en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

白明坤,男,1991年生。博士研究生,构造地质学专业,活动构造研究方向。E-mail:1801111888@pku.edu.cn。

通讯作者:

ChevalierMarie-Luce,女,1979年生。研究员,博士生导师,构造地质学专业,活动构造研究方向。E-mail:mlchevalier@hotmail.com。

参考文献
Allen C R, Luo Z, Qian H, Wen X, Zhou H, Huang W. 1991. Field study of a highly active fault zone: the XSF of southwestern China. Geological Society of America Bulletin, 103: 1178~1199.
参考文献
Bai Mingkun, Chevalier M L, Pan Jiawei, Replumaz A, Leloup P H, Métois M, Li Haibing. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485: 19~31.
参考文献
Bai Mingkun, Chevalier, M L, Leloup P H, Li Haibing, Pan Jiawei, Replumaz A, Wang Shiguang, Li Kaiyu, Wu Qiong, Liu Fucai, Zhang Jinjiang. 2021. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment. Tectonics, 40: e2021TC006985.
参考文献
Chen Guihua, Xu Xiwei, Wen Xueze, Wang Yali. 2008. Kinematical transformation and slip partitioning of northern to eastern active boundary belt of Sichuan-Yunnan block. Seismology and Geology, 30(1): 58~85 (in Chinese with English abstract).
参考文献
Chen Guihua, Xu Xiwei, Yuan Renmao, Wen Xueze, Zheng Rongzhang. 2010. Late Quaternary climate and geomorphology on the northeastern margin of Sichuan-Yunnan block and their tectonomorphologic significance. Quaternary Sciences, 30(4): 837~854 (in Chinese with English abstract).
参考文献
Chen Guihua, Xu Xiwei, Wen Xueze, Chen Yingtao. 2016. Late Quaternary slip-rates and slip-partitioning on the southeastern Xianshuihe fault system, Eastern Tibetan Plateau. Acta Geologica Sinica, 90: 537~554.
参考文献
Chen Hongfeng, Yuan Fei, Xu Zhiguo, Yin Xiang, Miao Chunlan, Zou Lihua, Ma Yanlu. 2014. Rapid determination of moment magnitudes of moderate and strong earthquakes using data from China Seismic networks. Seismic Geomagnetic Observation and Research, 35(5-3): 51~57.
参考文献
Cheng Jia, Liu Jie, Gan Weijun, Yu Huaizhong, Li Gang. 2011. Characteristics of strong earthquake evolution around the eastern boundary faults of the Sichuan-Yunnan rhombic block. Science China Earth Sciences, 54(11): 1716~1729.
参考文献
Chevalier M L, Ryerson F J, Tapponnier P, Finkel R, Van der Woerd J, Li Haibing, Liu Qing. 2005. Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion. Science, 307(5708): 411~414.
参考文献
Chevalier M L, Leloup P H, Replumaz A, Pan Jiawei, Metois M, Li Haibing. 2017. Temporally constant slip-rate along the Ganzi fault, NW Xianshuihe fault system, eastern Tibet. Geological Society of America Bulletin, 130(3-4): 396~410.
参考文献
Deng Qidong, Zhang Peizhen, Ran Yongkang, Yang Xiaoping, Min Wei, Chu Quanzhi. 2003. Basic characteristics of active tectonics of China. Science in China, 46: 356~372.
参考文献
Department of Earthquake Disaster Prevention. 1995. Catalogue of Chinese Historical Strong Earthquakes: 23rd century BC to 1911. Beijing: Seismological Press.
参考文献
Department of Earthquake Disaster Prevention. 1999. Catalogue of Chinese Present Earthquakes: 1912 to 1990. Beijing: Seismological Press.
参考文献
Friedrich A M, Wernicke B P, Niemi N A, Bennett R A, Davis J L. 2003. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. Journal of Geophysical Research, 108(B4): 2199.
参考文献
Gan Weijun, Zhang Peizhen, Shen Zhengkang, Niu Zhijun, Wang Min, Wan Yongge, Zhou Demin, Cheng Jia. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research, 112: B08416.
参考文献
Guo Rumeng, Zheng Yong, Tian Wen, Xu Jianqiao, Zhang Wenting. 2018. Locking status and earthquake potential hazard along the middle-south Xianshuihe fault. Remote Sensing, 10: 2048.
参考文献
Ji Lingyun, Zhang Wenting, Liu Chuanjin, Zhu Liangyu, Xu Jing, Xu Xiaoxue. 2020. Characterizing interseismic deformation of the Xianshuihe fault, eastern Tibetan Plateau, using Sentinel-1 SAR images. Advances in Space Research, 66: 378~394.
参考文献
Jiang Guoyan, Wen Yangmao, Liu Yajing, Xu Xiwei, Fang Lihua, Chen Guihua, Gong Meng, Xu Caijun. 2015. Joint analysis of the 2014 Kangding, southwest China, earthquake sequence with seismicity relocation and InSAR inversion. Geophysical Research Letters, 42: 3273~3281.
参考文献
Kang Wenjun, Xu Xiwei, Yu Guihua, Luo Jiahong. 2020. Comparison study of two kinds of codes to measure fault-offsets based on MATLAB: a case study on eastern Altyn Tagh fault. Seismology and Geology, 42(3): 732~747 (in Chinese with English abstract).
参考文献
Klinger Y. 2010. Relation between continental strike-sipe earthquake segmentation and thickness of the crust. Journal of Geophysical Research. 115: B07306.
参考文献
Li Dongyu, Chen Lichun, Liang Mingjian, Gao Shuaipo, Zeng Di, Wang Hu, Li Yanbao. 2017. Holocene palaeoseismological record and rupture behavior of large earthquakes on the Xianshuihe fault. Seismology and Geology, 39(4): 623~643 (in Chinese with English abstract).
参考文献
Li Haibing, Pan Jiawei, Sun Zhiming, Si Jialiang, Pei Junling, Liu Dongliang, Marie-Luce Chevalier, Wang Huan, Lu Haijian, Zheng Yong, Li Chunrui. 2021. Continental tectonic deformation and seismic activity: a case study from the Tibetan Plateau. Acta Geologica Sinica, 95(1): 194~213 (in Chinese with English abstract).
参考文献
Li Jiangyi, Zhou Bengang, Li Tieming, Yang Yonglin, Li Zhengfang. 2020. Locking depth, slip rate, and seismicity distribution along the Daofu-Kangding segment of the Xianshuihe fault system, eastern Tibetan Plateau. Journal of Asian Earth Sciences, 193, 104328.
参考文献
Li Tianshao, Du Qifang, You Zeli, et al. 1997. The Active Xianshuihe Fault Zone and Seismic Risk Assessment. Chengdu: Chengdu Cartographic Publishing House (in Chinese).
参考文献
Li Tieming, Zhu Yiqing, Yang Yonglin, Xu Yunma, An Yanfen, Zhang Ying, Feng Shengtao, Huai Yanke, Yang Jiuyuan. 2019. The current slip rate of the Xianshuihe fault zone calculated using multiple observation data of crustal deformation. Chinese journal of Geophysics, 62(4): 1323~1335 (in Chinese with English abstract).
参考文献
Liang Mingjian, Chen Lichun, Ran Yongkang, Li Yanbao, Gao Shuaipo, Han Mingming, Lu Lili. 2020. Abnormal accelerating stress release behavior on the Luhuo segment of the Xianshuihe fault, southeastern margin of the Tibetan Plateau, during the past 3000 years. Frontiers Earth Science, 8: 274.
参考文献
Pan Jiawei, Li Haibing, Marie-Luce Chevalier, Bai Mingkun, Liu Fucai, Liu Dongliang, Zheng Yong, Lu Haijian, Zhao Zhongbao. 2020. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: the South Mugecuo fault. Acta Geological Sinica, 94(11): 3178~3188 (in Chinese with English abstract).
参考文献
Pan Jiawei, Bai Mingkun, Li Chao, Liu Fucai, Li Haibing, Liu Dongliang, Chevalier Marie-Luce, Wu Kungang, Wang Ping, Lu Haijian, Chen Peng, Li Chunrui. 2021. Coseismic surface rupture and seismogenic structure of the 2021. 5. 22 Maduo (Qinghai) M S 7. 4 earthquake. Acta Geologica Sinica, 95(6): 1655~1670 (in Chinese with English abstract).
参考文献
Papadimitriou E, Wen Xueze, Karakostas V, Jin X. 2004. Earthquake triggering along the Xianshuihe fault zone of Western Sichuan, China. Pure & Applied Geophysics, 161: 1683~1707.
参考文献
Qian Hong, Allen C R, Luo Zhuoli, Wen Xueze, Zhou Huawei, Huang Shiwei. 1988. The active characteristics of Xianshuihe fault in Holocene. Earthquake Research in China, 4(2): 9~18 (in Chinese with English abstract).
参考文献
Qiao Xin, Zhou Yu. 2021. Geodetic imaging of shallow creep along the Xianshuihe fault and its frictional properties. Earth and Planetary Science Letters, 567: 117001.
参考文献
Ran Hongliu, He Honglin. 2006. Research on the magnitude and recurrence interval of characterized earthquakes with magnitude≥6. 7 along the northwestern portion of the Xianshuihe fault zone in western Sichuan, China. Chinese Journal of Geophysics, 49(1): 153~161 (in Chinese with English abstract).
参考文献
Roger F, Calassou S, Lancelot J, Malavieille J, Mattauer M, Xu Zhiqin, Hao Ziwen, Hou Liwei. 1995. Miocene emplacement and deformation of the Konga Shan granite (Xianshuihe fault zone, west Sichuan, China): geodynamic implications. Earth and Planetary Science Letters, 130: 201~216.
参考文献
Shan Bin, Xiong Xiong, Zheng, Yong, Diao Faqi. 2009. Stress changes on major faults caused by MW 7. 9 Wenchuan earthquake May 12, 2008. Science in China, 52: 593~601.
参考文献
Shen Zhengkang, Lv Jiangning, Wang Min, Bürgmann R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110: B11409.
参考文献
Stewart N, Gaudemer Y, Manighetti I, Serreau L, Vincendeau A, Dominguez S, Matteo L, Malavieille J. 2018. “3D_Fault_Offsets, ” a Matlab code to automatically measure lateral and vertical fault offsets in topographic data: application to San Andreas, Owens valley, and Hope faults. Journal of Geophysical Research: Solid Earth, 123: 815~835.
参考文献
Sun Kai, Meng Guojie, Hong Shunying, Su Xiaoning, Huang Xing, Dong Yanfang, Hiroaki Takahashi, Mako Ohzono. 2021. Interseismic movement along the Luhuo-Daofu section of the Xianshuihe fault from InSAR and GPS observation. Chinese Journal of Geophysics, 64(7): 2278~2296 (in Chinese with English abstract).
参考文献
Tang Rongchang, Qian Hong, Zhang Wenfu, Zhang Chenggui, Cao Yangguo, Liu Shengli. 1984. On the seismogeological setting and conditions of seismogenic structures of 1981 Daofu earthquake. Seismology and Geology, 6(2): 33~40 (in Chinese with English abstract).
参考文献
Tapponnier P, Molnar P. 1977. Active faulting and Cenozoic tectonics of China. Journal of Geophysical Research, 82: 2905~2930.
参考文献
Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang Jingsui. 2001. Oblique stepwise rise and growth of the Tibet Plaleau. Science, 294(5547): 1671~1677.
参考文献
Toda S, Lin J, Meghraoui M, Stein R S. 2008. 12 May 2008 M =7. 9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophysical Research Letters, 35: L17305.
参考文献
Wang Erchie, Burchfiel B C, Royden L H, Chen Liangzhong, Chen Jishen, Li Wenxin, Chen Zhiliang. 1998. The Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America Special Paper, 327: 1~108.
参考文献
Wang Erchie, Burchfiel B C. 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geological Society of America Bulletin, 112: 413~423.
参考文献
Wang Erchie, Kirby E, Furlong K P, Van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640~645.
参考文献
Wang Hua, Wright T J, Biggs J. 2009. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophysical Research Letters, 36: L03302.
参考文献
Wang Min, Shen Zhengkang. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research, 125: e2019JB018774.
参考文献
Wang Shifeng, Fang Xiaomin, Zheng Dewen, Wang Erchie. 2009. Initiation of slip along the Xianshuihe fault zone, eastern Tibet, constrained by K/Ar and fission-track ages: International Geology Review, 51(12): 1121~1131.
参考文献
Wang Shifeng, Jiang Guiguo, Xu Tiande, Tian Yuntao, Zheng Dewen, Fang, Xiaomin. 2012. The Jinhe-Qinghe fault—aninactive branch of the Xianshuihe-Xiaojiang fault zone, Eastern Tibet. Tectonophysics, 544-545: 93~102.
参考文献
Wang Wei, Qiao Xuejun, Yang Shaomin, Wang Dijin. 2017. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophysical Journal International, 208: 1088~1102.
参考文献
Wang Yanzhao, Wang Min, Shen Zhengkang. 2017. Block-like versus distributed crustal deformation around the northeastern Tibetan plateau. Journal of Asian Earth Sciences, 140: 31~47.
参考文献
Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84: 974~1002.
参考文献
Wen Xueze. 1988. Recent slip rates, earthquake recurrence intervals and strong seismic hazards on the northwestern segment of the Xianshuihe fault zone. Earthquake Research in China, 2: 431~451.
参考文献
Wen Xueze, Allen C R, Luo Zhuoli, Qian Hong, Zhou Huawei, Huang Weishi. 1989. Segmentation, Geometric features, and their seismotectonic implications for the Holocene Xianshuihe fault zone. Acta Seismological Sinica, 11(4): 362~372 (in Chinese with English abstract).
参考文献
Wen Xueze. 2000. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault zone, Western Sichuan. Seismology and Geology, 22(3): 239~249 (in Chinese with English abstract).
参考文献
Wen Xueze, Ma Shengli, Xu Xiwei, He Yongnian. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2): 16~36.
参考文献
Wu Zhonghai, Zhao Genmo. 2013. The earthquake prediction status and related problems: a review. Geological Bulletin of China, 32(10): 1493~1512 (in Chinese with English abstract).
参考文献
Xianshuihe Active Fault Zone Mapping Group, Seismic Geological Team, Sichuan Earthquake Administration. 2013. Manual of Geological Map of Xianshuihe Active Fault Zone (1∶50000). Beijing: Seismological Press.
参考文献
Xu Jing, Shao Zhigang, Ma Hongsheng, Zhang Langping. 2013. Evolution of Coulomb stress and stress interaction among strong earthquakes along the Xianshuihe fault zone. Chinese Journal of Geophyics, 56(4): 1146~1158 (in Chinese with English abstract).
参考文献
Xu Xiwei, Wen Xueze, Zheng Rongzhang, Ma Wentao, Song Fangmin, Yu Guihua. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Science in China(Ser. D), 33(Supp1): 151~162 (in Chinese).
参考文献
Xu Xiwei, Zhang Peizhen, Wen Xueze, Qin Zunli, Chen Guihua, Zhu Ailan. 2005. Features ofactive tectonics and recurrence behaviors of strong earthquakes in the western Sichuan Province and its adjacent regions. Seismology and Geology, 27(3): 446~461 (in Chinese with English abstract).
参考文献
Yan Bing, Lin Aiming. 2015. Systematic deflection and offset of the Yangtze River drainage system along the strike-slip Ganzi-Yushu-Xianshuihe fault zone, Tibetan Plateau. Journal of Geodynamics, 87: 13~25.
参考文献
Yan Bing, Jia Dong, Lin Aiming. 2018. Late Pleistocene—Holocene tectonic landforms developed along the strikeslip Xianshuihe fault zone, Tibetan Plateau, China. Journal of Geodynamics, 120: 11~22.
参考文献
Yang Peng, Peng Liyuan. 2021. Current activity characteristics of Xianshui River Luhuo fault. Earthquake Research in Sichuan, 179: 24~28 (in Chinese with English abstract).
参考文献
Yi Guixi, Long Feng, Wen Xueze, Liang Mingjian, Wang Siwei. 2015. Seismogenic structure of the M 6. 3 Kangding earthquake sequence on 22 Nov. 2014, Southwestern China. Chinese Journal of Geophysics, 58(4): 1205~1219 (in Chinese with English abstract).
参考文献
Zhang Jing, Wen Xueze, Cao Jianling, Yan Wei, Yang Yonglin, Su Qin. 2018. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone of southwestern China determined from decades of fault-crossing short-baseline and short-level surveys. Tectonophysics, 722: 356~372.
参考文献
Zhang Lifang, Carpenter N S, Wang Zhenming, Lyu Yuejun, Li Shanyou. 2018. Scenario-based seismic hazard analysis for the Xianshuihe Fault Zone, Southwest China. Pure & Applied Geophysics, 175: 707~720.
参考文献
Zhang Lei, Cao Daiyong, Zhang Jingfa, Sui Lili. 2019. Interseismic fault movement of Xianshuihe fault zone based on across-fault deformation data and InSAR. Pure & Applied Geophysics, 176: 649~667.
参考文献
Zhang Peizhen. 2013. A review on active tectonics and deep crustal processes of the western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584: 7~22.
参考文献
Zhang Shimin, Xie Furen. 2001. Seismo-tectonic divisions of strong earthquakes (M S>7. 0) and their tectonic geomorphology along Xianshuihe-Xiaojiang fault zone. Acta Seismologica Sinica, 23(1): 36~44 (in Chinese with English abstract).
参考文献
Zhang Wenting, Ji Lingyun, Zhu Liangyu, Liu Chuanjin, Jiang Fengyu, Xu Xiaoxue. 2022. Currentslip and strain Rate distribution along the Ganzi-Yushu-Xianshuihe fault system based on InSAR and GPS observations. Frontiers in Earth Science, 10: 821761.
参考文献
Zhang Yuanze, Replumaz A, Leloup P H, Wang Guocan, Bernet M, van der Beek P, Paquette J L. Chevalier M L. 2017. Cooling history of the Gongga batholith: implications for the Xianshuihe fault and Miocene kinematics of SE Tibet. Earth and Planetary Science Letters, 465: 1~15.
参考文献
Zhao Guoguang, Liu W, Wei H et al. 1992. The Quaternary slip rate ad segmentation of the Xianshuihe active fault zone. In: Proceedings of the PRC-USA bilateral symposium on the Xianshuihe Fault Zone (Beijing: Seismological Pross, 41~57).
参考文献
Zheng Gang, Wang Hua, Wright T J, Lou Y, Zhang Rui, Zhang Weixing, Shi Chuang, Huang Jinfang, Wei Na. 2017. Crustal deformation in the India-Eurasia collision Zone from 25 years of GPS measurements. Journal of Geophysical Research: Solid Earth, 122: 9290~9312.
参考文献
Zhou Rongjun, He Yulin, Huang Zuzhi, Li Xiaogang, Yang Tao. 2001. The slip rate and strong earthquake recurrence interval on the Qianning-Kangding segment ofthe Xianshuihe Fault zone. Acta Seismologica Sinica, 23(3): 250~261 (in Chinese with English abstract).
参考文献
Zielke O, Arrowsmith J R, Grant Ludwig L, Akçiz S O. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo plain, San Andreas fault. Science, 327: 1119~1122.
参考文献
Zielke O, Arrowsmith J R. 2012. LaDiCaoz and LiDARimager-MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere, 8 (1): 206~221.
参考文献
Zielke O, Klinger Y, Arrowsmith J R. 2015. Fault slip and earthquake recurrence along strike-slip faults—contributions of high-resolution geomorphic data. Tectonophysics, 638: 43~62.
参考文献
陈宏峰, 袁菲, 徐志国, 殷翔, 苗春兰, 邹立晔, 马延路. 2014. 使用中国地震台网资料快速测定中强地震矩震级. 地震地磁观测与研究, 35 (5-6): 51~57.
参考文献
陈桂华, 徐锡伟, 闻学则, 王亚丽. 2008. 川滇块体北-东边界活动构造带运动学转换与变形分解作用. 地震地质, 30(1): 58~85.
参考文献
陈桂华, 徐锡伟, 袁仁茂, 闻学则, 郑荣章. 2010. 川滇块体东北缘晚第四纪区域气候-地貌分析及其构造地貌年代学意义. 第四纪研究, 30(4): 837~854.
参考文献
李东雨, 陈立春, 梁明剑, 高帅坡, 曾蒂, 王虎, 李彦宝. 2017. 鲜水河断裂带乾宁段古地震事件与大震复发行为. 地震地质, 39(4): 623~643.
参考文献
李海兵, 潘家伟, 孙知明, 司家亮, 裴军令, 刘栋梁, Chevalier M L, 王焕, 卢海建. 郑勇, 李春锐. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报, 95(1): 194~213.
参考文献
李天祒, 杜其方, 游泽李等. 1997. 鲜水河活动断裂带及强震危险性评估. 成都: 成都地图出版社.
参考文献
李铁明, 祝意青, 杨永林等. 2019. 综合利用多种地壳形变观测资料计算鲜水河断裂带现今滑动速率. 地球物理学报, 62(4): 1323~1335.
参考文献
潘家伟, 李海兵, Chevalier M L, 白明坤, 刘富财, 刘栋梁, 郑勇, 卢海建, 赵中宝. 2020. 鲜水河断裂带色拉哈—康定段新发现的活动断层: 木格措南断裂. 地质学报, 94(11): 3178~3188.
参考文献
潘家伟, 白明坤, 李超, 刘富财, 李海兵, 刘栋梁, Chevalier M L, 吴坤罡, 王平, 卢海建, 陈鹏, 李春锐. 2021. 2021年5月22日青海玛多M S 7. 4地震地表破裂带及发震构造. 地质学报, 95(6): 1655~1670.
参考文献
钱洪, 艾伦C R, 罗灼礼, 闻学则, 周华伟, 黄伟师. 1988. 全新世以来鲜水河断裂的活动特征. 中国地震, 4(2): 9~18.
参考文献
冉洪流, 何宏林. 2006. 鲜水河断裂带北西段不同破裂源强震震级(M ≥6. 7) 及复发间隔研究. 地球物理学报, 49(1): 153~161.
参考文献
四川省地震局地震地质队鲜水河活动断裂带填图组. 2013. 鲜水河活动断裂带地质图(1∶50000)说明书. 北京: 地震出版社.
参考文献
孙凯, 孟国杰, 洪顺英等. 2021. 联合InSAR和GPS研究鲜水河断裂带炉霍—道孚段震间运动特征. 地球物理学报, 64(7): 2278~2296.
参考文献
唐荣昌, 钱洪, 张文甫, 等. 1984. 道孚6. 9级地震的地质构造背景与发震构造条件分析. 地震地质, 6(2): 33~40.
参考文献
康文君, 徐锡伟, 于贵华, 罗佳宏. 2020. 2种基于Matlab 平台的断层位移测量软件对比分析——以阿尔金断裂东段为例. 地震地质, 42(3): 732~747.
参考文献
闻学泽. 2000. 四川西部鲜水河—安宁河—则木河断裂带的地震破裂分段特征. 地震地质, 22(3): 239~249.
参考文献
闻学泽, Allen C R, 罗灼礼, 钱洪. 1989. 鲜水河全新世断裂带的分段性、几何特征及其地震构造意义. 地震学报, 11(4): 362~372.
参考文献
吴中海, 赵根模. 2013. 地震预报现状及相关问题综述. 地质通报, 32(10): 1493~1512.
参考文献
徐晶, 邵志刚, 马宏生等. 2013. 鲜水河断裂带库仑应力演化与强震间关系. 地球物理学报, 56(4): 1146~1158.
参考文献
徐锡伟, 闻学则, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学, 33: 151~162.
参考文献
徐锡伟, 张培震, 闻学则, 秦尊丽, 陈桂华, 朱艾斓. 2005. 川西及其邻近地区活动构造基本特征与强震复发模型. 地震地质, 27(3): 446~461.
参考文献
杨鹏, 彭丽媛. 2021. 鲜水河炉霍段断层现今活动特征. 四川地震, 179: 24~28.
参考文献
易桂喜, 龙锋, 闻学泽, 梁明剑, 王思维. 2015. 2014年11月22日康定M6. 3级地震序列发震构造分析. 地球物理学报, 58(4): 1205~1219.
参考文献
张世民, 谢富仁. 2001. 鲜水河-小江断裂带E级以上强震构造区的划分及其构造地貌特征. 地震学报, 23(11): 36~44.
参考文献
周荣军, 何玉林, 黄祖指, 黎小刚, 杨涛. 2001. 鲜水河断裂带乾宁-康定段的滑动速率与强震复发间隔. 地震学报, 23(3): 250~261.
参考文献
中国地震局震害防御司. 1995. 中国历史强震目录: 公元前23世纪―公元1911年. 北京: 地震出版社.
参考文献
中国地震局震害防御司. 1999. 中国近代地震目录: 公元1912年~1990年, M S≥4. 7. 北京: 中国科学技术出版社.
目录contents

