en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李三忠,男,1968年生。教授,博士生导师,海洋地质与构造地质学专业。E-mail:sanzhong@ouc.edu.cn。

参考文献
Abbott D, Burgess L, Longhi J, Smith W H F. 1994. An empirical thermal history of the Earth's upper mantle. Journal of Geophysical Research, 99: 13835~13850.
参考文献
Anderson D L. 2007. New Theory of the Earth. Cambridge: Cambridge University Press.
参考文献
Avdeiko G P, Savelyev D P, Palueva A A, Popruzhenko S V. 2007. Evolution of the Kurile-Kamchatkan volcanic arcs and dynamics of the Kamchatka-Aleutian Junction. In: Volcanism and Subduction: The Kamchatka Region, Geophysical Monograph Series 172, the American Geophysical Union. 10. 1029/172GM04, 7~55.
参考文献
Bird P. 2003. An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems, 4(3): 1027.
参考文献
Boschman L M, vanHinsbergen D J J. 2016. On the enigmatic birth of the Pacific plate within the Panthalassa Ocean. Science Advance, 2: e1600022.
参考文献
Braun J. 2010. The many surface expressions of mantle dynamics. Nature Geoscience, 3: 825~833.
参考文献
Burke K, Steinberger B, Torsvik T H, Smethurst M A. 2008. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth and Planetary Science Letters, 265(1-2): 49~60.
参考文献
Cawood P A, Hawkesworth C J, Pisarevsky S A, Dhuime B, Capitanio F A, Nebel O. 2018. Geological archive of the onset of plate tectonics. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 376: 21~32.
参考文献
Condie K C. 2001. Mantle Plume and Their Record in Earth History. Cambridge: Cambridge University Press.
参考文献
Condie K C. 2018. A planet in transition: the onset of plate tectonics on Earth between 3 and 2 Ga? Geoscience Frontiers, 9: 51~60.
参考文献
Conrad C P, Lithgow-Bertelloni C. 2002. How mantle slabs drive plate tectonics. Science, 298: 207~209.
参考文献
Davies G F. 2011. Mantle Convection for Geologists. Cambridge, New York: Cambridge University Press.
参考文献
Deng Jun, Wang, Qingfei, Li Gongjian, Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268~299.
参考文献
Elkins-Tanton L T. 2008. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth and Planetary Science Letters, 271(1-4): 181~191.
参考文献
Elkins-Tanton L T. 2012. Magma oceans in the inner solar system. Annual Review of Earth and Planetary Sciences, 40: 113~139.
参考文献
Ernst W G. 2007. Speculations on evolution of the terrestrial lithosphere-asthenosphere system: plumes and plates. Gondwana Research, 11: 38~49.
参考文献
Ernst W G. 2017. Earth's thermal evolution, mantle convection, and Hadean onset of plate tectonics. Journal of Asian Earth Sciences, 145: 334~348.
参考文献
Fischer R, Rupke L, Gerya T. 2021. Cyclic tectono-magmatic evolution of TTG source regions in plume-lid tectonics. Gondwana Research, 99: 93~109.
参考文献
Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal International, 43: 163~200.
参考文献
Garrison T, Ellis R. 2014. Oceanology: an Invitation to Marine Science. National Geographic Learning, Cengage Learning, Canada.
参考文献
Gerya T V. 2014. Precambrian geodynamics: concepts and models. Gondwana Research, 25: 442~463.
参考文献
Gerya T V, Stern R J, Baes M, Sobolev S V, Whattam S A. 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527: 221~225.
参考文献
Harrison C G A. 2016. The present-day number of tectonic plates. Earth, Planets and Space, 68: 37.
参考文献
Hasterok D, Halpin J, Collins A S, Hand M, Kreemer C, Gard M, Glorie S. 2022. New maps of global geological provinces and tectonic plates. Earth-Science Reviews, https: //doi. org/10. 1016/j. earscirev. 2022. 104069.
参考文献
Hou Zengqian, Zhao Zhidan, Gao Yongfeng, Yang Zhiming, Jiang Wan. 2006. Tearing and dischronal subduction of the Indian continental slab: evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet. Acta Petrologica Sinica, 22(4): 761~774(in Chinese with English abstract).
参考文献
Jin Zhenmin, Yao Yupeng. 2004. Beyond plate tectonics: what do we do in structural geology? Earth Science, 29(6): 644~650(in Chinese with English abstract).
参考文献
Komiya T, Maruyama S, Masuda T, Nohda S, Hayashi M, Okamoto K. 1999. Plate tectonics at 3. 8–3. 7 Ga: field evidence from the Isua accretionary complex, southern West Greenland. The Journal of Geology, 107: 515~554.
参考文献
Laurent O, Martin H, Moyen J F, Doucelance R. 2014. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3. 0 and 2. 5 Ga. Lithos, 205: 208~235.
参考文献
Le Pichon X. 1968. Sea floor spreading and continental drift. Journal of Geophysical Research, 73: 3661~3697.
参考文献
Li Sanzhong, Dai Liming, Zhang Zhen, Guo Lingli, Zhao Shujuan, Zhao Guochun, Zhang Guowei. 2015. Precambrian geodynamics(IV): pre-plate regime. Earth Science Frontiers, 22(6): 46~64(in Chinese with English abstract).
参考文献
Li Sanzhong, Jahn B M, Zhao Shujuan, Dai Liming, Li Xiyao, Suo Yanhui, Guo Lingli, Wang Yongming, Liu Xiaochun, Lan Haoyuan, Zhou Zaizheng, Zheng Qiliang, Wang Pengcheng. 2017. Triassic southeastward subduction of North China Block to South China Block: insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 166: 270~285.
参考文献
Li Sanzhong, Suo Yanhui, Li Xiyao, Liu Bo, Dai Liming, Wang Guangzeng, Wang Gang, Zhou Jie, Li Yang, Liu Yiming, Cao Xianzhi, Somerville I, Mu Dunlin, Zhao Shujuan, Liu Jingping, Zhen Libing, Zhao Lintao, Zhu Junjiang, Yu Shengyao, Liu Yongjaing, Zhang Guowei. 2018a. Microplate tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle. Earth-Science Reviews, 185: 1029~1064.
参考文献
Li Sanzhong, Zhao Shujuan, Liu Xin, Cao Huahua, Yu Shan, Li Xiyao, Somerville I, Yu Shengyao, Suo Yanhui. 2018b. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37~75.
参考文献
Li Sanzhong, Suo Yanhui, Liu Bo, Liu Yongjiang, Li Xiyao, Zhao Shujuan, Zhu Junjiang, Wang Guangzeng, Zhang Guowei. 2018. Microplate tectonics theory: insights from microblocks in the global oceans and continental margins. Earth Science Frontiers, 25(5): 324~355(in Chinese with English abstract).
参考文献
Li Sanzhong, Li Xiyao, Wang Guangzeng, Liu Yiming, Wang Zecheng, Wang Tognshan, Cao Xianzhi, Guo Xiaoyu, Somerville I, Li Yang, Zhou Jie, Dai Liming, Jiang Suhua, Zhao Hao, Wang Yu, Wang Gang, Yu Shan. 2019a. Global Meso-Neoproterozoic plate reconstruction and formation mechanism for Precambrian basins: constraints from three cratons in China. Earth-Science Reviews, 198: 102946.
参考文献
Li Sanzhong, Suo Yanhui Li Xiyao, Zhou Jie, Santosh M, Wang Pengcheng, Wang Guangzeng, Guo Lingli, Yu Shengyao, Lan Haoyuan, Dai Liming, Zhou Zaizheng, Cao Xianzhi, Zhu Junjiang, Liu Bo, Jiang Suhua, Wang Gang, Zhang Guowei. 2019b. Mesozoic tectono-magmatic evolution in the East Asian ocean-continent connection zone and its relationship with Paleo-Pacific Plate subduction. Earth-Science Reviews, 192: 91~137.
参考文献
Li Sanzhong, Cao Xianzhi, Wang Gguangzeng, Liu Bo, Li Xiyao, Suo Yanhui, Jiang Zhaoxia, Guo Lingli, Zhou Jie, Wang Pengcheng, Zhu Junjiang, Wang Gang, Zhao Shujuan, Liu Yongjiang, Zhang Guowei. 2019a. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate. Journal of Geomechanics, 25(5): 642~677(in Chinese with English abstract).
参考文献
Li Sanzhong, Suo Yanhui, Wang Guangzeng, Jiang Zhaoxia, Zhao Yanyan, Liu Yiming, Li Xiyao, Guo Lingli, Liu Bo, Yu Shengyao, Liu Yongjiang, Zhang Guowei. 2019b. Tripoles on seafloor and tripole on Earth surface: dynamic connections. Marine Geology & Quaternary Geology, 39(5): 1~22(in Chinese with English abstract).
参考文献
Li Sanzhong, Wang Guangzeng, Suo Yanhui, Li Xiyao, Dai Liming, Liu Yiming, Zhou Jie, Guo Lingli, Liu Yongjiang, Zhang Guowei. 2019c. Driving force of plate tectonics: origin and nature. Geotectonica et Metallogenia, 43(4): 605~643(in Chinese with English abstract).
参考文献
Li Yang, Li Sanzhong, Guo Lingli, Zhou Zaizheng, Suo Yanhui, Wang Guangzeng, Zhu Junjiang, Liu Yiming, Liu Bo, Zhou Jie, Li Yuanjie, Zhang Guowei. 2019. Detachment-derived micro-blocks: new insights for the deformation mechanism of the ocean-continent transition and the mid-ocean ridge. Geotectonica et Metallogenia, 43(4): 779~794(in Chinese with English abstract).
参考文献
Liu Jinping, Li Sanzhong, Suo Yanhui, Zhu Junjiang, Li Xiyao, Dai Liming, Liu Yongjiang, Yu Shengyao, Guo Lingli. 2019. Subduction-derived oceanic micro-block: complex evolution of footwall in subduction system. Geotectonica et Metallogenia, 43(4): 762~778(in Chinese with English abstract).
参考文献
Liu Lijun. 2015. The ups and downs of North America: evaluating the role of mantle dynamic topography since the Mesozoic. Reviews of Geophysics, 53: 1022~1049.
参考文献
Liu Lijun, Hasterok D. 2016. High-resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging. Science, 353: 1515~1519.
参考文献
Liu Lijun, Peng Diandian, Liu Liang, Chen Ling, Li Sanzhong, Wang Yaoyi, Cao Zebiin, Feng Mingye. 2021. East Asian lithospheric evolution dictated by multistage Mesozoic flat-slab subduction. Earth-Science Reviews, 217: 103621.
参考文献
Liu Shaofeng, Nummedal D, Liu Lijun. 2011. Tracking the Farallon plate migration through the Late Cretaceous Western U. S. Interior Basins. Geology, 39: 555~558.
参考文献
Liu Shuwen, Bao Han, Sun Guozheng, Wang Wei, Fu Jinghao, Gao Lei, Guo Rongrong, Hu Yalu. 2022. Archean crust-mantle geodynamic regimes: a review. Geosystems and Geoenvironment, 1(4): 100063.
参考文献
Madrigal P, Gazel E, Flores K E, Bizimis M, Jicha B. 2016. Record of massive upwellings from the Pacific large low shear velocity province. Nature Communications, 7: 13309.
参考文献
Maruyama S, Santosh M and Azuma S. 2018. Initiation of plate tectonics in the Hadean: eclogitization triggered by the ABEL Bombardment. Geoscience Frontiers, 9(4): 1033~1048.
参考文献
McKenzie D P, Parker R L. 1967. The North Pacific: an example of tectonics on a sphere. Nature, 216: 1276~1280.
参考文献
Meng Fan, Li Sanzhong, Suo Yanhui, Zhu Junjiang, Li Xiyao, Dai Liming, Liu Yongjiang, Yu Shengyao, Wang Gang. 2019. Ridge Jumping-derived micro-blocks: unravelling a complex evolutionary process for divergent plate boundaries. Geotectonica et Metallogenia, 43(4): 644~664(in Chinese with English abstract).
参考文献
Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189: 419~426.
参考文献
Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research, 73: 1959~1982.
参考文献
Morgan W J. 1971. Convection plumes in the lowermantle. Nature, 230: 42~43.
参考文献
Mu Dunling, Li Sanzhong, Suo Yanhui, Zhu Junjiang, Li Xiyao, Wang Guangzeng, Guo Lingli, Liu Yongjiang, Liu Bo. 2019. Tectonic and geodynamic mechanism of back-arc-rifting derived micro-blocks: insights from back-arc spreading in the West Pacific. Geotectonica et Metallogenia, 43(4): 665~677(in Chinese with English abstract).
参考文献
Ning Wenbin, Kusky T, Wang Lu, Huang B. 2022. Archean eclogite-facies oceanic crust indicates modern-style plate tectonics. PNAS, 119(15): e2117529119.
参考文献
Peng Diandian, Liu Lijun. 2021. A newly discovered Late-Cretaceous East Asian flat slab explains its unique lithospheric. Journal of Geophysical Research, 126: e2021JB022103.
参考文献
Piper J D. 2013. A planetary perspective on Earth evolution: lid tectonics before plate tectonics. Tectonophysics, 589: 44~56.
参考文献
Sager W W, Huang Y M, Tominaga M, Greene J A, Nakanishi M, Zhang J C. 2019. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies. Nature Geoscience, 12: 661~666.
参考文献
Sawada H, Isozaki Y, Sakata S, Hirata T, Maruyama S. 2018. Secular change in lifetime of granitic crust and the continental growth: a new view from detrital zircon ages of sandstones. Geoscience Frontiers, 9(4): 1099~1115.
参考文献
Stern R J. 2007. When and how did plate tectonics begin?theoretical and empirical considerations. Chinese Science Bulletin, 52: 578~591.
参考文献
Stern R J. 2008. Modern-style plate tectonics began in Neoproterozoic time: an alternative interpretation of Earth's tectonic history. In: Condie K C, Pease V, Eds. When Did Plate Tectonics Begin on Earth? Geological Society of America Special Paper, 440: 265~280.
参考文献
Stern R J. 2016. Is plate tectonics needed to evolve technological species on exoplanets? Geoscience Frontiers, 7(4): 573~580
参考文献
Stern R J, Leybourne M I, Tsujimori T. 2016. Kimberlites and the start of plate tectonics. Geology, 44: 799~802.
参考文献
Stern R J, Gerya T, Tackley P J. 2018. Stagnant lid tectonics: perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geoscience Frontiers, 9(1): 103~119.
参考文献
Sun Guozheng, Liu Shuwen, Cawood P A, Tang Ming, van Hunen J, Gao Lei, Hu Yalu, Hu Fangyang. 2021. Thermal state and evolving geodynamic regimes of the Meso- to Neoarchean North China Craton. Nature Communications, 12: 3888.
参考文献
Tang Ming, Chen K, Rudnick R L. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351(6271): 372~375.
参考文献
Tapponnier P, Peltzer G, Le Dain A Y, Armijo R, Cobbold P. 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10: 611~616.
参考文献
Torsvik T H, Smethurst M A, Burke K, Steinberger B. 2010. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophysical Journal International, 167: 1447~1460.
参考文献
Vernant P. 2015. What can we learn from 20 years of interseismic GPS measurements across strike-slip faults? Tectonophysics, 644-645: 22~39.
参考文献
Wang Erchie, Meng Kai, Su Zhe, Meng Qingren, Chu J J, Chen Zhiliang, Wang Gang, Shi Xuhua, Liang Xinquan. 2014. Block rotation: tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang Fault. Tectonics, 33: 686~717.
参考文献
Wang Gang, Li Sanzhong, Jiang Suhua, Suo Yanhui, Guo Lingli, Zhu Junjiang, Wang Pengcheng, Liu Bo. 2019. Formation mechanisms and evolution of accretion-derived micro-blocks. Geotectonica et Metallogenia, 43(4): 745~761(in Chinese with English abstract).
参考文献
Wang Guangzeng, Li Sanzhong, Suo Yanhui, Li Xiyao, Zhu Junjiang, Liu Yongjiang, Guo Lingli, Liu Bo. 2019. Transform-derived microplates: classification, mechanism and tectonic significance. Geotectonica et Metallogenia, 43(4): 700~714(in Chinese with English abstract).
参考文献
Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207: 343~347.
参考文献
Wu Fuyuan, Wan Bo, Zhao Liang, Xiao Wenjiao, Zhu Rixiang. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6) : 1627~1674(in Chinese with English abstract).
参考文献
Wu Xiaowa, Qin Siqing, Xue Lei, Zhang Ke, Chen Hongran, Zhai Mengyang. 2021. Partition method of seismogenic tectonic block and its corresponding seismic zone. Geological Review, 67(2): 325~338(in Chinese with English abstract).
参考文献
Xiao Wenjiao, Windley B F, Sun Shu, Li Jiliang, Han Baofu, Han Chongming, Yuan Chao, Sun Min, Chen Hanlin. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477~507.
参考文献
Yin An. 2012. An episodic slab rollback model for the origin of the Tharsis Rise on Mars: implications for initiation of local plate subduction and final unification of a kinematically linked global plate tectonic network on Earth. Lithosphere, 4 (6): 553~593.
参考文献
Zeng Pusheng, Li Ruizhe, Liu Siwen, Wen Ligang, Zhao Jiujiang, Wang Shian. 2021. Yanshanian large igneous provinces in eastern China: magmatism-tectonics-resources-environment effects. Acta Geoscientica Sinica, 42(6): 721~748(in Chinese with English abstract).
参考文献
Zhang Guowei, Guo Anlin, Dong Yunpeng, Yao Anping. 2011. Continental geology, tectonics and dynamics. Earth Science Frontiers, 18(3): 1~12(in Chinese with English abstract).
参考文献
Zhao Guochun, Zhang Guowei. 2021. Origin of continents. Acta Geologica Sinica, 95(1): 1~19(in Chinese with English abstract).
参考文献
Zhao Guochun. 2007. When did plate tectonics begin on the North China Craton?insights from metamorphism. Earth Science Frontiers, 14(1): 19~32(in Chinese with English abstract).
参考文献
Zhao Lintao, Li Sanzhong, Suo Yanhui, Guo Lingli, Wang Guangzeng, Dai Liming, Zhu Junjiang, Liu Bo, Wang Gang. 2019. Propagation-derived micro-blocks: complex evolution of mid-ocean ridge accretion system. Geotectonica et Metallogenia, 43(4): 715~729(in Chinese with English abstract).
参考文献
Zhen Libing, Li Sanzhong, Guo Lingli, Wang Guangzeng, SuoYanhui, Zhu Junjiang, Li Xiyao, Dai Liming, Liu Yongjiang. 2019. Genetic mechanism of the propagation-derived microplate: a review. Geotectonica et Metallogenia, 43(4): 730~744(in Chinese with English abstract).
参考文献
Zheng Yongfei, Zhao G C. 2020. Two styles of plate tectonics in Earth's history. Science Bulletin, 65(4): 329~334.
参考文献
Zheng Yongfei, Chen Yixiang, Dai Liqun, Zhao Zifu. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Science China: Earth Sciences, 58: 1045~1069.
参考文献
Zhong Shijie, Zhang Nan, Li Zhengxiang, Roberts J H. 2007. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth and Planetary Science Letters, 261: 551~564.
参考文献
Zhong Shijie. 2021. Mantle dynamics on large spatial and temporal scales. Chinese Journal of Geophysics(in Chinese), 64(10): 3478~3502(in Chinese with English abstract).
参考文献
Zhou Jie, Li Sanzhong, Suo Yanhui, Li Xiyao, Guo Lingli, Zhu Junjiang, Liu Yongjiang, Wang Guangzeng, Li Yang. 2019. Type and genetic mechanism of collision-derived micro-blocks. Geotectonica et Metallogenia, 43(4): 795~823(in Chinese with English abstract).
参考文献
Zhu Rixiang, Zhao Pan, Zhao Liang. 2022. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Science China Earth Sciences, 65(1): 1~24.
参考文献
侯增谦, 赵志丹, 高永丰, 杨志明, 江万. 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22(4): 761~774.
参考文献
金振民, 姚玉鹏. 2004. 超越板块构造——我国构造地质学要做些什么?地球科学, 29(6): 644~650.
参考文献
李三忠, 戴黎明, 张臻, 郭玲莉, 赵淑娟, 赵国春, 张国伟. 2015. 前寒武纪地球动力学(Ⅳ): 前板块体制. 地学前缘, 22(6): 46~64.
参考文献
李三忠, 索艳慧, 刘博, 刘永江, 李玺瑶, 赵淑娟, 朱俊江, 王光增, 张国伟. 2018, 微板块构造理论: 全球洋内与陆缘微地块研究的启示. 地学前缘, 25(5): 324~355.
参考文献
李三忠, 曹现志, 王光增, 刘博, 李玺瑶, 索艳慧, 姜兆霞, 郭玲莉, 周洁, 王鹏程, 朱俊江, 汪刚, 赵淑娟, 刘永江, 张国伟. 2019a. 太平洋板块中—新生代构造演化及板块重建. 地质力学学报, 25(5): 642~677.
参考文献
李三忠, 索艳慧, 王光增, 姜兆霞, 赵彦彦, 刘一鸣, 李玺瑶, 郭玲莉, 刘博, 于胜尧, 刘永江, 张国伟. 2019b. 海底"三极"与地表"三极": 动力学关联. 海洋地质与第四纪地质, 39(5): 1~22.
参考文献
李三忠, 王光增, 索艳慧, 李玺瑶, 戴黎明, 刘一鸣, 周洁, 郭玲莉, 刘永江, 张国伟. 2019c. 板块驱动力: 问题本源与本质. 大地构造与成矿学, 43(4): 605~643.
参考文献
李阳, 李三忠, 郭玲莉, 周在征, 索艳慧, 王光增, 朱俊江, 刘一鸣, 刘博, 周洁, 李园洁, 张国伟. 2019. 拆离型微地块: 洋陆转换带和洋中脊变形机制. 大地构造与成矿学, 43(4): 779~794.
参考文献
刘金平, 李三忠, 索艳慧, 朱俊江, 李玺瑶, 戴黎明, 刘永江, 于胜尧, 郭玲莉. 2019. 残生微洋块: 俯冲消减系统下盘的复杂演化. 大地构造与成矿学, 43(4): 762~778.
参考文献
孟繁, 李三忠, 索艳慧, 朱俊江, 李玺瑶, 戴黎明, 刘永江于胜尧, 汪刚. 2019. 跃生型微地块: 离散型板块边界的复杂演化. 大地构造与成矿学, 43(4): 644~664.
参考文献
牟墩玲, 李三忠, 索艳慧, 朱俊江, 李玺瑶, 王光增, 郭玲莉, 刘永江, 刘博. 2019. 裂生微地块构造特征及成因模式: 来自西太平洋弧后扩张作用的启示. 大地构造与成矿学, 43(4): 665~677.
参考文献
汪刚, 李三忠, 姜素华, 索艳慧, 郭玲莉, 朱俊江, 王鹏程, 刘博. 2019. 增生型微地块的特征及成因模式: 来自洋壳高原俯冲和转换边界的启示. 大地构造与成矿学, 43(4): 745~761.
参考文献
王光增, 李三忠, 索艳慧, 李玺瑶, 朱俊江, 刘永江, 郭玲莉, 刘博. 2019. 转换型微板块类型、成因及其大地构造启示. 大地构造与成矿学, 43(4): 700~714.
参考文献
吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36: 1627~1674.
参考文献
吴晓娲, 秦四清, 薛雷, 张珂, 陈竑然, 翟梦阳. 2021. 孕震构造块体与相应地震区划分方法. 地质论评, 67(2): 325~338.
参考文献
曾普胜, 李睿哲, 刘斯文, 温利刚, 赵九江, 王十安. 2021. 中国东部燕山期大火成岩省: 岩浆-构造-资源-环境效应. 地球学报, 42(6): 721~748.
参考文献
张国伟, 郭安林, 董云鹏, 姚安平. 2011. 大陆地质与大陆构造和大陆动力学. 地学前缘, 18(3): 1~12.
参考文献
赵国春, 张国伟. 2021. 大陆的起源. 地质学报, 95(1): 1~19.
参考文献
赵国春. 2007. 从变质作用观看板块构造何时在华北克拉通开始 (英文) . 地学前缘, 14 (1), 19~32.
参考文献
赵林涛, 李三忠, 索艳慧, 郭玲莉, 王光增, 戴黎明, 朱俊江, 刘博, 汪刚. 2019. 延生微地块: 洋脊增生系统的复杂过程. 大地构造与成矿学, 43(4): 715~729.
参考文献
甄立冰, 李三忠, 郭玲莉, 王光增, 索艳慧, 朱俊江, 李玺瑶, 戴黎明, 刘永江. 2019. 延生型微板块成因机制模拟研究进展. 大地构造与成矿学, 43(4): 730~744.
参考文献
郑永飞, 陈伊翔, 戴立群, 赵子福. 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45(6): 711~735.
参考文献
钟时杰. 2021. 大尺度地幔动力学研究的现状和展望. 地球物理学报, 64(10): 3478~3502.
参考文献
周洁, 李三忠, 索艳慧, 李玺瑶, 郭玲莉, 朱俊江, 刘永江, 王光增, 李阳. 2019. 碰生型微地块的分类及其形成机制. 大地构造与成矿学, 43(4): 795~823.
参考文献
朱日祥, 赵盼, 赵亮. 2022. 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1~25.
目录contents

