白云岩中的Mg同位素组成是由成岩流体控制的,而不是继承灰岩中原始的Mg同位素组成(Fantle et al.,2014)。此外,白云岩的Mg同位素组成受后期成岩作用和热液蚀变的影响较小(Hu Zhongya et al.,2019; Ning Meng et al.,2019),其Mg同位素保存了早期成岩的有效信息。最后,在白云石化过程中,Mg同位素表现出明显的分馏作用(Higgins et al.,2010; Li Weiqiang et al.,2015)。实验模拟和理论计算表明,轻Mg同位素(24Mg)优先进入碳酸盐矿物(Mavromatis et al.,2014; Huang Kangjun et al.,2015; Pinilla et al.,2015),这使得成岩流体中的重Mg同位素(26Mg)逐渐富集,较晚或较深的白云岩具有较重的δ26Mg值(Blättler et al.,2015)。因此,白云岩的Mg同位素变化趋势有助于示踪富Mg2+流体的流动路径和白云石化演化过程。

  • 白云岩储层是碳酸盐岩重要储层之一,蕴含着丰富的油气资源(何治亮等,2020)。川东地区位于四川盆地东部,是四川盆地主要油气聚集区(朱光有等,2006),上石炭统黄龙组白云岩储层天然气勘探潜力大(胡明毅等,2015)。白云岩储层形成过程中,白云石化作用对于储层的建造十分显著,因此探究白云岩成因机理具有重要的现实意义(Warren,2000; Hou Mingcai et al.,2016; Bi Dongjie et al.,2018; Du Yang et al.,2018)。前人在白云岩成因与成储研究中,开展了大量卓有成效的研究工作,指导了黄龙组天然气勘探发现与规模开发(郑荣才等,1995; 钱峥,1999; 郑荣才等,2003; 胡忠贵等,2010; 文华国等,2011)。随着勘探的精细和研究的深入,关于黄龙组白云岩成因机理还存在一些争议。胡忠贵等(2008)依据岩石结构、Sr同位素和Sr含量等地球化学特征,提出黄龙组白云岩储层的成因主要与埋藏白云石化作用有关; 王坤等(2011)通过对碳酸盐岩成岩环境的研究,认为川东地区主要存在淡水、埋藏、准同生、热液等4种白云石化作用; 刘诗宇等(2015)将淡水白云石化模式改进为调整白云石化成岩模式等。另外,前人尚未对黄龙组白云岩Mg的来源开展详细的白云石化过程研究,可能限制了对黄龙组白云岩成储流体来源等认识。

  • 黄龙组白云岩作为典型的古代厚层白云岩,厚度达86 m,分布面积广,单一期次的白云石化事件难以形成碳酸盐岩台地规模的黄龙组厚层白云岩。Lumsden et al.(2001)提出,厚层白云岩可能是由于与海平面波动有关的多期白云石化事件叠加而成,绝大多数古代厚层白云岩也是由多个沉积旋回组成(Meister et al.,2013)。因此,本次在对黄龙组连续取芯的七里53井开展详细的沉积学研究的基础上,系统选取样品开展元素地球化学和Mg同位素分析,讨论黄龙组富Mg流体迁移路径和白云石化过程,最终建立了黄龙组厚层白云岩形成演化模式。这为揭开白云岩成因之谜提供依据,为黄龙组白云岩储集层分布预测和精细勘探开发提供依据。

  • 1 地质概况

  • 四川盆地川东地区在区域构造上位于川东弧形褶皱带的西南缘,西起华蓥山,东抵七曜山,南至南川-开隆,北达城口-巫溪,面积约55000 km2,是四川盆地稳定地块中相对活动的构造区域,区内自西向东以发育NE—NNE向高陡构造为特征(胡光灿等,1997)。

  • 早石炭世,海水逐渐向扬子板块内部侵入,在晚石炭世海水大规模侵入川东地区,形成向古陆超覆的上石炭统蒸发岩和碳酸盐岩地层。受海西运动的影响,四川盆地东部大部分地区仅残存不完整的上石炭统黄龙组(C2hl),其不整合超覆于中志留统韩家店组陆棚相暗色泥页岩之上,顶部与下二叠统梁山组煤系呈不整合接触(郑荣才等,1995)。黄龙组时期发育的沉积体系类型主要为潮坪-浅海陆棚沉积体系(陈宗清,1985; 李淳,1998; 方少仙等,2000; 郑荣才等,2003)(图1a)。区内黄龙组厚3.5~86.0 m,岩性为浅滩相的颗粒白云岩、晶粒白云岩、岩溶角砾岩、石灰岩及角砾状灰岩,下部夹有石膏岩,岩性复杂,横向变化快(陈浩如等,2011)。前人根据川中地区取芯井段岩芯及野外剖面系统描述、大量的薄片观察及古生物资料分析,将黄龙组由下至上分为黄龙组一段(C2hl1)、二段(C2hl2)和三段(C2hl3)(郑荣才等,1995; 李忠等,2005; 胡忠贵等,2010)。结合沉积相研究资料和区域地质背景,以及关键层序界面识别标志,将黄龙组分为1个Ⅰ型三级层序,进一步分为低位体系域、海侵体系域、高位体系域,分别相当于C2hl1、C2hl2、C2hl3郑荣才等,1995; 李伟等,2011)(图1b)。

  • 图1 川东地区上石炭统黄龙组二段岩相古地理图及综合地层柱状图

  • Fig.1 Lithofacies paleogeography and comprehensive stratigraphic column of the Second Member of Upper Carboniferous Huanglong Formation in eastern Sichuan

  • (a)—上石炭统黄龙组二段岩相古地理图(据陈浩如等,2011);(b)—上石炭统黄龙组二段地层柱状图(红色阴影代表本文白云岩取样段)(据李伟等,2011

  • (a) —palaeogeography map showing the distribution of the Second Member of the Upper Carboniferous Huanglong Formation (after Chen Haoru et al., 2011) ; (b) —stratigraphic column of the Second Member of the Upper Carboniferous Huanglong Formation (red shadow represents the dolomite sampling section in this paper) (after Li Wei et al., 2011)

  • 黄龙组一段超覆沉积于中志留统灰绿色或杂色泥岩之上,厚0~20 m。岩性以去石膏次生灰岩、次生灰质岩溶砾岩为主,发育微-粉晶白云岩、纹层状白云岩和干裂角砾状白云岩组合,生物罕见。

  • 黄龙组二段厚0~50 m,岩性主要为晶粒白云岩和颗粒白云岩,发育频繁的白云岩岩溶角砾岩夹层。黄龙组二段沉积期,海侵范围扩大,广泛沉积,但水体循环不通畅,盐度较大,属于局限性沉积环境(图1a)。

  • 黄龙组三段底部石灰岩与二段白云岩整合接触,顶部与上覆二叠系梁山组呈平行不整合接触,厚0.7~50 m,岩性以致密的泥晶灰岩、颗粒泥晶灰岩、微晶-亮晶灰岩以及各类灰质岩溶角砾岩为主,夹微-粉晶白云岩、颗粒微晶白云岩及白云质岩溶角砾岩。黄龙组三段沉积期海侵范围达到石炭世最大值,区内均已沉积,并且与外海相连通,水体盐度趋于正常,为相对开阔的沉积环境。

  • 本次以黄龙组二段下部厚度14 m的白云岩地层段作为重点研究对象,该段位于海侵体系域早期,显示了与相对海平面缓慢上升有关的退积过程,是探究黄龙组厚层白云岩成因的代表性层段(图1b)。

  • 2 样品采集与实验方法

  • 2.1 样品制备

  • 川东上石炭统黄龙组二段白云岩样采自盆地钻井岩芯(七里53井)新鲜纯净样品,共22块白云岩样品。使用岩石切割器将新鲜的白云岩样品分成两部分,分别制备岩石薄切片(30 μm)和厚切片(2 mm)。薄切片用于进行岩相分析,用茜素红S染色法鉴别方解石和白云石,染色后,方解石呈红色,而白云石保持无色。在薄切片观察指导下,使用手持式微钻从相对应的抛光厚切片上钻取样品粉末(约50 mg),粉末样品用于元素分析、C和O同位素测试以及Mg同位素测试。

  • 2.2 元素分析

  • 将大约30 mg白云岩粉末样品装入15 mL离心管中,加入5 mL 0.5 mol/L醋酸使粉末溶解。然后将离心管置于超声波浴30 min,再将离心管置于离心机内,在3000 rpm下离心10 min。收集上清液进行元素组成测定,元素分析由北京大学的电感耦合等离子体发射光谱仪(ICP-OES)测定。所有的分析都通过一系列不同浓度(0.1×10-6~10×10-6)的标样进行校准,这些标样在每20个样品测量前后运行。主要和次要元素(如Na、Mg、Al、K、Ca、Fe、Mn、Sr等)的解析都优于5%。在镁纯化前后都进行了元素分析,用于确定Mg的分离纯化程度和评价色谱柱的效率。

  • 2.3 C、O同位素测试

  • 碳酸盐的碳、氧同位素分析在北京科荟测试技术有限公司测试完成。仪器设备为赛默飞世尔公司的253plus、Gas Bench。色谱柱(熔硅毛细管柱:规格为Poraplot Q,25 m×0.32 mm)温度为70℃。称量约100 μg绝对量碳酸盐样品(200目)加入到12 mL反应瓶中,每次最多测量样品数为88个,其中18个为标准样品(分别为NBS-18、IAEA-603、GBW04405和GBW04416)。使用高纯氦气(99.999%,流速100 mL/min)进行600 s的排空处理。排空后加入5滴100%无水磷酸后置于72℃加热盘中反应并平衡。样品与磷酸反应且平衡后的CO2气体经过70℃的熔硅毛细管柱(规格为Poraplot Q,25 m×0.32 mm)而与其他杂质气体分离,进入到气体稳定同位素质谱仪进行测定。一般18个标样的测试结果的δ18O和δ13C测试精度均高于0.1‰。

  • 2.4 Mg的化学分离提纯

  • Mg的化学分离提纯在北京大学地球与空间学院实验室完成。采用阳离子交换色谱法纯化Mg。Mg提纯的详细流程在以往的研究中已有阐述(Shen Bing et al.,2009)。提纯过程如下:第一步,通过1号离子交换色谱柱(装有1.8 mL 200~400目AG50W-X12树脂)洗脱含有约25~30 μg Mg的样品溶液,以分离Mg和Ca。在4 mL 12 mol/L HCL中收集Mg组分,而Ca保留在树脂中。第二步,通过2号离子交换色谱柱(装载0.5 mL 200~400目AG50W-X12树脂),将Mg从其他所有基质离子中分离。Cr、Al、Fe、Na、K依次用0.8 mL 1 mol/L HCL、3 mL 1 mol/L HNO3+0.5 mol/L HF和1 mL 1 mol/L HNO3洗脱,用5 mL 2 mol/L HNO3收集Mg组分。为了保证Mg提纯干净,每个样品通过1号离子交换色谱柱3次,然后通过2号离子交换色谱柱2次,经纯化后,Ca/Mg、Al/Mg、Na/Mg、K/Mg和Fe/Mg小于5%,镁回收率大于99%。