    摘要

    活动断裂几何学特征及滑动速率是研究断裂运动学、动力学机制及其评估区域强震危险性的重要依据。青藏高原东缘左行走滑的鲜水河断裂带是控制高原物质向南东挤出的重要边界,是中国陆内活动性最强的断裂之一。本文以鲜水河断裂带北西段为研究对象,通过高精度遥感影像解译、野外考察、OSL(光释光)和14C测年方法以及LiDAR(激光雷达)扫描获得乾宁段龙灯乡冲积阶地的位错量和废弃年龄。T4和T3′水平位错量分别为106±5 m和77±2 m,T4阶地垂直位错量为9.6±0.5 m。T4和T3′阶地的废弃年龄分别为11±1 ka和7±1 ka。结合对应的年龄和位错量,得到乾宁段晚第四纪走滑速率左行走滑速率为10.5±1 mm/a,垂直滑动速率为0.9±0.1 mm/a,断层倾向北东,具有正断运动学特征。通过重新计算断裂两侧GPS矢量沿断裂方向分量,得到鲜水河断裂带炉霍段、炉霍—康定段、磨西段现今左行走滑速率分别约为8.1 mm/a、8.2 mm/a、9.4 mm/a,整体表现为自北西向南东递增。综合乾宁段晚第四纪走滑速率和最新强震活动的离逝时间估算,认为鲜水河断裂带乾宁段目前应变累积达到了发生一次M W 6.8(M S 7.2)大地震的潜能,在区域防震减灾工作中应对此加以重视。

    Abstract

    Determining the geometric characteristic and slip rate alongactive faults is essential to understand fault dynamic mechanism and evaluate regional earthquake hazard. The left-lateral strike-slip Xianshuihe fault in eastern Tibet is one of the most active intra-continental faults in China, acting as a significant boundary fault controlling eastward material extrusion from Tibet. Here, we determined the offsets and abandonment ages of Longdeng terraces on the Qianning segment, NW Xianshuihe fault, using tectonic-geomorphology approaches (high-resolution remote sensing images and field investigation, LiDAR (Light detection and ranging) with OSL (Optically stimulated luminescence) and 14C dating. Yielded the abandonment ages of 11±1 and 7±1 ka for T4 and T3′, respectively. Horizontal offsets measured on the high-resolution DEM (Digital elevation model) obtained from our LiDAR surveys are 106±5 and 77±2 m for T4/T3′ and T3′/T1, respectively, and the vertical offset of T4 is 9.6±0.5 m. Combining the terrace ages with their offsets, we obtain an average late Quaternary horizontal slip-rate of 10.5±1 mm/a, and a throw rate of 0.9±0.1 mm/a. In addition, by recalculating the fault parallel component of GPS vectors on both sides of the fault, we derive a horizontal rate along the Luhuo, Luhuo-Kangding, and Moxi segments of 8.1, 8.2, and 9.4 mm/a, respectively, suggesting that the slip rate along the Xianshuihe fault currently increases from NW to SE. Combining the slip-rate we determined along the Qianning segment with empirical equations of maximum offsets and earthquake magnitude, we suggest a seismic risk of a M W 6.8 (M S 7.2) earthquake in the near future along that segment of the Xianshuihe fault, which should be taken seriously in the earthquake disaster mitigation.

  • 印度-欧亚板块汇聚使青藏高原东南缘地壳物质持续向南东挤出,导致区域内发育多条调节各次级板块的相对运动和挤出的活动性强、规模大的边界走滑断裂带(Tapponnier et al.,1977, 2001; Wang Erchie et al.,1998, 2000)(图1)。左行走滑的鲜水河断裂系是青藏高原东缘一条重要的活动断裂系,全长1400km,具有清晰的构造几何展布,如线性特征、阶区及弯曲等,从而控制着断裂的分段性(闻学泽等,1989;Allen et al.,1991;闻学泽,2000;周荣军等,2001;Klinger, 2010;Zielke et al.,2015),自北西向南东分为:当江断裂、玉树/巴塘断裂、甘孜断裂、鲜水河断裂带、安宁河-则木河断裂、小江断裂(图1)(闻学泽等,1989;Allen et al.,1991;李天袑等,1997;Wang Erchie et al.,1998, 2000;周荣军等,2001)。作为青藏高原物质向南东挤出的北东边界断裂,鲜水河断裂系是中国陆内活动性最强的断裂系之一(Allen et al.,1991; 闻学泽,2000;Wen Xueze et al.,2008;Bai Mingkun et al.,2018),也是“南北地震带”或“南北活动构造带”的重要组成部分(Deng Qidong et al.,2003; Zhang Peizhen, 2013)。自1700年以来,沿鲜水河断裂系已经发生17次7级以上和29次6.5级以上大地震,包括2010年玉树6.9级地震(图1)(中国地震局震害防御司,1995;中国近代地震目录,1999;USGS,2020),其中位于断裂系中段的鲜水河断裂带,自1700年以来发生过9次7级以上大地震,平均每36年就会发生一次大地震,几乎断裂系全程已经发生了地震地表破裂(图2a),这使得鲜水河断裂带成为研究活动构造地貌学以及地震灾害的最理想对象之一(Allen et al.,1991)。尤其是2008年汶川地震之后,人们更加关注鲜水河断裂带未来发生大地震的可能性。

  • 图1 青藏高原东缘主要活动断裂及地震分布图

  • Fig.1 Distribution of the major active faults and earthquakes

  • 相对于稳定欧亚板块的GPS水平速度场引自Wang Min et al.(2020);插图为鲜水河断裂系在欧亚板块的位置;EHS—喜马拉雅东构造结

  • Horizontal GPS velocity field with respect to stable Eurasian plateafter Wang Min et al.(2020); inset shows the Xianshuihe fault system within Eurasia Plate; EHS—Eastern Himalayan Syntaxis