    摘要

    传统板块构造理论50多年来一直是占统治地位的地学理论,是理解固体地球运行的基本范式,但遇到三大难题:板块起源、板内变形和板块驱动力。针对这三大难题,微板块构造理论试图开拓一个全球构造研究的新范式。本文通过与传统板块构造理论中基本原理的逐条对比,阐明了微板块构造理论的基本原理和优势及其对传统板块构造理论的拓展。微板块构造范式既不同于传统板块构造范式,又不同于地幔柱范式,是两者的重要补充与拓展。文中着重从几何学、运动学、动力学、适用范围、理论出发点、理论假设与预测的角度,阐明了大板块与微板块的异同,并探讨了两者的转换关系及其转换机制的多样性,介绍了微板块生长成为大板块的4种途径、大板块破碎为微板块的3种转换模式,探索了前板块构造体制下微地块在非线性地球系统中通过自组织、自生长等方式,进化为板块体制下微板块的自然选择过程。本文还提出陆壳型微地块是密度选择的结果,其密度决定了其保存机制,这是陆壳起源的根本;微地块向微板块的转变是刚性选择的结果,其刚性是初始板块构造体制起始的必要条件;微板块不对称俯冲或对流型式的转变是热选择的结果,其热不对称性是现代板块构造体制起始的必要条件。

    Abstract

    The traditional plate tectonics theory has been the dominant theory in geoscience for more than 50 years. It is the basic paradigm to understand how the solid Earth operated, but it has encountered three major problems: origin of plate tectonics, intraplate deformation and plate-driving mechanisms. Aiming at these three problems, the theory of Microplate Tectonics attempts to develop a new research paradigm for global tectonics. By comparing with the point-to-point basic principles of the traditional plate tectonic theory, this paper describes the basic principles and advantages of the microplate tectonic theory and its extension to the traditional plate tectonic theory. Microplate tectonic paradigm, different from both the paradigm of traditional plate tectonics and mantle plume, is their important supplement and extension. From the views of geometry, kinematics, dynamics, scope of application, theoretical starting point, theoretical hypothesis and prediction, this paper explores the similarities and differences between megaplates and microplates, revealing their transitional relationships and the diversity of transitional mechanism, introducing four growth ways from microplates to large-scale plates and three transition models from large-scale plates to microplates, and exploring the natural selection process of micro-blocks under the pre-plate tectonic system to evolve into microplates under the plate system through self-organization and self-growth in a nonlinear Earth system. It is proposed that the continental crust-type micro-block is a result of density selection, and the density determines its preservation mechanism, which is the basis of the origin of continental crust. The transition from micro-block to microplate is a result of rigidity selection, which determines the necessary conditions for the initiation of the original plate tectonic system. The transition of asymmetric subduction or mantle convection pattern is the result of thermal selection for microplate, and its thermal asymmetry determines the necessary conditions for the initiation of modern plate tectonic system.

  • 20世纪60年代末期正式诞生的板块构造理论(Wilson,1965; McKenzie et al.,1967; Morgan,1968; LePichon,1968)被誉为一场深刻的地学革命,彻底地将大地构造思想从固定论推向了活动论,是人类认知地球的思想变革。板块构造理论提出之初,LePichon(1968)提出把全球划分为6个大板块,而Morgan(1971)认为全球应划分为16个左右的板块,每个板块的面积大小不等,其内部在构造上是相对稳定的区域。在这两种方案提出的期间,还曾经出现过7分方案、12分方案、15分方案(图1)。如果按照面积大小,板块可以进一步分为大、中、小、微四级(Li Sanzhong et al.,2018a)。进入21世纪,Bird(2003)发表了一个全球现今板块边界模型(PB2002模型)数据库,划分了现今活动的52个板块; 随后,Harrison(2016)据GPS速度差异将全球岩石圈划分出159个现今板块,并在其论文附表中列举了这159个板块名称和面积,面积最小的仅有200多平方千米。实际上,考虑到已经增生、碰撞或拼贴到大板块内的死亡或不活动的板块,已经过细致研究的、地史上存在过的、大小不等的板块应不下1000个(Li Sanzhong et al.,2018a)。可见,在板块构造理论框架下,板块划分的趋势是越来越精细,这也意味着研究越来越深入。

  • 图1 现今全球8个大板块和7个中小微板块的板块划分方案与边界类型(据Garrison et al.,2014修改)

  • Fig.1 Types of plate margins and plate division for present-day 8 mega-plates plates and 7 mid-to micro-plates (modified after Garrison et al., 2014)

  • 红色三角形为活火山,黄色圆圈为地震,三角齿状褐色实线为俯冲带,锯齿状红色实线为洋中脊,连接洋中脊的实线为转换断层或破碎带

  • The red triangle is an active volcano, the yellow circle is an earthquake, the triangle toothed brown solid line is a subduction zone, the sawtooth red solid line is a mid-ocean ridge, and the solid line connecting the mid-ocean ridge is a transform fault or fracture zone

  • 这种对地球岩石圈单元越来越细致的划分,就是现代科学的解剖法在板块划分中的具体应用,正如章太炎曾经说过的:析狗至微而无狗。最后,解剖法的结果可能就会得到公孙龙所言的:白马非马。这就是说,当人们对传统板块构造理论框架下的大板块,进一步精细划分其次级构造单元的时候,最后划分出的最小构造单元就可能已经不是板块了,而往往是某条逆冲推覆构造带或洋陆转换带等,这在实践中经常遇到。为此,划分到什么程度才谓之“微板块”,什么时候才叫非“板块”的传统构造单元(如构造带)?要回答这个问题,不仅取决于所研究对象的时间范围长短,也取决于具体研究对象的空间尺度大小。本文拟通过大板块与微板块的比对研究,揭示出两者的本质差异,最终探讨一种既不同于传统板块构造范式、又不同于地幔柱构造范式的微板块构造范式; 且微板块划分为微陆块、微洋块、微幔块后,三者的形成过程本质上是一个强烈的壳幔相互作用过程(Liu Lijun et al.,2021),这些差异过程控制着成岩多样性、元素迁移和富集规律、金属矿产的成矿专属性、成藏差异性、成灾特异性,因此微板块研究有助于推动精准预测、数字勘探、智能感知的快速发展,推动“三稀”等关键性金属矿产的精准找矿。此外,微板块起源研究对理解陆壳起源(赵国春等,2021)、海洋起源、生命起源、宜居地球、大气更替与多圈层相互作用与耦合也至关重要。