  • 2.5 Mg同位素测试

  • Mg同位素的测试在北京科荟测试技术有限公司实验室利用Neptune Plus多接收器电感耦合等离子体质谱测定Mg同位素比值。测试过程中使用标样-样品交叉测试法(SSB)校正仪器的质量分馏,Mg同位素的参考标准为IGGMg1。在测试样品之前,使用1×10-6 IGGMg1对仪器进行参数优化,使得24Mg的信号强度为10 V/1×10-6左右。测试过程使用CAM-1作为监控样,其长期精度为δ26MgIGGMg1=0.0852±0.046(2SD,N=27)。所有测试结果按照下式(公式1)换算成相对于DSM-3的值(Galy et al.,2003)。

  • δ26MgDSM-3sam=δ26Mgstdsam+δ26MgDSM-3std+0.001×δ26Mgstdsam×δ26MgDSM-3std
    (1)
  • 式中,sam代表所测样品,std代表测试过程中所用内部标样。

  • 3 黄龙组二段白云岩岩相与沉积旋回特征

  • 3.1 黄龙组二段岩相特征分析

  • 在薄片观察的基础上,综合岩性、岩石结构、沉积构造,可识别出黄龙组二段发育6种岩相(图2):① 泥-微晶白云岩,镜下晶体十分细小,晶体直径为3~30 μm,一般为泥晶级至微晶级(图2a、b),发育于潮上带上部沉积环境; ② 粉晶白云岩,晶体直径为30~100 μm,多数晶体表面比较混浊,少数较明亮(图2c、d),发育于潮上带下部沉积环境; ③ 细晶白云岩,由镜下晶体直径为100~200 μm(平均值150 μm)的半自形—自形白云石晶体组成(图2e、f),发育于潮间带沉积环境; ④ 中晶白云岩,镜下晶体直径为300~400 μm(平均值350 μm)(图2g),发育于潮间带-潮间带下部沉积环境; ⑤ 砂屑白云岩,主要由泥粉晶白云石组成,砂屑磨圆度较好,部分颗粒内部有溶蚀,粒间充填亮晶方解石或粉晶白云石(图2h),发育于潮下带沉积环境; ⑥ 生物碎屑白云岩,可见生物碎片,具晶粒结构,体腔孔充填泥晶(图2i),发育于潮下带沉积环境。

  • 总体上黄龙组二段以粉晶和细晶白云岩为主,泥晶、中晶及生物碎屑白云岩发育较少。分米级尺度上呈现明显的岩相变化,可识别出三种岩相变化特征:① 生物碎屑白云岩-砂屑白云岩-中晶白云岩-细晶白云岩-粉晶白云岩,代表潮下带至潮上带沉积; ② 细晶白云岩-粉晶白云岩-泥(微)晶白云岩,代表潮间带至潮上带沉积; ③ 粉晶白云岩-泥(微)晶白云岩,代表潮上带下部至潮上带上部沉积。这种岩相变化特征说明黄龙组二段白云岩是由韵律交替的潮下带、潮间带和潮上带等沉积环境组成,具有向上变浅的海侵-海退韵律旋回结构(钱峥,1999)。

  • 图2 七里53井黄龙组二段白云岩不同岩相的镜下显微照片(单偏光)

  • Fig.2 Micrographs of different lithofacies of dolomite in the Second Member of Huanglong Formation in Qili53 well (single polarized light)

  • (a)—泥-微晶白云岩,编号QL-12,深度4795.03 m;(b)—泥-微晶白云岩,颜色较深,泥质含量高,QL-17,4797.4 m;(c)—粉晶白云岩,含部分细晶白云岩,QL-4,4791.67 m;(d)—粉晶白云岩,QL-16,4796.87 m;(e)—细晶白云岩,QL-7,4792.57 m;(f)—细晶白云岩,QL-21,4799.04 m;(g)—中晶白云岩,QL-8,4792.78 m;(h)—砂屑白云岩,QL-10,4793.57 m;(i)—生物碎屑白云岩,QL-11,4793.95 m

  • (a) —mud-microcrystalline dolomite, number QL-12, 4795.03 m; (b) —mud-microcrystalline dolomite, dark color, high argillaceous content, QL-17, 4797.4 m; (c) —powder crystal dolomit, containing partially fine-crystalline dolomite, QL-4, 4791.67 m; (d) —powder crystal dolomit, QL-16, 4796.87 m; (e) —fine crystalline dolomite, QL-7, 4792.57 m; (f) —fine-crystalline dolomite, QL-21, 4799.04 m; (g) —mesocrystalline dolomite, QL-8, 4792.78 m; (h) —sand debris dolomite, QL-10, 4793.57 m; (i) —bioclastic dolomite, QL-11, 4793.95 m

  • 3.2 黄龙组二段沉积旋回划分

  • 在详细的岩相识别基础上,根据岩相组合,将黄龙组二段白云岩划分出2个四级层序(SQ1和SQ2)和6个五级层序(图3)。2个四级层序的划分主要依据沉积相和相组合的突变,SQ1由4个五级层序组成(旋回1、2、3、4),厚度为10 m,整体上具备一个完整的潮下带—潮上带沉积体系。相较于SQ1,SQ2由2个五级层序组成(旋回5、6),厚度为4 m,缺乏完整的潮上带沉积。

  • 对于6个五级旋回,均以上下沉积环境的突变为划分依据,代表着一次陆上暴露或地层不整合面,在单一旋回内部,岩相边界具有连续性。旋回1由生物碎屑白云岩砂屑白云岩-中晶白云岩-细晶白云岩-粉晶白云岩相组成,指示潮下带至潮上带沉积。旋回2由细晶白云岩-粉晶白云岩-泥(微)晶白云岩相组成,代表潮间带至潮上带沉积。旋回3和旋回4均由粉晶白云岩-泥(微)晶白云岩相组成,指示潮上带下部至潮上带上部沉积。旋回5与旋回1类似,由生物碎屑白云岩-砂屑白云岩-中晶白云岩-细晶白云岩-粉晶白云岩相组成,指示潮下带至潮间带沉积。旋回6与旋回2类似,由细晶白云岩-粉晶白云岩相组成,可能是由于采样范围,导致缺少泥-微晶白云岩相,指示潮间带至潮上带下部沉积。

  • 这些五级层序结构清晰指示了海平面升降变化。旋回1和旋回5均从潮下带开始,向上进入潮间带,至潮上带上部结束,说明海平面变化幅度较大。旋回2和旋回6均缺失潮下带,说明海平面相对恒定,变化幅度小。旋回3和旋回4,上部均发育大量的泥-微晶白云岩,说明此时相对海平面较低,在近地表发生强烈的蒸发作用(图3)。

  • 4 岩石地球化学分析结果

  • 4.1 微量元素

  • 黄龙组二段白云岩的微量元素含量见表1。整体上,Fe含量分布范围为77×10-6~472×10-6(平均值258×10-6); Mn含量分布范围为32×10-6~180×10-6(平均值71×10-6); Sr含量分布范围为88×10-6~295×10-6(平均值147×10-6); Mn/Sr分布范围为0.15~1.12(平均值0.52); Mg/Ca(mol/mol)分布范围为0.75~1.03(平均值0.95)。

  • 碳酸盐岩的微量元素(Fe、Mn、Sr、Mn/Sr)组成可以为碳酸盐岩成岩蚀变评价提供有价值的信息(Arosi et al.,2015)。海相流体和非海相流体(大气淡水)的Fe、Mn、Sr含量是存在差异的,随着大气淡水的混入和成岩作用的增强,海相碳酸盐岩往往在成岩蚀变过程中表现为Fe、Mn的增加和Sr的丢失(Jacobsen et al.,1999),因此经历较强成岩蚀变作用的白云岩往往具有较高的Fe、Mn含量和较低的Sr含量。此外,可以用碳酸盐岩的Mn/Sr比值来判断原岩的蚀变程度,当岩样的Mn/Sr<2时,认为碳酸盐岩经历了较弱的成岩蚀变,其同位素组成基本能够反映沉积时原始的海水同位素信息(Kaufman et al.,1995)。黄龙组二段白云岩Fe、Mn含量较低,Sr含量较高(图4a、b),并且Mn/Sr均小于2(图4c)。因此,根据微量元素特征,说明黄龙组二段白云岩发生的成岩蚀变较弱。

  • 4.2 C、O同位素

  • 黄龙组二段白云岩样品碳、氧同位素分析结果见表1。δ13C值变化范围为2.5‰~4.60‰(平均值2.69‰); δ18O值变化范围为4.10‰~0.34‰(平均值2.04‰)(图4)。碳酸盐岩的碳氧同位素组成是用于评价成岩蚀变程度的有效手段。通常情况下,在成岩过程中δ13C值较稳定,而δ18O值更易受后生成岩作用的影响(尤东华等,2018)。碳酸盐岩δ18O随着水-岩作用的增强而逐渐减少(Knauth et al.,2009),δ18O>5‰的碳酸盐岩没有蚀变; 当δ18O在10‰和5‰之间,认为碳酸盐岩样品可能已经成岩蚀变; 当δ18O<10‰时,说明碳酸盐岩样品经受了强烈的成岩蚀变(Kaufman et al.,1995)。也可以根据样品碳氧同位素之间是否具有相关性来判断其岩样所受后期成岩蚀变作用强度(Horacek et al.,2007),当碳氧同位素相关性差,说明岩样所受后期成岩蚀变作用小。黄龙组二段白云岩δ18O均>5‰,并且δ13C与δ18O之间相关性较弱(图4d)。因此,依据碳氧同位素特征,可判断黄龙组二段白云岩并未经历较强的成岩蚀变作用。此外,将白云岩按照其所属岩相类型进行区分,并未发现微量元素特征和碳氧同位素与沉积相直接有所关联,可排除沉积相变化对于微量元素和碳氧同位素组成变化的影响(图4)。

  • 图3 七里53井黄龙组二段白云岩高频旋回划分图

  • Fig.3 High frequency cycle division diagram of dolomite in the Second Member of Huanglong Formation, Qili 53 well

  • Mi—微-泥晶白云岩晶体尺寸; P—粉晶白云岩晶体尺寸; F—细晶白云岩晶体尺寸; Me—中晶白云岩晶体尺寸; G—颗粒白云岩晶体尺寸

  • Mi—mud-microcrystalline dolomite; P—powder crystal dolomite; F—fine-crystalline dolomite; Me—mesocrystalline dolomite; G—grain dolomite

  • 表1 七里53井黄龙组二段白云岩的微量元素、碳氧同位素和Mg同位素组成

  • Table1 Trace elements, carbon and oxygen isotopes and Mg isotope composition of dolomite in the Second Member of Huanglong Formation, Qili 53 well

  • 注:“-”表示无数据。

  • 4.3 Mg同位素

  • 黄龙组二段白云岩δ26Mg分布范围为2.42‰~2.09‰(平均值2.26‰)(表1)。根据δ26Mg与δ25Mg交互图所示,黄龙组白云岩和标样位于质量分馏线上,斜率为0.5062,R2=0.9984(图5a)。各类型白云岩样品的δ26Mg变化范围较广,泥-微晶白云岩的δ26Mg分布范围为2.29‰~2.17‰(平均值2.23‰); 粉晶白云岩的δ26Mg分布范围为2.42‰~2.29‰(平均值2.34‰); 细晶白云岩的δ26Mg分布范围为2.34‰~2.10‰(平均值2.24‰); 中晶白云岩的δ26Mg分布范围为2.38‰~2.09‰(平均值2.24‰); 砂屑白云岩的δ26Mg值为2.27‰; 生物碎屑白云岩的δ26Mg分布范围为2.32‰~2.10‰(平均值2.21‰)(图5b)。δ13C、δ18O与δ26Mg之间无相关性(图5c、d)。