  • 研究显示,2008年汶川8.0级地震和2013年庐山7.0级地震后,鲜水河断裂带库仑应力明显增加,地震危险性也大大增加(Toda et al.,2008; Shan Bin et al.,2009; 徐晶等,2013;Guo Rumeng et al.,2018)。虽然2014年康定地区相继发生了5.6级和5.9级地震,但是两次地震并不足以释放区域内上次大地震以来的应力累积,鲜水河断裂带仍然具有发生大地震危险性(Jiang Guoyan et al.,2015; Bai Mingkun et al.,2018)。李海兵等(2021)通过对20多年来沿巴颜喀拉地块4个边界发生的8次7级以上大地震的研究,认为巴颜喀拉地块周缘大地震的发生具有“跳跃性”的特征。2021年5月22日巴颜喀拉地块北部边界青海玛多发生了7.4级大地震(潘家伟等,2021),那么下一次大地震会不会跳跃到南边的鲜水河断裂带成为当前研究的焦点。还需特别指出的是,沿鲜水河断裂带分布有多个人口众多的城镇(康定、道孚、炉霍等),且川藏铁路也将穿越这一活动性极强的断裂带,所以对于鲜水河断裂带构造活动性的空间分布、不同区域地震灾害危险性的研究迫在眉睫。利用野外测量、无人机(UAV)以及高精度LiDAR扫描等工作,结合宇宙成因核素10Be测定断裂地貌的暴露年龄,Bai Mingkun et al.(2018, 2021)精确厘定了鲜水河断裂带南东段八美至磨西断裂晚第四纪走滑速率的时空分布,得到鲜水河断裂带八美—康定段第四纪以来平均走滑速率约为10mm/a,沿鲜水河断裂系走滑速率自北西向南东递增,且康定地区未来具有7级左右大地震的危险性。线性展布的鲜水河断裂带北西段地震危险性同样需要特别关注,自1700年以来发生了5次M 7以上大地震,炉霍段在1973年发生了M 7.6地震,道孚段最新一次地震为1923年M 7.3地震,然而乾宁段上一次大地震是1893年的M 7.0地震,距今已经过去129年,根据鲜水河断裂带如此高的大地震发生频率,乾宁段地震危险性已经很高(Zhang Jing et al.,2018)。前人通过古地震探槽等对鲜水河断裂带北西段活动性进行了一定的研究(李天袑等,1997; 徐锡伟等,2003; Zhang Peizhen, 2013; Chen Guihua et al.,2016; Liang Mingjian et al.,2020),不同学者对断裂走滑速率认识不同(表1,图2c),如炉霍段(15mm/a,徐锡伟等,2003; 8.4mm/a, Liang Mingjian et al.,2020),道孚段(14.7mm/a, 徐锡伟等,2003; 10mm/a,李天袑等,1997),乾宁段(8~12mm/a,李天袑等,1997, Zhang Peizhen, 2003;12.9mm/a,徐锡伟等,2003;14~20mm/a, Chen Guihua et al.,2016)。综上所述,前人对于鲜水河断裂带北西段晚第四纪走滑速率的研究仍存在较大争议,主要是测量和测年方法的不确定性所致,所以仍需更加详细的断裂空间几何分布描绘以及精确的测量和测年方法对断裂几何学、运动学特征进行准确研究,为区域内地震灾害效应的评估提供精确的科学数据,这对于城镇的建设、灾害的预防以及川藏铁路的安全运营具有重要作用。

  • 本文通过对鲜水河断裂带乾宁段活动断裂的野外考察,精确描绘了该断裂的空间分布。通过对龙灯乡研究点的断错阶地进行详细研究,使用LiDAR(激光雷达)扫描得到的高精度DEM(数字高程模型)数据和LaDiCaoz断裂位错量测量软件对阶地的断裂位错进行了精确的分析,利用OSL(光释光)和14C测年方法对各阶地的年龄进行了测定,得到该断裂晚第四纪以来走滑速率,并结合区域GPS观测数据及历史地震资料等分析了区域内未来强震危险性,希望有关研究认识有助于更好地认识鲜水河断裂带的晚第四纪活动特征及服务防震减灾。

  • 1 构造背景

  • 1.1 鲜水河断裂带几何展布及特征

  • 鲜水河断裂带位于鲜水河断裂系中段,整体走向为北西南东向,左行走滑运动学特征,与北段甘孜断裂呈左阶雁列式分布,中间分布着甘孜盆地、侏倭正断裂以及卡萨湖等特殊地貌指示拉分阶区,与南段安宁河断裂在磨西附近相接(图2a、b)。鲜水河断裂带全长约300km,北起贡如村附近向南东经侏倭、炉霍、道孚至惠远寺盆地为断裂北西段自北西向南东可分为炉霍段、道孚段、乾宁段,线性特征明显,走向约为N130°~148°,整体倾向北东,局部可见南西倾向断裂(唐荣昌等,1984; Allen et al.,1991;四川省地震局地震地质队鲜水河活动断裂带填图组,2013; Bai Mingkun et al.,2021),沿断裂发育3个拉分盆地,分别是位于炉霍南的虾拉沱盆地,道孚附近的道孚盆地以及惠远寺盆地(图2)。从惠远寺至磨西附近为鲜水河断裂带南东段,断裂几何分布复杂,惠远寺至康定段分为4条分支断裂:雅拉河断裂、色拉哈断裂、木格措南断裂(潘家伟等,2020)和折多塘断裂,整体走向约145°;继续向南在康定附近与线性的磨西断裂相接,走向约为160°,至磨西镇附近(闻学泽等,1989;Allen et al.,1991;四川省地震局地震地质队鲜水河活动断裂带填图组,2013;Bai Mingkun et al.,2021)(图2a)。

  • 1.2 鲜水河断裂带的走滑速率

  • 活动断裂的活动速率随时间尺度和空间分布的变化具有一定的差异(Friedrich et al.,2003;Chevalier et al.,2005),精确厘定断裂不同时间尺度和不同空间分布的活动性对于了解断裂运动学特征、评估断裂地震危险性具有重要意义。鲜水河断裂系作为控制青藏高原物质向南东挤出的重要边界断裂,全长约1400km,研究该断裂系不同时间和空间尺度的走滑速率对于了解青藏高原东南缘陆内变形和评估区域内地震灾害效应是不可或缺的,尤其是20世纪以来巴颜喀拉地块周缘发生10次7级以上大地震,断裂系中段的鲜水河断裂带地震危险性急剧增大(李海兵等,2021)。

  • 图2 鲜水河断裂带几何特征及历史地震分布

  • Fig.2 Geometric features and historical earthquakes distribution along the Xianshuihe fault

  • (a)—鲜水河断裂带1700年以来6.5级以上地震分布图(图例同图1;USGS, 2020;Wen Xueze et al.,2008; Cheng Jia et al.,2011),底图为DEM图,绿色区域代表GPS重新计算区域;(b)—鲜水河断裂带北西段几何特征及同震破裂分布(红色五角星代表本文研究点,灰色区域代表同震地表破裂,不同颜色边线代表不同段的大地震);(c)—鲜水河断裂带北西段几何分布及晚第四纪走滑速率研究结果

  • (a)—Distribution of M >6.5earthquakes on DEM sine1700 (legend is as the same as Fig.1; USGS, 2020; Wen Xueze et al.,2008; Cheng Jia et al.,2011) along the Xianshuihe fault; (b)—topographic image of NW Xianshuihe fault (box in Fig.2a); grey areas represent co-seismic ruptures of historical earthquakes along different segments of the Xianshuihe fault, red stars show our study sites; (c)—spatial distribution of active faults along the NW Xianshuihe fault, and approximate location of study sites and late Quaternary (average) slip rates from others

  • 前人在鲜水河断裂系不同位置,利用不同的研究方法(GPS、InSAR、构造地貌学、年代学等),对断裂不同时间尺度上(十年时间尺度、万年时间尺度和百万年时间尺度)走滑速率进行了研究(表1)。Chevalier et al.(2017)总结前人研究成果(Wang Shifeng et al.,2009),结合宇宙成因核素测年方法和构造地貌研究,认为甘孜断裂自断裂起始活动以来以一定的速率(6~8mm/a)滑动。沿鲜水河断裂带地质时间尺度的最大断裂位错主要是北西段鲜水河被左行错开约60km(Roger et al.,1995; Wang Erchie et al.,1998, 2000, 2012; Yan Bing et al.,2015; Zhang Yuanze et al.,2017; Bai Mingkun et al.,2018),以及南东段龙门山断裂-木里断裂被左行错开62km(Zhang Yuanze et al.,2017),结合前人对于鲜水河断裂带起始时间的研究约为10~9Ma(Zhang Peizhen, 2013; Zhang Yuanze et al.,2017),得到鲜水河断裂带地质时间尺度走滑速率约为7mm/a,与甘孜断裂地质时间尺度左行走滑速率一致。

  • 表1 鲜水河断裂带左行走滑速率统计表

  • Table1 Left-lateral strike-slip rates along the Xianshuihe fault

  • 研究鲜水河断裂带晚第四纪时间尺度走滑速率对于了解该断裂地震危险性具有重要意义。与其相比,大地测量学时间尺度(几十年)仅在一个地震周期内,存在很大不确定性。晚第四纪时间尺度包含了断裂的多个地震周期,其平均走滑速率更能代表断裂的准确活动特征。Bai Mingkun et al.(2018, 2021) 通过对鲜水河断裂带南东段被活动断裂错开的冰碛物地貌的精确测量,结合宇宙成因核素测年方法,精确厘定了鲜水河断裂带南东段色拉哈断裂、折多塘断裂以及磨西断裂晚第四纪以来的平均走滑速率,得到鲜水河断裂带南东段惠远寺至康定段(包括雅拉河断裂、色拉哈断裂、折多塘断裂和木格措南断裂)晚第四纪以来平均左行走滑速率为8~12mm/a,磨西断裂为9.6~13.4mm/a,这与最新发表的大地测量学方法研究结果基本一致(~11mm/a, Wang Min et al.,2020; 9~12mm/a, Ji Lingyun et al.,2020; 8.8~16mm/a, Qiao Xin et al.,2021),且沿鲜水河断裂系晚第四纪平均走滑速率自北西甘孜断裂(6~8mm/a)向南东逐渐递增。

  • 鲜水河断裂带北西段晚第四纪走滑速率研究相对比较单一,这与该区域河流冲刷作用有一定的关系。前人研究大多利用古地震探槽对活动断裂地貌(冲沟、河流阶地等)暴露时间进行定年,结合地貌位错对断裂走滑速率进行限定(钱洪等,1988;李天袑等,1997; 徐锡伟等,2003;陈桂华等,2008;Zhang Peizhen, 2013; Chen Guihua et al.,2016; Liang Mingjian et al.,2020)。在炉霍段,徐锡伟等(2003)利用热释光(TL)测年方法对炉霍北西故里村附近的河流阶地进行了测年,结合对应的阶地陡坎位错得到炉霍段走滑速率约为14±2mm/a。最近,Liang Mingjian et al.(2020)利用炉霍附近古地震探槽研究,结合大地震复发周期,得到炉霍段3ka以来平均走滑速率为8.4mm/a(表1)。在道孚段,晚第四纪活动速率研究较少,李天袑等(1997)利用14C测年方法结合地貌断裂位错得到道孚段走滑速率为10mm/a。乾宁段断裂切过多个河流阶地,造成左行位错,李天袑等(1997)得到8~12mm/a的晚第四纪平均走滑速率;Zhang Peizhen (2013)总结Chen Guihua et al.(2010)发表的松林口南对河流阶地的测年数据,结合相应的断裂位错,得到乾宁段晚第四纪平均走滑速率为8~11mm/a(表1);而Chen Guihua et al.(2016)利用相同的数据则得到14~20mm/a的走滑速率,差异较大,表明对于断裂位错地貌的测量以及位错与年龄的对应关系存在一定的差异,急需采用高精度地形图对断裂地貌位错进行精确测量。关于乾宁段走滑速率的研究仍需要进一步开展,来更好地了解断裂的活动性。

  • 大地测量学研究对于了解断裂现今活动具有重要意义。Wang Hua et al.(2009)通过近10年的InSAR数据,使用多重干涉影像方法构建了鲜水河断裂带西北部地震间应变积累导致的变形速率图,进而利用蒙特卡罗方法对InSAR速率图和GPS数据进行联合反演,厘定了炉霍段走滑速率为9~12mm/a且在3~6km处断层闭锁。李铁明等(2019)使利用区域内重力、GPS观测数据计算重力场动态变化和GPS速度场,继而采用蚁群算法和粒子群算法反演断裂走滑速率,得到鲜水河断裂带炉霍段左行走滑速率为9.13mm/a,道孚段为8.57mm/a,乾宁段为7.67mm/a。孙凯等 (2021)联合InSAR和GPS数据,利用马尔可夫链蒙特卡罗方法反演了鲜水河断裂带炉霍至道孚浅层蠕滑速率为3.27~4.18mm/a,断层深部走滑速率为8.12~9.30mm/a(表1)。Qiao Xin et al.(2021)利用哨兵1号卫星提供的2014~2019年的InSAR数据,分析认为鲜水河断裂带炉霍段、道孚段、乾宁段构造活动速率分别为9.4mm/a、8.8~9.4mm/a、10.1~10.3mm/a,在7.6~18.5km深处闭锁,并且鲜水河断裂带北西段浅层地表普遍存在蠕滑变形特征。Zhang Wenting et al.(2022) 结合InSAR和GPS研究结果显示鲜水河断裂带北西段现今走滑速率为8.5mm/a,南东段为12mm/a。

  • 1.3 鲜水河断裂带强震活动特征

  • 沿鲜水河断裂带曾发生至少10次7级以上的大地震,14次6.5级以上大地震,其中北西段5次7级以上、3次6.5~7级大地震,几乎整段都发生了地表破裂(图2a,表2)。沿断裂可观察到许多与断裂走滑运动相关的地貌特征,如河流偏移、断层陡坎、温泉、错断冰碛物、错断河流阶地、断陷塘及拉分盆地等(钱洪等,1988;Allen et al.,1991;Wang Erchie et al.,2000; 周荣军等,2001; 徐锡伟等,2003)。

  • 表2 甘孜-鲜水河断裂带M 6~M 7及以上地震目录

  • Table2 M 6~M 7earthquakes list along the Ganzi-Xianshuihe fault

  • 炉霍段是鲜水河断裂带的北西端,由北西向南东自卡苏村经侏倭乡至炉霍附近全长约70km,整体走向约N130°,结构单一(图2)。由于河流冲蚀在侏倭乡至旦都乡附近活动断裂沿沟谷发育,行迹不明显,但是在北西端卡萨湖附近和炉霍附近线性地表破裂明显,发育大量左行错开的河流阶地、冲沟等特殊活动构造地貌(图2b)。历史上,该段曾发生过1747年61/2级、1816年73/4级、以及1973年7.6级地震,分别造成了长约30km、70km和90km的同震地表破裂(Allen et al.,1991; 闻学泽,2000;张世民等,2001;Wen Xueze et al.,2008; Papadimitrious et al.,2004; Cheng Jia et al.,2011)(图2b,表2)。在短短200多年时间内发生3次大地震,表明该段近期地震活动性极强、强震复发周期极短(冉洪流等,2006;Liang Mingjian et al.,2020; 杨鹏等, 2021),约在100a左右(冉洪流等,2006)。孙凯等 (2021)利用InSAR和GPS数据的运动模型反演,得到炉霍段地震复发周期为370~410a。