  • 1 板块构造理论与大板块

  • 板块构造理论在其刚刚确立之时是集成创新的典范,但也并非完全令人耳目一新。因为在该理论提出之前,岩石圈、软流圈、地幔对流、板块、转换断层等一系列概念要么早已提出、要么刚刚诞生,并不属于该理论的原始创新。例如,岩石圈(Lithosphere)、软流圈(Asthenosphere)等是于1914年由Barrel J首先依据力学强度差异而划分的; 地幔对流是于1929年首先由Holmes A提出并命名的,原本是用来解释槽台学说中地壳垂直运动的机制问题,但在板块构造理论集成创新的过程中,对其内涵进行了重新释义,即是:① 地幔对流层次由Holmes所认为的位于莫霍面之下,改为了现今所认为的岩石圈之下; ② 地幔对流由解决垂直运动的机制,变为了解决水平运动的机制(Conrad et al.,2002)。如今,板块构造理论中的“岩石圈板块”概念,也是在人们认知过程中,由其早期概念的具体含义不断演变而来,与之前的理解最为显著的变化就是意识到:岩石圈厚度介于100~300 km,由地壳和地幔上部(岩石圈地幔)构成,宏观上可区分软流圈之上发生漂移的八大板块和众多微小板块(图1)。虽然传统板块构造理论至今没有一个统一表述,但总体可以简单概括为以下几点:① 几何学:垂向上,地球表层由刚性的大陆岩石圈和大洋岩石圈构成,深部由软流圈构成; 平面上,被洋中脊、转换断层、俯冲带(及缝合线)三种板块边界分割为7~13个板块。② 运动学:刚性板块围绕欧拉极在地球表面做小圆和水平运动。③ 变形性:板块内部是刚性的,变形主要集中在板块边缘。④ 周期性:大洋板块在洋中脊生成、俯冲带消亡,循环往复,遵循Wilson循环的生消过程。⑤ 活动论:大陆漂移是被动的,海底扩张是主动的。⑥ 动力学:地幔对流驱动了板块运动。

  • 板块构造理论提出后,50多年的地质实践发现,该理论还是存在很多问题的。例如,板块构造理论早期并没有赋予Wilson旋回200 Ma的周期,将Wilson旋回阐述为一个理想洋盆的演化历程,并不是板块的生灭旋回。实际上,即使是具体的洋盆之间,其Wilson旋回的时限也是不同的。特别是,早期的板块重建主要是围绕大板块展开的,板块重建结果很难准确对应区域地质事件。而且,20世纪90年代以来,基于海洋地质调查建立的传统板块构造理论,在应用到早前寒武纪地质过程、大陆地质过程中也遇到不少新问题,与这两个领域相关的两个核心问题分别简称为“板块起源”、“板块登陆”难题。加上“板块驱动力”难题,板块构造理论迄今依然面对着三大公认的难题:板块起源、板块登陆和板块动力。作为应对这些难题的方案,特别是为了弥补板块构造理论对大陆变形行为理解上的不足,大陆流变学成为了大陆动力学研究的核心,其目标就是全面认识大陆岩石圈的流变学行为(金振民等,2004; 张国伟等,2013; 郑永飞等,2015; Liu Lijun et al.,2016),试图解决“板块登陆”难题。

  • 但是,现今的解决“板块登陆”难题的方案,大多依然是头痛医头、脚痛医脚的做法,实际上对于“板块登陆”问题,如克拉通盆地问题、板内变形问题,其解决途径可能不完全在大陆板块自身(如大陆流变学等),而在大陆板块自身之外; 但头痛医头、脚痛医脚的做法归根结底还是将这些问题当做了大型大陆板块内部自身产生的形变问题。“板块登陆”难题的问题根源在于三点:一是由于传统板块构造理论规定“板内”是刚性的,不可变形的,因而这个理论自身的规定,给自身在解决问题时带来了障碍。二是,大板块划分粗略且足够大,以致于包罗万象,模糊了“大板块”内部的其他次级微小板块的差别,通过人为的板块划分“消除”或“隐藏”了内部微小块体的差异,人为使得本来属于微小块体行为的板缘过程,转变为了“大板块”的“板内变形”过程,从而产生了难题。三是,克拉通盆地挠曲-均衡沉降机制、板内裂解或走滑等板内变形机制,可能来自大陆大板块之下的更深部相关地幔对流过程,而非“大板块”的大陆岩石圈部分自身内部形变机制所致。总之,板块构造理论的最大问题在于其划分的板块太大,即前述三个难题都可能归结于一个空间尺度上“大板块”问题。

  • 2 微板块构造理论与微板块

  • 既然板块构造理论问题的根源在于板块的尺度、规模太“大”,人们就有必要从细微角度入手,来分析可能的解决方案。在板块构造体制下,除了大小不同的差异外,“大地构造学”中的微板块或微地块与大板块总体是类似的,也必须满足以下4个条件,以区别于“构造地质学”中的一般构造单元:① 平面几何上,相对大板块而言面积微小,微板块可以介于约105~106 km2级,长宽约300~1000 km,甚至宽泛到定义为“可填图”的独立构造单元,所以有的仅有几百平方千米; ② 相对统一的运动块体,具有一致的运动学行为,GPS现今速度场或板块重建的速度场上相对一致; 可以是刚性微板块,但极端环境下(如时间上的早期地球、空间上的深部地幔)也可以有可变形微板块; ③ 动力学上具有起因多样性,一个微板块具有统一的主导成因,如俯冲、碰撞、拆沉、底侵、地幔柱、旋转、转换走滑等构造诱发,一个微板块演化过程中,其驱动力可构成成因链,是可以变化的; 而不同微板块之间的同时运动空间联动性; ④ 各自具有相对独立的构造演化史。

  • 据此,这里再通过系统的总结分析,逐条对照传统板块构造理论的基本原理,总体可以将微板块构造(Li Sanzhong et al.,2018a; 李三忠等,2018)的基本理论框架,简单概括为以下几点:① 几何学:垂向上,微板块是壳幔系统的重要独立微小构造单元,不仅可以发育于岩石圈层次,而且也可以发育于地幔深部,岩石圈层次可分为微陆块、微洋块,深部地幔层次为微幔块; 平面上,现今地球表层可划分为上千个微陆块、微洋块(图2),此外,深部地幔还有大量微幔块发育; 几何学上不同于传统板块构造理论的是,微板块之间不仅存在水平的碰撞、增生和拼贴几何关系,而且可以存在垂向的叠置关系。② 运动学:微洋块或微陆块(即不包括微幔块在内的微板块)不仅可围绕欧拉极在地球表面做小圆、刚性、水平运动和围绕自轴做旋转运动,垂向上还可跨圈层做上下运动; 运动学上不同于传统板块构造理论的是,微板块不只是局限于岩石圈运动,而是可以跨固体圈层运动。③ 变形性:微板块内部是刚性的,也可以具可变形性,变形主要集中在微板块边缘; 变形性方面不同于传统板块构造理论的是,微板块短期变形行为是刚性的,长期变形行为是可变形的,而微幔块长期行为和短期行为可能都是塑性的; 微板块边界可以是活动的,也可以是不活动的。④ 周期性:微板块可在任何构造部位生消,具有相对独立构造的演化史,发生发展遵循非Wilson或Wilson旋回,周期时限不等; 周期性方面不同于传统板块构造理论的是,微板块周期具有非线性特征,取决于不同尺度的驱动力系统的非线性行为。⑤ 活动史:微板块可以曾经是大板块,其运动多数是被动的; 非板块体制下也可发育,则称为微地块; 微板块超越板块边缘局限,可活动或死亡于包括传统板块构造理论认为的大板块“板内”环境的各种构造环境或构造部位。⑥ 动力学:微板块的驱动力机制具有多样性、关联性、联动性,终极驱动力的自驱动机制为瑞利-泰勒不稳定性(热力、重力或两者的联合),而终极驱动力的他驱动机制可以为渐变性的邻近块体相互作用或者灾变性的撞击作用(可统称为外力)。

  • 如果要将微板块构造理论拓展到早前寒武纪的前板块构造体制下,或拓展到超越岩石圈的更深层地幔中,也完全可以摆脱“板块”之类的术语约束,直接将微板块称为微地块(也包括微陆块、微洋块、微幔块),以避免人为术语的规定导致理论的缺陷。而且,微板块的提出可以解决传统板块构造理论遗留的大量疑难问题。例如,大板块的同一条边界上发生的边界过程相同,但是,同时产生的矿床类型沿该边界的不同段落存在巨大差异; 从微板块构造理论角度,虽然大板块具有同样的边界过程,但该大板块因为是由不同微板块组成的,故沿此大板块边界不同段落成矿差异性(曾普胜等,2021)、控制矿种类型的因素实际上是微板块物质组成、边界类型和边界过程。

  • 与传统板块构造理论不同的是,微板块的边界类型不再局限于离散型洋中脊、转换型转换断层、汇聚型俯冲带(或碰撞带)三大类,而是具有20多种(Li Sanzhong et al.,2018a)。本文首次公开的图2中展示了全球微板块的复杂性,但没有细分这些板块边界类型。在这个OUC2022版本中,微板块编号方案采用:先8个现今大板块的英文名称首(或前两个)字母加999(Af999—非洲板块,An999—南极洲板块; Au999—澳大利亚板块; E999—欧亚板块; I999—印度板块; N999—北美洲板块; P999—太平洋板块; S999—南美洲板块),构成现今八大板块各自内部的微板块可根据自老到新顺序依次编号为除999之外自001到998的某个3位数字。例如,非洲板块内部的最为古老微地块(或克拉通)编号为Af001,依次编下去。全球而言,这种编号法可容纳7992个微板块,应当足够满足描述地球形成以来微板块或微地块动态重组过程的需求,这样也比目前GPlates软件中板块编号更合乎微板块的自然演化历史。对于同一个大板块内部微板块的编号还有一个原则:先陆后海,即先微陆块,再编该大板块内部的微洋块!对于微陆块,则先编该大板块内的中间最老的、再编其相邻年轻的!对于大洋为主的大板块,如太平洋板块,其内部编号规则则与大陆为主的大板块的相反,先编靠近俯冲带下盘的微洋块,其次再编偏向大板块内部的微洋块,最后编号洋中脊附近的微洋块!对于邻近俯冲带上盘的实际属于邻区大板块,通常在邻区大板块中属于裂解型微陆块,对此应最后进行编号!图中全球克拉通构成的微陆块用粉红色区分,实际上一些克拉通还可细分为多个微陆块,如皮尔巴拉、伊尔冈克拉通可分别划分为5个、9个不同微地块(前人称为地体),北美克拉通可划分为16个以上微地块; 分割微陆块的不同时期造山带用不同的绿色辅以形成地质时代的代号; 全球海域已命名的微洋块统一用深蓝色,其余正常海域未命名的用浅蓝色。图2中编号的板块或微板块具体名称在此省略,一共792个微板块:E编号的234个,Au编号的72个,Af编号的66个,I编号的18个,S编号的46个,An编号的39个,P编号的174个,N编号的142个。

  • 图2 本文全球微板块的OUC2022版本(微板块边界将提供给读者共享)初步划分方案

  • Fig.2 Initial OUC2022 version of global microplates in this paper (microplate margins will be provided to the readers)

  • 3 微板块与大板块的异同与转换

  • 微板块(包括微陆块、微洋块、微幔块)可以转变(包括生长、增生、聚合等)为大板块(或大幔块,见后文),大板块也可以破碎(包括拗沉、裂解、撕裂、拆沉、坠离等)为微板块(李阳等,2019; 王光增等,2019; 周洁等,2019; 甄立冰等,2019; 刘金平等,2019; 赵林涛等,2019; 汪刚等,2019; 孟繁等,2019; 牟墩玲等,2019); 但这个转换过程和机制可能完全不同,其中的复杂性还与板块系统随着地球地幔热状态变化而演化。

  • 3.1 微板块生长为大板块的途径

  • 微陆块、微洋块和微幔块属不同组成类型的微板块,自然具有不同的生长方式。

  • 第一种途径是微陆块聚集为大板块,从微板块变成大板块在晚古生代以来的大板块中例子很多,最为显著的就是潘吉亚超大陆是因古特斯洋闭合导致的、由陆块组成的一个单一大板块,潘吉亚超大陆北部的劳亚古陆是由一系列微板块与北部的劳俄古陆南部边缘形成的、超大陆南部的冈瓦纳古陆在其南部、北部陆缘也发生了微陆块的增生、拼贴与碰撞,最终潘吉亚超大陆才由劳亚古陆与冈瓦纳古陆集结。

  • 第二种途径是微洋块聚集为大板块,像太平洋板块这样绝大部分由洋组成的大板块,其内部也存在死亡的镶嵌式微洋块,这些不同的微洋块实际是洋中脊跃迁而不断消亡,镶嵌式变成了大板块的一部分组成,并逐渐趋向形成具有统一行为的复合式大板块(Li Sanzhong et al.,20172019a; 李三忠等,2019a); 虽然太平洋板块起源于大洋内部的法拉隆、菲尼克斯、依泽奈崎三大板块之间的不稳定三节点(Boschman et al.,2016),但太平洋板块边缘也有大量微陆块构成,例如,下加利福尼亚微板块可能是岛弧基底构成的微陆块,在巴布亚新几内亚一带也存在类似微板块。此外,就是地幔柱-洋中脊相互作用也可以导致大板块边缘出现微洋块,如Shatsky海隆附近的洋中脊三节点发生了9次显著跃迁,每次跃迁都形成多个微洋块(Sager et al.,2019)。

  • 第三种途径是微板块从邻区大板块转“嫁”入现今所在的大板块,使得一个大板块变小,而另一个板块相对变大,这就是卡尔斯伯格洋中脊两侧因地幔深部大型横波低速异常区(LLSVP,也可以称为“大幔块”,即大型地幔块体)边缘地幔柱生成带与演化过程中洋中脊相互作用产生一些微洋块和微陆块的归属变化、非洲板块与印度板块大小消长的情况(Burke et al.,2008; Torsvik et al.,2010),最终导致原本属于印度板块的一些微板块并入非洲板块,而原本属于非洲板块的一些微板块进入印度板块。尽管可依据现今地震分布、火山活动等标志,清晰厘定非洲板块与印度板块现今边界为卡尔斯伯格洋中脊,但现今洋中脊附近微板块在上述演化过程中的归属变化,使得从组成亲缘性角度去准确划分非洲板块和印度板块变得更难。

  • 第四种途径是微幔块在地幔过渡带或核幔边界附近堆聚为地幔内部的“塑性”大块体,地幔内部也本不应当存在刚性的“大板块”,因此对此最为合适的称谓应为“大幔块”; 这里注意,微幔块作为一类特殊的微板块,已经不属于岩石圈组成,而是软流圈及其下部地幔内的独特地质体,这些微幔块可以以碎片化的形式再次聚集为大幔块。例如,华北克拉通下部的地幔过渡带实际可能是一系列微幔块的堆聚,因为其厚度超过了正常大洋岩石圈厚度近2倍。

  • 以上所述都是现代板块构造体制下的微板块向大板块(或大幔块)转变的各种机制,实际上,早期地球或早前寒武纪前板块构造体制下的微地块向大板块转变的机制可能更多,还有待更多研究去挖掘。

  • 3.2 大板块向微板块的转换模式

  • (1)大板块碎裂转变为微洋块。微洋块常见产生于大洋岩石圈板块边缘,如太平洋板块东侧的东太平洋海隆,一些微洋块的核部洋最初可能因洋中脊拓展、叠接而裂离了太平洋板块,变成了独立的微洋块,并最终可能贴向法拉隆板块或科科斯小板块的西缘。在西太平洋的日本洋—陆俯冲型沟—弧—盆体系、马里亚纳洋—洋俯冲型沟—弧—盆体系中,弧后扩张都会产生新的微板块; 但是,日本洋—陆俯冲型沟—弧—盆体系中多为微陆块,如琉球微陆块,少数可微洋块为主,如南沙微板块或西沙微板块(主体为洋壳组成,也有部分陆壳组成)(图3); 而洋—洋俯冲型马里亚纳沟—弧—盆体系中基本都为微洋块,如马里亚纳微洋块(洋岛组成,图3)。