  • 5 讨论

  • 5.1 Mg同位素对白云石化原始信号的记录

  • 运用Mg同位素指示富Mg2+流体迁移路径及白云石化演化过程,必须确保Mg同位素数据的可靠性,保证Mg同位素有效记录了白云石化的原始信号(Hu Zhongya et al.,2019)。

  • 首先,采用Mg∶Ca=10∶1和Mg∶Ca=1∶1标样一同参与黄龙组二段白云岩Mg同位素的化学分离和测试过程。测试结果显示黄龙组二段白云岩与标样的δ26Mg-δ25Mg均很好地落在质量分馏线上,二者之间存在严格的线性关系,斜率为0.5062,R2=0.9984(图5a),这与Ning Meng et al.(2020)报道的数据0.5191,R2=0.999很接近,这说明Mg同位素的化学分离和测试过程未受到干扰元素的影响,测试数据具有可靠性。黄龙组二段白云岩的Mg/Ca(mol/mol)为0.75~1.03(平均值0.95),基本接近1(图5b),证明其已经完全白云石化,因此可排除方解石与白云石混合可能会导致Mg同位素发生变化的因素干扰(Peng Yang et al.,2016)。

  • 图4 黄龙组二段白云微量元素组成及δ13C、δ18O交互图

  • Fig.4 Trace element composition and δ13C and δ18O interaction diagram of white cloud in the Second Member of Huanglong Formation

  • (a)—Mn-Fe交互图;(b)—Mn-Sr交互图;(c)—Mg/Ca-Mn/Sr交互图;(d)—δ13C-δ18O交互图

  • (a) —Mn-Fe interaction diagram; (b) —Mn-Sr interaction diagram; (c) —Mg/Ca-Mn/Sr interaction diagram; (d) — δ13C-δ18O interactiondiagram

  • 依据上述微量元素和碳氧同位素特征,已证实黄龙组二段白云岩未经历较强的成岩蚀变作用。一般来说,Mn/Sr越大通常代表成岩蚀变越强(Garzione,2008; Wen Huaguo et al.,2013),并且随成岩蚀变的增强,δ18O值也会逐渐减小(Derry et al.,1994; Kaufman et al.,1995)。黄龙组二段白云岩Mn/Sr-δ26Mg(图5c)和δ18O-δ26Mg之间均缺乏相关性(图5d),这说明低成岩蚀变作用不会改变黄龙组二段白云岩的Mg同位素组成。这与前人研究Mg同位素组成对沉积过程中低成岩蚀变作用不敏感相一致(Geske et al.,2012; Huang Kangjun et al.,2015; Hu Zhongya et al.,2019; Li Weiqiang et al.,2019)。

  • 最后,根据对不同时代、不同类型、不同晶体形态、不同沉积相的白云岩Mg同位素值的现有报道,发现其Mg同位素组成与白云岩形成时代、白云岩类型、白云岩晶体形态、沉积相无明显相关性(Teng Fangzhen et al.,2017)。对于黄龙组二段白云岩,不同类型和晶体形态的白云岩δ26Mg值分布范围相互叠置,无明显界线(图6a),这说明白云岩晶体形态类型并不会影响Mg同位素的变化(Ning Meng et al.,2019)。此外,黄龙组二段白云岩的δ26Mg值在不同沉积相(潮下带、潮间带、潮上带)中存在重叠范围(图6b),这说明δ26Mg的变化趋势也不受沉积相的控制(Ning Meng et al.,2020)。

  • 上述多条证据表明,黄龙组二段白云岩的Mg同位素数据具有可靠性,并有效记录了白云石化的原始信号,可用于白云岩成因分析。实际上,白云岩的Mg同位素组成主要与白云石化过程存在联系(Geske et al.,2012)。经历不同白云石化过程,镁同位组成也就不同(Mavromatis et al.,2014)。并且低温下白云石沉淀过程中的Mg同位素分馏已经确定(Fantle et al.,2014; Higgins et al.,2015; Li Weiqiang et al.,2015; Huang Kangjun et al.,2015; Peng Yang et al.,2016)。因此可以利用黄龙组二段白云岩的Mg同位素示踪富Mg2+流体迁移路径及白云石化演化过程。

  • 图5 黄龙组二段白云岩δ26Mg-δ25Mg、Mg/Ca-δ26Mg、Mn/Sr-δ26Mg及δ18O-δ26Mg交互图(蓝色为黄龙组白云岩,红色和黄色为标样)

  • Fig.5 Interaction diagrams of δ26Mg-δ25Mg, Mg/Ca-δ26Mg, Mn/Sr-δ26Mg and δ18O-δ26Mg for dolomite samples from Huanglong Formation (blue for dolomite samples, red and yellow for standard samples)

  • (a)—δ26Mg-δ25Mg交互图;(b)—Mg/Ca-δ26Mg交互图;(c)—Mn/Sr-δ26Mg交互图;(d)—δ18O-δ26Mg交互图

  • (a) —δ26Mg-δ25Mg interaction diagram; (b) —Mg/Ca-δ26Mg interaction diagram; (c) —Mn/Sr-δ26Mg interaction diagram; (d) —δ18O-δ26Mg interaction diagram

  • 5.2 Mg同位素示踪白云石化流体迁移路径

  • 在白云石化过程中,24Mg优先进入白云石晶格中,随着白云石化作用的不断进行,沿着白云石化流体流动的方向,流体中逐渐富集重的26Mg,流体的Mg同位素组成逐渐变重,从而导致晚期形成的白云岩δ26Mg更重(Blättler et al.,2015)。因此,白云岩的Mg同位素垂向变化趋势可以用来示踪白云石化流体迁移方向和反演白云石化过程(Mavromatis et al.,2014; Huang Kangjun et al.,2015; Peng Yang et al.,2016; Ning Meng et al.,2020)。对于黄龙组二段白云岩而言,将δ26Mg值与地层旋回叠置,发现δ26Mg的转折点(无论是数值还是地层趋势)与沉积旋回的界限一致(图7),即δ26Mg值变化趋势与地层沉积旋回存在耦合关系。

  • 旋回1的δ26Mg变化范围为2.10‰~2.09‰,δ26Mg向下呈不变趋势; 旋回2的δ26Mg变化范围为2.29‰~2.17‰,δ26Mg向下呈增加趋势; 旋回3和旋回4的δ26Mg向下呈减小趋势,δ26Mg变化范围分别为2.30‰~2.17‰和2.31‰~2.24‰; 旋回5和旋回1相似,δ26Mg向下呈不变趋势,δ26Mg变化范围为2.38‰~2.27‰; 旋回6和旋回2相似,δ26Mg向下呈增加趋势,δ26Mg变化范围为2.42‰~2.28‰。按照δ26Mg的变化趋势可分为3种类型,即δ26Mg向下呈减小趋势(旋回3和旋回4); δ26Mg向下呈增加趋势(旋回2和旋回6); δ26Mg向下呈不变趋势(旋回1和旋回5)。

  • 对于白云岩的Mg同位素组成而言,当白云石化作用发生在Mg2+周期性补给的局限或半局限环境中,如发生在局限蒸发潮坪/潟湖的准同生白云石化作用,白云岩δ26Mg的垂向变化受控于流体的Mg同位素组成的变化(Huang Kangjun et al.,2015; Peng Yang et al.,2016)。由于24Mg优先进入到早期形成的白云石晶格中(Higgins et al.,2010; Fantle et al.,2014; Blättler et al.,2015; Geske et al.,2015a),导致同沉积海水Mg同位素值变重,并且白云石化作用是海水中Mg移除的主要方式,随着白云岩的不断形成,海水中的Mg同位素组成不断发生改变,后期形成的白云岩Mg同位素值相应变重。因此,垂向剖面中可观察到白云岩δ26Mg向下呈减小趋势(图8a)。

  • 图6 黄龙组二段不同类型、不同晶体形态、不同沉积环境下白云岩δ26Mg变化特征

  • Fig.6 Variation characteristics of δ26Mg of dolomite in different types, crystal forms and sedimentary environments of the Second Member of Huanglong Formation

  • (a)—不同类型、不同晶体形态白云岩δ26Mg变化;(b)—不同沉积环境下白云岩δ26Mg变化

  • (a) —different types, different crystal forms of dolomite δ26Mg change; (b) —change of dolomite δ26Mg under different sedimentaryenvironments

  • 在黄龙组二段白云岩旋回3和4中观察到δ26Mg向下呈减小趋势,旋回上部均发育泥-微晶白云岩,下部发育粉晶白云岩,代表潮上带下部—潮上带上部沉积体系,此时相对海平面较低,旋回3和旋回4的白云石化发生于局限或半局限沉积环境(图7)。在这种沉积环境条件下,近地表会发生强烈的蒸发作用,强烈的蒸发作用导致孔隙水不断浓缩,同时,海水通过毛细管作用不断地进入多孔沉积物中(Warren,2000)。随着时间的推移,多孔沉积物中孔隙水的盐度增加,以及Mg/Ca值大大提高(Meister et al.,2013)。此外,多孔沉积物中通常含有文石颗粒,波动的环境条件和高镁粒间盐水与现有文石颗粒的接触,导致文石转化为白云石(Hsü et al.,1969; Machel,2004),这一过程类似于萨布哈白云石化。

  • 在白云石化流体自上而下迁移的白云石化过程中,富Mg2+流体通过交代早期灰岩使其发生白云石化(Machel,2004; Garaguly et al.,2018; Zhang Shunli et al.,2018)。在局部范围内,近源白云石化流体的垂向迁移会导致自上而下的白云石化作用,由于密度差的缘故,白云石化流体逐渐富集重的δ26Mg,因此浅层(早期形成的)白云岩的δ26Mg值比深层(晚期形成的)白云岩低,在垂向剖面中表现为白云岩的δ26Mg值向下呈增加趋势(图8b)。

  • 在黄龙组二段白云岩旋回2和旋回6中观察到δ26Mg向下呈增加趋势,旋回上部均发育粉晶白云岩,下部发育细晶白云岩,代表潮间带—潮上带沉积体系,缺失潮下带,此时海平面相对恒定,变化幅度小,旋回2和旋回6的白云石化发生于半干旱潮坪或浅海环境,富Mg流体发生垂向迁移(图7)。此时,当潮上带上部沉积物基本被蒸发泵白云岩化(萨布哈白云岩化)过程取代时,蒸发作用形成的过饱和富Mg卤水会向下渗透。由于盐水密度的增加,富Mg卤水可以到达深部的多孔地层(Adams et al.,1960; Hou Mingcai et al.,2016; Zhang Shunli et al.,2018; Zheng Haofu et al.,2019)。过饱和富Mg卤水在通过地下碳酸盐岩时,在密度差作用下富Mg卤水向下回流渗透,穿过下伏灰岩使其发生白云石化(Jiang Lei et al.,2016; Ngia et al.,2019)。

  • 除局部尺度外,白云石化过程也可以发生在区域尺度上。远离白云石化流体源区的区域,富Mg流体可以沿静水压力梯度在沉积物内部侧向迁移,随着白云石化流体向远离流体源区方向侧向迁移。远源一侧的白云岩δ26Mg逐渐变重,但在与源区范围内的垂向剖面中,其δ26Mg向下保持不变(Huang Kangjun et al.,2015; Peng Yang et al.,2016)(图8c)。需要注意的是,这一过程白云岩δ26Mg的绝对值可能会受白云石化流体Mg同位素组成、流体迁移距离以及流体迁移速率等因素的影响,但是白云岩δ26Mg值的变化趋势不会改变(Hu Zhongya et al.,2019)。

