en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵国春,男,1961年生。中国科学院院士,香港大学讲座教授和西北大学长江学者讲座教授,2000年获澳大利亚科廷大学前寒武纪地质博士学位,长期从事前寒武纪地质,变质岩石学和超大陆演化研究。E-mail:gzaho@hku.hk。

参考文献
Bacon C D, Silvestro D, Jaramillo C, Smith B T, Chakrabarty P, Antonelli A. 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of National Academy of Science USA, 112: 6110~6115.
参考文献
Chen Yan, Chen Shiyue, Zhang Pengfei, Zhao Wei. 2008. On studying methods of paleo-ancient currents. Fault-Block Oil & Gas Field, 15: 37~40(in Chinese with English abstract).
参考文献
Coates A G, Stallard R F. 2013. How old is the Isthmus of Panama? Bulletin of Marine Science, 89: 801~813.
参考文献
Dalziel I W D. 1997. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin, 108: 16~42.
参考文献
Du Yong, Zhu Yuanyuan, Song Huyue, Cao Ying, Song Haijun, Tong Jinnan, Qiu Haiou. 2018. Progress on the reconstruction proxies of the Paleo-seawater temperature. Bulletin of Geological Science and Technology, 37: 116~125(in Chinese with English abstract).
参考文献
Evans D A D, Li Z X, Murphy J B. 2016. Supercontinent cycles through earth history. Geological Society, London, Special Publications, 424: 1~14.
参考文献
Forley B J. 2015. The role of plate tectonic-climate coupling and exposed land area in the development of habitable climates on rocky planets. Astrophysical Journal, 812: 1~23.
参考文献
Hoffman F P. 1991. Did breakout of Laurentia turn Gondwana inside-out? Science, 252: 1409~1411.
参考文献
Ingalls M, Rowley D B, Currie B, Colman A S. 2016. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation. Nature Geoscience, 9: 848~853.
参考文献
Jackson J B C, O'Dea A. 2013. Timing of the oceanographic and biological isolation of the Caribbean Sea from the Tropical Eastern Pacific Ocean. Bulletin of Marine Science, 89: 779~800.
参考文献
Keigwin L D. 1978. Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores. Geology, 6: 630~634.
参考文献
Korenaga J. 2012. Plate tectonics and planetary habitability: current status and future challenges. Annals of the New York Academy of Sciences, 1260: 87~94.
参考文献
Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research, 160: 179~210.
参考文献
Lubnina N V, Slabunov A. 2011. Reconstruction of the Kenorland supercontinent in the Neoarchean based on paleomagnetic and geological data. Moscow University Geology Bulletin, 66: 242~249.
参考文献
Matte P, Mattauer M, Olivet J M, Griot D A. 1997. Continental subduction beneath Tibet and the Himalayan orogeny: a review. Terra Nova, 9: 264~270.
参考文献
McMenamin M A S, McMenamin D L S. 1990. The Emergence of Animals: the Cambrian Breakthrough. New York: Columbia University Press.
参考文献
Montes C, Cardona A, Jaramillo C, Pardo A, Silva J C, Valencia V, Ayala C, Pérez-Angel L C, Rodriguez-Parra L A, Ramirez V, Niño H. 2015. Middle Miocene closure of the Central American Seaway. Science, 348: 226~229.
参考文献
Nance R D, Murphy B. 2013. Origins of the supercontinent cycle. Geoscience Frontiers, 4: 439~448.
参考文献
Nance R D, Murphy B, Santosh M. 2014. The supercontinent cycle: a retrospective essay. Gondwana Research, 25: 4~29.
参考文献
O'Dea A, Lessios H A, Coates A G, Eytan R I, Restrepo-Moreno S A, Cione A L, Collins L S, de Queiroz A, Farris D W, Norris R D, Stallard R F, Woodburne M O, Aguilera O, Aubry M P, Berggren W A, Budd A F, Cozzuol M A, Coppard S E, Duque-Caro H, Finnegan S, Gasparini G M, Grossman E L, Johnson K G, Keigwin L D, Knowlton N, Leigh E G, Leonard-Pingel J S, Marko P B, Pyenson N D, Rachello-Dolmen P G, Soibelzon E, Soibelzon L, Todd J A, Vermeij G J, Jackson J B C. 2016. Formation of the isthmus of Panama. Science Advances, 2: e160088.
参考文献
Ogdena D E, Sleep N L. 2011. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 109: 59~62.
参考文献
Rogers J J W, Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5: 5~22.
参考文献
Unrug R. 1992. Supercontinent cycle and Gondwana assembly: component cratons and timing of suturing events. Journal of Dynamics, 12: 3~714.
参考文献
Vail P R, Mitchum Jr R M, Thompson III S. 1977. Global cycles of relative changes of sea level. In: Payton C E, ed. Seismic Stratigraphy-Applications to Hydrocarbon Explorations, 26. American Association of Petroleum Geologists, Memoir, 83~97.
参考文献
Warren J K. 2021. Evaporitedeposits. In: Alderton D, Elias S A, eds. Encyclopedia of Geology (Second Edition). Oxford: Academic Press, 945~977.
参考文献
Wegener A. 1912. The origin of continents. Geologische Rundschau, 3: 276~292.
参考文献
Williams H, Hoffman P F, Lewry J F, Monger J W H, Rivers T. 1991. Anatomy of North America: thematic portrayals of the continent. Tectonophysics, 187: 117~134.
参考文献
Woo M. 2017. The unexpected ingredient necessary for life. BBC Earth. Doi: http: //www. bbc. com/earth/story/20170111-the-unexpected-ingredient-necessary-for-life?.
参考文献
Worsley T R, Nance R D, Moody J B. 1984. Global tectonics and eustasy for the past 2 billion years. Marine Geology, 58: 373~400.
参考文献
Xu Yiwei, Hu Xiumian. 2020. Review and prospects of studying methods to reconstruct eustatic sea-level changes in deep-time. Geological Journal of China Universities, 26: 395~410(in Chinese with English abstract).
参考文献
Yakubchuk A S. 2019. From kenorland to modern continents: tectonics and metallogeny. Geotectonics, 53: 169~192.
参考文献
Zhao Guochun, Wilde S A, Cawood P A, Sun M. 2000. Review of 2. 1-1. 8 Ga orogens and cratons in North America, Baltica, Siberia, central Australia, Antarctica, and North China: a pre-Rodinia supercontinent?. Geological Society of Australia, Abstracts, 59: 565.
参考文献
Zhao Guochun, Cawood P A, Wilde S A, Sun Min. 2002. Review of global 2. 1-1. 8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59: 125~162.
参考文献
Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews, 67: 91~123.
参考文献
Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong, Zhang Jian. 2006. Some key issues in reconstructions of Proterozoic supercontinents. Journal of Asian Earth Sciences, 28: 3~19.
参考文献
Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262~286.
参考文献
Zhou Xin, Liu Lian, Guo Zhentang. 2013. Methods of recovering CO2 concentrations in the atmosphere in Earth's history. In: Ding Zhongli, ed. Research Approaches of Solid Earth Sciences. Beijing: Science Press, 39~54(in Chinese).
参考文献
陈妍, 陈世悦, 张鹏飞, 赵伟. 2008. 古流向的研究方法探讨. 断块油气田, 15: 37~40.
参考文献
杜勇, 朱园园, 宋虎跃, 曹莹, 宋海军, 童金南, 邱海鸥. 2018. 古海水温度重建指标新进展. 地质科技情报, 37: 116~125.
参考文献
许艺炜, 胡修棉. 2020. 深时全球海平面变化重建方法的回顾与展望. 高校地质学报, 26: 395~410.
参考文献
周鑫, 刘恋, 郭振堂. 2013. 地质历史时期大气CO2浓度恢复方法. 见: 丁仲礼(主编). 固体地球科学研究方法. 北京: 科学出版社, 39~54.
目录contents