  • 道孚段位于炉霍段以南,自炉霍附近向南东延伸至道孚南的松林口附近,全长约80km,整体走向约N136°。该段相对比较复杂,在炉霍南虾拉沱附近与炉霍段形成左阶拉分盆地,长约25km,最宽处约2.8km。在道孚附近发育左阶分布的两条分支断裂,长约15km,宽约1.5km,形成道孚盆地。道孚段地表破裂明显,发育大量左行错断性质的冲沟、河流阶地、断陷塘等特殊的活动断裂构造地貌(图2b)。自1900年以来,道孚段发生了两次7级以上大地震(1904年7级和1923年7.3级)以及2次6.5级以上地震(1792年63/4级,1981年6.9级),1904年道孚7级地震造成道孚附近约55km同震地表破裂及周边滑坡等,1923年道孚7.3级地震造成了道孚以北约60km的地表破裂,1792年63/4级地震造成道孚以南约25km同震地表破裂,最近一次1981年6.9级地震造成道孚附近约45km同震地表破裂(Allen et al.,1991; 闻学泽,2000;张世民等,2001;Papadimitrious et al.,2004; Wen Xueze et al.,2008; Cheng Jia et al.,2011)(图2,表2)。基于InSAR和GPS数据的地震能量计算,道孚段自1981年以来已经累积了相当于M W 5.6~5.9地震的能量,地震危险性较高(孙凯等,2021)。

  • 乾宁段自松林口向南东至惠远寺盆地,全长约33km,整体呈线性展布,走向约为N148°,与鲜水河断裂带南东段次级断裂雅拉河断裂、色拉哈断裂相接,形成惠远寺盆地(图2)。惠远寺盆地在地貌上表现为单侧断陷的拉分盆地(闻学泽,2000),长约6km,最宽约2km,南西侧发育正断陡坎,最高约8m(Bai Mingkun et al.,2018),盆地南东侧发育正断兼走滑性质的中古活动断裂(Allen et al.,1991; Chen Guihua et al.,2016),代表区域内的拉张构造环境。乾宁段断裂行迹明显,沿断裂发育多处左行错开的河流阶地、冲沟以及断陷塘等特殊活动断裂构造地貌。近代以来,该段发生过1次7级以上大地震(1893年的7级),形成了自松林口至惠远寺以南长约35km的同震地表破裂(包括中古断裂地表破裂)(Allen et al.,1991; 闻学泽,2000;张世民等,2001;Papadimitrious et al.,2004; Wen Xueze et al.,2008; Cheng Jia et al.,2011)(图2a,表2)。李东雨等(2017)利用古地震探槽研究解释了乾宁段早期大地震复发约1~2ka,经过5ka左右时长的平静期后又进入地震活跃期,现在该段正处于地震活跃期,1000年以来大地震频发。Zhang Jing et al.(2018)通过历史大地震、小地震折原深度以及同震位错量等的研究,认为乾宁段现今为地震空区,未来大地震危险性较高。

  • 鲜水河断裂带北西段自1700年以来已发生5次7级以上、3次6.5~7级大地震,断裂活动性强、大地震极其活跃,几乎整个鲜水河断裂带北西段都发生了同震地表破裂。但是,关于该区域未来大地震危险性的研究仍然没有定论,有些学者认为大地震发生后导致区域内应力得以释放,断层处于震后闭锁状态,未来地震危险性降低(闻学泽,2000);更多学者认为该区域仍然具有较高的地震危险性(钱洪等,1988;Zhang Jing et al.,2018; Liang Mingjian et al.,2020;Ji Lingyun et al.,2020; 孙凯等,2021)。

  • 2 研究方法

  • 本文通过遥感图像解译和野外实地考察,在侏倭断裂正断裂、炉霍段北西端以及乾宁段龙灯乡附近开展了详细的活动断裂研究工作,并对鲜水河断裂带北西段空间分布进行了详细的描绘。选取炉霍段北西端贡如村附近以及乾宁段龙灯乡附近的两个被鲜水河断裂带错开的河流阶地地貌,利用大疆精灵4Pro无人机(UAV)摄影技术和Riegel VZ1000地面三维激光扫描仪(LiDAR)对地貌特征进行精确扫描,进而生成高精度DEM图,为精确厘定断裂地表位错提供了基础数据。

  • 断裂地表位错的测量大多基于遥感图像(谷歌地球,Bing等)或高精度DEM图,通过对地貌特征的精确描绘,手动测量活动断裂的位错量,但是测量过程中存在一定的主观性,且需要多次测量,工作量大。近年来,基于高精度DEM数据的测量编程软件普遍应用于活动断裂位错的精确测量中,其中使用最频繁的是LaDiCaoz (Zielke et al.,2010, 2012, 2015; 康文君等,2020)和3D_Fault_offsets (Stewart et al.,2018;康文君等,2020)。LaDiCaoz是基于Matlab开发的一款具有可视化界面的断裂地貌位错测量软件,基础数据是.asc格式的DEM数据,可对不同的断裂位错地貌的水平和垂直位错量进行精确的测量。本次研究选取鲜水河断裂带乾宁段龙灯乡研究点断裂切穿河流阶地造成的位错地貌为研究对象,考虑到阶地地貌复杂,沟谷两侧发育多级阶地,使用LaDiCaoz软件对各级阶地水平和垂直位错量进行测量,以保证位错量测量的准确性。

  • 光释光(OSL)和14C测年方法是晚第四纪河流阶地年龄限定的主要研究方法。本文选取鲜水河断裂带乾宁段龙灯乡研究点为研究对象,在该点不同的阶地面使用铁锹等工具开挖深约1~2m不等的8个垂直剖面,对每个剖面开展具体的沉积层特征描绘,在特定的沉积层开采OSL和14C测年样品的采集。本次研究共计采集12个OSL测年样品和10个14C测年样品,对龙灯乡研究点各级阶地的年龄进行了准确的限定。OSL测年主要在中国应急管理部自然灾害防治研究院完成,14C测年在美国BETA实验室完成。

  • 3 结果

  • 3.1 龙灯乡研究点阶地的断裂位错量

  • 龙灯阶地位于龙灯乡南西约3km,庆大河东岸与促涅隆巴河交汇处,该地发育5级以上阶地,地貌特征明显,由于受断层和两条河流的影响,阶地分布及相互关系较为复杂(图3a、e)。T4保留了最大阶地面,受两条河流共同作用形成,根据野外考察和垂直剖面的描绘,该阶地垂向发育厚达10多米的沉积层,底层为砾石层,是阶地的主体部分,砾石大小不一,磨圆度一般,最大粒径达数十厘米,推测为冲洪积物快速堆积作用过程中产生的(图3b)。往上为一层灰黄色砂层、含砾砂层,厚约30~50cm(图6c~f,图7c、d)。T3和T3′阶地由于河流侵蚀作用保存较少(图3a、d),T3′阶地主要受控于促涅隆巴河的冲积作用产生的,T3虽然和T3′位置不同,但是受促涅隆巴河和庆大河两条河流的影响,两阶地海拔相似,且主要沉积物类似,都为砾石层上沉积一层厚约40~50cm的黄色含砾砂岩(图6a、b,图7e、f),推测两阶地形成时间基本一致且均受促涅隆巴河沟口冲积作用的影响。T2阶地仅在庆大河东岸有发育,沿促涅隆巴河,由于河流侵蚀作用强烈没有保存(图3a、e)。T2阶地在深约1.3m以下发育砾石层,以上为厚度约1.1m的黄色含砾砂层(图7g、h)。T1阶地沿庆大河发育,靠近河床(图3a、e)。

  • 鲜水河断裂带在龙灯乡研究点处连续发育,整体走向为N148°,主断裂产状为148°(NE)70°(图3a),具有左行兼正断的活动特征,北东侧发育一条倾向南西的反向正断层,在龙灯乡促涅隆巴河北岸T4阶地形成局部地嵌地貌,河流以南断裂局部呈右阶雁列式分布(图3c~e)。鲜水河断裂带整体切过T4和T3′阶地,在水平和垂直方向上均产生断裂位错。本次研究基于LiDAR扫描合成的高精度DEM图,使用LaDiCaoz软件对T4/T3′和T3′/T1阶地边缘位错量进行了测量,测量结果显示T4/T3′左行位错量为106±5m,(图4),与遥感图上测量结果基本一致。另外,LaDiCaoz软件测得该处T4阶地垂直位错为9.6±0.5m(图4),与Global Mapper软件生成的促涅隆巴河两侧地形线的高差基本一致(图3d)。T3′/T1位错量相对较小,为77±2m,由于阶地面较小未能识别到较好的垂直位错量(图5)。

  • 3.2 龙灯乡研究点阶地的测年结果

  • 本次研究对龙灯乡研究点各个阶地(T4、T3、T3′、T2)共开挖了8个剖面进行采样测年研究,其中T4五个、T3′一个、T3一个、T2一个(图3a),共计12个OSL样品和10个14C样品(图6、7),结合区域内前人对于阶地年龄的测定,对各级阶地年龄进行了限定(图8)。陈桂华等(2010)利用OSL测年方法,对龙灯乡研究点的T5阶地的年龄进行了限定,为12.1±2.1ka(Chen Guihua et al.,2016),结合T4阶地的断裂位错来对鲜水河断裂带乾宁段晚第四纪左行走滑速率进行限定(Zhang Peizhen, 2013)。本文对促涅隆巴河两岸/断裂两侧的T4阶地分别进行了剖面样品采集(剖面2~6),其中剖面2~5中年龄结果较为年轻,主要集中在200~800a、1.7~1.8ka以及3.9ka(图6c~h,图7a、b,表3),这主要是由于采样位置大多位于阶地边缘所致(图3a),仅在剖面6中厚砾石层之上的一层灰黄色细砂层中采集到能代表T4阶地废弃年龄的样品(图7c、d),经OSL测年得到T4阶地的沉积年龄为10.62±1.41ka(表3),这与前人在庆大河上游松林口南和龙灯坝附近T2阶地利用热释光测年得到的年龄一致(徐锡伟等,2003;陈桂华等,2010)(图8)。在T3′阶地开挖一个深度较浅的剖面(剖面1)采集两个OSL测年样品,年龄大致相同,约为0.8ka(图6a、b,表3),考虑到剖面位置接近庆大河冲刷的陡崖边缘,可能经过后期重新堆积,年龄结果不能代表阶地年龄。Zhao Guoguang et al.(1992)利用14C测年对T3′阶地的废弃年龄进行了限定,为7.95±0.12ka(图8)。本次研究对促涅隆巴河另一侧的T3阶地进行剖面采样(剖面7),其中黑色黏土层与厚约20cm的砾石层中间的细砂层的OSL测年结果显示为7.25±0.8ka(图7e、f),这与赵国光等(1992)在T3′阶地的到的年龄结果基本一致,表明T3阶地和T3′阶地形成时间基本一致。T2阶地仅在庆大河东岸发育,在T2阶地开挖了深约1.6m的剖面(剖面8)并进行采样(图3a),在约1.2m深处的含砾砂层中采集的OSL测年样品,得到1.68±0.18ka的测年结果 (图7g、h,表3),代表T2阶地的形成时间。然而,同样深度14C样品测年结果显示约0.8ka BP的结果,这与在T3′和T4阶地测得的一些年龄结果较一致(表3)。

  • 图3 鲜水河断裂带乾宁段龙灯乡研究点野外照片和高精度DEM图

  • Fig.3 Field photographs and high resolution DEM image of Longdeng site on Qianning segment, Xianshuihe fault

  • (a)—龙灯乡研究点无人机照片以及断裂行迹(红色倒三角)、各级阶地和采样位置描绘;(b)—促涅隆巴南东侧T4阶地剖面照片和描述;(c)—促涅隆巴北西侧剖面照片以及断裂、阶地描绘;(d)—龙灯乡促涅隆巴两侧剖面地形图及T4垂直位错量(位置见图3a);(e)—龙灯乡研究点LiDAR扫描所得高精度DEM图及地貌描绘;(f)—T4/T3′阶地地貌重建

  • (a)—UAV photo of Longdeng site with fault trace (red triangles), terraces and sample locations; (b)—T4profile photograph on SE side of Cunielongba and description; (c)—annotated field photo looking northwest; (d)—topographic profiles and vertical offsets of T4on both sides of Cunielongba (locations in Fig.3a); (e)—annotated high-resolution DEM of Longdeng site from our LiDAR survey; (f)—offset reconstruction of T4/T3′

  • 图4 鲜水河断裂带乾宁段龙灯乡研究点T4/T3′阶地位错LaDiCaoz测量结果

  • Fig.4 LaDiCaoz measurements of the T4/T3′ offset, Longdeng site, Qianning segment of the Xianshuihe fault

  • (a)—龙灯乡研究点地貌等高线图、断裂位置及T4/T3′阶地边缘位置;(b)—T4/T3′阶地地貌重建图;(c)—T4阶地面垂直位错图; (d、e)—T4阶地水平和垂直位错量测量结果

  • (a)—Geomorphic contour map with T4/T3′ risers on each side of fault, Longdeng site; (b)—offset reconstruction of T4/T3′; (c)—vertical offset of T4; (d, e)—measurements of horizontal and vertical offsets on T4

  • 图5 鲜水河断裂带乾宁段龙灯乡研究点T3′/T1阶地位错LaDiCaoz测量结果

  • Fig.5 LaDiCaoz measurements of the T3′/T1offset, Longdeng site, Qianning segment of the Xianshuihe fault

  • (a)—龙灯乡研究点地形图;(b)—地貌等高线图、断裂位置及T3′/T1阶地边缘位置;(c)—T3′/T1阶地水平位错量测量结果; (d)—T3′/T1阶地地貌重建图

  • (a)—Topographic image of Longdeng site; (b)—geomorphic contour map with the location of fault and T3′/T1risers; (c)—measurements of horizontal offset in T3′/T1; (d)—reconstruction of T3′/T1

  • 图6 鲜水河断裂带乾宁段龙灯乡研究点采样剖面1~4野外照片(a、c、e、g)、剖面描绘(b、d、f、h)及年龄结果图

  • Fig.6 Photographs (a, c, e, g), description (b, d, f, h) and age results of profiles 1~4in the Qianning segment, Xianshuihe fault

  • 图7 鲜水河断裂带乾宁段龙灯乡研究点采样剖面5~8野外照片(a,c,e,g)、剖面描绘(b,d,f,h)及年龄结果图

  • Fig.7 Photographs (a, c, e, g), description (b, d, f, h) and age results of profiles 5~8in the Qianning segment, Xianshuihe fault

  • 表3 鲜水河断裂带乾宁段龙灯阶地年龄统计表

  • Table3 Ages on the Longdeng terraces in the Qianning segment, Xianshuihe fault

  • 4 讨论

  • 4.1 鲜水河断裂带乾宁段晚第四纪滑动速率估算

  • 本次研究利用OSL和14C测年方法对区域内各级阶地的年龄进行了测定,得到T4阶地的废弃年龄为10.62±1.41ka,由于T4是冲洪积作用形成的扇面,该年龄代表了T4阶地的累计位错量的起始时间(徐锡伟等,2005),结合LaDiCaoz软件对阶地水平和垂直位错的测量得到106±5m的水平位错以及9.6±0.5m的垂直位错,得到水平左行走走滑速率为10(+1.5/-1.2) mm/a、垂直活动速率为0.9±0.1mm/a。T3阶地的形成年龄为7.25±0.8ka,结合地形分析,表明T3和T3′阶地形成时间基本一致,该年龄同样代表了T3′阶地的位错量累计的起始时间,结合T3′阶地边缘断裂水平位错为77±2m(LaDiCaoz),得到左行走滑速率为10.6(+1.3/-1.1) mm/a。Zhao Guoguang et al.(1992)曾获得T3′阶地年龄为7.95±0.12ka,结合77±2m的左行位错,得到9.7±0.2mm/a的左行走滑速率,与本次研究结果一致。综合我们对T4和T3′阶地走滑速率的厘定,保守估算鲜水河断裂带乾宁段晚第四纪以来平均左行走滑速率为8.8~11.9mm/a,取两者重复部分得到左行走滑速率为10.5±1mm/a(图2c,表1)。这与Zhang Peizhen (2013)总结乾宁段松林口南T2阶地的年龄(13.18±1.07ka,徐锡伟等,2003),和T2阶地边缘位错的测量(135±10m)得到的~10.2mm/a的左行走滑速率,也与Zhang Peizhen (2013)总结龙灯坝附近T3阶地的年龄(23.3±2.0ka,陈桂华等,2010;Chen Guihua et al.,2016)和对应的阶地位错(242±10m)得到的~10.4mm/a的左行走滑速率一致。与李天袑等(1997)使用14C测年方法对乾宁段的走滑速率的限定(8~12mm/a)也基本一致。