  • 图7 七里53井黄龙组二段白云岩δ26Mg值与地层沉积旋回耦合图

  • Fig.7 Coupling diagram of dolomite δ26Mg values of dolomite and stratigraphic sedimentary cycle in the Second Member of Huanglong Formation, Well Qili 53

  • 在黄龙组二段白云岩旋回1和旋回5中观察到δ26Mg向下呈不变趋势,旋回底部均发育砂屑和生物碎屑白云岩,中部发育中晶白云岩,上部发育细晶和粉晶白云岩,代表潮下带—潮间带上部沉积体系,此时海平面变化幅度较大,白云石化过程发生在区域尺度上,白云石化流体向远离流体源区侧向方向迁移(图7)。这种白云石化过程有利于多个旋回沉积物同时发生白云石化,形成大规模白云岩。进一步比较旋回1和旋回5的δ26Mg值,还可以发现旋回5的δ26Mg值整体高于旋回1,这表明两者经历的白云石化过程仍存在一定的差异,这种差异性可能是由于旋回5期间的白云石化流体的镁含量更高、流体侧向运移距离变短或流速变慢所导致(Peng Yang et al.,2016)。

  • 黄龙组二段白云岩旋回1至旋回4反映了一次完整的白云石化过程(图7)。首先,旋回4和旋回3的δ26Mg向下呈减小趋势,该阶段白云石化发生于蒸发潮坪/潟湖的近地表沉积环境,在近地表会发生强烈的蒸发作用,强烈的蒸发作用导致先存的灰岩转化为白云岩,即萨布哈白云石化,形成薄层白云岩。随后,旋回2的δ26Mg向下呈增加趋势,该阶段发生于半干旱潮坪或浅海环境,在局部范围内,近源白云石化流体的垂向迁移会导致自上而下的白云石化作用,即近源渗透回流白云石化,形成厚层白云岩。最后,旋回1的δ26Mg向下保持不变,该阶段白云石化过程发生在区域尺度上,白云石化流体向远离流体源区侧向方向迁移,即远源渗流回流白云石化,形成大规模白云岩。由于钻井岩芯的数量有限,导致本文取样长度受限,旋回5至旋回6未能反映完整的白云石化过程(图7),旋回6之上可能还存在一个类似旋回3或旋回4的沉积旋回,其δ26Mg向下呈减小趋势。

  • 图8 不同白云石化模型过程中Mg同位素变化趋势预测(据Ning Meng et al.,2020修改)

  • Fig.8 Prediction of Mg isotope variation trend in different dolomitization models (after Ning Meng et al., 2020)

  • (a)—半封闭体系下,准同生白云石化过程,24Mg优先进入到早期形成的白云石晶格中,导致同沉积海水Mg同位素值变重,后期形成的白云石Mg同位素值相应变重,δ26Mg值呈向下减小趋势;(b)—白云石化流体发生垂向迁移,δ26Mg值呈向下增大趋势;(c)—白云石化流体发生侧向迁移,δ26Mg值向下保持不变

  • (a) —in the semi-closed system, 24Mg preferentially enters into the early formed dolomite lattice during the quasi-contemporaneous dolomitization process, resulting in the heavier Mg isotope values in the co-depositional seawater, and the corresponding heavier Mg isotope values in the later formed dolomite, and the δ26Mg value decreases downward; (b) —the dolomite fluid migrates vertically, and the δ26Mg value shows a downward increasing trend; (c) —lateral migration of dolomitic fluids, with δ26Mg value remains unchanged downward

  • 综上所述,白云岩Mg同位素组成的垂向变化可以用来示踪白云石化作用过程中流体的运移方向,从而为白云石化过程提供直接证据。在垂向上,δ26Mg值呈向下减小趋势,代表着白云石化发生在局限或半局限环境下,即萨布哈白云石化; δ26Mg值呈向下增大趋势,代表着白云石化流体发生垂向迁移,即近源渗透回流白云石化。δ26Mg向下保持不变,代表着白云石化流体发生侧向迁移,即远源渗透回流白云石化。依据Mg同位素值垂向演化规律,识别出黄龙组白云岩5个流体交换界面通道,沉积旋回的边界有利于白云石化作用。旋回边界为白云石化窗口,即白云石化流体迁移通道。

  • 5.3 黄龙组厚层白云岩形成演化过程

  • 前寒武纪和古生代地层中普遍发育厚层白云岩(Chang Biao et al.,2020)。主流观点认为,古代厚层白云岩是由灰岩与富Mg流体大规模交代形成(Land,1985; Machel,2004; Kaczmarek et al.,2017)。然而,充足的富Mg白云石化流体是如何穿过广布数千千米、厚达千米的碳酸盐岩地层,使其发生白云石化从而形成厚层白云岩?前人研究表明,即使有较高Mg浓度的白云石化流体和高渗透性的钙质沉积物,流体在远离源区30 km范围内也只能渗入平台顶部,不能延伸超过数百千米的距离(Jones et al.,2000),这表明单一期次的白云石化事件难以形成碳酸盐岩台地规模厚层白云岩。Lumsden et al.(2001)提出了厚层白云岩形成模式:海平面波动有关的多期白云石化作用持续叠加。这一设想与古代厚层白云岩绝大多数是由多个沉积旋回组成的特征相符(Meister et al.,2013)。依据上述研究,黄龙组δ26Mg值与沉积旋回具有耦合性,表明黄龙组白云石化过程具有周期性,白云石化过程可能与海平面波动有关,黄龙组厚层白云岩很可能是多期白云石化事件反复叠加的结果。

  • 基于δ26Mg值与沉积旋回的耦合关系以及富Mg流体迁移规律,建立了黄龙组厚层白云岩形成演化模型(图9)。首先,在海平面上升期间,潮下带和潮间带沉淀灰岩(图9a)。随着海平面的降低,沉积环境由潮间带演化为潮上带,先存的灰岩会暴露于近地表,近地表会发生强烈的蒸发作用,强烈蒸发作用会促使黄龙组先存的灰岩发生萨布哈白云石化作用,形成薄层状白云岩(Mresah,1998),该过程中δ26Mg向下呈减小趋势(图9b)。而后,海平面上升,沉积环境由潮上带演化为潮间带,此时,在垂向上,会发生近源渗透回流白云石化作用,白云石化流体会从旋回顶部流向底部,并随着海平面的频繁波动,不同旋回中白云石化作用的持续叠加,促进黄龙组白云岩垂向厚度加大,形成厚层白云岩,该过程中δ26Mg向下呈增大趋势(图9c)。在横向上,远离白云石化流体源区(如潮下带),会发生远源渗透回流白云石化作用,白云石化流体会进行横向迁移,导致整个碳酸盐平台的白云石化,形成大规模白云岩,该过程中δ26Mg向下呈不变趋势(图9d)。

  • 总而言之,由于物理化学和水动力条件存在差异,白云石化流体的迁移方向会随沉积环境的演变发生变化,单个的白云石化事件可能受不同富Mg流体迁移过程驱动。对类似与黄龙组的典型厚层白云岩而言,白云石化作用与海平面波动密切相关,富Mg流体的垂直迁移有利于白云岩厚度的增大,富Mg流体的侧向迁移有利于白云岩范围的扩大,最终形成厚达百/千米、广布数百/千千米的白云岩地层。厚层白云岩不是单一的白云石化事件的结果,而是由不同白云石化过程的不同时空尺度上叠加的结果。

  • 6 结论

  • 通过对四川盆地川东石炭系黄龙组白云岩开展精细的沉积学、岩石地球化学和Mg同位素分析,发现白云岩δ26Mg值变化趋势与地层沉积旋回存在耦合关系:在垂向上,δ26Mg值呈向下减小趋势,代表着白云石化发生在局限或半局限环境下,即萨布哈白云石化; δ26Mg值呈向下增大趋势,代表着白云石化流体发生垂向迁移,即近源渗透回流白云石化:δ26Mg向下保持不变,代表着白云石化流体发生侧向迁移,即远源渗透回流白云石化。依据Mg同位素值垂向演化规律,识别出黄龙组白云岩5个流体交换界面通道,沉积旋回的边界有利于白云石化作用。旋回边界为白云石化窗口,即白云石化流体迁移通道。因此,白云岩Mg同位素组成的垂向剖面可以用来示踪白云石化作用过程中流体的运移方向,为白云石化过程提供直接证据。

  • 图9 四川盆地川东地区黄龙组厚层白云岩形成演化模型

  • Fig.9 Formation and evolution model of thick dolomite in Huanglong Formation

  • (a)—在高海平面时,潮下带和潮间带沉淀灰岩;(b)—在低海平时,潮上带上部先存的灰岩发生萨布哈白云石化作用,形成薄层状白云岩,该过程中δ26Mg向下呈减小趋势;(c)—在高海平时,潮间带会发生近源渗透回流白云石化作用,白云石化流体会从旋回顶部流向底部,并随着海平面的频繁波动,不同旋回中白云石化作用的持续叠加,促进白云岩垂向厚度加大,形成厚层状白云岩,该过程中δ26Mg向下呈增大趋势;(d)—在远离白云石化流体源区(如潮下带),会发生远源渗透回流白云石化作用,白云石化流体会进行横向迁移,导致整个碳酸盐平台的白云石化,形成大规模白云岩,该过程中δ26Mg向下呈不变趋势

  • (a) —in the high sea level, subtidal zone and intertidal zone precipitated limestone; (b) —at low sea level, the preexisting limestone in the upper part of the supratidal zone underwent Sabuha dolomitization, forming a thin layer of dolomite, during which δ26Mg decreased downward; (c) —at high sea level, near-source infiltration reflux dolomitization occurs in the intertidal zone, and dolomitization fluid flows from the top to the bottom of the cycle; with the frequent fluctuation of sea level, the continuous superposition of dolomitization in different cycles promotes the increase of the vertical thickness of dolomite and forms thick layered dolomite; in this process, δ26Mg tends to increase downward; (d) —deep away from the source area of dolomitic fluid (e.g. subtidal zone) , the dolomitic fluid will migrate laterally, resulting in the dolomitization of the whole carbonate platform and the formation of large-scale dolomite; during this process, δ26Mg shows a constant downward trend

  • 黄龙组作为典型的古代厚层白云岩,其δ26Mg值与沉积旋回具有耦合性,表明黄龙组白云石化过程具有周期性,白云石化过程可能与海平面波动密切相关,富Mg流体的垂直迁移有利于白云岩厚度的增大,富Mg流体的侧向迁移有利于白云岩范围的扩大,最终形成厚达百/千米、广布数百/千千米的白云岩地层。因此,厚层白云岩是由若干个薄层灰岩层逐层白云石化叠加而成。

  • 致谢:感谢中国石油西南油气田公司研究院提供大量岩芯样品; 感谢北京大学李宸卿、黄天正、项楷等给予的帮助和指导; 感谢两位审稿专家和编辑部对本文提出的宝贵修改意见和指导!在此深表感激!

  • 参考文献

    • Adams J E, Rhodes M L. 1960. Dolomitization by seepage refluxion. AAPG Bulletin, 44(12): 1912~1920.