  • 图3 传统菲律宾海板块在新的微板块构造框架下的微板块划分方案

  • Fig.3 Microplate division of the traditional middle-scale Philippine Sea Plate under the new framework of microplate tectonics

  • 文中涉及的微板块编号(与图2是一致的)及名称:E212—琉球微陆块; E213—东沙微幔块(洋陆转换带); E214—西沙微陆块; E220—南沙微陆块; P033—东北菲律宾海微洋块; P038—北菲律宾海微洋块; P039—南菲律宾海微洋块; P046—西南菲律宾海微洋块; P040—西四国—帕里西维拉微洋块; P041—东四国-帕里西维拉微洋块; P044—西马里亚纳微洋块; P045—马里亚纳微洋块; P053—西雅浦微洋块; P054—东雅甫微洋块

  • The microplate numbering (consistent with Fig.2) and names involved in the text: E212—Ryukyu; E213—Dongsha Mantle Micro-block (Ocean-continent transition zone) ; E214—Xisha Continental Micro-block; E220—Nansha Continental Micro-block; P033—Northeast Philippine Sea Oceanic Micro-block; P038—North Philippine Sea Oceanic Micro-block; P039—South Philippine Sea Oceanic Micro-block; P046—Southwest Philippine Sea Oceanic Micro-block; P040—Xishiguo Palicivila Oceanic Micro-block; P041—Dongsiguo Palicivila Oceanic Micro-block; P044—Western Mariana Oceanic Micro-block; P045—Mariana Oceanic Micro-block; P053—West Yap Oceanic Micro-block; P054—East Yap Oceanic Micro-block

  • (2)大板块破坏转变为微幔块。大板块转变为微幔块的最显著区域就是太平洋板块沿着伊豆-小笠原-马里亚纳海沟俯冲的板片正陆续脱离太平洋板块母体,发生撕裂、指裂、拆沉转变为微幔块,并坠入软流圈,直至滞留在410~660 km深处的地幔过渡带(Avdeiko et al.,2007)。可见,“俯冲板片”是还连着板块母体的已俯冲部分,微幔块不同于板片,是由俯冲板片脱离其板块母体后落入地幔内部的已独立部分。实际上,在新特提斯洋消亡过程中,类似的微幔块现今已经滞留在这些特提斯造山带下部的地幔过渡带内(侯增谦等,2006),有的已经坠入地幔1000 km处或更深处。类似微幔块现象在岛弧下面也很显著,在这里微幔块还表现为很显著的上下叠置关系。这是第一类微幔块,即大洋型大板块俯冲转变成的洋幔型微幔块。第二类微幔块为大陆型或克拉通型大板块岩石圈地幔部分发生拆沉转变成的陆幔型微幔块。最为典型的例子就是中生代作为欧亚板块组成部分的华北克拉通,其大陆岩石圈地幔在古太平洋板块俯冲脱水影响下,诱发了稳定的大陆岩石圈地幔下部发生撕裂、侵蚀或拆沉而减薄,并形成了一些拆沉的陆幔型微幔块(Li Sanzhong et al.,2019b)。

  • (3)大板块碰撞诱发微陆块。大板块碰撞是一个激烈的地质事件,最为典型的例子莫过于特提斯构造域印度板块与欧亚板块碰撞、阿拉伯板块与欧亚板块碰撞(Li Sanzhong et al.,2018b; 吴福元等,2020; 朱日祥等,2022)。印度板块与欧亚板块碰撞导致欧亚板块内部出现一些块体沿着活化的老断裂带或新生的断裂带发生走滑、挤出、逃逸、旋转运动(Molnar et al.,1975; Tapponnier,1982; Wang Erchie et al.,2014),例如东侧的印支地块、滇缅马苏微陆块向东南逃逸,西侧的赫尔曼德(Helmand)微陆块(也称阿富汗西微陆块)、伊朗的Lut微陆块向西挤出。阿拉伯板块与欧亚板块碰撞在东侧形成了中北部伊朗微陆块和中东部伊朗微陆块(后者含Yazd和Tabas等微陆块)向东的逃逸、西侧形成了安纳托利亚微陆块向西的挤出。这些过程现在还在持续发生,从GPS速度场就能识别(图4)。类似的过程也可以导致形成一些碰撞谷,如欧洲的莱茵等一些中生代裂谷,是冈瓦纳古陆与劳亚古陆碰撞产生的裂解,这些裂谷中心在传统的板块构造理论中属于板内环境,但这在微板块构造理论框架中,则属于微陆块的离散型边界。

  • (4)大板块裂解转变为微板块。大板块通过裂解作用转变为微板块的例子比较常见。例如,超大陆作为一个完整的全球性超级大陆板块,在地幔柱作用下,可以分裂为多个陆壳型中、小板块或微陆块; 陆壳为主的大板块也可能因为地幔柱作用诱发三叉裂谷,三叉裂谷中的两支裂谷可发育形成小洋盆,从而将大板块分裂为微、小陆块,如Afar地幔柱导致非洲板块分裂出北侧的阿拉伯板块、东侧的索马里微板块、西侧的努比亚微板块和这三者之间的Danakil微陆块,且东非裂谷东支和西支的裂谷中轴断裂也是微板块边界,进而将坦桑尼亚克拉通(即维多利亚湖的基底)也围限为一个微陆块。这些微板块现今都是活动的,因此按照微板块构造理论,非洲板块就不是传统板块构造理论定义的一个完整刚性板块。此外,洋壳型大板块也可能因为地幔柱的破坏而分裂为多个微洋块,如太平洋板块。在早期地球的地幔极端热状态下,地幔柱相对较发育,因而也可能是前板块构造体制下微陆块广泛且弥散性发育的原因。

  • 3.3 大板块与微板块的异同

  • 3.3.1 几何边界对比

  • 传统板块构造理论中,活动板块边界只有三种:俯冲带、洋中脊、转换断层,如果碰撞带或缝合线作为一类活动板块边界的话,那也只有4类板块边界类型; 当然,也可以将转换断层再细分为大陆型转换断层(如新西兰阿尔派恩断裂、北美的圣·安德烈斯断裂)、大洋型转换断层(如克利珀顿破碎带)。但是微块边界类型极其复杂多样,包括活动或死亡的裂谷中心、活动或死亡的拆离断层、大洋或大陆俯冲带、洋中脊、大陆型或大洋型转换断层、破碎带、假断层、切割岩石圈的走滑型断裂、洋内汇聚带、叠接扩张中心、非叠接扩张中心、洋脊断错、残留弧、碰撞带、缝合线、地幔内部包绕微幔块的应变不连续面等20种以上(Li Sanzhong et al.,2018a),其成因极其复杂,不只是俯冲、扩张、碰撞和转换4类过程。因为微板块构造理论体系中边界类型在20种以上,所以三个板块之间的三节点类型也比传统板块构造体制下三类板块边界组合的三节点类型多,这意味着地质过程更复杂。目前对这些更多类型三节点的稳定性方面尚有待深入研究。

  • 此外,传统板块构造理论中,板块边界只能是直立或高角度的,平板俯冲情况下才会出现因挤压作用产生的板块间垂向叠置关系。但是,除此之外,在微板块构造理论框架下还存在两类伸展环境下的板块垂向叠置关系,一是被动陆缘的伸展拆离断层也是微板块边界,大陆型伸展拆离断层会使得一些微陆块上覆于异地的大板块之上,并随着伸展强度增加或伸展裂解中心跃迁而进入大洋内部,这也是很多人早期反对板块构造理论的证据,但现今可以清晰说明微陆块进入大洋的过程; 这种情况下,微板块之间关系是垂向叠置关系,形成洋陆转换带(Ocean-continent transition zone),而不是我们称的洋陆过渡带(Ocean-continent connection zone); 这个洋陆转换带位于传统板块构造理论的被动陆缘,传统理论归为板内环境,但在微板块构造框架下属于板块边界。注意的是,传统板块构造理论中定义板块边界必须是活动的,被动陆缘曾经是活动的,但现在不活动了,因此得名; 然而,被动陆缘并非严格不活动,这要区分是哪类构造运动不活动,所以微板块构造理论不限定微板块边界必须是活动的,也可以是死亡的。二是洋中脊的伸展拆离断层也是微板块边界,这里形成海洋核杂岩,也存在微洋块的垂向叠置关系。

  • 图4 欧亚板块南缘由两个大陆型大板块之间碰撞诱发的微陆块和挤出构造

  • Fig.4 Continental microplates and escape tectonics triggered by continent-continent collisions in the southern Eurasian plate margin

  • 箭头为GPS速度方向,其长短表示挤出速率大小(GPS数据主要据Vernant,2015修改,有补充)

  • The arrow indicates the GPS velocity direction, and its length indicates the extrusion rate (GPS data are mainly modified and supplemented from Vernant, 2015)

  • 3.3.2 运动方式对比

  • 微板块构造理论框架下,微板块的运动除了传统板块构造理论体系中板块水平运动外,微板块还可以发生整体上升和沉降作用,特别是可以发生围绕自身旋转轴(旋转轴在微板块内部某处)的水平旋转运动(注意区分板块自旋与板块随地幔环向流(Toroidal)旋转的差别)。这种原地旋转显然不同于传统板块构造体制下板块围绕欧拉极的水平旋转(旋转轴在大板块外部某处),围绕欧拉极的板块水平旋转实际不是板块绕自身旋转轴的旋转,该板块没有在软流圈上发生自我旋转; 特别是对于太平洋板块这样的大板块而言,因为其黏滞力巨大,是不可能发生这种自我旋转的,更不可能是所谓的热点轨迹转向所指示的1~2 Ma“瞬间”期间发生大角度自我旋转。

  • 除上述差别之外,微板块构造体制下,微板块可以跨圈层运动,大型岩石圈板块可以在俯冲带发生分段差异性俯冲,如指裂式俯冲板片,最终脱离俯冲板块母体,破碎为一系列孤立于地幔深处的微幔块,微幔块在地幔风的作用下,在地幔流中可定向深入迁移到大陆内部克拉通的下方,引起克拉通盆地垂向运动或挠曲沉降(Liu Lijun,2015),这是一种独特的非大陆自身内部机制引起的陆内变形机制。

  • 3.3.3 动力机制对比

  • 微板块构造理论没有限定微地块或微板块的驱动力机制是唯一的或固定的,不同地史时期地球的热状态具有显著差异,微板块的驱动力机制随地球热状态不同而显著不同(李三忠等,2019b2019c)。比如,早期地球因坠离(Drip-off)或拗沉(Sagduction)所致的位于地幔中的微幔块,其成因与板块体制下俯冲产生的微幔块,不仅在成因机制上差异巨大,而且两种体制下形成的微幔块组分也很可能差异显著,早期地球的微幔块可能包括较多由基性下地壳的相变产物,晚期板块俯冲产生的微幔块则主要由洋幔组成,而克拉通岩石圈地幔拆沉产生的微幔块则由陆幔组成(图5)。微板块驱动机制比板块驱动力机制在类型上更具多样性。如果必需给出一个终极驱动力,那么无论在任何地质历史时期,微板块构造驱动力的最终机制都可归结为瑞利-泰勒不稳定性,但多数微板块起源机制可能是被动的,甚至可起因于大陨石的冲击作用; 而传统板块构造理论中,板块运动的终极驱动力机制是主动性地幔对流(Conrad et al.,2002),但现今主流观点正在否定地幔对流的主动驱动性(自下而上的控制论),进而强调俯冲板片的相变驱动(自上而下的决定论)(Forsyth et al.,1975; Anderson,2007),或强调地球特定状态下超大陆(极端的大板块)裂解的地幔柱驱动(Zhong Shijie et al.,2007)。

  • 图5 地球构造体制进化历程及三类微幔块成因机制及演化序列

  • Fig.5 The evolving processes of tectonic regimes on Earth and the evolving sequence and genetic regimes of three kinds of mantle micro-blocks

  • 3.3.4 理论的适用范围对比

  • 通过洋内的微地块(可以是微洋块,也可以是微陆块)初步分析后,可以发现,拓展板块构造理论需从内涵到外延不断拓展其研究的时空领域,弥补板块构造理论内在的理论缺憾,特别是需要解决板块构造理论目前面临的三大难题:板块起源、板块登陆、板块动力。此外,统一各种理论差异,还在于理念突破和概念创新。因此,微地块构造理论或微板块构造理论可拓宽构造研究的高度、广度和深度,这不仅可推进包括深海大洋构造领域在内的精细研究,可以丰富造山带构造研究内涵,如特提斯造山带、中亚造山带内的微洋块(Xiao Wenjiao et al.,2015),对造山带内残留的蛇绿岩套或微洋块、微幔块也要进行更加细致的研究,不能只停留在发现蛇绿岩套并据此划定一条缝合线的工作层面,而是要深入分析蛇绿岩套内部组成、年龄、结构差异; 其次,还可以丰富盆地构造研究内涵,在微地块构造体制下的沉积盆地研究可望更具有突破性,其进一步的盆地分类也可能更切合单个盆地分析、不同时期盆地演化,当然也适用于板块构造体系下深部和地表系统过程联合控制的盆地成因分析; 第三,丰富大洋板块内部构造研究内涵,解释层析成像揭示大洋岩石圈之下的深部地幔还保存有大量中—新生代不同时期形成的微幔块; 第四,丰富前板块构造体制研究,弥合长久地学论争; 最后,建立跨圈层、跨相态、跨时空、全地史、跨行星的统一构造理论。

  • 3.3.5 理论基础与出发点对比

  • 传统板块构造理论立足解决单一圈层机制,即固体岩石圈板块的水平运动问题,不仅早期槽台学说中垂直运动的合理性被完全忽视或遗弃,而且俯冲板块进入软流圈后的行为也没有得到充分研究。

  • 然而,微板块构造理论自提出开始,其理论基础的主体依然是传统板块构造理论,但是以地球系统科学理念为出发点,围绕多圈层相互作用而构建的,重在解决跨圈层过程,不仅重视水平运动,也关注垂直运动(注意不同地史时期或构造部位的垂直运动成因机制差异很大),并将传统板块构造理论拓展到早前寒武纪的前板块构造体制去,试图构建统一的深时地球系统的全球构造理论。

  • 3.3.6 理论假设与预测对比

  • 在传统板块构造理论中,菲律宾海板块是一个中板块。按照该理论,中板块也应当具有统一的运动学行为。但实际仔细考察菲律宾海板块内部构造单元,可以以九州-帕劳海脊(实际为残留弧)为界,划分为西部的西菲律宾海盆,东部的四国-帕里西维拉海盆、马里亚纳海槽和马里亚纳岛弧。

  • 但实际这种划分,无法让人正确理解菲律宾海板块的运动特性,如菲律宾海板块整体旋转的同时,作为菲律宾海板块一部分的四国-帕里西维拉海盆还同步在扩张,然而四国-帕里西维拉洋中脊两侧的运动是相反的,且在帕里西维拉洋中脊扩张同时还发育海洋核杂岩,也就是说,简单将菲律宾海板块划分为单一单元,是无法描述整体旋转同时伴随内部扩张的内部行为以及洋中脊两侧同扩张的不对称运动。板块构造理论框架下,菲律宾海板块是如何形成和演变的?这涉及55~34 Ma期间向南运动的西南菲律宾海微洋块和向北运动的东北菲律宾海微洋块,以及34~17 Ma期间向西南运动的西四国-帕里西维拉微洋块和向东北运动的东四国-帕里西维拉微洋块,最后还与8 Ma以来向西运动的西马里亚纳微洋块和向东运动的马里亚纳微洋块有关,其中,东四国-帕里西维拉微洋块与向西运动的西马里亚纳微洋块之间的马里亚纳残留弧为微板块边界(图3)。图3中微洋块的划分完全符合板块构造理论中的板块定义,因此是可行的; 其余进一步的划分可以依此类推,比如,雅甫海脊两侧分别为向西运动的西雅甫微洋块、向东运动的东雅甫微洋块(与卡洛琳微板块相邻)。实际上,依据更高精度的多波束海底地形资料,对东北菲律宾海板块的内部,还可以细分出一些更微细的微板块,它们的形成与斜向俯冲过程有关。这样对菲律宾海板块内部次级构造单元划分界定后,非常便于菲律宾海板块内部构造特征精细描述和差异分析。据此精细划分,也可以对传统板块构造理论框架下划分的整体的“菲律宾海板块”内部变形过程(如俯冲东撤、洋中脊跃迁、死亡或石化、旋转、斜向俯冲等)作出精细预测。