  • 另外,我们总结龙灯坝附近的阶地年龄及对应阶地的垂直位错量可获得龙灯坝附近T3阶地垂直位错约为25m,对应T3阶地的形成年龄为23.3±2.0ka(陈桂华等,2010;Zhang Peizhen, 2013; Chen Guihua et al.,2016),得到1.1±0.1mm/a的垂直滑动速率;同一位置,T2阶地的垂直位错量约为17m,对应阶地的形成年龄为19.16±1.63ka(陈桂华等,2010;Chen Guihua et al.,2016),得到0.9±0.1mm/a的垂直滑动速率。以上T3和T2两级阶地获得的垂直滑动速率与我们在龙灯乡研究点得到的0.9±0.1mm/a的垂直滑动速率一致,表明鲜水河断裂带乾宁段普遍存在倾向北东的正断运动,指示了乾宁段具有拉张的运动学特征。

  • 图8 鲜水河断裂带乾宁段不同位置阶地年龄分布图(形状代表定年方法,颜色代表年龄出处)

  • Fig.8 Terrace ages at different sites along the Qianning segment of the Xianshuihe fault (various shapes represent various dating methods, colors represent references)

  • 综上所述,鲜水河断裂带乾宁段晚第四纪左行走滑速率为10.5±1mm/a,垂直滑动速率为0.9±0.1mm/a,该段断裂倾向北东,具有正断拉张的运动学特性。

  • 4.2 鲜水河断裂带晚第四纪滑动速率变化趋势

  • 关于鲜水河断裂带晚第四纪走滑速率及变化趋势,前人在断裂不同位置做了一定的研究(Allen et al.,1991;李天袑等,1997;周荣军等,2001;徐锡伟等,2003;Chen Guihua et al.,2016; Yan Bing et al.,2018; Bai Mingkun et al.,2018, 2021;Liang Mingjian et al.,2020)(表1)。本文通过精确的断裂位错量测量结合晚第四纪测年方法(OSL,14C),得到鲜水河断裂带乾宁段晚第四纪左行走滑速率为10.5±1mm/a,与前人得到的结果一致(10.4mm/a,Zhang Peizhen, 2013; 8~12mm/a,李天袑等,1997)(图2c)。研究发现,乾宁段晚第四纪走滑速率与Bai Mingkun et al.(2018, 2021)通过构造地貌学研究结合宇宙成因核素10Be测年,综合雅拉河、色拉哈、木格措南以及折多塘断裂得到的鲜水河断裂带惠远寺-康定段8~12mm/a的走滑速率基本一致;与李天袑等(1997)得到的道孚段约10mm/a的左行走滑速率也基本一致。然而,Liang Mingjian et al.(2020)通过古地震探槽研究得到炉霍段晚第四纪走滑速率仅为8.4mm/a,相较于道孚、乾宁以及惠远寺-康定段明显偏低,与甘孜断裂晚第四纪走滑速率(6~8mm/a; Chevalier et al.,2017)基本一致。

  • 综合本文与前人研究结果,发现沿鲜水河断裂带各段晚第四纪走滑速率存在一定差异,炉霍段约为8.4mm/a(Liang Mingjian et al.,2020),道孚段约为10mm/a (李天袑等,1997),乾宁段为9.5~11.5mm/a,惠远寺-康定段为8~12mm/a (Bai Mingkun et al.,2018, 2021),磨西断裂为9.6~13.4mm/a (Bai Mingkun et al.,2021),可见走滑速率大体具有自北西向南东递增的趋势,进一步验证了我们之前的推论(Bai Mingkun et al.,2018, 2021)。另外,这种递增趋势可能存在以炉霍附近和康定附近为界,整体表现为炉霍以北晚第四纪平均左行走滑速率约为8.4mm/a (Liang Mingjian et al.,2020)与甘孜断裂基本一致(6~8mm/a, Chevalier et al.,2017),炉霍至康定的晚第四纪走滑速率升至约10mm/a(李天袑等,1997;Zhang et al.,2013; Bai Mingkun et al.,2018, 2021),康定以南磨西断裂的晚第四纪走滑速率再一次递增至9.6~13.4mm/a (Bai Mingkun et al.,2021)。

  • 为了进一步验证鲜水河断裂带走滑速率的分布特征,本文基于Wang Min et al.(2020)提供的GPS矢量数据进行了重新处理,将鲜水河断裂带炉霍段、炉霍-康定段以及康定至磨西段三部分断裂两侧的GPS矢量数据沿断裂方向的分量单独提取,得到鲜水河断裂带两侧次级板块沿断裂方向以不同的速率向南东滑移(图9)。对断裂两侧10km外的数据进行统计学计算,取算数平均值和标准方差为数据的最佳值和误差范围,得到炉霍段左行走滑速率约为8.1±1.3mm/a,而炉霍-八美断裂约为8.2±2.3mm/a,至磨西断裂左行走滑速率递增至约9.4±1.9mm/a(图9),表明沿鲜水河断裂带现今活动速率同样具有自北西向南东递增的趋势,与InSAR数据得到的鲜水河断裂带各段走滑速率的空间分布特征基本一致(Qiao Xin et al.,2021),与晚第四纪走滑速率的空间分布特征也基本一致(李天袑等,1997;Zhang Peizhen, 2013; Bai Mingkun et al.,2018, 2021;Liang Mingjian et al.,2020)。最近,Zhang Wenting et al.(2022) 通过结合GPS和InSAR数据研究同样得到鲜水河断裂带走滑速率自北西向南东从8.5mm/a到12mm/a递增(表1),同样表明沿鲜水河断裂带走滑速率自北西向南东递增这一现象的存在。

  • 4.3 鲜水河断裂带乾宁段的强震危险性问题

  • 评估断裂地震危险性需要解决以下几个问题:断裂分段性、地震复发间隔的定量数据、断裂较长时间尺度(至少万年)古地震和历史地震以及断裂较长时间尺度(至少万年)滑动速率等(吴中海等,2013)。前人通过古地震研究显示鲜水河断裂带乾宁段近1ka以来进入大地震活跃期(李东雨等,2017),大地震的发生具有特征地震的发震规律。根据历史地震等研究显示,乾宁段距上次1893年M 7大地震已过去129年,为一处地震空区(易桂喜等,2015;Zhang Lifang et al.,2018)(图10b),可能具有较高的地震危险性(Allen et al.,1991; Wen Xueze et al.,2008; Qiao Xin et al, 2021)。

  • 目前对于乾宁段是否存在蠕滑变形特征仍然存在很大争议,这直接关乎到该段地震危险性的评价。Zhang Jing et al.(2018) 利用跨断层的短基准线和水准阵列方法,对鲜水河断裂带北西段7个研究点进行了为期30年的观测,认为乾宁段自1980年以来没有蠕滑变形。Jiang Guoyan et al.(2015)联合GPS和InSAR数据,研究显示鲜水河断裂带普遍存在震间的滑动,但是滑动速率很小。最新研究,Qiao Xin et al.(2021)通过InSAR数据研究显示,鲜水河断裂带北西段的活动普遍带有蠕滑性质,乾宁段在地表至地下4.4~4.8km蠕滑速率为5.3~7.8mm/a。考虑到蠕滑变形的深度相较于震源深度(~10km)较浅,对于孕震环境的影响可以忽略不计。

  • 结合本文乾宁段晚第四纪以来的平均走滑速率10.5±1mm/a以及历史地震记录,认为自上一次大地震(1893年7.0级)以来该段已经累积了1.23~1.48m的水平运动亏损(图10a、b)。使用Wells et al.(1994)提出的最大走滑量和地震震级之间的经验公式:M=6.69+0.74×log(最大位移量),得到乾宁段现今应变累积达到了发生M W 6.8地震的潜能(图10c)。Qiao Xin et al.(2021)根据剪切模量(30GPa)和乾宁段45km的长度,推算出乾宁段自上一次大地震(1893年7.0级)以来已经累积了8.84×108 N·m的地震矩,相当于一次M W 6.6强震,这与我们利用地震最大位错量经验公式得到的地震危险性基本一致。使用里氏震级和矩震级的经验公式(陈宏峰等, 2014): M W=0.86M S+0.63,表明乾宁段现今累积地表变形量具有发生M S 7.2大地震的潜能,足以造成地表破裂。

  • 沿整个鲜水河断裂带自1700年以来已经发生了9次7级以上大地震,平均每36年就发生一次,而上一次大地震是1973年在炉霍附近的7.6级地震,已经过去49年,初步推测鲜水河断裂带又进入下一次大地震高危险时间段。沿乾宁段自1700年以来发生两次大地震,分别是1792年63/4级地震和1893年7.0级地震,相隔101年,而今距离上一次大地震已经过去129年,也表明乾宁段已经进入地震高危险期,未来具有M W 6.8(或M S 7.2)以上大地震的可能性。

  • 图9 鲜水河断裂带不同位置GPS正切剖面图

  • Fig.9 GPS profiles across different segments of Xianshuihe fault

  • 相对于稳定欧亚大陆的GPS速度场沿断裂走向分量剖面图(GPS数据引自Wang Min et al.,2020),断裂两侧速度差量代表了鲜水河断裂带现今走滑速率(左行走滑为正);不同颜色代表不同剖面(剖面位置见图1);染色区域代表GPS数值的标准方差范围和取值范围;黑线代表平均值

  • Tangential (sinistral positive) components of GPS velocity profiles modified from Wang Min et al.(2020) (with respect to Eurasia) with slip rates across Xianshuihe fault;colors represent different profiles (locations of profiles in Fig.1);color areas represent the standard deviation and data range;black lines represent the mean value

  • 本论文研究成果为区域内的防震减灾工作提供了重要科学依据,尤其是对于沿断裂分布城镇的抗震等级,以及正在建设的即将穿越鲜水河断裂带南东段的川藏铁路等的安全运营具有重要的意义。建议城镇的建设尽量远离鲜水河活动断裂且提高建筑的防震等级,远离易发生滑坡和泥石流等地质灾害的区域,加强区域内地震地质灾害的监测。

  • 5 结论

  • 本文基于对鲜水河断裂带乾宁段龙灯阶地的断裂位错及年龄等进行详细研究后,获得该断裂晚第四纪走滑速率,并结合区域GPS观测及历史强震资料等对区域强震危险性进行分析,主要认识如下:

  • (1)通过LiDAR扫描和LaDiCaoz位错测量软件数据处理,得到龙灯阶地T4/T3′和T3′/T1水平位错量分别为106±5m和77±2m,T4阶地垂直位错量为9.6±0.5m;使用OSL和14C测年方法,得到T4和T3′阶地的废弃年龄分别为11±1ka和7±1ka。综合位错量和对应的阶地年龄,计算获得鲜水河断裂带乾宁段晚第四纪走滑速率为10.5±1mm/a,垂直滑动速率为0.9±0.1mm/a,该段断裂倾向北东,具有正断的运动学性质。

  • 图10 鲜水河断裂带北西段同震破裂及位移亏损量

  • Fig.10 Coseismic rupture and current slip deficit along the NW Xianshuihe fault

  • (a)—鲜水河断裂带北西段上次大地震以来位移亏损量,不同颜色代表断裂不同位置;(b)—鲜水河断裂带北西段1700年以来历史地震地表破裂;(c)—鲜水河断裂带北西段空间分布及本文所得晚第四纪走滑速率

  • (a)—Current slip deficit since the last large earthquake along the NW Xianshuihe fault, colors represent different segments of the Xianshuihe fault; (b)—historical co-seismic surface ruptures along the NW Xianshuihe fault since1700; (c)—spatial distribution of the NW Xianshuihe fault and late Quaternary strike-slip rates in this study;we suggest a seismic risk of a MW 6.8earthquake along the Qianning segment

  • (2)综合本文与前人研究成果,提出沿鲜水河断裂带走滑速率自北西向南东递增,炉霍段约为8mm/a,道孚—乾宁—康定段约为10~12mm/a,磨西段为9.6~13.4mm/a;通过重新计算现今GPS沿断裂方向分量,同样验证了断裂这一走滑速率的空间分布规律,炉霍段、炉霍—康定段、磨西段现今左行走滑速率分别为8.1±1.3mm/a、8.2±2.3mm/a、9.4±1.9mm/a。

  • (3)根据鲜水河断裂带历史地震发生规律以及乾宁段上一次大地震以来位错亏损量,结合最大位错量和地震震级经验公式(Wells et al.,1994):M=6.69+0.74×log(最大位移量),得到乾宁段未来具有发生M W 6.8(M S 7.2)以上大地震的危险性。

  • (4)通过对乾宁段晚第四纪走滑速率及地震危险性的研究,建议区域内加强防震减灾等工作,尤其是加强将在附近穿过的川藏铁路的建设以及沿断裂分布的人口密集城镇的防震等级。

  • 致谢:吴中海研究员、刘栋梁研究员和赵中宝副研究员对手稿提出了富有建设性的修改意见和建议,李春锐博士对于论文中GPS的计算作出了贡献,在此一并表示诚挚的感谢。

  • 注释

  • ❶ USGS.2020.https://earthquake.usgs.gov/earthquakes/map/.

  • 参考文献

    • Allen C R, Luo Z, Qian H, Wen X, Zhou H, Huang W. 1991. Field study of a highly active fault zone: the XSF of southwestern China. Geological Society of America Bulletin, 103: 1178~1199.

    • Bai Mingkun, Chevalier M L, Pan Jiawei, Replumaz A, Leloup P H, Métois M, Li Haibing. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485: 19~31.

    • Bai Mingkun, Chevalier, M L, Leloup P H, Li Haibing, Pan Jiawei, Replumaz A, Wang Shiguang, Li Kaiyu, Wu Qiong, Liu Fucai, Zhang Jinjiang. 2021. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment. Tectonics, 40: e2021TC006985.

    • Chen Guihua, Xu Xiwei, Wen Xueze, Wang Yali. 2008. Kinematical transformation and slip partitioning of northern to eastern active boundary belt of Sichuan-Yunnan block. Seismology and Geology, 30(1): 58~85 (in Chinese with English abstract).

    • Chen Guihua, Xu Xiwei, Yuan Renmao, Wen Xueze, Zheng Rongzhang. 2010. Late Quaternary climate and geomorphology on the northeastern margin of Sichuan-Yunnan block and their tectonomorphologic significance. Quaternary Sciences, 30(4): 837~854 (in Chinese with English abstract).

    • Chen Guihua, Xu Xiwei, Wen Xueze, Chen Yingtao. 2016. Late Quaternary slip-rates and slip-partitioning on the southeastern Xianshuihe fault system, Eastern Tibetan Plateau. Acta Geologica Sinica, 90: 537~554.