    • Arosi H A, Wilson M. 2015. Diagenesis and fracturing of a large-scale, syntectonic carbonate platform. Sedimentary Geology, 326(1): 109~134.

    • Bi Dongjie, Zhai Shikui, Zhang Daojun, Liu Xiaofeng, Liu Xinyu, Jiang Longjie, Zhang Aibin. 2018. Constraints of fluid inclusions and C, O isotopic compositions on the origin of the dolomites in the Xisha Islands, South China Sea. Chemical Geology, 493: 504~517.

    • Blättler C L, Miller N R, Higgins J A. 2015. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth and Planetary Science Letters, 419: 32~42.

    • Cai Wenkai, Liu Jiahui, Zhou Chunhui, Keeling J, Glasmacher U A. 2021. Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas. Chemical Geology, 573: 120~191.

    • Chang Biao, Li Chao, Liu Deng, Foster I, Tripati A, Lloyd M K, Maradiaga I, Luo Genming, An Zhihui, She Zhenbing, Xie Shucheng, Tong Jinnan, Huang Junhua, Algeo T J, Lyons T W, Immenhauser A. 2020. Massive formation of early diagenetic dolomite in the Ediacaran Ocean: Constraints on the “dolomite problem”. Proceedings of the National Academy of Sciences, 117(25): 14005~14014.

    • Chen Haoru, Zheng Rongcai, Wen Huaguo, Li Wei, Chen Fangmin, Zhang Haijie, Wang Jiong. 2011. Sequence characteristics and lithofacies paleogeography of the Huanglong Formation in eastern Sichuan basin. Acta Geologica Sinica, 85(2): 246~255 (in Chinese with English abstract).

    • Chen Zongqing. 1985. Sedimentary facies during Huanglong stage of Mid-carboniferous in eastern Sichuan and its correlation with oil and gas. Acta Sedimentologica Sinica, 3(1): 71~80 (in Chinese with English abstract).

    • Davies G R, Smith L B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90(11): 1641~1690.

    • Derry L A, Brasier M D, Corfield R E A, Rozanov A Y, Zhuravlev A Y. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth and Planetary Science Letters, 128(3-4): 671~681.

    • Du Yang, Fan Tailiang, Machel H G, Gao Zhiqian. 2018. Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe Oilfield, Tarim basin, NW China: Several limitations from petrology, geochemistry, and fluid inclusions. Marine and Petroleum Geology, 91: 43~70.

    • Fang Shaoxian, Hou Fanghao, Li Ling, Wang Xingzhi, Luo Yuhong, Wang Anping, Bai Yang. 2000. Reunderstanding of the sedimentary environment of the Carboniferous Huanglong Formation west of Huaying Mountain in Sichuan. Marine Origin Petroleum Geology, 5(2): 158~166 (in Chinese).

    • Fantle M S, Higgins J. 2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg. Geochimica et Cosmochimica Acta, 142: 458~481.

    • Galy A, Yoffe O, Janney P E, Williams R W, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon I D, Ramon E, Carignan J. 2003. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry, 18(11): 1352~1356.

    • Garaguly I, Varga A, Raucsik B, Schubert F, Czuppon G, Frei R. 2018. Pervasive early diagenetic dolomitization, subsequent hydrothermal alteration, and late stage hydrocarbon accumulation in a Middle Triassic carbonate sequence (Szeged basin, SE Hungary). Marine and Petroleum Geology, 98: 270~290.

    • Garzione C N. 2008. Surface uplift of Tibet and Cenozoic global cooling. Geology, 36(12): 1003~1004.

    • Geske A, Zorlu J, Richter D K, Buhl D, Niedermayr A, Immenhauser A. 2012. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chemical Geology, 332: 45~64.

    • Geske A, Goldstein R H, Mavromatis V, Richter D K, Buhl D, Kluge T, John C M, Immenhauser A. 2015a. The magnesium isotope (δ26Mg) signature of dolomites. Geochimica et Cosmochimica Acta, 149: 131~151.

    • Geske A, Lokier S, Dietzel M, Richter D K, Buhl D, Immenhauser A. 2015b. Magnesium isotope composition of sabkha porewater and related (sub-) recent stoichiometric dolomites, Abu Dhabi (UAE). Chemical Geology, 393: 112~124.

    • He Zhiliang, Ma Yongsheng, Zhang Juntao, Zhu Dongya, Qian Yixiong, Ding Qian, Chen Daizhao. 2020. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China. Oil & Gas Geology, 41(1): 1~14(in Chinese with English abstract).

    • Higgins J A, Schrag D P. 2010. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochimica et Cosmochimica Acta, 74(17): 5039~5053.

    • Higgins J A, Schrag D P. 2015. The Mg isotopic composition of Cenozoic seawater—evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth and Planetary Science Letters, 416: 73~81.

    • Higgins J A, Blättler C L, Lundstrom E A, Santiago-Ramos D P, Akhtar A A, Ahm A C, Bialik O, Holmden C, Bradbury H, Murray S T, Swart P K. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochimica et Cosmochimica Acta, 220: 512~534.

    • Horacek M, Brandner R, Abart R. 2007. Carbon isotope record of the P/T boundary and the Lower Triassic in the southern Alps: Evidence for rapid changes in storage of organic carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 347~354.

    • Hou Mingcai, Jiang Wenjian, Xing Fengcun, Xu Shenglin, Liu Xinchun, Xiao C. 2016. Origin of dolomites in the Cambrian (upper 3rd-Furongian) formation, south-eastern Sichuan basin, China. Geofluids, 16(5): 856~876.

    • Hsü K J, Siegenthaler C. 1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology, 12(1-2): 11~25.

    • Hu Guangcan, Xie Yaoxiang. 1997. Carboniferous Gas Field of High-Steep Structure in Eastern Sichuan. Beijing: Petroleum Industry Press.

    • Hu Mingyi, Deng Meng, Hu Zhonggui, Xue Dan. 2015. Reservoir characteristics and main control factors of Carboniferous Huanglong Formation in Sichuan basin. Earth Science Frontiers, 22(3): 310~321(in Chinese with English abstract).

    • Hu Zhonggui, Zheng Rongcai, Wen Huaguo, Cai Jialan, Chen Shouchun, Hu Jiuzhen, Li Guili. 2008. Dolomite genesis of Huanglong Formation of the Carboniferous in Linshui of Sichuan-northern Chongqing area. Acta Petrologica Sinica, 24(6): 1369~1378 (in Chinese with English abstract).

    • Hu Zhonggui, Zheng Rongcai, Hu Mingyi, Hu Jiuzhen, Zheng Chao. 2010. Sequence-based lithofacies and paleogeography of Carboniferous Huanglong Formation in Linshui (eastern Sichuan)-northern Chongqing area. Geology in China, 37(5): 1383~1392 (in Chinese with English abstract).

    • Hu Zhongya, Hu Wenxuan, Liu Chuan, Sun Funing, Liu Yongli, Li Weiqiang. 2019. Conservative behavior of Mg isotopes in massive dolostones: From diagenesis to hydrothermal reworking. Sedimentary Geology, 381: 65~75.

    • Huang Kangjun, Shen Bing, Lang Xianguo, Tang Wenbo, Peng Yang, Ke Shan, Kaufman A J, Ma Haoren, Li Fangbing. 2015. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates. Geochimica et Cosmochimica Acta, 164: 333~351.

    • Jacobsen S B, Kaufman A J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161(1-3): 37~57.

    • Jiang Lei, Cai Chunfang, Worden R H, Crowley S F, Jia Lianqi, Zhang Ke, Duncan I J. 2016. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim basin, North-West China. Sedimentology, 63: 2130~2157.

    • Jones G D, Rostron B J. 2000. Analysis of fluid flow constraints in regional-scale reflux dolomitization: Constant versus variable-flux hydrogeological models. Bulletin of Canadian Petroleum Geology, 48(3): 230~245.

    • Kaczmarek S E, Gregg J M, Bish D L, Machel H G, Fouke B W. 2017. Dolomite, very-high magnesium calcite, and microbes: Implications for the microbial model of dolomitization. In Characterization and Modeling of Carbonates-Mountjoy Symposium, 1: 7~20.

    • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27~49.

    • Knauth L P, Kennedy M J. 2009. The Late Precambrian greening of the Earth. Nature, 460(7256): 728~732.

    • Land L S. 1985. The origin of massive dolomite. Journal of Geological Education, 33(2): 112~125.

    • Li Chun. 1998. Diagenesis of Upper Carboniferous carbonate rocks in eastern Sichuan. Journal of the University of Petroleum, China(Edition of Natural Science), 22(5): 19~22 (in Chinese with English abstract).

    • Li Fangbing, Teng Fangzhen, Chen Jitao, Huang Kangjun, Wang Shuijiong, Lang Xianguo, Ma Haoren, Peng Yongbo, Shen B. 2016. Constraining ribbon rock dolomitization by Mg isotopes: Implications for the dolomite problem. Chemical Geology, 445: 208~220.

    • Li Wei, Zhang Zhijie, Dang Lurui. 2011. Depositional systems and evolution of the Upper Carboniferous Huanglong Formation in the eastern Sichuan basin. Petroleum Exploration and Development, 38(4): 400~408 (in Chinese with English abstract).

    • Li Weiqiang, Beard B L, Li Chengxiang, Xu Huifang, Johnson C M. 2015. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochimica et Cosmochimica Acta, 157: 164~181.

    • Li Weiqiang, Bialik O M, Wang Xiaomin, Yang Tao, Hu Zhongya, Huang Qingyu, Zhao Shufao, Waldmann N D. 2019. Effects of early diagenesis on Mg isotopes in dolomite: The roles of Mn (IV)-reduction and recrystallization. Geochimica et Cosmochimica Acta, 250: 1~17.

    • Li Zhong, Lei Xue, Yan Li. 2005. Sequence stratigraphic division and reservoir characteristics analysis of Carboniferous Huanglong Formation in eastern Sichuan. Geophysical Prospecting for Petroleum, 44(1): 39~43 (in Chinese with English abstract).

    • Liu Deng, Xu Yangyang, Papineau D, Yu Na, Fan Qigao, Qiu Xuan, Wang Hongmei. 2019. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals. Geochimica et Cosmochimica Acta, 247: 83~95.

    • Liu Shiyu, Hu Mingyi, Hu Zhonggui, Dai Weiyan. 2015. Dolomite genesis of Carboniferous Huanglong Formation in eastern Sichuan basin. Lithologic Reservoirs, 27(4): 40~46 (in Chinese with English abstract).

    • Lumsden D N, Caudle G C. 2001. Origin of massive dolostone: The Upper Knox model. Journal of Sedimentary Research, 71(3): 400~409.

    • Machel H G. 2004. Concepts and models of dolomitization: A critical reappraisal. Geological Society, London, Special Publications, 235(1): 7~63.

    • Machel H G, Burton E A. 1994. Golden Grove dolomite, Barbados: Origin from modified seawater. Journal of Sedimentary Research, 64(4a): 741~751.

    • Mavromatis V, Meister P, Oelkers E H. 2014. Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin. Chemical Geology, 385: 84~91.

    • Meister P, Mckenzie J A, Bernasconi S M, Brack P. 2013. Dolomite formation in the shallow seas of the Alpine Triassic. Sedimentology, 60(1): 270~291.