    摘要

    超大陆(Supercontinent)是在地球演化某一阶段所形成的几乎包含当时所有陆块的一个大陆。超大陆的聚合是通过全球性碰撞造山事件来完成的,而超大陆的裂解往往是超级地幔柱作用的结果。因此,超大陆的聚合与裂解事件势必对地球的水圈、大气圈和生物圈产生重要影响,进而影响地球的宜居环境。在超大陆聚合过程中,大陆深俯冲会导致大陆总体面积的减少和大洋面积的增加,从而导致全球海平面的下降;另一方面,在超大陆的聚合期间,地幔岩浆喷发至地表的机会明显减少,通过火山射气进入大气圈中的CO2含量会急剧降低,从而形成极端寒冷干燥的冰室(Icehouse)气候,冰碛岩在低纬度地区广泛出现,不利于生物生存,或导致生物大量灭绝。相反,在超大陆裂解期间,大陆地壳会遭受拉伸减薄,大陆面积相对增加,大洋面积减少,海平面上升;另外,导致超大陆裂解的超级地幔柱所喷发的巨量玄武岩会导致洋壳加厚,也会导致海平面的上升;此外,超级地幔柱巨量玄武质岩浆的喷发会导致大气中CO2浓度的增加,形成温暖潮湿性的气候(Greenhouse),有利于生命复苏或大爆发。然而,目前有关超大陆聚散的环境效应研究还处于初步阶段,而且主要局限于Pangea超大陆聚散对水圈、大气圈和生物圈的影响研究,一些研究结论的可靠性也有待于通过对Rodinia和Columbia/Nuna等更古老的超大陆聚散的研究结果加以证实。