    • Chen Hongfeng, Yuan Fei, Xu Zhiguo, Yin Xiang, Miao Chunlan, Zou Lihua, Ma Yanlu. 2014. Rapid determination of moment magnitudes of moderate and strong earthquakes using data from China Seismic networks. Seismic Geomagnetic Observation and Research, 35(5-3): 51~57.

    • Cheng Jia, Liu Jie, Gan Weijun, Yu Huaizhong, Li Gang. 2011. Characteristics of strong earthquake evolution around the eastern boundary faults of the Sichuan-Yunnan rhombic block. Science China Earth Sciences, 54(11): 1716~1729.

    • Chevalier M L, Ryerson F J, Tapponnier P, Finkel R, Van der Woerd J, Li Haibing, Liu Qing. 2005. Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion. Science, 307(5708): 411~414.

    • Chevalier M L, Leloup P H, Replumaz A, Pan Jiawei, Metois M, Li Haibing. 2017. Temporally constant slip-rate along the Ganzi fault, NW Xianshuihe fault system, eastern Tibet. Geological Society of America Bulletin, 130(3-4): 396~410.

    • Deng Qidong, Zhang Peizhen, Ran Yongkang, Yang Xiaoping, Min Wei, Chu Quanzhi. 2003. Basic characteristics of active tectonics of China. Science in China, 46: 356~372.

    • Department of Earthquake Disaster Prevention. 1995. Catalogue of Chinese Historical Strong Earthquakes: 23rd century BC to 1911. Beijing: Seismological Press.

    • Department of Earthquake Disaster Prevention. 1999. Catalogue of Chinese Present Earthquakes: 1912 to 1990. Beijing: Seismological Press.

    • Friedrich A M, Wernicke B P, Niemi N A, Bennett R A, Davis J L. 2003. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. Journal of Geophysical Research, 108(B4): 2199.

    • Gan Weijun, Zhang Peizhen, Shen Zhengkang, Niu Zhijun, Wang Min, Wan Yongge, Zhou Demin, Cheng Jia. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research, 112: B08416.

    • Guo Rumeng, Zheng Yong, Tian Wen, Xu Jianqiao, Zhang Wenting. 2018. Locking status and earthquake potential hazard along the middle-south Xianshuihe fault. Remote Sensing, 10: 2048.

    • Ji Lingyun, Zhang Wenting, Liu Chuanjin, Zhu Liangyu, Xu Jing, Xu Xiaoxue. 2020. Characterizing interseismic deformation of the Xianshuihe fault, eastern Tibetan Plateau, using Sentinel-1 SAR images. Advances in Space Research, 66: 378~394.

    • Jiang Guoyan, Wen Yangmao, Liu Yajing, Xu Xiwei, Fang Lihua, Chen Guihua, Gong Meng, Xu Caijun. 2015. Joint analysis of the 2014 Kangding, southwest China, earthquake sequence with seismicity relocation and InSAR inversion. Geophysical Research Letters, 42: 3273~3281.

    • Kang Wenjun, Xu Xiwei, Yu Guihua, Luo Jiahong. 2020. Comparison study of two kinds of codes to measure fault-offsets based on MATLAB: a case study on eastern Altyn Tagh fault. Seismology and Geology, 42(3): 732~747 (in Chinese with English abstract).

    • Klinger Y. 2010. Relation between continental strike-sipe earthquake segmentation and thickness of the crust. Journal of Geophysical Research. 115: B07306.

    • Li Dongyu, Chen Lichun, Liang Mingjian, Gao Shuaipo, Zeng Di, Wang Hu, Li Yanbao. 2017. Holocene palaeoseismological record and rupture behavior of large earthquakes on the Xianshuihe fault. Seismology and Geology, 39(4): 623~643 (in Chinese with English abstract).

    • Li Haibing, Pan Jiawei, Sun Zhiming, Si Jialiang, Pei Junling, Liu Dongliang, Marie-Luce Chevalier, Wang Huan, Lu Haijian, Zheng Yong, Li Chunrui. 2021. Continental tectonic deformation and seismic activity: a case study from the Tibetan Plateau. Acta Geologica Sinica, 95(1): 194~213 (in Chinese with English abstract).

    • Li Jiangyi, Zhou Bengang, Li Tieming, Yang Yonglin, Li Zhengfang. 2020. Locking depth, slip rate, and seismicity distribution along the Daofu-Kangding segment of the Xianshuihe fault system, eastern Tibetan Plateau. Journal of Asian Earth Sciences, 193, 104328.

    • Li Tianshao, Du Qifang, You Zeli, et al. 1997. The Active Xianshuihe Fault Zone and Seismic Risk Assessment. Chengdu: Chengdu Cartographic Publishing House (in Chinese).

    • Li Tieming, Zhu Yiqing, Yang Yonglin, Xu Yunma, An Yanfen, Zhang Ying, Feng Shengtao, Huai Yanke, Yang Jiuyuan. 2019. The current slip rate of the Xianshuihe fault zone calculated using multiple observation data of crustal deformation. Chinese journal of Geophysics, 62(4): 1323~1335 (in Chinese with English abstract).

    • Liang Mingjian, Chen Lichun, Ran Yongkang, Li Yanbao, Gao Shuaipo, Han Mingming, Lu Lili. 2020. Abnormal accelerating stress release behavior on the Luhuo segment of the Xianshuihe fault, southeastern margin of the Tibetan Plateau, during the past 3000 years. Frontiers Earth Science, 8: 274.

    • Pan Jiawei, Li Haibing, Marie-Luce Chevalier, Bai Mingkun, Liu Fucai, Liu Dongliang, Zheng Yong, Lu Haijian, Zhao Zhongbao. 2020. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: the South Mugecuo fault. Acta Geological Sinica, 94(11): 3178~3188 (in Chinese with English abstract).

    • Pan Jiawei, Bai Mingkun, Li Chao, Liu Fucai, Li Haibing, Liu Dongliang, Chevalier Marie-Luce, Wu Kungang, Wang Ping, Lu Haijian, Chen Peng, Li Chunrui. 2021. Coseismic surface rupture and seismogenic structure of the 2021. 5. 22 Maduo (Qinghai) M S 7. 4 earthquake. Acta Geologica Sinica, 95(6): 1655~1670 (in Chinese with English abstract).

    • Papadimitriou E, Wen Xueze, Karakostas V, Jin X. 2004. Earthquake triggering along the Xianshuihe fault zone of Western Sichuan, China. Pure & Applied Geophysics, 161: 1683~1707.

    • Qian Hong, Allen C R, Luo Zhuoli, Wen Xueze, Zhou Huawei, Huang Shiwei. 1988. The active characteristics of Xianshuihe fault in Holocene. Earthquake Research in China, 4(2): 9~18 (in Chinese with English abstract).

    • Qiao Xin, Zhou Yu. 2021. Geodetic imaging of shallow creep along the Xianshuihe fault and its frictional properties. Earth and Planetary Science Letters, 567: 117001.

    • Ran Hongliu, He Honglin. 2006. Research on the magnitude and recurrence interval of characterized earthquakes with magnitude≥6. 7 along the northwestern portion of the Xianshuihe fault zone in western Sichuan, China. Chinese Journal of Geophysics, 49(1): 153~161 (in Chinese with English abstract).

    • Roger F, Calassou S, Lancelot J, Malavieille J, Mattauer M, Xu Zhiqin, Hao Ziwen, Hou Liwei. 1995. Miocene emplacement and deformation of the Konga Shan granite (Xianshuihe fault zone, west Sichuan, China): geodynamic implications. Earth and Planetary Science Letters, 130: 201~216.

    • Shan Bin, Xiong Xiong, Zheng, Yong, Diao Faqi. 2009. Stress changes on major faults caused by MW 7. 9 Wenchuan earthquake May 12, 2008. Science in China, 52: 593~601.

    • Shen Zhengkang, Lv Jiangning, Wang Min, Bürgmann R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110: B11409.

    • Stewart N, Gaudemer Y, Manighetti I, Serreau L, Vincendeau A, Dominguez S, Matteo L, Malavieille J. 2018. “3D_Fault_Offsets, ” a Matlab code to automatically measure lateral and vertical fault offsets in topographic data: application to San Andreas, Owens valley, and Hope faults. Journal of Geophysical Research: Solid Earth, 123: 815~835.

    • Sun Kai, Meng Guojie, Hong Shunying, Su Xiaoning, Huang Xing, Dong Yanfang, Hiroaki Takahashi, Mako Ohzono. 2021. Interseismic movement along the Luhuo-Daofu section of the Xianshuihe fault from InSAR and GPS observation. Chinese Journal of Geophysics, 64(7): 2278~2296 (in Chinese with English abstract).

    • Tang Rongchang, Qian Hong, Zhang Wenfu, Zhang Chenggui, Cao Yangguo, Liu Shengli. 1984. On the seismogeological setting and conditions of seismogenic structures of 1981 Daofu earthquake. Seismology and Geology, 6(2): 33~40 (in Chinese with English abstract).

    • Tapponnier P, Molnar P. 1977. Active faulting and Cenozoic tectonics of China. Journal of Geophysical Research, 82: 2905~2930.

    • Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang Jingsui. 2001. Oblique stepwise rise and growth of the Tibet Plaleau. Science, 294(5547): 1671~1677.

    • Toda S, Lin J, Meghraoui M, Stein R S. 2008. 12 May 2008 M =7. 9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophysical Research Letters, 35: L17305.

    • Wang Erchie, Burchfiel B C, Royden L H, Chen Liangzhong, Chen Jishen, Li Wenxin, Chen Zhiliang. 1998. The Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America Special Paper, 327: 1~108.

    • Wang Erchie, Burchfiel B C. 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geological Society of America Bulletin, 112: 413~423.

    • Wang Erchie, Kirby E, Furlong K P, Van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640~645.

    • Wang Hua, Wright T J, Biggs J. 2009. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophysical Research Letters, 36: L03302.

    • Wang Min, Shen Zhengkang. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research, 125: e2019JB018774.

    • Wang Shifeng, Fang Xiaomin, Zheng Dewen, Wang Erchie. 2009. Initiation of slip along the Xianshuihe fault zone, eastern Tibet, constrained by K/Ar and fission-track ages: International Geology Review, 51(12): 1121~1131.

    • Wang Shifeng, Jiang Guiguo, Xu Tiande, Tian Yuntao, Zheng Dewen, Fang, Xiaomin. 2012. The Jinhe-Qinghe fault—aninactive branch of the Xianshuihe-Xiaojiang fault zone, Eastern Tibet. Tectonophysics, 544-545: 93~102.

    • Wang Wei, Qiao Xuejun, Yang Shaomin, Wang Dijin. 2017. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophysical Journal International, 208: 1088~1102.

    • Wang Yanzhao, Wang Min, Shen Zhengkang. 2017. Block-like versus distributed crustal deformation around the northeastern Tibetan plateau. Journal of Asian Earth Sciences, 140: 31~47.

    • Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84: 974~1002.

    • Wen Xueze. 1988. Recent slip rates, earthquake recurrence intervals and strong seismic hazards on the northwestern segment of the Xianshuihe fault zone. Earthquake Research in China, 2: 431~451.

    • Wen Xueze, Allen C R, Luo Zhuoli, Qian Hong, Zhou Huawei, Huang Weishi. 1989. Segmentation, Geometric features, and their seismotectonic implications for the Holocene Xianshuihe fault zone. Acta Seismological Sinica, 11(4): 362~372 (in Chinese with English abstract).

    • Wen Xueze. 2000. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault zone, Western Sichuan. Seismology and Geology, 22(3): 239~249 (in Chinese with English abstract).

    • Wen Xueze, Ma Shengli, Xu Xiwei, He Yongnian. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2): 16~36.

    • Wu Zhonghai, Zhao Genmo. 2013. The earthquake prediction status and related problems: a review. Geological Bulletin of China, 32(10): 1493~1512 (in Chinese with English abstract).

    • Xianshuihe Active Fault Zone Mapping Group, Seismic Geological Team, Sichuan Earthquake Administration. 2013. Manual of Geological Map of Xianshuihe Active Fault Zone (1∶50000). Beijing: Seismological Press.

    • Xu Jing, Shao Zhigang, Ma Hongsheng, Zhang Langping. 2013. Evolution of Coulomb stress and stress interaction among strong earthquakes along the Xianshuihe fault zone. Chinese Journal of Geophyics, 56(4): 1146~1158 (in Chinese with English abstract).

    • Xu Xiwei, Wen Xueze, Zheng Rongzhang, Ma Wentao, Song Fangmin, Yu Guihua. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Science in China(Ser. D), 33(Supp1): 151~162 (in Chinese).

    • Xu Xiwei, Zhang Peizhen, Wen Xueze, Qin Zunli, Chen Guihua, Zhu Ailan. 2005. Features ofactive tectonics and recurrence behaviors of strong earthquakes in the western Sichuan Province and its adjacent regions. Seismology and Geology, 27(3): 446~461 (in Chinese with English abstract).

    • Yan Bing, Lin Aiming. 2015. Systematic deflection and offset of the Yangtze River drainage system along the strike-slip Ganzi-Yushu-Xianshuihe fault zone, Tibetan Plateau. Journal of Geodynamics, 87: 13~25.

    • Yan Bing, Jia Dong, Lin Aiming. 2018. Late Pleistocene—Holocene tectonic landforms developed along the strikeslip Xianshuihe fault zone, Tibetan Plateau, China. Journal of Geodynamics, 120: 11~22.

    • Yang Peng, Peng Liyuan. 2021. Current activity characteristics of Xianshui River Luhuo fault. Earthquake Research in Sichuan, 179: 24~28 (in Chinese with English abstract).

    • Yi Guixi, Long Feng, Wen Xueze, Liang Mingjian, Wang Siwei. 2015. Seismogenic structure of the M 6. 3 Kangding earthquake sequence on 22 Nov. 2014, Southwestern China. Chinese Journal of Geophysics, 58(4): 1205~1219 (in Chinese with English abstract).

    • Zhang Jing, Wen Xueze, Cao Jianling, Yan Wei, Yang Yonglin, Su Qin. 2018. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone of southwestern China determined from decades of fault-crossing short-baseline and short-level surveys. Tectonophysics, 722: 356~372.

    • Zhang Lifang, Carpenter N S, Wang Zhenming, Lyu Yuejun, Li Shanyou. 2018. Scenario-based seismic hazard analysis for the Xianshuihe Fault Zone, Southwest China. Pure & Applied Geophysics, 175: 707~720.

    • Zhang Lei, Cao Daiyong, Zhang Jingfa, Sui Lili. 2019. Interseismic fault movement of Xianshuihe fault zone based on across-fault deformation data and InSAR. Pure & Applied Geophysics, 176: 649~667.

    • Zhang Peizhen. 2013. A review on active tectonics and deep crustal processes of the western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584: 7~22.

    • Zhang Shimin, Xie Furen. 2001. Seismo-tectonic divisions of strong earthquakes (M S>7. 0) and their tectonic geomorphology along Xianshuihe-Xiaojiang fault zone. Acta Seismologica Sinica, 23(1): 36~44 (in Chinese with English abstract).

    • Zhang Wenting, Ji Lingyun, Zhu Liangyu, Liu Chuanjin, Jiang Fengyu, Xu Xiaoxue. 2022. Currentslip and strain Rate distribution along the Ganzi-Yushu-Xianshuihe fault system based on InSAR and GPS observations. Frontiers in Earth Science, 10: 821761.