  • 此外,微板块构造理论也可以解释传统板块构造理论难以解释的岩浆、变质、成矿、成盆、地震等灾害过程。例如,三江地区大量微板块聚合使得矿床分布复杂而有规律(Deng Jun et al.,2014); 在微板块构造框架下,青藏高原一些主要断裂、龙门山断裂、郯庐断裂等也属于微板块边界(吴晓娲等,2021),在外力作用下欧亚板块内部的活动性会改变,因此沿龙门山断裂也发生过8.0级汶川大地震,两侧块体之间GPS速度场也差异显著(图4); 四川克拉通盆地、鄂尔多斯克拉通盆地中生代晚期的挠曲成盆,可能与北美西部深浅部耦合过程导致克拉通盆地沉积沉降中心迁移类似(Braun,2010; Liu Shaofeng et al.,2011; Liu Lijun,2015),其深部也可能存在微幔块的西向迁移(Peng Diandian et al.,2021),这似乎也得到了浅表盆地中心西向迁移的验证。

  • 4 微地块构造范式与前板块构造、微板块起源

  • 地球大约在4567 Ma前诞生,自地球诞生到600 Ma前的这段时间被称为前寒武纪。中国学者常以1800 Ma为界将前寒武纪分为晚前寒武纪和早前寒武纪(冥古宙、太古宙和古元古代)。板块构造机制起源于前寒武纪何时、何地、何因,是前寒武纪地球动力学尚未解决的地球构造演化的前沿关键核心问题(李三忠等,2015)。持板块构造观点的多数学者依据全球现存的古老岩石或矿物记录,对板块构造启动的具体时间所进行的界定,迄今也还存在巨大争议。

  • 板块构造机制启动是地球演化过程中的重大事件,因为板块构造控制了地球随后的水圈、大气圈和岩石圈,乃至地幔的演化和全球物质循环。板块构造启动的时间、地点和机制迄今仍然分歧较大,主要是对早期板块的定义或认知尚不清楚。一种观点认为,地球是热起源开始的,先形成的大量微(小)地块逐渐随着地球冷却而演化或进化出大板块; 另一种观点认为,地球是冷起源,初始就是一个完整的全球单一板块,即最早为大板块起源,之后分裂为一系列中(小)板块,再演化出微板块。这是两种完全相反的板块启始和进化途径,不同的进化途径,微板块的驱动力机制肯定差异巨大。特别是,这个问题还涉及前板块构造体制问题,也与地球起源过程密切相关。

  • 无论板块大小如何,它们的启动时间迄今同样存在巨大争论(赵国春,2007; Stern,200720082016; Stern et al.,20162018; Tang Ming et al.,2016),大体有5种观点:

  • (1)4.4~4.0 Ga期间(Ernst et al.,20072017),因为4.45 Ga的大轰击事件后岩浆海固结很快,有人估计只需要1000年左右(Elkins-Tanton,20082012)。尽管还有人认为大轰击事件发生时间发生在4.54 Ga,岩浆海模式也存在差异,原始地壳(有可能是科马提质岩石、斜长岩、超基性岩、基性玄武岩),但浅表微地块出现后,因冥古宙地球的极端热状态和盖子效应,难以形成大板块,且可能主要发生广泛的平板-热俯冲(Abbott et al.,1994),对流环尺度小且热对称也会导致俯冲带位置锁定或位置固定; 与此同时形成的微幔块,其组成可能与原始地壳成分密切相关。

  • (2)3.8~3.7 Ga,西南格陵兰俯冲构造背景和岛弧型增生地壳生长可追溯到3.8 Ga,因其相关的依苏阿(Isua)表壳岩构造背景不确定(Komiya et al.,1999),所以争论还较大,只能说明此时俯冲作用已经发育,但还可能不同时具备现代板块构造体制所需的三个必要条件(李三忠等,2015)。

  • (3)3.2~3.0 Ga的某个时期(Cawood et al.,2018),因为3.2 Ga之前金伯利岩的金刚石中的包体主要为橄榄石,而之后主要为榴辉岩包体,且3.2 Ga以后的岩石还记录了3.9 Ga以来首次出现初生亏损地幔物质添加到地壳的过程,这意味着转入现代板块构造体制下形成的初生地壳时期,高度亏损的岩石圈地幔也开始形成于3.2 Ga。

  • (4)3.0~2.5 Ga期间(Laurent et al.,2014; Condie,2018),因为3.0~2.4 Ga期间大陆地壳生长方式类似冈瓦纳大陆内部造山带中的泛非期地壳生长模式,而且3.2~2.5 Ga出现了成对的双变质带(Gerya,2014),西南格陵兰和俄罗斯科拉半岛还发现中-新太古代榴辉岩。

  • (5)2.7 Ga开始,延续到2.5 Ga,2.7~2.5 Ga期间两幕全球性地壳快速增生事件也应当表明一种全球新体制的出现,且随着地球内部放射性产热元素的整体衰减,允许2.5 Ga之前的平板-热俯冲转变为之后的高角度冷俯冲(Abbott et al.,1994; Sun Guozheng et al.,2021)。

  • (6)李三忠等(2015)依据华北卵形构造最终定型时间与线性裂谷或构造带初始出现时间,以及随后相关的大规模线性高压麻粒岩带、退变榴辉岩和典型的现代岛弧型火山岩带出现,证实了赵国春(2007)提出的华北克拉通板块构造起源最早时间为2.56 Ga,并可能是个渐变过程,介于2.56~2.2 Ga之间。这与Laurent et al.(2014)的全球结果基本一致,但时间范围大大缩小,也与Kusky团队的华北板块构造起始时间一致(Ning Wenbin et al.,2022)。

  • (7)1.0 Ga才出现现代板块体制(Condie,2001),这个时期全球发育可靠的蓝片岩、蛇绿岩、现今不对称的地幔对流型式等为标志。

  • (8)0.8 Ga或0.6 Ga后才出现现代板块构造体制,之前都处于盖子构造演化阶段(Piper,2013),依据是古地磁资料。该观点还认为,尽管古地磁资料也证明在现代板块构造体制之前出现过快速移动,但快速的运动要么是滞留盖的局部运动、要么是滞留盖的整体运动。

  • 总之,这种差异观点植根于依据不同的板块构造启动标志,比如,有人认为地幔对流和板块构造是一个系统、孪生兄弟,因为板块是地幔循环的上部冷的热边界层(Davies,2011),所以还有人认为板块构造甚至在地球诞生之初的4.54 Ga就可能出现了。

  • 对于早前寒武纪这种构造体制的探索,目前地质证据较少,多数研究还可以通过比较行星地质学、计算地学模拟等进行。例如,火星比地球直径小一倍,在早期演化过程中可能冷却较快,或者星子堆积增生过程中根本就没加热到使火星表壳出现岩浆海,因而火星最早可能是冷起源。有学者(Yin An,2012)依据火星表面卫星遥感图像的构造解译,推测认为Olympus山一线的3个火山是线性岛弧的标志,表明火星发生过初始的俯冲启始,而触发俯冲启始的可能机制是天外大型陨石斜向撞击,诱发了微板块运动及俯冲回卷过程所致。这个俯冲启动过程灾难性地打破了火星全球单一一个板块的构造格局,开启了火星全球微板块形成与演化的新阶段。若此,这就是一种灾变性微板块成因机制,而不像Ernst(2007)提出的缓慢或渐变式微板块起源机制。然而,无论何种起源,火星上这个微板块构造演化过程都可能会因为没有足够的能量维持,而很快便夭折或终结。

  • 数值模拟实验结果则表明,地球在星子吸积增生阶段可能会导致地球硅酸盐熔化,随着冷却进行,较重的硅酸盐会变重而下坠,在不同构造层次形成拗沉构造、穹脊构造(Dome-and-Keel tectonics)、卵形构造、坠离构造、地幔柱构造(Maruyama et al.,2018)、地幔柱-滞留盖构造(Fischer et al.,2021)等,形成这些构造样式时,运动的物质不一定是熔融的岩浆,而可能是深变质的固流体,表现为很多组成卵形构造的叶理不是岩浆流动构造,而是石榴子石构成的线理、黑云母定向排成的变质面理。这个时期,地球表层可能出现相对较冷的微地块(因此时不一定出现板块构造体制,因此不能叫微板块),但这个微地块已然具备微板块的一切属性。可见,这种前板块构造体制下,其微地块驱动力纯粹是重力作用,或者也可能是热管构造、地幔柱构造的热构造所致,无论动力是重力还是热力,都可归结为瑞利-泰勒不稳定性是前板块构造体制下微地块的终极驱动力。具体到分析某个微地块时,其形成和演化的驱动力可能各不相同,有的是坠离、有的是拗沉、有的是地幔柱、有的是洋中脊-地幔柱相互作用所致(Madrigal et al.,2016),等等。

  • 5 进化中的微地块与陆壳起源、现代板块体制起源

  • 当然,大板块不是一蹴而就的,任何大板块都存在一个由小长大的过程。早期地球地幔较热,岩石圈较薄,其前板块构造体制可以是热管(Hot pipe)构造体制、地幔柱(Mantle plume)构造体制,也可以是坠离(Drip-off)构造体制、拗沉(Sagduction)构造体制、底侵(Magma underplating)构造体制、拆沉(Delamination)构造体制(Liu Shuwen et al.,2022)等(图5),早期可能是热俯冲,随后随着岩石圈冷却,逐渐转变为冷俯冲(Zheng Yongfei et al.,2020); 随着板块冷却,其板块厚度和面积都增大,早期非板块体制下的微地块,逐渐转变为初始板块体制下的微板块(俯冲带热结构可能对称),最终变成现今板块体制下的大板块(俯冲带热结构主要为不对称)。现代板块构造体制的标志就是热不对称的俯冲体制出现,这不同于地幔柱构造体制下地幔柱头部热对称的俯冲体制(图5; Gerya et al.,2015)。

  • 这里要强调的是,比照生物进化理论,微地块也具有进化特征。前板块构造体制下,微地块在非线性系统中通过自组织、自生长等(钟世杰,2021),进化为板块体制下的微板块,是一个自然选择过程(Sawada et al.,2018); 陆壳型微地块(微陆块)是长期缓慢的“密度选择”的结果,其密度决定了其早期陆壳保存机制,这是陆壳起源的根本; 而微地块或微陆块向微板块的转变是“刚性选择”的结果,其刚性决定了初始板块构造体制起始的必要条件; 随后,微板块不对称俯冲或对流型式的转变是“热力选择”的结果,其热不对称性决定了现代板块构造体制起始的必要条件。

  • 微地块处于板块构造体制下,有时是大板块的前身,因此微地块起源、生长、夭折、消亡和残留过程的研究,不仅对认知某个板块演化历史具有指示性,更有助于揭示板块构造体制随时间的演进规律,具有普适性。现今板块体制下,洋脊增生系统、俯冲消减系统、深海板内系统、伸展裂解系统、碰撞造山系统5种构造环境下,都广泛发育微地块,如果想建立某个海洋历史(不是板块演化历史)的威尔逊旋回的类似模式,可以根据微板块成因,微板块演化途径或序列,可能依次为:裂生微地块、拆离微地块、转换微地块、延生微地块、跃生微地块、残生微地块、增生微地块、碰生微地块和拆沉微幔块(Li Sanzhong et al.,2018a)。这个过程也表现了微陆块、微洋块和微幔块之间的复杂关系(李三忠等,2019a)。

  • 6 结论及展望

  • 通过传统板块构造理论与最新提出的微板块构造理论的对比,本文得出以下结论:

  • (1)微板块构造是传统大板块构造理论的发展,微板块构造理论可以有效解决板块构造出现之前的地球运行模式,在术语上称为微地块构造理论即可。

  • (2)随着地球演化,前板块构造体制也不断进化,微地块构造体制也经过初始的微板块构造演化阶段,逐渐形成现今成熟的板块构造体制。微板块是进化着的,是随着地球热状态演化而不断自然选择的结果。前板块构造体制下微地块在非线性系统中通过自组织、自生长等,进化为板块体制下的微板块的自然选择过程; 陆壳型微地块是密度选择的结果,其密度决定了其保存机制,这是陆壳起源的根本; 微地块向微板块的转变是刚性选择的结果,其刚性决定了初始板块构造体制起始的必要条件; 微板块不对称俯冲或对流型式的转变是热选择的结果,其热不对称性决定了现代板块构造体制起始的必要条件。

  • (3)微板块的划分可以精细刻画区域构造演化过程,而以大板块划分则难以实现区域构造的精细描述。微板块的提出为早前寒武纪古板块重建提供了理论支撑,必将推动未来的板块重建工作越来越细致。

  • 微板块构造的研究虽然自板块构造理论建立以来,就陆续有报道,但始终没有建立系统性、综合性的理论体系,在当今板块构造理论向更深地球圈层、向更小尺度板块、向更早期地球的推广应用过程中,有必要加大力度给予经费支持,并在全球展开相关工作,围绕微板块构造开展国际多学科综合、交叉与对比研究,建议成立“全球微板块”研究大科学计划,最终实现全球大地构造研究范式的新突破。

  • 7 后语

  • 本文部分内容浓缩自第一作者正在撰写的《微板块构造》书稿。由于论文篇幅有限,未尽之处,还请大家等待该书出版。无巧不成书的是,就在本文投稿一个多月后的2022年5月31日,Earth-Science Reviews在线出版了澳大利亚几位著名构造地质学家联名的同类论文,他们将全球划分了16个大板块,54个微板块,73条变形带,899个地质省(Hasterok et al.,2022),在南极洲板块内部单元划分方面比我们细致,但我们的划分在洋内微板块划分方面比他们细致很多。我们相信工作是同步的,我们相关的两本图集也即将于本年年底在科学出版社出版,展示了更为详细的微板块划分依据和细节。

  • 致谢:感谢刘俊来教授的约稿,感谢赵国春院士和肖文交院士的宝贵修改意见,笔者特以此祝贺中国地质学会成立100周年。

  • 参考文献

    • Abbott D, Burgess L, Longhi J, Smith W H F. 1994. An empirical thermal history of the Earth's upper mantle. Journal of Geophysical Research, 99: 13835~13850.

    • Anderson D L. 2007. New Theory of the Earth. Cambridge: Cambridge University Press.

    • Avdeiko G P, Savelyev D P, Palueva A A, Popruzhenko S V. 2007. Evolution of the Kurile-Kamchatkan volcanic arcs and dynamics of the Kamchatka-Aleutian Junction. In: Volcanism and Subduction: The Kamchatka Region, Geophysical Monograph Series 172, the American Geophysical Union. 10. 1029/172GM04, 7~55.

    • Bird P. 2003. An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems, 4(3): 1027.

    • Boschman L M, vanHinsbergen D J J. 2016. On the enigmatic birth of the Pacific plate within the Panthalassa Ocean. Science Advance, 2: e1600022.

    • Braun J. 2010. The many surface expressions of mantle dynamics. Nature Geoscience, 3: 825~833.

    • Burke K, Steinberger B, Torsvik T H, Smethurst M A. 2008. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth and Planetary Science Letters, 265(1-2): 49~60.

    • Cawood P A, Hawkesworth C J, Pisarevsky S A, Dhuime B, Capitanio F A, Nebel O. 2018. Geological archive of the onset of plate tectonics. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 376: 21~32.

    • Condie K C. 2001. Mantle Plume and Their Record in Earth History. Cambridge: Cambridge University Press.