    • Mresah M H. 1998. The massive dolomitization of platformal and basinal sequences: Proposed models from the Paleocene, Northeast Sirte basin, Libya. Sedimentary Geology, 116(3-4): 199~226.

    • Ngia N R, Hu Mingyi, Gao Da. 2019. Tectonic and geothermal controls on dolomitization and dolomitizing fluid flows in the Cambrian-Lower Ordovician carbonate successions in the western and central Tarim basin, NW China. Journal of Asian Earth Sciences, 172: 359~382.

    • Ning Meng, Huang Kangjun, Shen Bing. 2018. Applications and advances of the magnesium isotope on the ‘dolomite problem’. Acta Petrologica Sinica, 34(12): 3690~3708 (in Chinese with English abstract).

    • Ning Meng, Huang Kangjun, Lang Xianguo, Ma Haoran, Yuan Honglin, Peng Yang, Peng Yongbo, Shen Bing. 2019. Can crystal morphology indicate different generations of dolomites? Evidence from magnesium isotopes. Chemical Geology, 516: 1~17.

    • Ning Meng, Lang Xianguo, Huang Kangjun, Li Chao, Huang Tianzheng, Yuan Honglin, Xing Chaochao, Yang Runyu, Shen Bing. 2020. Towards understanding the origin of massive dolostones. Earth and Planetary Science Letters, 545: 116403.

    • Peng Bo, Li Zongxing, Li Guorong, Liu Chenglin, Zhu Shifa, Zhang Wang, Zou Yinhui, Guo Yingchun, Wei Xiaojie. 2018. Multiple dolomitization and fluid flow events in the Precambrian Dengying Formation of Sichuan basin, southwestern China. Acta Geologica Sinica (English Edition), 92(1): 311~332.

    • Peng Yang, Shen Bing, Lang Xianguo, Huang Kangjun, Chen Jitao, Yan Zhen, Tang Wenbo, Ke Shan, Ma Haoren, Li Fangbing. 2016. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation, North China. Geochemistry, Geophysics, Geosystems, 17(3): 1109~1129.

    • Petrash D A, Bialik O M, Bontognali T R, Vasconcelos C, Roberts J A, McKenzie J A, Konhauser K O. 2017. Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Science Reviews, 171: 558~582.

    • Pinilla C, Blanchard M, Balan E, Natarajan S K, Vuilleumier R, Mauri F. 2015. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics. Geochimica et Cosmochimica Acta, 163: 126~139.

    • Qian Zheng. 1999. Discussion on sedimentary environment of Carboniferous carbonate rocks in eastern Sichuan. Natural Gas Industry, 19(4): 19~22 (in Chinese with English abstract).

    • Shen Bing, Jacobsen B, Lee C A, Yin Qingzhu, Morton D M. 2009. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proceedings of the National Academy of Sciences, 106(49): 20652~20657.

    • Sun Jian, Fang Nan, Li Shizhen, Chen Yuelong, Zhu Xiangkun. 2012. Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit. Acta Petrologica Sinica, 28(9): 2890~2902 (in Chinese with English abstract).

    • Teng Fangzhen. 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219~287.

    • Vahrenkamp V C, Swart P K. 1990. New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology, 18(5): 387~391.

    • Vasconcelos C, McKenzie J A, Bernasconi S, Grujic D, Tiens A J. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377(6546): 220~222.

    • Wang Kun, Li Wei, Lu Jin, Zhang Chaojun. 2011. Carbon, oxygen, strontium isotope characteristics and cause analysis of Carboniferous carbonate rocks in the eastern Sichuan basin. Geochimica, 40(4): 351~362 (in Chinese with English abstract).

    • Warren J. 2000. Dolomite: Occurrence, evolution and economically important associations. Earth-Science Reviews, 52(1-3): 1~81.

    • Wen Huaguo, Zheng Rongcai, Shen Zhongmin. 2011. Sedimentary-diagenetic system of carbonatite reservoir in the Huanglong Formation, eastern Sichuan basin. Earth Science—Journal of China University of Geosciences, 36(1): 111~121 (in Chinese with English abstract).

    • Wen Huaguo, Zheng Rongcai, Qing Hairong, Fan Mingtao, Li Yanan, Gong Boshi. 2013. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan basin on the northern Tibetan Plateau. Science China Earth Sciences, 56(12): 2080~2093.

    • Xiong Lianqiang, Yao Genshun, Xiong Shaoyun, Wang Jian, Ni Chao, Shen Anjiang, Hao Yi. 2018. Origin of dolomite in the Middle Devonian Guanwushan Formation of the western Sichuan basin, western China. Palaeogeography, Palaeoclimatology, Palaeoecology, 495: 113~126.

    • Yang Leilei, Yu Linjiao, Liu Keyu, Jia Jihui, Zhu Guangyou, Liu Qi. 2022a. Coupled effects of temperature and solution compositions on metasomatic dolomitization: Significance and implication for the formation mechanism of carbonate reservoir. Journal of Hydrology, 604: 127199.

    • Yang Leilei, Zhu Guangyou, Li Xinwei, Liu Keyu, Yu Linjiao, Gao Zhiye. 2022b. Influence of crystal nucleus and lattice defects on dolomite growth: Geological implications for carbonate reservoirs. Chemical Geology, 587: 120631.

    • You Donghua, Wang Liang, Hu Wenxuan, Qian Yixiong, Wang Xiaolin, Chen Qianglu, Zhang Juntao. 2018. Formation of deep dolomite reservoir of well TS1: Insights from diagenesis and alteration investigations. Acta Petrologica et Mineralogy, 37(1): 34~46 (in Chinese with English abstract).

    • Zhang Shunli, Lv Zhengxiang, Wen Yi, Liu Sibing. 2018. Origins and geochemistry of dolomites and their dissolution in the middle Triassic Leikoupo Formation, western Sichuan basin, China. Minerals, 8(7): 289.

    • Zhao Wenzhi, Shen Anjiang, Qiao Zhanfeng, Pan Liyin, Hu Anping, Zhang Jie. 2018. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs. Petroleum Exploration and Development, 45(6): 983~997.

    • Zheng Haofu, Ma Yongsheng, Chi Guoxiang, Qing Hairuo, Liu Bo, Zhang Xuefeng, Shen Yingchun, Liu Jianqiang, Wang Yuanchong. 2019. Stratigraphic and structural control on hydrothermal dolomitization in the middle Permian carbonates, southwestern Sichuan basin (China). Minerals, 9(1): 32.

    • Zheng Rongcai, Li Demin, Zhang Zongnan. 1995. A study on sequence stratigraphy of Huanglong Formation, Upper Caboniferous in eastern Sichuan. Acta Sedimentologica Sinica, 13(S1): 1~9 (in Chinese with English abstract).

    • Zheng Rongcai, Peng Jun, Gao Hongcan. 2003. Paleokarst-related characteristics and cycles of carbonate reservoirs in Huanglong Formation, Upper Caboniferous, eastern Chongqing. Geology-Geochemistry, 31(1): 28~35 (in Chinese with English abstract).

    • Zhu Guangyou, Zhang Shuichang, Liang Yingbo, Ma Yongsheng, Dai Jinxing, Li Jian, Zhou Guoyuan. 2006. The characteristics of natural gas in Sichuan basin and its sources. Earth Science Frontiers, 13(2): 234~248 (in Chinese with English abstract).

    • 陈浩如, 郑荣才, 文华国, 李伟, 陈方敏, 张海杰, 王炯. 2011. 川东地区黄龙组层序岩相古地理特征. 地质学报, 85(2): 246~255.

    • 陈宗清. 1985. 川东中石炭世黄龙期沉积相及其与油气的关系. 沉积学报, 3(1) : 71~80.

    • 方少仙, 侯方浩, 李凌, 王兴志, 罗玉宏, 王安平, 白洋. 2000. 四川华蓥山以西石炭系黄龙组沉积环境的再认识. 海相油气地质, 5(2): 158~166.

    • 何治亮, 马永生, 张军涛, 朱东亚, 钱一雄, 丁茜, 陈代钊. 2020. 中国的白云岩与白云岩储层: 分布, 成因与控制因素. 石油与天然气地质, 41(1): 1~14.

    • 胡光灿, 谢姚祥. 1997. 中国四川东部高陡构造石炭系气田. 北京: 石油工业出版社.

    • 胡明毅, 邓猛, 胡忠贵, 薛丹. 2015. 四川盆地石炭系黄龙组储层特征及主控因素分析. 地学前缘, 22(3): 310~321.

    • 胡忠贵, 郑荣才, 文华国, 蔡家兰, 陈守春, 胡九珍, 李瑰丽. 2008. 川东邻水—渝北地区石炭系黄龙组白云岩成因. 岩石学报, 24(6): 1369~1378.

    • 胡忠贵, 郑荣才, 胡明毅, 胡九珍, 郑超. 2010. 川东邻水-渝北地区石炭系层序-岩相古地理特征. 中国地质, 37(5): 1383~1392.

    • 李淳. 1998. 川东地区上石炭统碳酸盐岩成岩作用. 石油大学学报: 自然科学版, 22(5): 19~22.

    • 李伟, 张志杰, 党录瑞. 2011. 四川盆地东部上石炭统黄龙组沉积体系及其演化. 石油勘探与开发, 38(4): 400~408.

    • 李忠, 雷雪, 晏礼. 2005. 川东石炭系黄龙组层序地层划分及储层特征分析. 石油物探, 44(1): 39~43.

    • 刘诗宇, 胡明毅, 胡忠贵, 戴危艳. 2015. 四川盆地东部石炭系黄龙组白云岩成因. 岩性油气藏, 27(4): 40~46.

    • 甯濛, 黄康俊, 沈冰. 2018. 镁同位素在 “白云岩问题” 研究中的应用及进展. 岩石学报, 34(12): 3690~3708.

    • 钱峥. 1999. 川东石炭系碳酸盐岩沉积环境探讨. 天然气工业, 19(4): 19~22.

    • 孙剑, 房楠, 李世珍, 陈岳龙, 朱祥坤. 2012. 白云鄂博矿床成因的Mg同位素制约. 岩石学报, 28(9): 2890~2902.

    • 王坤, 李伟, 陆进, 张朝军. 2011. 川东地区石炭系碳酸盐岩碳、氧、锶同位素特征及其成因分析. 地球化学, 40(4): 351~362.

    • 文华国, 郑荣才, 沈忠民. 2011. 四川盆地东部黄龙组碳酸盐岩储层沉积-成岩系统. 地球科学(中国地质大学学报), 36(1): 111~121.

    • 尤东华, 王亮, 胡文瑄, 钱一雄, 王小林, 陈强路, 张军涛. 2018. 从成岩-蚀变特征探讨塔深1井白云岩储层成因. 岩石矿物学杂志, 37(1): 34~46.

    • 郑荣才, 李德敏, 张梢楠. 1995. 川东黄龙组天然气储层的层序地层学研究. 沉积学报, 13(S1): 1~9.

    • 郑荣才, 彭军, 高红灿. 2003. 渝东黄龙组碳酸盐岩储层的古岩溶特征和岩溶旋回. 地质地球化学, 31(1): 28~35.

    • 朱光有, 张水昌, 梁英波, 马永生, 戴金星, 李剑, 周国源. 2006. 四川盆地天然气特征及其气源. 地学前缘, 13(2): 234~248.

  • 参考文献

    • Adams J E, Rhodes M L. 1960. Dolomitization by seepage refluxion. AAPG Bulletin, 44(12): 1912~1920.