    • Zhang Yuanze, Replumaz A, Leloup P H, Wang Guocan, Bernet M, van der Beek P, Paquette J L. Chevalier M L. 2017. Cooling history of the Gongga batholith: implications for the Xianshuihe fault and Miocene kinematics of SE Tibet. Earth and Planetary Science Letters, 465: 1~15.

    • Zhao Guoguang, Liu W, Wei H et al. 1992. The Quaternary slip rate ad segmentation of the Xianshuihe active fault zone. In: Proceedings of the PRC-USA bilateral symposium on the Xianshuihe Fault Zone (Beijing: Seismological Pross, 41~57).

    • Zheng Gang, Wang Hua, Wright T J, Lou Y, Zhang Rui, Zhang Weixing, Shi Chuang, Huang Jinfang, Wei Na. 2017. Crustal deformation in the India-Eurasia collision Zone from 25 years of GPS measurements. Journal of Geophysical Research: Solid Earth, 122: 9290~9312.

    • Zhou Rongjun, He Yulin, Huang Zuzhi, Li Xiaogang, Yang Tao. 2001. The slip rate and strong earthquake recurrence interval on the Qianning-Kangding segment ofthe Xianshuihe Fault zone. Acta Seismologica Sinica, 23(3): 250~261 (in Chinese with English abstract).

    • Zielke O, Arrowsmith J R, Grant Ludwig L, Akçiz S O. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo plain, San Andreas fault. Science, 327: 1119~1122.

    • Zielke O, Arrowsmith J R. 2012. LaDiCaoz and LiDARimager-MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere, 8 (1): 206~221.

    • Zielke O, Klinger Y, Arrowsmith J R. 2015. Fault slip and earthquake recurrence along strike-slip faults—contributions of high-resolution geomorphic data. Tectonophysics, 638: 43~62.

    • 陈宏峰, 袁菲, 徐志国, 殷翔, 苗春兰, 邹立晔, 马延路. 2014. 使用中国地震台网资料快速测定中强地震矩震级. 地震地磁观测与研究, 35 (5-6): 51~57.

    • 陈桂华, 徐锡伟, 闻学则, 王亚丽. 2008. 川滇块体北-东边界活动构造带运动学转换与变形分解作用. 地震地质, 30(1): 58~85.

    • 陈桂华, 徐锡伟, 袁仁茂, 闻学则, 郑荣章. 2010. 川滇块体东北缘晚第四纪区域气候-地貌分析及其构造地貌年代学意义. 第四纪研究, 30(4): 837~854.

    • 李东雨, 陈立春, 梁明剑, 高帅坡, 曾蒂, 王虎, 李彦宝. 2017. 鲜水河断裂带乾宁段古地震事件与大震复发行为. 地震地质, 39(4): 623~643.

    • 李海兵, 潘家伟, 孙知明, 司家亮, 裴军令, 刘栋梁, Chevalier M L, 王焕, 卢海建. 郑勇, 李春锐. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报, 95(1): 194~213.

    • 李天祒, 杜其方, 游泽李等. 1997. 鲜水河活动断裂带及强震危险性评估. 成都: 成都地图出版社.

    • 李铁明, 祝意青, 杨永林等. 2019. 综合利用多种地壳形变观测资料计算鲜水河断裂带现今滑动速率. 地球物理学报, 62(4): 1323~1335.

    • 潘家伟, 李海兵, Chevalier M L, 白明坤, 刘富财, 刘栋梁, 郑勇, 卢海建, 赵中宝. 2020. 鲜水河断裂带色拉哈—康定段新发现的活动断层: 木格措南断裂. 地质学报, 94(11): 3178~3188.

    • 潘家伟, 白明坤, 李超, 刘富财, 李海兵, 刘栋梁, Chevalier M L, 吴坤罡, 王平, 卢海建, 陈鹏, 李春锐. 2021. 2021年5月22日青海玛多M S 7. 4地震地表破裂带及发震构造. 地质学报, 95(6): 1655~1670.

    • 钱洪, 艾伦C R, 罗灼礼, 闻学则, 周华伟, 黄伟师. 1988. 全新世以来鲜水河断裂的活动特征. 中国地震, 4(2): 9~18.

    • 冉洪流, 何宏林. 2006. 鲜水河断裂带北西段不同破裂源强震震级(M ≥6. 7) 及复发间隔研究. 地球物理学报, 49(1): 153~161.

    • 四川省地震局地震地质队鲜水河活动断裂带填图组. 2013. 鲜水河活动断裂带地质图(1∶50000)说明书. 北京: 地震出版社.

    • 孙凯, 孟国杰, 洪顺英等. 2021. 联合InSAR和GPS研究鲜水河断裂带炉霍—道孚段震间运动特征. 地球物理学报, 64(7): 2278~2296.

    • 唐荣昌, 钱洪, 张文甫, 等. 1984. 道孚6. 9级地震的地质构造背景与发震构造条件分析. 地震地质, 6(2): 33~40.

    • 康文君, 徐锡伟, 于贵华, 罗佳宏. 2020. 2种基于Matlab 平台的断层位移测量软件对比分析——以阿尔金断裂东段为例. 地震地质, 42(3): 732~747.

    • 闻学泽. 2000. 四川西部鲜水河—安宁河—则木河断裂带的地震破裂分段特征. 地震地质, 22(3): 239~249.

    • 闻学泽, Allen C R, 罗灼礼, 钱洪. 1989. 鲜水河全新世断裂带的分段性、几何特征及其地震构造意义. 地震学报, 11(4): 362~372.

    • 吴中海, 赵根模. 2013. 地震预报现状及相关问题综述. 地质通报, 32(10): 1493~1512.

    • 徐晶, 邵志刚, 马宏生等. 2013. 鲜水河断裂带库仑应力演化与强震间关系. 地球物理学报, 56(4): 1146~1158.

    • 徐锡伟, 闻学则, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学, 33: 151~162.

    • 徐锡伟, 张培震, 闻学则, 秦尊丽, 陈桂华, 朱艾斓. 2005. 川西及其邻近地区活动构造基本特征与强震复发模型. 地震地质, 27(3): 446~461.

    • 杨鹏, 彭丽媛. 2021. 鲜水河炉霍段断层现今活动特征. 四川地震, 179: 24~28.

    • 易桂喜, 龙锋, 闻学泽, 梁明剑, 王思维. 2015. 2014年11月22日康定M6. 3级地震序列发震构造分析. 地球物理学报, 58(4): 1205~1219.

    • 张世民, 谢富仁. 2001. 鲜水河-小江断裂带E级以上强震构造区的划分及其构造地貌特征. 地震学报, 23(11): 36~44.

    • 周荣军, 何玉林, 黄祖指, 黎小刚, 杨涛. 2001. 鲜水河断裂带乾宁-康定段的滑动速率与强震复发间隔. 地震学报, 23(3): 250~261.

    • 中国地震局震害防御司. 1995. 中国历史强震目录: 公元前23世纪―公元1911年. 北京: 地震出版社.

    • 中国地震局震害防御司. 1999. 中国近代地震目录: 公元1912年~1990年, M S≥4. 7. 北京: 中国科学技术出版社.

  • 参考文献

    • Allen C R, Luo Z, Qian H, Wen X, Zhou H, Huang W. 1991. Field study of a highly active fault zone: the XSF of southwestern China. Geological Society of America Bulletin, 103: 1178~1199.

    • Bai Mingkun, Chevalier M L, Pan Jiawei, Replumaz A, Leloup P H, Métois M, Li Haibing. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485: 19~31.

    • Bai Mingkun, Chevalier, M L, Leloup P H, Li Haibing, Pan Jiawei, Replumaz A, Wang Shiguang, Li Kaiyu, Wu Qiong, Liu Fucai, Zhang Jinjiang. 2021. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment. Tectonics, 40: e2021TC006985.

    • Chen Guihua, Xu Xiwei, Wen Xueze, Wang Yali. 2008. Kinematical transformation and slip partitioning of northern to eastern active boundary belt of Sichuan-Yunnan block. Seismology and Geology, 30(1): 58~85 (in Chinese with English abstract).

    • Chen Guihua, Xu Xiwei, Yuan Renmao, Wen Xueze, Zheng Rongzhang. 2010. Late Quaternary climate and geomorphology on the northeastern margin of Sichuan-Yunnan block and their tectonomorphologic significance. Quaternary Sciences, 30(4): 837~854 (in Chinese with English abstract).

    • Chen Guihua, Xu Xiwei, Wen Xueze, Chen Yingtao. 2016. Late Quaternary slip-rates and slip-partitioning on the southeastern Xianshuihe fault system, Eastern Tibetan Plateau. Acta Geologica Sinica, 90: 537~554.

    • Chen Hongfeng, Yuan Fei, Xu Zhiguo, Yin Xiang, Miao Chunlan, Zou Lihua, Ma Yanlu. 2014. Rapid determination of moment magnitudes of moderate and strong earthquakes using data from China Seismic networks. Seismic Geomagnetic Observation and Research, 35(5-3): 51~57.

    • Cheng Jia, Liu Jie, Gan Weijun, Yu Huaizhong, Li Gang. 2011. Characteristics of strong earthquake evolution around the eastern boundary faults of the Sichuan-Yunnan rhombic block. Science China Earth Sciences, 54(11): 1716~1729.

    • Chevalier M L, Ryerson F J, Tapponnier P, Finkel R, Van der Woerd J, Li Haibing, Liu Qing. 2005. Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion. Science, 307(5708): 411~414.

    • Chevalier M L, Leloup P H, Replumaz A, Pan Jiawei, Metois M, Li Haibing. 2017. Temporally constant slip-rate along the Ganzi fault, NW Xianshuihe fault system, eastern Tibet. Geological Society of America Bulletin, 130(3-4): 396~410.

    • Deng Qidong, Zhang Peizhen, Ran Yongkang, Yang Xiaoping, Min Wei, Chu Quanzhi. 2003. Basic characteristics of active tectonics of China. Science in China, 46: 356~372.

    • Department of Earthquake Disaster Prevention. 1995. Catalogue of Chinese Historical Strong Earthquakes: 23rd century BC to 1911. Beijing: Seismological Press.

    • Department of Earthquake Disaster Prevention. 1999. Catalogue of Chinese Present Earthquakes: 1912 to 1990. Beijing: Seismological Press.

    • Friedrich A M, Wernicke B P, Niemi N A, Bennett R A, Davis J L. 2003. Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. Journal of Geophysical Research, 108(B4): 2199.

    • Gan Weijun, Zhang Peizhen, Shen Zhengkang, Niu Zhijun, Wang Min, Wan Yongge, Zhou Demin, Cheng Jia. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. Journal of Geophysical Research, 112: B08416.

    • Guo Rumeng, Zheng Yong, Tian Wen, Xu Jianqiao, Zhang Wenting. 2018. Locking status and earthquake potential hazard along the middle-south Xianshuihe fault. Remote Sensing, 10: 2048.

    • Ji Lingyun, Zhang Wenting, Liu Chuanjin, Zhu Liangyu, Xu Jing, Xu Xiaoxue. 2020. Characterizing interseismic deformation of the Xianshuihe fault, eastern Tibetan Plateau, using Sentinel-1 SAR images. Advances in Space Research, 66: 378~394.

    • Jiang Guoyan, Wen Yangmao, Liu Yajing, Xu Xiwei, Fang Lihua, Chen Guihua, Gong Meng, Xu Caijun. 2015. Joint analysis of the 2014 Kangding, southwest China, earthquake sequence with seismicity relocation and InSAR inversion. Geophysical Research Letters, 42: 3273~3281.

    • Kang Wenjun, Xu Xiwei, Yu Guihua, Luo Jiahong. 2020. Comparison study of two kinds of codes to measure fault-offsets based on MATLAB: a case study on eastern Altyn Tagh fault. Seismology and Geology, 42(3): 732~747 (in Chinese with English abstract).

    • Klinger Y. 2010. Relation between continental strike-sipe earthquake segmentation and thickness of the crust. Journal of Geophysical Research. 115: B07306.

    • Li Dongyu, Chen Lichun, Liang Mingjian, Gao Shuaipo, Zeng Di, Wang Hu, Li Yanbao. 2017. Holocene palaeoseismological record and rupture behavior of large earthquakes on the Xianshuihe fault. Seismology and Geology, 39(4): 623~643 (in Chinese with English abstract).

    • Li Haibing, Pan Jiawei, Sun Zhiming, Si Jialiang, Pei Junling, Liu Dongliang, Marie-Luce Chevalier, Wang Huan, Lu Haijian, Zheng Yong, Li Chunrui. 2021. Continental tectonic deformation and seismic activity: a case study from the Tibetan Plateau. Acta Geologica Sinica, 95(1): 194~213 (in Chinese with English abstract).

    • Li Jiangyi, Zhou Bengang, Li Tieming, Yang Yonglin, Li Zhengfang. 2020. Locking depth, slip rate, and seismicity distribution along the Daofu-Kangding segment of the Xianshuihe fault system, eastern Tibetan Plateau. Journal of Asian Earth Sciences, 193, 104328.

    • Li Tianshao, Du Qifang, You Zeli, et al. 1997. The Active Xianshuihe Fault Zone and Seismic Risk Assessment. Chengdu: Chengdu Cartographic Publishing House (in Chinese).

    • Li Tieming, Zhu Yiqing, Yang Yonglin, Xu Yunma, An Yanfen, Zhang Ying, Feng Shengtao, Huai Yanke, Yang Jiuyuan. 2019. The current slip rate of the Xianshuihe fault zone calculated using multiple observation data of crustal deformation. Chinese journal of Geophysics, 62(4): 1323~1335 (in Chinese with English abstract).

    • Liang Mingjian, Chen Lichun, Ran Yongkang, Li Yanbao, Gao Shuaipo, Han Mingming, Lu Lili. 2020. Abnormal accelerating stress release behavior on the Luhuo segment of the Xianshuihe fault, southeastern margin of the Tibetan Plateau, during the past 3000 years. Frontiers Earth Science, 8: 274.

    • Pan Jiawei, Li Haibing, Marie-Luce Chevalier, Bai Mingkun, Liu Fucai, Liu Dongliang, Zheng Yong, Lu Haijian, Zhao Zhongbao. 2020. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: the South Mugecuo fault. Acta Geological Sinica, 94(11): 3178~3188 (in Chinese with English abstract).

    • Pan Jiawei, Bai Mingkun, Li Chao, Liu Fucai, Li Haibing, Liu Dongliang, Chevalier Marie-Luce, Wu Kungang, Wang Ping, Lu Haijian, Chen Peng, Li Chunrui. 2021. Coseismic surface rupture and seismogenic structure of the 2021. 5. 22 Maduo (Qinghai) M S 7. 4 earthquake. Acta Geologica Sinica, 95(6): 1655~1670 (in Chinese with English abstract).

    • Papadimitriou E, Wen Xueze, Karakostas V, Jin X. 2004. Earthquake triggering along the Xianshuihe fault zone of Western Sichuan, China. Pure & Applied Geophysics, 161: 1683~1707.

    • Qian Hong, Allen C R, Luo Zhuoli, Wen Xueze, Zhou Huawei, Huang Shiwei. 1988. The active characteristics of Xianshuihe fault in Holocene. Earthquake Research in China, 4(2): 9~18 (in Chinese with English abstract).

    • Qiao Xin, Zhou Yu. 2021. Geodetic imaging of shallow creep along the Xianshuihe fault and its frictional properties. Earth and Planetary Science Letters, 567: 117001.

    • Ran Hongliu, He Honglin. 2006. Research on the magnitude and recurrence interval of characterized earthquakes with magnitude≥6. 7 along the northwestern portion of the Xianshuihe fault zone in western Sichuan, China. Chinese Journal of Geophysics, 49(1): 153~161 (in Chinese with English abstract).