    • Condie K C. 2018. A planet in transition: the onset of plate tectonics on Earth between 3 and 2 Ga? Geoscience Frontiers, 9: 51~60.

    • Conrad C P, Lithgow-Bertelloni C. 2002. How mantle slabs drive plate tectonics. Science, 298: 207~209.

    • Davies G F. 2011. Mantle Convection for Geologists. Cambridge, New York: Cambridge University Press.

    • Deng Jun, Wang, Qingfei, Li Gongjian, Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268~299.

    • Elkins-Tanton L T. 2008. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth and Planetary Science Letters, 271(1-4): 181~191.

    • Elkins-Tanton L T. 2012. Magma oceans in the inner solar system. Annual Review of Earth and Planetary Sciences, 40: 113~139.

    • Ernst W G. 2007. Speculations on evolution of the terrestrial lithosphere-asthenosphere system: plumes and plates. Gondwana Research, 11: 38~49.

    • Ernst W G. 2017. Earth's thermal evolution, mantle convection, and Hadean onset of plate tectonics. Journal of Asian Earth Sciences, 145: 334~348.

    • Fischer R, Rupke L, Gerya T. 2021. Cyclic tectono-magmatic evolution of TTG source regions in plume-lid tectonics. Gondwana Research, 99: 93~109.

    • Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal International, 43: 163~200.

    • Garrison T, Ellis R. 2014. Oceanology: an Invitation to Marine Science. National Geographic Learning, Cengage Learning, Canada.

    • Gerya T V. 2014. Precambrian geodynamics: concepts and models. Gondwana Research, 25: 442~463.

    • Gerya T V, Stern R J, Baes M, Sobolev S V, Whattam S A. 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527: 221~225.

    • Harrison C G A. 2016. The present-day number of tectonic plates. Earth, Planets and Space, 68: 37.

    • Hasterok D, Halpin J, Collins A S, Hand M, Kreemer C, Gard M, Glorie S. 2022. New maps of global geological provinces and tectonic plates. Earth-Science Reviews, https: //doi. org/10. 1016/j. earscirev. 2022. 104069.

    • Hou Zengqian, Zhao Zhidan, Gao Yongfeng, Yang Zhiming, Jiang Wan. 2006. Tearing and dischronal subduction of the Indian continental slab: evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet. Acta Petrologica Sinica, 22(4): 761~774(in Chinese with English abstract).

    • Jin Zhenmin, Yao Yupeng. 2004. Beyond plate tectonics: what do we do in structural geology? Earth Science, 29(6): 644~650(in Chinese with English abstract).

    • Komiya T, Maruyama S, Masuda T, Nohda S, Hayashi M, Okamoto K. 1999. Plate tectonics at 3. 8–3. 7 Ga: field evidence from the Isua accretionary complex, southern West Greenland. The Journal of Geology, 107: 515~554.

    • Laurent O, Martin H, Moyen J F, Doucelance R. 2014. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3. 0 and 2. 5 Ga. Lithos, 205: 208~235.

    • Le Pichon X. 1968. Sea floor spreading and continental drift. Journal of Geophysical Research, 73: 3661~3697.

    • Li Sanzhong, Dai Liming, Zhang Zhen, Guo Lingli, Zhao Shujuan, Zhao Guochun, Zhang Guowei. 2015. Precambrian geodynamics(IV): pre-plate regime. Earth Science Frontiers, 22(6): 46~64(in Chinese with English abstract).

    • Li Sanzhong, Jahn B M, Zhao Shujuan, Dai Liming, Li Xiyao, Suo Yanhui, Guo Lingli, Wang Yongming, Liu Xiaochun, Lan Haoyuan, Zhou Zaizheng, Zheng Qiliang, Wang Pengcheng. 2017. Triassic southeastward subduction of North China Block to South China Block: insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 166: 270~285.

    • Li Sanzhong, Suo Yanhui, Li Xiyao, Liu Bo, Dai Liming, Wang Guangzeng, Wang Gang, Zhou Jie, Li Yang, Liu Yiming, Cao Xianzhi, Somerville I, Mu Dunlin, Zhao Shujuan, Liu Jingping, Zhen Libing, Zhao Lintao, Zhu Junjiang, Yu Shengyao, Liu Yongjaing, Zhang Guowei. 2018a. Microplate tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle. Earth-Science Reviews, 185: 1029~1064.

    • Li Sanzhong, Zhao Shujuan, Liu Xin, Cao Huahua, Yu Shan, Li Xiyao, Somerville I, Yu Shengyao, Suo Yanhui. 2018b. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37~75.

    • Li Sanzhong, Suo Yanhui, Liu Bo, Liu Yongjiang, Li Xiyao, Zhao Shujuan, Zhu Junjiang, Wang Guangzeng, Zhang Guowei. 2018. Microplate tectonics theory: insights from microblocks in the global oceans and continental margins. Earth Science Frontiers, 25(5): 324~355(in Chinese with English abstract).

    • Li Sanzhong, Li Xiyao, Wang Guangzeng, Liu Yiming, Wang Zecheng, Wang Tognshan, Cao Xianzhi, Guo Xiaoyu, Somerville I, Li Yang, Zhou Jie, Dai Liming, Jiang Suhua, Zhao Hao, Wang Yu, Wang Gang, Yu Shan. 2019a. Global Meso-Neoproterozoic plate reconstruction and formation mechanism for Precambrian basins: constraints from three cratons in China. Earth-Science Reviews, 198: 102946.

    • Li Sanzhong, Suo Yanhui Li Xiyao, Zhou Jie, Santosh M, Wang Pengcheng, Wang Guangzeng, Guo Lingli, Yu Shengyao, Lan Haoyuan, Dai Liming, Zhou Zaizheng, Cao Xianzhi, Zhu Junjiang, Liu Bo, Jiang Suhua, Wang Gang, Zhang Guowei. 2019b. Mesozoic tectono-magmatic evolution in the East Asian ocean-continent connection zone and its relationship with Paleo-Pacific Plate subduction. Earth-Science Reviews, 192: 91~137.

    • Li Sanzhong, Cao Xianzhi, Wang Gguangzeng, Liu Bo, Li Xiyao, Suo Yanhui, Jiang Zhaoxia, Guo Lingli, Zhou Jie, Wang Pengcheng, Zhu Junjiang, Wang Gang, Zhao Shujuan, Liu Yongjiang, Zhang Guowei. 2019a. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate. Journal of Geomechanics, 25(5): 642~677(in Chinese with English abstract).

    • Li Sanzhong, Suo Yanhui, Wang Guangzeng, Jiang Zhaoxia, Zhao Yanyan, Liu Yiming, Li Xiyao, Guo Lingli, Liu Bo, Yu Shengyao, Liu Yongjiang, Zhang Guowei. 2019b. Tripoles on seafloor and tripole on Earth surface: dynamic connections. Marine Geology & Quaternary Geology, 39(5): 1~22(in Chinese with English abstract).

    • Li Sanzhong, Wang Guangzeng, Suo Yanhui, Li Xiyao, Dai Liming, Liu Yiming, Zhou Jie, Guo Lingli, Liu Yongjiang, Zhang Guowei. 2019c. Driving force of plate tectonics: origin and nature. Geotectonica et Metallogenia, 43(4): 605~643(in Chinese with English abstract).

    • Li Yang, Li Sanzhong, Guo Lingli, Zhou Zaizheng, Suo Yanhui, Wang Guangzeng, Zhu Junjiang, Liu Yiming, Liu Bo, Zhou Jie, Li Yuanjie, Zhang Guowei. 2019. Detachment-derived micro-blocks: new insights for the deformation mechanism of the ocean-continent transition and the mid-ocean ridge. Geotectonica et Metallogenia, 43(4): 779~794(in Chinese with English abstract).

    • Liu Jinping, Li Sanzhong, Suo Yanhui, Zhu Junjiang, Li Xiyao, Dai Liming, Liu Yongjiang, Yu Shengyao, Guo Lingli. 2019. Subduction-derived oceanic micro-block: complex evolution of footwall in subduction system. Geotectonica et Metallogenia, 43(4): 762~778(in Chinese with English abstract).

    • Liu Lijun. 2015. The ups and downs of North America: evaluating the role of mantle dynamic topography since the Mesozoic. Reviews of Geophysics, 53: 1022~1049.

    • Liu Lijun, Hasterok D. 2016. High-resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging. Science, 353: 1515~1519.

    • Liu Lijun, Peng Diandian, Liu Liang, Chen Ling, Li Sanzhong, Wang Yaoyi, Cao Zebiin, Feng Mingye. 2021. East Asian lithospheric evolution dictated by multistage Mesozoic flat-slab subduction. Earth-Science Reviews, 217: 103621.

    • Liu Shaofeng, Nummedal D, Liu Lijun. 2011. Tracking the Farallon plate migration through the Late Cretaceous Western U. S. Interior Basins. Geology, 39: 555~558.

    • Liu Shuwen, Bao Han, Sun Guozheng, Wang Wei, Fu Jinghao, Gao Lei, Guo Rongrong, Hu Yalu. 2022. Archean crust-mantle geodynamic regimes: a review. Geosystems and Geoenvironment, 1(4): 100063.

    • Madrigal P, Gazel E, Flores K E, Bizimis M, Jicha B. 2016. Record of massive upwellings from the Pacific large low shear velocity province. Nature Communications, 7: 13309.

    • Maruyama S, Santosh M and Azuma S. 2018. Initiation of plate tectonics in the Hadean: eclogitization triggered by the ABEL Bombardment. Geoscience Frontiers, 9(4): 1033~1048.

    • McKenzie D P, Parker R L. 1967. The North Pacific: an example of tectonics on a sphere. Nature, 216: 1276~1280.

    • Meng Fan, Li Sanzhong, Suo Yanhui, Zhu Junjiang, Li Xiyao, Dai Liming, Liu Yongjiang, Yu Shengyao, Wang Gang. 2019. Ridge Jumping-derived micro-blocks: unravelling a complex evolutionary process for divergent plate boundaries. Geotectonica et Metallogenia, 43(4): 644~664(in Chinese with English abstract).

    • Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189: 419~426.

    • Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research, 73: 1959~1982.

    • Morgan W J. 1971. Convection plumes in the lowermantle. Nature, 230: 42~43.

    • Mu Dunling, Li Sanzhong, Suo Yanhui, Zhu Junjiang, Li Xiyao, Wang Guangzeng, Guo Lingli, Liu Yongjiang, Liu Bo. 2019. Tectonic and geodynamic mechanism of back-arc-rifting derived micro-blocks: insights from back-arc spreading in the West Pacific. Geotectonica et Metallogenia, 43(4): 665~677(in Chinese with English abstract).

    • Ning Wenbin, Kusky T, Wang Lu, Huang B. 2022. Archean eclogite-facies oceanic crust indicates modern-style plate tectonics. PNAS, 119(15): e2117529119.

    • Peng Diandian, Liu Lijun. 2021. A newly discovered Late-Cretaceous East Asian flat slab explains its unique lithospheric. Journal of Geophysical Research, 126: e2021JB022103.

    • Piper J D. 2013. A planetary perspective on Earth evolution: lid tectonics before plate tectonics. Tectonophysics, 589: 44~56.

    • Sager W W, Huang Y M, Tominaga M, Greene J A, Nakanishi M, Zhang J C. 2019. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies. Nature Geoscience, 12: 661~666.

    • Sawada H, Isozaki Y, Sakata S, Hirata T, Maruyama S. 2018. Secular change in lifetime of granitic crust and the continental growth: a new view from detrital zircon ages of sandstones. Geoscience Frontiers, 9(4): 1099~1115.

    • Stern R J. 2007. When and how did plate tectonics begin?theoretical and empirical considerations. Chinese Science Bulletin, 52: 578~591.

    • Stern R J. 2008. Modern-style plate tectonics began in Neoproterozoic time: an alternative interpretation of Earth's tectonic history. In: Condie K C, Pease V, Eds. When Did Plate Tectonics Begin on Earth? Geological Society of America Special Paper, 440: 265~280.

    • Stern R J. 2016. Is plate tectonics needed to evolve technological species on exoplanets? Geoscience Frontiers, 7(4): 573~580

    • Stern R J, Leybourne M I, Tsujimori T. 2016. Kimberlites and the start of plate tectonics. Geology, 44: 799~802.

    • Stern R J, Gerya T, Tackley P J. 2018. Stagnant lid tectonics: perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geoscience Frontiers, 9(1): 103~119.

    • Sun Guozheng, Liu Shuwen, Cawood P A, Tang Ming, van Hunen J, Gao Lei, Hu Yalu, Hu Fangyang. 2021. Thermal state and evolving geodynamic regimes of the Meso- to Neoarchean North China Craton. Nature Communications, 12: 3888.

    • Tang Ming, Chen K, Rudnick R L. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351(6271): 372~375.

    • Tapponnier P, Peltzer G, Le Dain A Y, Armijo R, Cobbold P. 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10: 611~616.

    • Torsvik T H, Smethurst M A, Burke K, Steinberger B. 2010. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophysical Journal International, 167: 1447~1460.

    • Vernant P. 2015. What can we learn from 20 years of interseismic GPS measurements across strike-slip faults? Tectonophysics, 644-645: 22~39.

    • Wang Erchie, Meng Kai, Su Zhe, Meng Qingren, Chu J J, Chen Zhiliang, Wang Gang, Shi Xuhua, Liang Xinquan. 2014. Block rotation: tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang Fault. Tectonics, 33: 686~717.

    • Wang Gang, Li Sanzhong, Jiang Suhua, Suo Yanhui, Guo Lingli, Zhu Junjiang, Wang Pengcheng, Liu Bo. 2019. Formation mechanisms and evolution of accretion-derived micro-blocks. Geotectonica et Metallogenia, 43(4): 745~761(in Chinese with English abstract).

    • Wang Guangzeng, Li Sanzhong, Suo Yanhui, Li Xiyao, Zhu Junjiang, Liu Yongjiang, Guo Lingli, Liu Bo. 2019. Transform-derived microplates: classification, mechanism and tectonic significance. Geotectonica et Metallogenia, 43(4): 700~714(in Chinese with English abstract).

    • Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207: 343~347.

    • Wu Fuyuan, Wan Bo, Zhao Liang, Xiao Wenjiao, Zhu Rixiang. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6) : 1627~1674(in Chinese with English abstract).

    • Wu Xiaowa, Qin Siqing, Xue Lei, Zhang Ke, Chen Hongran, Zhai Mengyang. 2021. Partition method of seismogenic tectonic block and its corresponding seismic zone. Geological Review, 67(2): 325~338(in Chinese with English abstract).

    • Xiao Wenjiao, Windley B F, Sun Shu, Li Jiliang, Han Baofu, Han Chongming, Yuan Chao, Sun Min, Chen Hanlin. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477~507.

    • Yin An. 2012. An episodic slab rollback model for the origin of the Tharsis Rise on Mars: implications for initiation of local plate subduction and final unification of a kinematically linked global plate tectonic network on Earth. Lithosphere, 4 (6): 553~593.

    • Zeng Pusheng, Li Ruizhe, Liu Siwen, Wen Ligang, Zhao Jiujiang, Wang Shian. 2021. Yanshanian large igneous provinces in eastern China: magmatism-tectonics-resources-environment effects. Acta Geoscientica Sinica, 42(6): 721~748(in Chinese with English abstract).

    • Zhang Guowei, Guo Anlin, Dong Yunpeng, Yao Anping. 2011. Continental geology, tectonics and dynamics. Earth Science Frontiers, 18(3): 1~12(in Chinese with English abstract).

    • Zhao Guochun, Zhang Guowei. 2021. Origin of continents. Acta Geologica Sinica, 95(1): 1~19(in Chinese with English abstract).

    • Zhao Guochun. 2007. When did plate tectonics begin on the North China Craton?insights from metamorphism. Earth Science Frontiers, 14(1): 19~32(in Chinese with English abstract).