    Abstract

    A supercontinent forms when all oceanic crust is consumed through plate subduction and nearly all continental blocks on Earth collide each other and coalesce into a single landmass. The assembly of a supercontinent was completed by global-scale continent-continent collision, whereas the breakup of a supercontinent was often caused by the rising of a super-mantle plume. Consequently, such global-scale events that led to the assembly and breakup of a supercontinentwill not only play important roles in the formation and evolution of Earth's lithosphere, but will also have significant effects on its hydrosphere, atmosphere and biosphere, which will further affect Earth's habitable environments. During the assembly of a supercontinent, the deep subduction of some continents beneath other continents would decrease the gross areas of continents and thus increase gross areas of oceans, which, as a consequence, causes the subsidence of global sea level. Meanwhile, mantle-derived magmas have less chances to erupt on the surface during the assembly of a supercontinent due to compressive environments, which would decrease CO2 degassed from volcanism and thus lower CO2 contents in the atmosphere, forming the cold-and-dry weather, so-called “Icehouse”, under which glacial tillites can develop in the low latitudinal areas. Such an extreme cold (icehouse) weather is hard for life to survive and may lead to mass-extinction. For example, some researchers regard the P /T boundary mass-extinction as a result of the extreme icehouse weather since it was coincident with the final assembly of Pangea. In contrast, during the breakup of a supercontinent, continental crust undergoes extension and thinning, which increases the gross areas of continents and thus decreases the gross areas of oceans, leading to the rising of global sea level. Moreover, the eruption of voluminous basalts from a super-mantle plume that causes the breakup of a supercontinent will increase CO2 contents in the atmosphere, forming the warm-and-wet weather, so-called “Greenhouse”, which favors the recovery and explosion of life. What deserves mentioning here is that our investigations on the effects of assembly and breakup of supercontinents on the hydrosphere, atmosphere and biosphere are still at preliminary stages, and the above conclusions and implications were mainly based on the environmental effects of the assembly and breakup of Pangea, which need further testing work on the Rodinia and Columbia/Nuna supercontinents.

    关键词

    超大陆聚合裂解水圈大气圈生物圈环境地幔柱

  • 众所周知,地球是太阳系所有星球中唯一具有长英质大陆地壳和板块构造的星球。板块构造的本质是若干个刚性岩石圈板块在地幔软流圈上做球面水平运动。绝大多数岩石圈板块既包含大陆岩石圈又包括大洋岩石圈,如欧亚板块、北美板块、南美板块、澳大利亚-印度板块、非洲板块、南极板块等。当这些板块汇聚到一起时,由于大洋岩石圈密度较大,通常是大洋岩石圈俯冲到大陆岩石圈之下,导致大洋岩石圈的消亡和大陆岩石圈的增生和拼合,并在大陆岩石圈的边缘形成增生型和碰撞型造山带。在地球演化历史中的某一阶段,当所有这些大陆岩石圈汇聚到一起时就形成一个超大陆(Supercontinent)。事实上,所有大陆板块聚合到一起的概率是极低的,这也是为什么地球在近4.6Ga漫长演化过程中只形成少数几个超大陆,其中广为人知的是距今~0.25Ga前形成的Pangea超大陆(也称“泛大陆”,图1a;Wegner, 1912; Unrug, 1992)。20世纪90年代初,地质学家们又证实距今1Ga前所有大陆板块拼合到一起形成Rodinia超大陆(图1b; Hoffman, 1991; Dalziel, 1997; Li et al., 2008),并认为它是地球历史上所出现的第一个超大陆(McMenamin and McMenamin, 1990)。然而,在重建Rodinia超大陆过程中,地质学家们发现并非全部Rodinia组成陆块都是由1Ga的格林威尔造山带所焊接,许多陆块内部含有2.1~1.8Ga前的碰撞造山带,而在1.8~1.3Ga期间内地球上很少发生碰撞造山事件。基于这些事实,Zhao Guochun et al.(2000)提出全球大陆在2.1~1.8Ga期间相互拼合形成一个前Rodinia超大陆(图1c),该超大陆主体存在于1.8~1.3Ga期间,并于~1.3Ga左右部分地解体(Zhao Guochun et al., 2002, 2004, 2006)。Zhao Guochun et al.(2000)起初将该超大陆命名为Hudson, 因为北美1.95~1.85Ga前形成的Trans-Hudson造山带是代表该超大陆拼合的最典型的大陆拼合带。后来,Rogers and Santosh(2002)将这个前Rodinia超大陆命名为“Columbia”,而欧美学者目前更喜欢用Nuna来命名这个前Rodinia超大陆。近年来,一些学者提出在2.7~2.5Ga期间曾有一个更老的超大陆形成 (Lubnina and Slabunov, 2011; Evans et al., 2016; Yakubchuk, 2019),称之为Kenorland(Williams et al., 1991),但目前缺少佐证该超大陆聚合的全球规模陆-陆碰撞造山带的存在。然而,无论该超大陆是否存在,似乎每隔0.7~0.8Ga全球大陆块就汇聚一起形成一个超大陆。从这一点上看,超大陆具有周期性和旋回性,每一个超大陆旋回时间为0.7~0.8Ga。目前,地质学家还不清楚究竟是地球的内部机制还是外部机制导致每隔0.7~0.8Ga全球大陆块就聚在一起形成一个超大陆。