    • Roger F, Calassou S, Lancelot J, Malavieille J, Mattauer M, Xu Zhiqin, Hao Ziwen, Hou Liwei. 1995. Miocene emplacement and deformation of the Konga Shan granite (Xianshuihe fault zone, west Sichuan, China): geodynamic implications. Earth and Planetary Science Letters, 130: 201~216.

    • Shan Bin, Xiong Xiong, Zheng, Yong, Diao Faqi. 2009. Stress changes on major faults caused by MW 7. 9 Wenchuan earthquake May 12, 2008. Science in China, 52: 593~601.

    • Shen Zhengkang, Lv Jiangning, Wang Min, Bürgmann R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110: B11409.

    • Stewart N, Gaudemer Y, Manighetti I, Serreau L, Vincendeau A, Dominguez S, Matteo L, Malavieille J. 2018. “3D_Fault_Offsets, ” a Matlab code to automatically measure lateral and vertical fault offsets in topographic data: application to San Andreas, Owens valley, and Hope faults. Journal of Geophysical Research: Solid Earth, 123: 815~835.

    • Sun Kai, Meng Guojie, Hong Shunying, Su Xiaoning, Huang Xing, Dong Yanfang, Hiroaki Takahashi, Mako Ohzono. 2021. Interseismic movement along the Luhuo-Daofu section of the Xianshuihe fault from InSAR and GPS observation. Chinese Journal of Geophysics, 64(7): 2278~2296 (in Chinese with English abstract).

    • Tang Rongchang, Qian Hong, Zhang Wenfu, Zhang Chenggui, Cao Yangguo, Liu Shengli. 1984. On the seismogeological setting and conditions of seismogenic structures of 1981 Daofu earthquake. Seismology and Geology, 6(2): 33~40 (in Chinese with English abstract).

    • Tapponnier P, Molnar P. 1977. Active faulting and Cenozoic tectonics of China. Journal of Geophysical Research, 82: 2905~2930.

    • Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang Jingsui. 2001. Oblique stepwise rise and growth of the Tibet Plaleau. Science, 294(5547): 1671~1677.

    • Toda S, Lin J, Meghraoui M, Stein R S. 2008. 12 May 2008 M =7. 9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophysical Research Letters, 35: L17305.

    • Wang Erchie, Burchfiel B C, Royden L H, Chen Liangzhong, Chen Jishen, Li Wenxin, Chen Zhiliang. 1998. The Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America Special Paper, 327: 1~108.

    • Wang Erchie, Burchfiel B C. 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geological Society of America Bulletin, 112: 413~423.

    • Wang Erchie, Kirby E, Furlong K P, Van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640~645.

    • Wang Hua, Wright T J, Biggs J. 2009. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data. Geophysical Research Letters, 36: L03302.

    • Wang Min, Shen Zhengkang. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research, 125: e2019JB018774.

    • Wang Shifeng, Fang Xiaomin, Zheng Dewen, Wang Erchie. 2009. Initiation of slip along the Xianshuihe fault zone, eastern Tibet, constrained by K/Ar and fission-track ages: International Geology Review, 51(12): 1121~1131.

    • Wang Shifeng, Jiang Guiguo, Xu Tiande, Tian Yuntao, Zheng Dewen, Fang, Xiaomin. 2012. The Jinhe-Qinghe fault—aninactive branch of the Xianshuihe-Xiaojiang fault zone, Eastern Tibet. Tectonophysics, 544-545: 93~102.

    • Wang Wei, Qiao Xuejun, Yang Shaomin, Wang Dijin. 2017. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements. Geophysical Journal International, 208: 1088~1102.

    • Wang Yanzhao, Wang Min, Shen Zhengkang. 2017. Block-like versus distributed crustal deformation around the northeastern Tibetan plateau. Journal of Asian Earth Sciences, 140: 31~47.

    • Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84: 974~1002.

    • Wen Xueze. 1988. Recent slip rates, earthquake recurrence intervals and strong seismic hazards on the northwestern segment of the Xianshuihe fault zone. Earthquake Research in China, 2: 431~451.

    • Wen Xueze, Allen C R, Luo Zhuoli, Qian Hong, Zhou Huawei, Huang Weishi. 1989. Segmentation, Geometric features, and their seismotectonic implications for the Holocene Xianshuihe fault zone. Acta Seismological Sinica, 11(4): 362~372 (in Chinese with English abstract).

    • Wen Xueze. 2000. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault zone, Western Sichuan. Seismology and Geology, 22(3): 239~249 (in Chinese with English abstract).

    • Wen Xueze, Ma Shengli, Xu Xiwei, He Yongnian. 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Physics of the Earth and Planetary Interiors, 168(1-2): 16~36.

    • Wu Zhonghai, Zhao Genmo. 2013. The earthquake prediction status and related problems: a review. Geological Bulletin of China, 32(10): 1493~1512 (in Chinese with English abstract).

    • Xianshuihe Active Fault Zone Mapping Group, Seismic Geological Team, Sichuan Earthquake Administration. 2013. Manual of Geological Map of Xianshuihe Active Fault Zone (1∶50000). Beijing: Seismological Press.

    • Xu Jing, Shao Zhigang, Ma Hongsheng, Zhang Langping. 2013. Evolution of Coulomb stress and stress interaction among strong earthquakes along the Xianshuihe fault zone. Chinese Journal of Geophyics, 56(4): 1146~1158 (in Chinese with English abstract).

    • Xu Xiwei, Wen Xueze, Zheng Rongzhang, Ma Wentao, Song Fangmin, Yu Guihua. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Science in China(Ser. D), 33(Supp1): 151~162 (in Chinese).

    • Xu Xiwei, Zhang Peizhen, Wen Xueze, Qin Zunli, Chen Guihua, Zhu Ailan. 2005. Features ofactive tectonics and recurrence behaviors of strong earthquakes in the western Sichuan Province and its adjacent regions. Seismology and Geology, 27(3): 446~461 (in Chinese with English abstract).

    • Yan Bing, Lin Aiming. 2015. Systematic deflection and offset of the Yangtze River drainage system along the strike-slip Ganzi-Yushu-Xianshuihe fault zone, Tibetan Plateau. Journal of Geodynamics, 87: 13~25.

    • Yan Bing, Jia Dong, Lin Aiming. 2018. Late Pleistocene—Holocene tectonic landforms developed along the strikeslip Xianshuihe fault zone, Tibetan Plateau, China. Journal of Geodynamics, 120: 11~22.

    • Yang Peng, Peng Liyuan. 2021. Current activity characteristics of Xianshui River Luhuo fault. Earthquake Research in Sichuan, 179: 24~28 (in Chinese with English abstract).

    • Yi Guixi, Long Feng, Wen Xueze, Liang Mingjian, Wang Siwei. 2015. Seismogenic structure of the M 6. 3 Kangding earthquake sequence on 22 Nov. 2014, Southwestern China. Chinese Journal of Geophysics, 58(4): 1205~1219 (in Chinese with English abstract).

    • Zhang Jing, Wen Xueze, Cao Jianling, Yan Wei, Yang Yonglin, Su Qin. 2018. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone of southwestern China determined from decades of fault-crossing short-baseline and short-level surveys. Tectonophysics, 722: 356~372.

    • Zhang Lifang, Carpenter N S, Wang Zhenming, Lyu Yuejun, Li Shanyou. 2018. Scenario-based seismic hazard analysis for the Xianshuihe Fault Zone, Southwest China. Pure & Applied Geophysics, 175: 707~720.

    • Zhang Lei, Cao Daiyong, Zhang Jingfa, Sui Lili. 2019. Interseismic fault movement of Xianshuihe fault zone based on across-fault deformation data and InSAR. Pure & Applied Geophysics, 176: 649~667.

    • Zhang Peizhen. 2013. A review on active tectonics and deep crustal processes of the western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584: 7~22.

    • Zhang Shimin, Xie Furen. 2001. Seismo-tectonic divisions of strong earthquakes (M S>7. 0) and their tectonic geomorphology along Xianshuihe-Xiaojiang fault zone. Acta Seismologica Sinica, 23(1): 36~44 (in Chinese with English abstract).

    • Zhang Wenting, Ji Lingyun, Zhu Liangyu, Liu Chuanjin, Jiang Fengyu, Xu Xiaoxue. 2022. Currentslip and strain Rate distribution along the Ganzi-Yushu-Xianshuihe fault system based on InSAR and GPS observations. Frontiers in Earth Science, 10: 821761.

    • Zhang Yuanze, Replumaz A, Leloup P H, Wang Guocan, Bernet M, van der Beek P, Paquette J L. Chevalier M L. 2017. Cooling history of the Gongga batholith: implications for the Xianshuihe fault and Miocene kinematics of SE Tibet. Earth and Planetary Science Letters, 465: 1~15.

    • Zhao Guoguang, Liu W, Wei H et al. 1992. The Quaternary slip rate ad segmentation of the Xianshuihe active fault zone. In: Proceedings of the PRC-USA bilateral symposium on the Xianshuihe Fault Zone (Beijing: Seismological Pross, 41~57).

    • Zheng Gang, Wang Hua, Wright T J, Lou Y, Zhang Rui, Zhang Weixing, Shi Chuang, Huang Jinfang, Wei Na. 2017. Crustal deformation in the India-Eurasia collision Zone from 25 years of GPS measurements. Journal of Geophysical Research: Solid Earth, 122: 9290~9312.

    • Zhou Rongjun, He Yulin, Huang Zuzhi, Li Xiaogang, Yang Tao. 2001. The slip rate and strong earthquake recurrence interval on the Qianning-Kangding segment ofthe Xianshuihe Fault zone. Acta Seismologica Sinica, 23(3): 250~261 (in Chinese with English abstract).

    • Zielke O, Arrowsmith J R, Grant Ludwig L, Akçiz S O. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo plain, San Andreas fault. Science, 327: 1119~1122.

    • Zielke O, Arrowsmith J R. 2012. LaDiCaoz and LiDARimager-MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere, 8 (1): 206~221.

    • Zielke O, Klinger Y, Arrowsmith J R. 2015. Fault slip and earthquake recurrence along strike-slip faults—contributions of high-resolution geomorphic data. Tectonophysics, 638: 43~62.

    • 陈宏峰, 袁菲, 徐志国, 殷翔, 苗春兰, 邹立晔, 马延路. 2014. 使用中国地震台网资料快速测定中强地震矩震级. 地震地磁观测与研究, 35 (5-6): 51~57.

    • 陈桂华, 徐锡伟, 闻学则, 王亚丽. 2008. 川滇块体北-东边界活动构造带运动学转换与变形分解作用. 地震地质, 30(1): 58~85.

    • 陈桂华, 徐锡伟, 袁仁茂, 闻学则, 郑荣章. 2010. 川滇块体东北缘晚第四纪区域气候-地貌分析及其构造地貌年代学意义. 第四纪研究, 30(4): 837~854.

    • 李东雨, 陈立春, 梁明剑, 高帅坡, 曾蒂, 王虎, 李彦宝. 2017. 鲜水河断裂带乾宁段古地震事件与大震复发行为. 地震地质, 39(4): 623~643.

    • 李海兵, 潘家伟, 孙知明, 司家亮, 裴军令, 刘栋梁, Chevalier M L, 王焕, 卢海建. 郑勇, 李春锐. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报, 95(1): 194~213.

    • 李天祒, 杜其方, 游泽李等. 1997. 鲜水河活动断裂带及强震危险性评估. 成都: 成都地图出版社.

    • 李铁明, 祝意青, 杨永林等. 2019. 综合利用多种地壳形变观测资料计算鲜水河断裂带现今滑动速率. 地球物理学报, 62(4): 1323~1335.

    • 潘家伟, 李海兵, Chevalier M L, 白明坤, 刘富财, 刘栋梁, 郑勇, 卢海建, 赵中宝. 2020. 鲜水河断裂带色拉哈—康定段新发现的活动断层: 木格措南断裂. 地质学报, 94(11): 3178~3188.

    • 潘家伟, 白明坤, 李超, 刘富财, 李海兵, 刘栋梁, Chevalier M L, 吴坤罡, 王平, 卢海建, 陈鹏, 李春锐. 2021. 2021年5月22日青海玛多M S 7. 4地震地表破裂带及发震构造. 地质学报, 95(6): 1655~1670.

    • 钱洪, 艾伦C R, 罗灼礼, 闻学则, 周华伟, 黄伟师. 1988. 全新世以来鲜水河断裂的活动特征. 中国地震, 4(2): 9~18.

    • 冉洪流, 何宏林. 2006. 鲜水河断裂带北西段不同破裂源强震震级(M ≥6. 7) 及复发间隔研究. 地球物理学报, 49(1): 153~161.

    • 四川省地震局地震地质队鲜水河活动断裂带填图组. 2013. 鲜水河活动断裂带地质图(1∶50000)说明书. 北京: 地震出版社.

    • 孙凯, 孟国杰, 洪顺英等. 2021. 联合InSAR和GPS研究鲜水河断裂带炉霍—道孚段震间运动特征. 地球物理学报, 64(7): 2278~2296.

    • 唐荣昌, 钱洪, 张文甫, 等. 1984. 道孚6. 9级地震的地质构造背景与发震构造条件分析. 地震地质, 6(2): 33~40.

    • 康文君, 徐锡伟, 于贵华, 罗佳宏. 2020. 2种基于Matlab 平台的断层位移测量软件对比分析——以阿尔金断裂东段为例. 地震地质, 42(3): 732~747.

    • 闻学泽. 2000. 四川西部鲜水河—安宁河—则木河断裂带的地震破裂分段特征. 地震地质, 22(3): 239~249.

    • 闻学泽, Allen C R, 罗灼礼, 钱洪. 1989. 鲜水河全新世断裂带的分段性、几何特征及其地震构造意义. 地震学报, 11(4): 362~372.

    • 吴中海, 赵根模. 2013. 地震预报现状及相关问题综述. 地质通报, 32(10): 1493~1512.

    • 徐晶, 邵志刚, 马宏生等. 2013. 鲜水河断裂带库仑应力演化与强震间关系. 地球物理学报, 56(4): 1146~1158.

    • 徐锡伟, 闻学则, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学, 33: 151~162.

    • 徐锡伟, 张培震, 闻学则, 秦尊丽, 陈桂华, 朱艾斓. 2005. 川西及其邻近地区活动构造基本特征与强震复发模型. 地震地质, 27(3): 446~461.

    • 杨鹏, 彭丽媛. 2021. 鲜水河炉霍段断层现今活动特征. 四川地震, 179: 24~28.

    • 易桂喜, 龙锋, 闻学泽, 梁明剑, 王思维. 2015. 2014年11月22日康定M6. 3级地震序列发震构造分析. 地球物理学报, 58(4): 1205~1219.

    • 张世民, 谢富仁. 2001. 鲜水河-小江断裂带E级以上强震构造区的划分及其构造地貌特征. 地震学报, 23(11): 36~44.

    • 周荣军, 何玉林, 黄祖指, 黎小刚, 杨涛. 2001. 鲜水河断裂带乾宁-康定段的滑动速率与强震复发间隔. 地震学报, 23(3): 250~261.

    • 中国地震局震害防御司. 1995. 中国历史强震目录: 公元前23世纪―公元1911年. 北京: 地震出版社.

    • 中国地震局震害防御司. 1999. 中国近代地震目录: 公元1912年~1990年, M S≥4. 7. 北京: 中国科学技术出版社.