    • Zhao Lintao, Li Sanzhong, Suo Yanhui, Guo Lingli, Wang Guangzeng, Dai Liming, Zhu Junjiang, Liu Bo, Wang Gang. 2019. Propagation-derived micro-blocks: complex evolution of mid-ocean ridge accretion system. Geotectonica et Metallogenia, 43(4): 715~729(in Chinese with English abstract).

    • Zhen Libing, Li Sanzhong, Guo Lingli, Wang Guangzeng, SuoYanhui, Zhu Junjiang, Li Xiyao, Dai Liming, Liu Yongjiang. 2019. Genetic mechanism of the propagation-derived microplate: a review. Geotectonica et Metallogenia, 43(4): 730~744(in Chinese with English abstract).

    • Zheng Yongfei, Zhao G C. 2020. Two styles of plate tectonics in Earth's history. Science Bulletin, 65(4): 329~334.

    • Zheng Yongfei, Chen Yixiang, Dai Liqun, Zhao Zifu. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Science China: Earth Sciences, 58: 1045~1069.

    • Zhong Shijie, Zhang Nan, Li Zhengxiang, Roberts J H. 2007. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth and Planetary Science Letters, 261: 551~564.

    • Zhong Shijie. 2021. Mantle dynamics on large spatial and temporal scales. Chinese Journal of Geophysics(in Chinese), 64(10): 3478~3502(in Chinese with English abstract).

    • Zhou Jie, Li Sanzhong, Suo Yanhui, Li Xiyao, Guo Lingli, Zhu Junjiang, Liu Yongjiang, Wang Guangzeng, Li Yang. 2019. Type and genetic mechanism of collision-derived micro-blocks. Geotectonica et Metallogenia, 43(4): 795~823(in Chinese with English abstract).

    • Zhu Rixiang, Zhao Pan, Zhao Liang. 2022. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Science China Earth Sciences, 65(1): 1~24.

    • 侯增谦, 赵志丹, 高永丰, 杨志明, 江万. 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22(4): 761~774.

    • 金振民, 姚玉鹏. 2004. 超越板块构造——我国构造地质学要做些什么?地球科学, 29(6): 644~650.

    • 李三忠, 戴黎明, 张臻, 郭玲莉, 赵淑娟, 赵国春, 张国伟. 2015. 前寒武纪地球动力学(Ⅳ): 前板块体制. 地学前缘, 22(6): 46~64.

    • 李三忠, 索艳慧, 刘博, 刘永江, 李玺瑶, 赵淑娟, 朱俊江, 王光增, 张国伟. 2018, 微板块构造理论: 全球洋内与陆缘微地块研究的启示. 地学前缘, 25(5): 324~355.

    • 李三忠, 曹现志, 王光增, 刘博, 李玺瑶, 索艳慧, 姜兆霞, 郭玲莉, 周洁, 王鹏程, 朱俊江, 汪刚, 赵淑娟, 刘永江, 张国伟. 2019a. 太平洋板块中—新生代构造演化及板块重建. 地质力学学报, 25(5): 642~677.

    • 李三忠, 索艳慧, 王光增, 姜兆霞, 赵彦彦, 刘一鸣, 李玺瑶, 郭玲莉, 刘博, 于胜尧, 刘永江, 张国伟. 2019b. 海底"三极"与地表"三极": 动力学关联. 海洋地质与第四纪地质, 39(5): 1~22.

    • 李三忠, 王光增, 索艳慧, 李玺瑶, 戴黎明, 刘一鸣, 周洁, 郭玲莉, 刘永江, 张国伟. 2019c. 板块驱动力: 问题本源与本质. 大地构造与成矿学, 43(4): 605~643.

    • 李阳, 李三忠, 郭玲莉, 周在征, 索艳慧, 王光增, 朱俊江, 刘一鸣, 刘博, 周洁, 李园洁, 张国伟. 2019. 拆离型微地块: 洋陆转换带和洋中脊变形机制. 大地构造与成矿学, 43(4): 779~794.

    • 刘金平, 李三忠, 索艳慧, 朱俊江, 李玺瑶, 戴黎明, 刘永江, 于胜尧, 郭玲莉. 2019. 残生微洋块: 俯冲消减系统下盘的复杂演化. 大地构造与成矿学, 43(4): 762~778.

    • 孟繁, 李三忠, 索艳慧, 朱俊江, 李玺瑶, 戴黎明, 刘永江于胜尧, 汪刚. 2019. 跃生型微地块: 离散型板块边界的复杂演化. 大地构造与成矿学, 43(4): 644~664.

    • 牟墩玲, 李三忠, 索艳慧, 朱俊江, 李玺瑶, 王光增, 郭玲莉, 刘永江, 刘博. 2019. 裂生微地块构造特征及成因模式: 来自西太平洋弧后扩张作用的启示. 大地构造与成矿学, 43(4): 665~677.

    • 汪刚, 李三忠, 姜素华, 索艳慧, 郭玲莉, 朱俊江, 王鹏程, 刘博. 2019. 增生型微地块的特征及成因模式: 来自洋壳高原俯冲和转换边界的启示. 大地构造与成矿学, 43(4): 745~761.

    • 王光增, 李三忠, 索艳慧, 李玺瑶, 朱俊江, 刘永江, 郭玲莉, 刘博. 2019. 转换型微板块类型、成因及其大地构造启示. 大地构造与成矿学, 43(4): 700~714.

    • 吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36: 1627~1674.

    • 吴晓娲, 秦四清, 薛雷, 张珂, 陈竑然, 翟梦阳. 2021. 孕震构造块体与相应地震区划分方法. 地质论评, 67(2): 325~338.

    • 曾普胜, 李睿哲, 刘斯文, 温利刚, 赵九江, 王十安. 2021. 中国东部燕山期大火成岩省: 岩浆-构造-资源-环境效应. 地球学报, 42(6): 721~748.

    • 张国伟, 郭安林, 董云鹏, 姚安平. 2011. 大陆地质与大陆构造和大陆动力学. 地学前缘, 18(3): 1~12.

    • 赵国春, 张国伟. 2021. 大陆的起源. 地质学报, 95(1): 1~19.

    • 赵国春. 2007. 从变质作用观看板块构造何时在华北克拉通开始 (英文) . 地学前缘, 14 (1), 19~32.

    • 赵林涛, 李三忠, 索艳慧, 郭玲莉, 王光增, 戴黎明, 朱俊江, 刘博, 汪刚. 2019. 延生微地块: 洋脊增生系统的复杂过程. 大地构造与成矿学, 43(4): 715~729.

    • 甄立冰, 李三忠, 郭玲莉, 王光增, 索艳慧, 朱俊江, 李玺瑶, 戴黎明, 刘永江. 2019. 延生型微板块成因机制模拟研究进展. 大地构造与成矿学, 43(4): 730~744.

    • 郑永飞, 陈伊翔, 戴立群, 赵子福. 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45(6): 711~735.

    • 钟时杰. 2021. 大尺度地幔动力学研究的现状和展望. 地球物理学报, 64(10): 3478~3502.

    • 周洁, 李三忠, 索艳慧, 李玺瑶, 郭玲莉, 朱俊江, 刘永江, 王光增, 李阳. 2019. 碰生型微地块的分类及其形成机制. 大地构造与成矿学, 43(4): 795~823.

    • 朱日祥, 赵盼, 赵亮. 2022. 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1~25.

  • 参考文献

    • Abbott D, Burgess L, Longhi J, Smith W H F. 1994. An empirical thermal history of the Earth's upper mantle. Journal of Geophysical Research, 99: 13835~13850.

    • Anderson D L. 2007. New Theory of the Earth. Cambridge: Cambridge University Press.

    • Avdeiko G P, Savelyev D P, Palueva A A, Popruzhenko S V. 2007. Evolution of the Kurile-Kamchatkan volcanic arcs and dynamics of the Kamchatka-Aleutian Junction. In: Volcanism and Subduction: The Kamchatka Region, Geophysical Monograph Series 172, the American Geophysical Union. 10. 1029/172GM04, 7~55.

    • Bird P. 2003. An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems, 4(3): 1027.

    • Boschman L M, vanHinsbergen D J J. 2016. On the enigmatic birth of the Pacific plate within the Panthalassa Ocean. Science Advance, 2: e1600022.

    • Braun J. 2010. The many surface expressions of mantle dynamics. Nature Geoscience, 3: 825~833.

    • Burke K, Steinberger B, Torsvik T H, Smethurst M A. 2008. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth and Planetary Science Letters, 265(1-2): 49~60.

    • Cawood P A, Hawkesworth C J, Pisarevsky S A, Dhuime B, Capitanio F A, Nebel O. 2018. Geological archive of the onset of plate tectonics. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 376: 21~32.

    • Condie K C. 2001. Mantle Plume and Their Record in Earth History. Cambridge: Cambridge University Press.

    • Condie K C. 2018. A planet in transition: the onset of plate tectonics on Earth between 3 and 2 Ga? Geoscience Frontiers, 9: 51~60.

    • Conrad C P, Lithgow-Bertelloni C. 2002. How mantle slabs drive plate tectonics. Science, 298: 207~209.

    • Davies G F. 2011. Mantle Convection for Geologists. Cambridge, New York: Cambridge University Press.

    • Deng Jun, Wang, Qingfei, Li Gongjian, Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268~299.

    • Elkins-Tanton L T. 2008. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth and Planetary Science Letters, 271(1-4): 181~191.

    • Elkins-Tanton L T. 2012. Magma oceans in the inner solar system. Annual Review of Earth and Planetary Sciences, 40: 113~139.

    • Ernst W G. 2007. Speculations on evolution of the terrestrial lithosphere-asthenosphere system: plumes and plates. Gondwana Research, 11: 38~49.

    • Ernst W G. 2017. Earth's thermal evolution, mantle convection, and Hadean onset of plate tectonics. Journal of Asian Earth Sciences, 145: 334~348.

    • Fischer R, Rupke L, Gerya T. 2021. Cyclic tectono-magmatic evolution of TTG source regions in plume-lid tectonics. Gondwana Research, 99: 93~109.

    • Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal International, 43: 163~200.

    • Garrison T, Ellis R. 2014. Oceanology: an Invitation to Marine Science. National Geographic Learning, Cengage Learning, Canada.

    • Gerya T V. 2014. Precambrian geodynamics: concepts and models. Gondwana Research, 25: 442~463.

    • Gerya T V, Stern R J, Baes M, Sobolev S V, Whattam S A. 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527: 221~225.

    • Harrison C G A. 2016. The present-day number of tectonic plates. Earth, Planets and Space, 68: 37.

    • Hasterok D, Halpin J, Collins A S, Hand M, Kreemer C, Gard M, Glorie S. 2022. New maps of global geological provinces and tectonic plates. Earth-Science Reviews, https: //doi. org/10. 1016/j. earscirev. 2022. 104069.

    • Hou Zengqian, Zhao Zhidan, Gao Yongfeng, Yang Zhiming, Jiang Wan. 2006. Tearing and dischronal subduction of the Indian continental slab: evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet. Acta Petrologica Sinica, 22(4): 761~774(in Chinese with English abstract).

    • Jin Zhenmin, Yao Yupeng. 2004. Beyond plate tectonics: what do we do in structural geology? Earth Science, 29(6): 644~650(in Chinese with English abstract).

    • Komiya T, Maruyama S, Masuda T, Nohda S, Hayashi M, Okamoto K. 1999. Plate tectonics at 3. 8–3. 7 Ga: field evidence from the Isua accretionary complex, southern West Greenland. The Journal of Geology, 107: 515~554.

    • Laurent O, Martin H, Moyen J F, Doucelance R. 2014. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3. 0 and 2. 5 Ga. Lithos, 205: 208~235.

    • Le Pichon X. 1968. Sea floor spreading and continental drift. Journal of Geophysical Research, 73: 3661~3697.

    • Li Sanzhong, Dai Liming, Zhang Zhen, Guo Lingli, Zhao Shujuan, Zhao Guochun, Zhang Guowei. 2015. Precambrian geodynamics(IV): pre-plate regime. Earth Science Frontiers, 22(6): 46~64(in Chinese with English abstract).

    • Li Sanzhong, Jahn B M, Zhao Shujuan, Dai Liming, Li Xiyao, Suo Yanhui, Guo Lingli, Wang Yongming, Liu Xiaochun, Lan Haoyuan, Zhou Zaizheng, Zheng Qiliang, Wang Pengcheng. 2017. Triassic southeastward subduction of North China Block to South China Block: insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 166: 270~285.

    • Li Sanzhong, Suo Yanhui, Li Xiyao, Liu Bo, Dai Liming, Wang Guangzeng, Wang Gang, Zhou Jie, Li Yang, Liu Yiming, Cao Xianzhi, Somerville I, Mu Dunlin, Zhao Shujuan, Liu Jingping, Zhen Libing, Zhao Lintao, Zhu Junjiang, Yu Shengyao, Liu Yongjaing, Zhang Guowei. 2018a. Microplate tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle. Earth-Science Reviews, 185: 1029~1064.

    • Li Sanzhong, Zhao Shujuan, Liu Xin, Cao Huahua, Yu Shan, Li Xiyao, Somerville I, Yu Shengyao, Suo Yanhui. 2018b. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Science Reviews, 186: 37~75.

    • Li Sanzhong, Suo Yanhui, Liu Bo, Liu Yongjiang, Li Xiyao, Zhao Shujuan, Zhu Junjiang, Wang Guangzeng, Zhang Guowei. 2018. Microplate tectonics theory: insights from microblocks in the global oceans and continental margins. Earth Science Frontiers, 25(5): 324~355(in Chinese with English abstract).

    • Li Sanzhong, Li Xiyao, Wang Guangzeng, Liu Yiming, Wang Zecheng, Wang Tognshan, Cao Xianzhi, Guo Xiaoyu, Somerville I, Li Yang, Zhou Jie, Dai Liming, Jiang Suhua, Zhao Hao, Wang Yu, Wang Gang, Yu Shan. 2019a. Global Meso-Neoproterozoic plate reconstruction and formation mechanism for Precambrian basins: constraints from three cratons in China. Earth-Science Reviews, 198: 102946.

    • Li Sanzhong, Suo Yanhui Li Xiyao, Zhou Jie, Santosh M, Wang Pengcheng, Wang Guangzeng, Guo Lingli, Yu Shengyao, Lan Haoyuan, Dai Liming, Zhou Zaizheng, Cao Xianzhi, Zhu Junjiang, Liu Bo, Jiang Suhua, Wang Gang, Zhang Guowei. 2019b. Mesozoic tectono-magmatic evolution in the East Asian ocean-continent connection zone and its relationship with Paleo-Pacific Plate subduction. Earth-Science Reviews, 192: 91~137.

    • Li Sanzhong, Cao Xianzhi, Wang Gguangzeng, Liu Bo, Li Xiyao, Suo Yanhui, Jiang Zhaoxia, Guo Lingli, Zhou Jie, Wang Pengcheng, Zhu Junjiang, Wang Gang, Zhao Shujuan, Liu Yongjiang, Zhang Guowei. 2019a. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate. Journal of Geomechanics, 25(5): 642~677(in Chinese with English abstract).

    • Li Sanzhong, Suo Yanhui, Wang Guangzeng, Jiang Zhaoxia, Zhao Yanyan, Liu Yiming, Li Xiyao, Guo Lingli, Liu Bo, Yu Shengyao, Liu Yongjiang, Zhang Guowei. 2019b. Tripoles on seafloor and tripole on Earth surface: dynamic connections. Marine Geology & Quaternary Geology, 39(5): 1~22(in Chinese with English abstract).

    • Li Sanzhong, Wang Guangzeng, Suo Yanhui, Li Xiyao, Dai Liming, Liu Yiming, Zhou Jie, Guo Lingli, Liu Yongjiang, Zhang Guowei. 2019c. Driving force of plate tectonics: origin and nature. Geotectonica et Metallogenia, 43(4): 605~643(in Chinese with English abstract).