    • Arosi H A, Wilson M. 2015. Diagenesis and fracturing of a large-scale, syntectonic carbonate platform. Sedimentary Geology, 326(1): 109~134.

    • Bi Dongjie, Zhai Shikui, Zhang Daojun, Liu Xiaofeng, Liu Xinyu, Jiang Longjie, Zhang Aibin. 2018. Constraints of fluid inclusions and C, O isotopic compositions on the origin of the dolomites in the Xisha Islands, South China Sea. Chemical Geology, 493: 504~517.

    • Blättler C L, Miller N R, Higgins J A. 2015. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth and Planetary Science Letters, 419: 32~42.

    • Cai Wenkai, Liu Jiahui, Zhou Chunhui, Keeling J, Glasmacher U A. 2021. Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas. Chemical Geology, 573: 120~191.

    • Chang Biao, Li Chao, Liu Deng, Foster I, Tripati A, Lloyd M K, Maradiaga I, Luo Genming, An Zhihui, She Zhenbing, Xie Shucheng, Tong Jinnan, Huang Junhua, Algeo T J, Lyons T W, Immenhauser A. 2020. Massive formation of early diagenetic dolomite in the Ediacaran Ocean: Constraints on the “dolomite problem”. Proceedings of the National Academy of Sciences, 117(25): 14005~14014.

    • Chen Haoru, Zheng Rongcai, Wen Huaguo, Li Wei, Chen Fangmin, Zhang Haijie, Wang Jiong. 2011. Sequence characteristics and lithofacies paleogeography of the Huanglong Formation in eastern Sichuan basin. Acta Geologica Sinica, 85(2): 246~255 (in Chinese with English abstract).

    • Chen Zongqing. 1985. Sedimentary facies during Huanglong stage of Mid-carboniferous in eastern Sichuan and its correlation with oil and gas. Acta Sedimentologica Sinica, 3(1): 71~80 (in Chinese with English abstract).

    • Davies G R, Smith L B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90(11): 1641~1690.

    • Derry L A, Brasier M D, Corfield R E A, Rozanov A Y, Zhuravlev A Y. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth and Planetary Science Letters, 128(3-4): 671~681.

    • Du Yang, Fan Tailiang, Machel H G, Gao Zhiqian. 2018. Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe Oilfield, Tarim basin, NW China: Several limitations from petrology, geochemistry, and fluid inclusions. Marine and Petroleum Geology, 91: 43~70.

    • Fang Shaoxian, Hou Fanghao, Li Ling, Wang Xingzhi, Luo Yuhong, Wang Anping, Bai Yang. 2000. Reunderstanding of the sedimentary environment of the Carboniferous Huanglong Formation west of Huaying Mountain in Sichuan. Marine Origin Petroleum Geology, 5(2): 158~166 (in Chinese).

    • Fantle M S, Higgins J. 2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: Implications for the geochemical cycles of Ca and Mg. Geochimica et Cosmochimica Acta, 142: 458~481.

    • Galy A, Yoffe O, Janney P E, Williams R W, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon I D, Ramon E, Carignan J. 2003. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. Journal of Analytical Atomic Spectrometry, 18(11): 1352~1356.

    • Garaguly I, Varga A, Raucsik B, Schubert F, Czuppon G, Frei R. 2018. Pervasive early diagenetic dolomitization, subsequent hydrothermal alteration, and late stage hydrocarbon accumulation in a Middle Triassic carbonate sequence (Szeged basin, SE Hungary). Marine and Petroleum Geology, 98: 270~290.

    • Garzione C N. 2008. Surface uplift of Tibet and Cenozoic global cooling. Geology, 36(12): 1003~1004.

    • Geske A, Zorlu J, Richter D K, Buhl D, Niedermayr A, Immenhauser A. 2012. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chemical Geology, 332: 45~64.

    • Geske A, Goldstein R H, Mavromatis V, Richter D K, Buhl D, Kluge T, John C M, Immenhauser A. 2015a. The magnesium isotope (δ26Mg) signature of dolomites. Geochimica et Cosmochimica Acta, 149: 131~151.

    • Geske A, Lokier S, Dietzel M, Richter D K, Buhl D, Immenhauser A. 2015b. Magnesium isotope composition of sabkha porewater and related (sub-) recent stoichiometric dolomites, Abu Dhabi (UAE). Chemical Geology, 393: 112~124.

    • He Zhiliang, Ma Yongsheng, Zhang Juntao, Zhu Dongya, Qian Yixiong, Ding Qian, Chen Daizhao. 2020. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China. Oil & Gas Geology, 41(1): 1~14(in Chinese with English abstract).

    • Higgins J A, Schrag D P. 2010. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochimica et Cosmochimica Acta, 74(17): 5039~5053.

    • Higgins J A, Schrag D P. 2015. The Mg isotopic composition of Cenozoic seawater—evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth and Planetary Science Letters, 416: 73~81.

    • Higgins J A, Blättler C L, Lundstrom E A, Santiago-Ramos D P, Akhtar A A, Ahm A C, Bialik O, Holmden C, Bradbury H, Murray S T, Swart P K. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochimica et Cosmochimica Acta, 220: 512~534.

    • Horacek M, Brandner R, Abart R. 2007. Carbon isotope record of the P/T boundary and the Lower Triassic in the southern Alps: Evidence for rapid changes in storage of organic carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 347~354.

    • Hou Mingcai, Jiang Wenjian, Xing Fengcun, Xu Shenglin, Liu Xinchun, Xiao C. 2016. Origin of dolomites in the Cambrian (upper 3rd-Furongian) formation, south-eastern Sichuan basin, China. Geofluids, 16(5): 856~876.

    • Hsü K J, Siegenthaler C. 1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology, 12(1-2): 11~25.

    • Hu Guangcan, Xie Yaoxiang. 1997. Carboniferous Gas Field of High-Steep Structure in Eastern Sichuan. Beijing: Petroleum Industry Press.

    • Hu Mingyi, Deng Meng, Hu Zhonggui, Xue Dan. 2015. Reservoir characteristics and main control factors of Carboniferous Huanglong Formation in Sichuan basin. Earth Science Frontiers, 22(3): 310~321(in Chinese with English abstract).

    • Hu Zhonggui, Zheng Rongcai, Wen Huaguo, Cai Jialan, Chen Shouchun, Hu Jiuzhen, Li Guili. 2008. Dolomite genesis of Huanglong Formation of the Carboniferous in Linshui of Sichuan-northern Chongqing area. Acta Petrologica Sinica, 24(6): 1369~1378 (in Chinese with English abstract).

    • Hu Zhonggui, Zheng Rongcai, Hu Mingyi, Hu Jiuzhen, Zheng Chao. 2010. Sequence-based lithofacies and paleogeography of Carboniferous Huanglong Formation in Linshui (eastern Sichuan)-northern Chongqing area. Geology in China, 37(5): 1383~1392 (in Chinese with English abstract).

    • Hu Zhongya, Hu Wenxuan, Liu Chuan, Sun Funing, Liu Yongli, Li Weiqiang. 2019. Conservative behavior of Mg isotopes in massive dolostones: From diagenesis to hydrothermal reworking. Sedimentary Geology, 381: 65~75.

    • Huang Kangjun, Shen Bing, Lang Xianguo, Tang Wenbo, Peng Yang, Ke Shan, Kaufman A J, Ma Haoren, Li Fangbing. 2015. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates. Geochimica et Cosmochimica Acta, 164: 333~351.

    • Jacobsen S B, Kaufman A J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161(1-3): 37~57.

    • Jiang Lei, Cai Chunfang, Worden R H, Crowley S F, Jia Lianqi, Zhang Ke, Duncan I J. 2016. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim basin, North-West China. Sedimentology, 63: 2130~2157.

    • Jones G D, Rostron B J. 2000. Analysis of fluid flow constraints in regional-scale reflux dolomitization: Constant versus variable-flux hydrogeological models. Bulletin of Canadian Petroleum Geology, 48(3): 230~245.

    • Kaczmarek S E, Gregg J M, Bish D L, Machel H G, Fouke B W. 2017. Dolomite, very-high magnesium calcite, and microbes: Implications for the microbial model of dolomitization. In Characterization and Modeling of Carbonates-Mountjoy Symposium, 1: 7~20.

    • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27~49.

    • Knauth L P, Kennedy M J. 2009. The Late Precambrian greening of the Earth. Nature, 460(7256): 728~732.

    • Land L S. 1985. The origin of massive dolomite. Journal of Geological Education, 33(2): 112~125.

    • Li Chun. 1998. Diagenesis of Upper Carboniferous carbonate rocks in eastern Sichuan. Journal of the University of Petroleum, China(Edition of Natural Science), 22(5): 19~22 (in Chinese with English abstract).

    • Li Fangbing, Teng Fangzhen, Chen Jitao, Huang Kangjun, Wang Shuijiong, Lang Xianguo, Ma Haoren, Peng Yongbo, Shen B. 2016. Constraining ribbon rock dolomitization by Mg isotopes: Implications for the dolomite problem. Chemical Geology, 445: 208~220.

    • Li Wei, Zhang Zhijie, Dang Lurui. 2011. Depositional systems and evolution of the Upper Carboniferous Huanglong Formation in the eastern Sichuan basin. Petroleum Exploration and Development, 38(4): 400~408 (in Chinese with English abstract).

    • Li Weiqiang, Beard B L, Li Chengxiang, Xu Huifang, Johnson C M. 2015. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochimica et Cosmochimica Acta, 157: 164~181.

    • Li Weiqiang, Bialik O M, Wang Xiaomin, Yang Tao, Hu Zhongya, Huang Qingyu, Zhao Shufao, Waldmann N D. 2019. Effects of early diagenesis on Mg isotopes in dolomite: The roles of Mn (IV)-reduction and recrystallization. Geochimica et Cosmochimica Acta, 250: 1~17.

    • Li Zhong, Lei Xue, Yan Li. 2005. Sequence stratigraphic division and reservoir characteristics analysis of Carboniferous Huanglong Formation in eastern Sichuan. Geophysical Prospecting for Petroleum, 44(1): 39~43 (in Chinese with English abstract).

    • Liu Deng, Xu Yangyang, Papineau D, Yu Na, Fan Qigao, Qiu Xuan, Wang Hongmei. 2019. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals. Geochimica et Cosmochimica Acta, 247: 83~95.

    • Liu Shiyu, Hu Mingyi, Hu Zhonggui, Dai Weiyan. 2015. Dolomite genesis of Carboniferous Huanglong Formation in eastern Sichuan basin. Lithologic Reservoirs, 27(4): 40~46 (in Chinese with English abstract).

    • Lumsden D N, Caudle G C. 2001. Origin of massive dolostone: The Upper Knox model. Journal of Sedimentary Research, 71(3): 400~409.

    • Machel H G. 2004. Concepts and models of dolomitization: A critical reappraisal. Geological Society, London, Special Publications, 235(1): 7~63.

    • Machel H G, Burton E A. 1994. Golden Grove dolomite, Barbados: Origin from modified seawater. Journal of Sedimentary Research, 64(4a): 741~751.

    • Mavromatis V, Meister P, Oelkers E H. 2014. Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin. Chemical Geology, 385: 84~91.

    • Meister P, Mckenzie J A, Bernasconi S M, Brack P. 2013. Dolomite formation in the shallow seas of the Alpine Triassic. Sedimentology, 60(1): 270~291.