  • 自从板块构造理论诞生以来,超大陆就一直成为地球科学研究领域的一个热点,因为它不仅是重建大陆演化历史、完善和发展板块构造理论、催生新的地球动力学理论的切入点,而且也是认知古环境变迁、古气候变化、早起生命产生、生命大爆发和生物大灭绝一个重要窗口。在过去20年里,地质学家们对Pangea、Rodinia和Columbia/Nuna三个超大陆开展了广泛研究并取得令人瞩目的研究成果。然而,这些研究主要侧重于超大陆聚散机制和古地理重建方面,即局限于超大陆聚散对岩石圈的影响,而有关超大陆聚合和裂解事件对水圈、大气圈和生物圈的影响却研究甚少。实际上,超大陆的聚合是通过全球性碰撞造山事件来完成的,而超大陆的裂解往往是超级地幔柱作用的结果。因此,超大陆的聚合与裂解事件势必对地球的水圈、大气圈和生物圈产生重要影响,进而影响地球环境。此外,由于超大陆具有周期性和旋回性,超大陆聚散对地表环境的影响也具有周期性和旋回性。本文在综合归纳现有资料基础上,讨论超大陆聚散的环境效应。

  • 1 超大陆聚散对全球海平面变化的影响

  • 理论上推测,超大陆的聚合会导致大陆总体面积的减少,因为超大陆聚合是通过全球性陆-陆碰撞造山事件实现的,而在陆-陆碰撞拼合过程中,被动型大陆边缘常常被榴辉岩化俯冲大洋板片拖拽而发生大陆深俯冲,致使大陆面积大量的减少。如有学者估计印度大陆在与欧亚大陆沿喜马拉雅碰撞带拼合过程中,其北缘至少有1000km的印度大陆岩石圈俯冲于欧亚大陆之下(Matte et al., 1997;Ingalls et al., 2016)。两个大陆碰撞拼合就可能导致上千公里宽的大陆面积的减少,可以想象在超大陆聚合过程中,全球所有大陆相互拼合将会导致大陆总体面积的巨量减少。另外,超大陆聚合会致使两个大陆的碰撞边缘地形升高,形成如同喜马拉雅山、欧洲加里东和阿尔卑斯、北美阿巴拉锲亚等山脉。在大陆岩石圈总体积变化不大的情况下,大陆地形的升高势必导致大陆总面积的减少。另一方面,在地球表面积恒定情况下,大陆面积的巨量减少势必导致大洋面积的巨量增加,而在一定的时间内,地球表面大洋中的海水量是固定的,因而大洋面积的增加会导致全球海平面的下降。相反,在超大陆裂解过程中,大陆在完全离开之前会经历拉张减薄,而在大陆体积恒定情况下,大陆壳拉张减薄识别导致大陆总体面积的增加,大洋面积的减少和全球海平面的上升。另外,超大陆的裂解常常是超级地幔柱作用的结果。超级地幔柱喷发的巨量玄武岩会导致洋壳加厚,也会导致海平面的上升。总之,超大陆聚合会导致全球海平面的下降,而超大陆的裂解会导致全球海平面的上升。这些理论上的推测已部分地得到有关全球海平面升降模拟结果的支持(Vail et al., 1977; Worsley et al., 1984;Nance and Murphy,2013;Nance et al., 2014)。图2是本文根据Vail et al.(1977)Worsley et al.(1984)有关过去600Ma年以来全球海平面模拟曲线所做出的大陆或超大陆聚散与海平面升降的对应关系。该曲线很好地反映了自Rodinia超大陆裂解,经过冈瓦纳大陆聚散,到Pangea超大陆聚散期间所对应的海平面变化关系。