    • Li Yang, Li Sanzhong, Guo Lingli, Zhou Zaizheng, Suo Yanhui, Wang Guangzeng, Zhu Junjiang, Liu Yiming, Liu Bo, Zhou Jie, Li Yuanjie, Zhang Guowei. 2019. Detachment-derived micro-blocks: new insights for the deformation mechanism of the ocean-continent transition and the mid-ocean ridge. Geotectonica et Metallogenia, 43(4): 779~794(in Chinese with English abstract).

    • Liu Jinping, Li Sanzhong, Suo Yanhui, Zhu Junjiang, Li Xiyao, Dai Liming, Liu Yongjiang, Yu Shengyao, Guo Lingli. 2019. Subduction-derived oceanic micro-block: complex evolution of footwall in subduction system. Geotectonica et Metallogenia, 43(4): 762~778(in Chinese with English abstract).

    • Liu Lijun. 2015. The ups and downs of North America: evaluating the role of mantle dynamic topography since the Mesozoic. Reviews of Geophysics, 53: 1022~1049.

    • Liu Lijun, Hasterok D. 2016. High-resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging. Science, 353: 1515~1519.

    • Liu Lijun, Peng Diandian, Liu Liang, Chen Ling, Li Sanzhong, Wang Yaoyi, Cao Zebiin, Feng Mingye. 2021. East Asian lithospheric evolution dictated by multistage Mesozoic flat-slab subduction. Earth-Science Reviews, 217: 103621.

    • Liu Shaofeng, Nummedal D, Liu Lijun. 2011. Tracking the Farallon plate migration through the Late Cretaceous Western U. S. Interior Basins. Geology, 39: 555~558.

    • Liu Shuwen, Bao Han, Sun Guozheng, Wang Wei, Fu Jinghao, Gao Lei, Guo Rongrong, Hu Yalu. 2022. Archean crust-mantle geodynamic regimes: a review. Geosystems and Geoenvironment, 1(4): 100063.

    • Madrigal P, Gazel E, Flores K E, Bizimis M, Jicha B. 2016. Record of massive upwellings from the Pacific large low shear velocity province. Nature Communications, 7: 13309.

    • Maruyama S, Santosh M and Azuma S. 2018. Initiation of plate tectonics in the Hadean: eclogitization triggered by the ABEL Bombardment. Geoscience Frontiers, 9(4): 1033~1048.

    • McKenzie D P, Parker R L. 1967. The North Pacific: an example of tectonics on a sphere. Nature, 216: 1276~1280.

    • Meng Fan, Li Sanzhong, Suo Yanhui, Zhu Junjiang, Li Xiyao, Dai Liming, Liu Yongjiang, Yu Shengyao, Wang Gang. 2019. Ridge Jumping-derived micro-blocks: unravelling a complex evolutionary process for divergent plate boundaries. Geotectonica et Metallogenia, 43(4): 644~664(in Chinese with English abstract).

    • Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189: 419~426.

    • Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. Journal of Geophysical Research, 73: 1959~1982.

    • Morgan W J. 1971. Convection plumes in the lowermantle. Nature, 230: 42~43.

    • Mu Dunling, Li Sanzhong, Suo Yanhui, Zhu Junjiang, Li Xiyao, Wang Guangzeng, Guo Lingli, Liu Yongjiang, Liu Bo. 2019. Tectonic and geodynamic mechanism of back-arc-rifting derived micro-blocks: insights from back-arc spreading in the West Pacific. Geotectonica et Metallogenia, 43(4): 665~677(in Chinese with English abstract).

    • Ning Wenbin, Kusky T, Wang Lu, Huang B. 2022. Archean eclogite-facies oceanic crust indicates modern-style plate tectonics. PNAS, 119(15): e2117529119.

    • Peng Diandian, Liu Lijun. 2021. A newly discovered Late-Cretaceous East Asian flat slab explains its unique lithospheric. Journal of Geophysical Research, 126: e2021JB022103.

    • Piper J D. 2013. A planetary perspective on Earth evolution: lid tectonics before plate tectonics. Tectonophysics, 589: 44~56.

    • Sager W W, Huang Y M, Tominaga M, Greene J A, Nakanishi M, Zhang J C. 2019. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies. Nature Geoscience, 12: 661~666.

    • Sawada H, Isozaki Y, Sakata S, Hirata T, Maruyama S. 2018. Secular change in lifetime of granitic crust and the continental growth: a new view from detrital zircon ages of sandstones. Geoscience Frontiers, 9(4): 1099~1115.

    • Stern R J. 2007. When and how did plate tectonics begin?theoretical and empirical considerations. Chinese Science Bulletin, 52: 578~591.

    • Stern R J. 2008. Modern-style plate tectonics began in Neoproterozoic time: an alternative interpretation of Earth's tectonic history. In: Condie K C, Pease V, Eds. When Did Plate Tectonics Begin on Earth? Geological Society of America Special Paper, 440: 265~280.

    • Stern R J. 2016. Is plate tectonics needed to evolve technological species on exoplanets? Geoscience Frontiers, 7(4): 573~580

    • Stern R J, Leybourne M I, Tsujimori T. 2016. Kimberlites and the start of plate tectonics. Geology, 44: 799~802.

    • Stern R J, Gerya T, Tackley P J. 2018. Stagnant lid tectonics: perspectives from silicate planets, dwarf planets, large moons, and large asteroids. Geoscience Frontiers, 9(1): 103~119.

    • Sun Guozheng, Liu Shuwen, Cawood P A, Tang Ming, van Hunen J, Gao Lei, Hu Yalu, Hu Fangyang. 2021. Thermal state and evolving geodynamic regimes of the Meso- to Neoarchean North China Craton. Nature Communications, 12: 3888.

    • Tang Ming, Chen K, Rudnick R L. 2016. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics. Science, 351(6271): 372~375.

    • Tapponnier P, Peltzer G, Le Dain A Y, Armijo R, Cobbold P. 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10: 611~616.

    • Torsvik T H, Smethurst M A, Burke K, Steinberger B. 2010. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophysical Journal International, 167: 1447~1460.

    • Vernant P. 2015. What can we learn from 20 years of interseismic GPS measurements across strike-slip faults? Tectonophysics, 644-645: 22~39.

    • Wang Erchie, Meng Kai, Su Zhe, Meng Qingren, Chu J J, Chen Zhiliang, Wang Gang, Shi Xuhua, Liang Xinquan. 2014. Block rotation: tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang Fault. Tectonics, 33: 686~717.

    • Wang Gang, Li Sanzhong, Jiang Suhua, Suo Yanhui, Guo Lingli, Zhu Junjiang, Wang Pengcheng, Liu Bo. 2019. Formation mechanisms and evolution of accretion-derived micro-blocks. Geotectonica et Metallogenia, 43(4): 745~761(in Chinese with English abstract).

    • Wang Guangzeng, Li Sanzhong, Suo Yanhui, Li Xiyao, Zhu Junjiang, Liu Yongjiang, Guo Lingli, Liu Bo. 2019. Transform-derived microplates: classification, mechanism and tectonic significance. Geotectonica et Metallogenia, 43(4): 700~714(in Chinese with English abstract).

    • Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207: 343~347.

    • Wu Fuyuan, Wan Bo, Zhao Liang, Xiao Wenjiao, Zhu Rixiang. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6) : 1627~1674(in Chinese with English abstract).

    • Wu Xiaowa, Qin Siqing, Xue Lei, Zhang Ke, Chen Hongran, Zhai Mengyang. 2021. Partition method of seismogenic tectonic block and its corresponding seismic zone. Geological Review, 67(2): 325~338(in Chinese with English abstract).

    • Xiao Wenjiao, Windley B F, Sun Shu, Li Jiliang, Han Baofu, Han Chongming, Yuan Chao, Sun Min, Chen Hanlin. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477~507.

    • Yin An. 2012. An episodic slab rollback model for the origin of the Tharsis Rise on Mars: implications for initiation of local plate subduction and final unification of a kinematically linked global plate tectonic network on Earth. Lithosphere, 4 (6): 553~593.

    • Zeng Pusheng, Li Ruizhe, Liu Siwen, Wen Ligang, Zhao Jiujiang, Wang Shian. 2021. Yanshanian large igneous provinces in eastern China: magmatism-tectonics-resources-environment effects. Acta Geoscientica Sinica, 42(6): 721~748(in Chinese with English abstract).

    • Zhang Guowei, Guo Anlin, Dong Yunpeng, Yao Anping. 2011. Continental geology, tectonics and dynamics. Earth Science Frontiers, 18(3): 1~12(in Chinese with English abstract).

    • Zhao Guochun, Zhang Guowei. 2021. Origin of continents. Acta Geologica Sinica, 95(1): 1~19(in Chinese with English abstract).

    • Zhao Guochun. 2007. When did plate tectonics begin on the North China Craton?insights from metamorphism. Earth Science Frontiers, 14(1): 19~32(in Chinese with English abstract).

    • Zhao Lintao, Li Sanzhong, Suo Yanhui, Guo Lingli, Wang Guangzeng, Dai Liming, Zhu Junjiang, Liu Bo, Wang Gang. 2019. Propagation-derived micro-blocks: complex evolution of mid-ocean ridge accretion system. Geotectonica et Metallogenia, 43(4): 715~729(in Chinese with English abstract).

    • Zhen Libing, Li Sanzhong, Guo Lingli, Wang Guangzeng, SuoYanhui, Zhu Junjiang, Li Xiyao, Dai Liming, Liu Yongjiang. 2019. Genetic mechanism of the propagation-derived microplate: a review. Geotectonica et Metallogenia, 43(4): 730~744(in Chinese with English abstract).

    • Zheng Yongfei, Zhao G C. 2020. Two styles of plate tectonics in Earth's history. Science Bulletin, 65(4): 329~334.

    • Zheng Yongfei, Chen Yixiang, Dai Liqun, Zhao Zifu. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Science China: Earth Sciences, 58: 1045~1069.

    • Zhong Shijie, Zhang Nan, Li Zhengxiang, Roberts J H. 2007. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth and Planetary Science Letters, 261: 551~564.

    • Zhong Shijie. 2021. Mantle dynamics on large spatial and temporal scales. Chinese Journal of Geophysics(in Chinese), 64(10): 3478~3502(in Chinese with English abstract).

    • Zhou Jie, Li Sanzhong, Suo Yanhui, Li Xiyao, Guo Lingli, Zhu Junjiang, Liu Yongjiang, Wang Guangzeng, Li Yang. 2019. Type and genetic mechanism of collision-derived micro-blocks. Geotectonica et Metallogenia, 43(4): 795~823(in Chinese with English abstract).

    • Zhu Rixiang, Zhao Pan, Zhao Liang. 2022. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Science China Earth Sciences, 65(1): 1~24.

    • 侯增谦, 赵志丹, 高永丰, 杨志明, 江万. 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22(4): 761~774.

    • 金振民, 姚玉鹏. 2004. 超越板块构造——我国构造地质学要做些什么?地球科学, 29(6): 644~650.

    • 李三忠, 戴黎明, 张臻, 郭玲莉, 赵淑娟, 赵国春, 张国伟. 2015. 前寒武纪地球动力学(Ⅳ): 前板块体制. 地学前缘, 22(6): 46~64.

    • 李三忠, 索艳慧, 刘博, 刘永江, 李玺瑶, 赵淑娟, 朱俊江, 王光增, 张国伟. 2018, 微板块构造理论: 全球洋内与陆缘微地块研究的启示. 地学前缘, 25(5): 324~355.

    • 李三忠, 曹现志, 王光增, 刘博, 李玺瑶, 索艳慧, 姜兆霞, 郭玲莉, 周洁, 王鹏程, 朱俊江, 汪刚, 赵淑娟, 刘永江, 张国伟. 2019a. 太平洋板块中—新生代构造演化及板块重建. 地质力学学报, 25(5): 642~677.

    • 李三忠, 索艳慧, 王光增, 姜兆霞, 赵彦彦, 刘一鸣, 李玺瑶, 郭玲莉, 刘博, 于胜尧, 刘永江, 张国伟. 2019b. 海底"三极"与地表"三极": 动力学关联. 海洋地质与第四纪地质, 39(5): 1~22.

    • 李三忠, 王光增, 索艳慧, 李玺瑶, 戴黎明, 刘一鸣, 周洁, 郭玲莉, 刘永江, 张国伟. 2019c. 板块驱动力: 问题本源与本质. 大地构造与成矿学, 43(4): 605~643.

    • 李阳, 李三忠, 郭玲莉, 周在征, 索艳慧, 王光增, 朱俊江, 刘一鸣, 刘博, 周洁, 李园洁, 张国伟. 2019. 拆离型微地块: 洋陆转换带和洋中脊变形机制. 大地构造与成矿学, 43(4): 779~794.

    • 刘金平, 李三忠, 索艳慧, 朱俊江, 李玺瑶, 戴黎明, 刘永江, 于胜尧, 郭玲莉. 2019. 残生微洋块: 俯冲消减系统下盘的复杂演化. 大地构造与成矿学, 43(4): 762~778.

    • 孟繁, 李三忠, 索艳慧, 朱俊江, 李玺瑶, 戴黎明, 刘永江于胜尧, 汪刚. 2019. 跃生型微地块: 离散型板块边界的复杂演化. 大地构造与成矿学, 43(4): 644~664.

    • 牟墩玲, 李三忠, 索艳慧, 朱俊江, 李玺瑶, 王光增, 郭玲莉, 刘永江, 刘博. 2019. 裂生微地块构造特征及成因模式: 来自西太平洋弧后扩张作用的启示. 大地构造与成矿学, 43(4): 665~677.

    • 汪刚, 李三忠, 姜素华, 索艳慧, 郭玲莉, 朱俊江, 王鹏程, 刘博. 2019. 增生型微地块的特征及成因模式: 来自洋壳高原俯冲和转换边界的启示. 大地构造与成矿学, 43(4): 745~761.

    • 王光增, 李三忠, 索艳慧, 李玺瑶, 朱俊江, 刘永江, 郭玲莉, 刘博. 2019. 转换型微板块类型、成因及其大地构造启示. 大地构造与成矿学, 43(4): 700~714.

    • 吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36: 1627~1674.

    • 吴晓娲, 秦四清, 薛雷, 张珂, 陈竑然, 翟梦阳. 2021. 孕震构造块体与相应地震区划分方法. 地质论评, 67(2): 325~338.

    • 曾普胜, 李睿哲, 刘斯文, 温利刚, 赵九江, 王十安. 2021. 中国东部燕山期大火成岩省: 岩浆-构造-资源-环境效应. 地球学报, 42(6): 721~748.

    • 张国伟, 郭安林, 董云鹏, 姚安平. 2011. 大陆地质与大陆构造和大陆动力学. 地学前缘, 18(3): 1~12.

    • 赵国春, 张国伟. 2021. 大陆的起源. 地质学报, 95(1): 1~19.

    • 赵国春. 2007. 从变质作用观看板块构造何时在华北克拉通开始 (英文) . 地学前缘, 14 (1), 19~32.

    • 赵林涛, 李三忠, 索艳慧, 郭玲莉, 王光增, 戴黎明, 朱俊江, 刘博, 汪刚. 2019. 延生微地块: 洋脊增生系统的复杂过程. 大地构造与成矿学, 43(4): 715~729.

    • 甄立冰, 李三忠, 郭玲莉, 王光增, 索艳慧, 朱俊江, 李玺瑶, 戴黎明, 刘永江. 2019. 延生型微板块成因机制模拟研究进展. 大地构造与成矿学, 43(4): 730~744.

    • 郑永飞, 陈伊翔, 戴立群, 赵子福. 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45(6): 711~735.

    • 钟时杰. 2021. 大尺度地幔动力学研究的现状和展望. 地球物理学报, 64(10): 3478~3502.

    • 周洁, 李三忠, 索艳慧, 李玺瑶, 郭玲莉, 朱俊江, 刘永江, 王光增, 李阳. 2019. 碰生型微地块的分类及其形成机制. 大地构造与成矿学, 43(4): 795~823.

    • 朱日祥, 赵盼, 赵亮. 2022. 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1~25.