    • Mresah M H. 1998. The massive dolomitization of platformal and basinal sequences: Proposed models from the Paleocene, Northeast Sirte basin, Libya. Sedimentary Geology, 116(3-4): 199~226.

    • Ngia N R, Hu Mingyi, Gao Da. 2019. Tectonic and geothermal controls on dolomitization and dolomitizing fluid flows in the Cambrian-Lower Ordovician carbonate successions in the western and central Tarim basin, NW China. Journal of Asian Earth Sciences, 172: 359~382.

    • Ning Meng, Huang Kangjun, Shen Bing. 2018. Applications and advances of the magnesium isotope on the ‘dolomite problem’. Acta Petrologica Sinica, 34(12): 3690~3708 (in Chinese with English abstract).

    • Ning Meng, Huang Kangjun, Lang Xianguo, Ma Haoran, Yuan Honglin, Peng Yang, Peng Yongbo, Shen Bing. 2019. Can crystal morphology indicate different generations of dolomites? Evidence from magnesium isotopes. Chemical Geology, 516: 1~17.

    • Ning Meng, Lang Xianguo, Huang Kangjun, Li Chao, Huang Tianzheng, Yuan Honglin, Xing Chaochao, Yang Runyu, Shen Bing. 2020. Towards understanding the origin of massive dolostones. Earth and Planetary Science Letters, 545: 116403.

    • Peng Bo, Li Zongxing, Li Guorong, Liu Chenglin, Zhu Shifa, Zhang Wang, Zou Yinhui, Guo Yingchun, Wei Xiaojie. 2018. Multiple dolomitization and fluid flow events in the Precambrian Dengying Formation of Sichuan basin, southwestern China. Acta Geologica Sinica (English Edition), 92(1): 311~332.

    • Peng Yang, Shen Bing, Lang Xianguo, Huang Kangjun, Chen Jitao, Yan Zhen, Tang Wenbo, Ke Shan, Ma Haoren, Li Fangbing. 2016. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation, North China. Geochemistry, Geophysics, Geosystems, 17(3): 1109~1129.

    • Petrash D A, Bialik O M, Bontognali T R, Vasconcelos C, Roberts J A, McKenzie J A, Konhauser K O. 2017. Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Science Reviews, 171: 558~582.

    • Pinilla C, Blanchard M, Balan E, Natarajan S K, Vuilleumier R, Mauri F. 2015. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics. Geochimica et Cosmochimica Acta, 163: 126~139.

    • Qian Zheng. 1999. Discussion on sedimentary environment of Carboniferous carbonate rocks in eastern Sichuan. Natural Gas Industry, 19(4): 19~22 (in Chinese with English abstract).

    • Shen Bing, Jacobsen B, Lee C A, Yin Qingzhu, Morton D M. 2009. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proceedings of the National Academy of Sciences, 106(49): 20652~20657.

    • Sun Jian, Fang Nan, Li Shizhen, Chen Yuelong, Zhu Xiangkun. 2012. Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit. Acta Petrologica Sinica, 28(9): 2890~2902 (in Chinese with English abstract).

    • Teng Fangzhen. 2017. Magnesium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219~287.

    • Vahrenkamp V C, Swart P K. 1990. New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology, 18(5): 387~391.

    • Vasconcelos C, McKenzie J A, Bernasconi S, Grujic D, Tiens A J. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377(6546): 220~222.

    • Wang Kun, Li Wei, Lu Jin, Zhang Chaojun. 2011. Carbon, oxygen, strontium isotope characteristics and cause analysis of Carboniferous carbonate rocks in the eastern Sichuan basin. Geochimica, 40(4): 351~362 (in Chinese with English abstract).

    • Warren J. 2000. Dolomite: Occurrence, evolution and economically important associations. Earth-Science Reviews, 52(1-3): 1~81.

    • Wen Huaguo, Zheng Rongcai, Shen Zhongmin. 2011. Sedimentary-diagenetic system of carbonatite reservoir in the Huanglong Formation, eastern Sichuan basin. Earth Science—Journal of China University of Geosciences, 36(1): 111~121 (in Chinese with English abstract).

    • Wen Huaguo, Zheng Rongcai, Qing Hairong, Fan Mingtao, Li Yanan, Gong Boshi. 2013. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan basin on the northern Tibetan Plateau. Science China Earth Sciences, 56(12): 2080~2093.

    • Xiong Lianqiang, Yao Genshun, Xiong Shaoyun, Wang Jian, Ni Chao, Shen Anjiang, Hao Yi. 2018. Origin of dolomite in the Middle Devonian Guanwushan Formation of the western Sichuan basin, western China. Palaeogeography, Palaeoclimatology, Palaeoecology, 495: 113~126.

    • Yang Leilei, Yu Linjiao, Liu Keyu, Jia Jihui, Zhu Guangyou, Liu Qi. 2022a. Coupled effects of temperature and solution compositions on metasomatic dolomitization: Significance and implication for the formation mechanism of carbonate reservoir. Journal of Hydrology, 604: 127199.

    • Yang Leilei, Zhu Guangyou, Li Xinwei, Liu Keyu, Yu Linjiao, Gao Zhiye. 2022b. Influence of crystal nucleus and lattice defects on dolomite growth: Geological implications for carbonate reservoirs. Chemical Geology, 587: 120631.

    • You Donghua, Wang Liang, Hu Wenxuan, Qian Yixiong, Wang Xiaolin, Chen Qianglu, Zhang Juntao. 2018. Formation of deep dolomite reservoir of well TS1: Insights from diagenesis and alteration investigations. Acta Petrologica et Mineralogy, 37(1): 34~46 (in Chinese with English abstract).

    • Zhang Shunli, Lv Zhengxiang, Wen Yi, Liu Sibing. 2018. Origins and geochemistry of dolomites and their dissolution in the middle Triassic Leikoupo Formation, western Sichuan basin, China. Minerals, 8(7): 289.

    • Zhao Wenzhi, Shen Anjiang, Qiao Zhanfeng, Pan Liyin, Hu Anping, Zhang Jie. 2018. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs. Petroleum Exploration and Development, 45(6): 983~997.

    • Zheng Haofu, Ma Yongsheng, Chi Guoxiang, Qing Hairuo, Liu Bo, Zhang Xuefeng, Shen Yingchun, Liu Jianqiang, Wang Yuanchong. 2019. Stratigraphic and structural control on hydrothermal dolomitization in the middle Permian carbonates, southwestern Sichuan basin (China). Minerals, 9(1): 32.

    • Zheng Rongcai, Li Demin, Zhang Zongnan. 1995. A study on sequence stratigraphy of Huanglong Formation, Upper Caboniferous in eastern Sichuan. Acta Sedimentologica Sinica, 13(S1): 1~9 (in Chinese with English abstract).

    • Zheng Rongcai, Peng Jun, Gao Hongcan. 2003. Paleokarst-related characteristics and cycles of carbonate reservoirs in Huanglong Formation, Upper Caboniferous, eastern Chongqing. Geology-Geochemistry, 31(1): 28~35 (in Chinese with English abstract).

    • Zhu Guangyou, Zhang Shuichang, Liang Yingbo, Ma Yongsheng, Dai Jinxing, Li Jian, Zhou Guoyuan. 2006. The characteristics of natural gas in Sichuan basin and its sources. Earth Science Frontiers, 13(2): 234~248 (in Chinese with English abstract).

    • 陈浩如, 郑荣才, 文华国, 李伟, 陈方敏, 张海杰, 王炯. 2011. 川东地区黄龙组层序岩相古地理特征. 地质学报, 85(2): 246~255.

    • 陈宗清. 1985. 川东中石炭世黄龙期沉积相及其与油气的关系. 沉积学报, 3(1) : 71~80.

    • 方少仙, 侯方浩, 李凌, 王兴志, 罗玉宏, 王安平, 白洋. 2000. 四川华蓥山以西石炭系黄龙组沉积环境的再认识. 海相油气地质, 5(2): 158~166.

    • 何治亮, 马永生, 张军涛, 朱东亚, 钱一雄, 丁茜, 陈代钊. 2020. 中国的白云岩与白云岩储层: 分布, 成因与控制因素. 石油与天然气地质, 41(1): 1~14.

    • 胡光灿, 谢姚祥. 1997. 中国四川东部高陡构造石炭系气田. 北京: 石油工业出版社.

    • 胡明毅, 邓猛, 胡忠贵, 薛丹. 2015. 四川盆地石炭系黄龙组储层特征及主控因素分析. 地学前缘, 22(3): 310~321.

    • 胡忠贵, 郑荣才, 文华国, 蔡家兰, 陈守春, 胡九珍, 李瑰丽. 2008. 川东邻水—渝北地区石炭系黄龙组白云岩成因. 岩石学报, 24(6): 1369~1378.

    • 胡忠贵, 郑荣才, 胡明毅, 胡九珍, 郑超. 2010. 川东邻水-渝北地区石炭系层序-岩相古地理特征. 中国地质, 37(5): 1383~1392.

    • 李淳. 1998. 川东地区上石炭统碳酸盐岩成岩作用. 石油大学学报: 自然科学版, 22(5): 19~22.

    • 李伟, 张志杰, 党录瑞. 2011. 四川盆地东部上石炭统黄龙组沉积体系及其演化. 石油勘探与开发, 38(4): 400~408.

    • 李忠, 雷雪, 晏礼. 2005. 川东石炭系黄龙组层序地层划分及储层特征分析. 石油物探, 44(1): 39~43.

    • 刘诗宇, 胡明毅, 胡忠贵, 戴危艳. 2015. 四川盆地东部石炭系黄龙组白云岩成因. 岩性油气藏, 27(4): 40~46.

    • 甯濛, 黄康俊, 沈冰. 2018. 镁同位素在 “白云岩问题” 研究中的应用及进展. 岩石学报, 34(12): 3690~3708.

    • 钱峥. 1999. 川东石炭系碳酸盐岩沉积环境探讨. 天然气工业, 19(4): 19~22.

    • 孙剑, 房楠, 李世珍, 陈岳龙, 朱祥坤. 2012. 白云鄂博矿床成因的Mg同位素制约. 岩石学报, 28(9): 2890~2902.

    • 王坤, 李伟, 陆进, 张朝军. 2011. 川东地区石炭系碳酸盐岩碳、氧、锶同位素特征及其成因分析. 地球化学, 40(4): 351~362.

    • 文华国, 郑荣才, 沈忠民. 2011. 四川盆地东部黄龙组碳酸盐岩储层沉积-成岩系统. 地球科学(中国地质大学学报), 36(1): 111~121.

    • 尤东华, 王亮, 胡文瑄, 钱一雄, 王小林, 陈强路, 张军涛. 2018. 从成岩-蚀变特征探讨塔深1井白云岩储层成因. 岩石矿物学杂志, 37(1): 34~46.

    • 郑荣才, 李德敏, 张梢楠. 1995. 川东黄龙组天然气储层的层序地层学研究. 沉积学报, 13(S1): 1~9.

    • 郑荣才, 彭军, 高红灿. 2003. 渝东黄龙组碳酸盐岩储层的古岩溶特征和岩溶旋回. 地质地球化学, 31(1): 28~35.

    • 朱光有, 张水昌, 梁英波, 马永生, 戴金星, 李剑, 周国源. 2006. 四川盆地天然气特征及其气源. 地学前缘, 13(2): 234~248.