  • 图1 Pangea、Rodinia和Columbia/Nuna超大陆重建图

  • Fig.1 Configurations of supercontinents Pangea, Rodinia and Columbia/Nuna

  • (a)—~0.25Ga形成的Pangea超大陆 (据Unrug, 1992修改);(b)—~1.0Ga形成的Rodinia超大陆(据Li et al., 2008修改); (c)—~1.8Ga形成的Columbia (Nuna)超大陆 (据Zhao Guochun et al., 2002修改)

  • (a)—Supercontinent Pangea formed~0.25Ga ago (modified after Unrug, 1992); (b)—supercontinent Rodinia formed~1.0Ga ago(modified after Li et al., 2008); (c)—supercontinent Columbia (Nuna) (modified after Zhao Guochun et al., 2002)

  • 如图2所示,伴随伊阿帕托斯洋(Iapetus Ocean)~600Ma前的开启,Rodinia超大陆进一步裂解导致全球海平面的上升;Gondwana大陆新元古代末至早古生代初聚合所导致全球海平面下降;Gondwana大陆北缘晚古生代伴随瑞亚克(Rheic)洋和古特提斯(Paleo-Tethys)洋开启所导致全球海平面的上升;在晚石炭世至早三叠世期间,伴随瑞亚克洋、古特提斯洋和古亚洲洋等洋盆的闭合,南半球Gondwana大陆与北半球大陆块体拼合,形成Pangea超大陆,致使全球海平面下降,并在二叠纪末降到最低点;在Pangea超大陆稳定存在期间(二叠纪—三叠纪),海平面没有明显升降变化,维持最低海平面;从早侏罗世开始,伴随地中海和大西洋的打开,Pangea超大陆裂解开始,全球海平面又开始回升;新生代以来,伴随新特提斯洋的闭合,非洲大陆和印度大陆与欧亚大陆的聚合导致全球海平面的下降(图2),这也可能标志着一个未来超大陆聚合的开始。当然,这些初步结论只是有关Pangea超大陆聚散对海平面影响的研究结果,其可靠性有待于对更老的Rodinia和Columbia/Nuna超大陆聚散研究结果的证实。

  • 地质学家们已建立了多种重建古海平面变化的方法,包括地层回剥法、层序地层学方法、沉积标志和沉积相方法、Fisher图解方法、大陆海泛面积方法、洋盆动力学方法、锶同位素方法、氧同位素方法、钕同位素方法等(许艺炜和胡修棉,2020)。然而,这些方法中任何一种方法恢复全球海平面变化都存在很大偏差和不确定性。因此,解决超大陆聚散对全球海平面变化的影响的关键技术问题是结合大数据的技术,综合不同方法、不同区域的海平面变化的研究数据,最大限度地消除偏差和不确定性,以获得全球海平面变化的真实数据(许艺炜和胡修棉,2020)。

  • 图2 过去600Ma以来大陆和超大陆聚合与裂解对全球海平面的影响(据Nance and Murphy, 2013修改)

  • Fig.2 Effects of the assembly and breakup of continents and supercontinents on global sea levels during the past 600Ma (modified after Nance and Murphy, 2013)

  • 黄线为Worsley et al.(1984)的计算结果;蓝线为Vail et al.(1977)的计算结果

  • Yellow curve was the calculated results of Worsley et al.(1984); blue curse was the calculated results of Vail et al.(1977)

  • 2 超大陆聚散对大洋环流方向的影响

  • 众所周知,全球各大洋中的海水不是静止不动的,而是长年累月地沿着一些比较固定的路线经久不息地流动,从而形成大洋环流。大洋环流等方向与速度受许多因素影响,包括高低纬度所造成的海水温差、季风、潮汐作用、科里奥利力(Coriolis force)等因素,但大陆海岸地形是影响大洋环流的重要因素之一。如图3所示,无论是热洋流还是冷洋流,其运动方向都严格地受海岸线展布方向所制约。在洋-陆分布格局不变的情况下,大洋环流路径是基本固定的,如现今大洋环流在北半球形成两个顺时针洋流环,称为北太平洋环和北大西洋环,而在南半球形成三个逆时针洋流环,称为南太平洋环、南大西洋环和印度洋环(图3)。然而,超大陆的聚合和裂解事件会导致大陆海岸线发生全球规模的重组,因而会使大洋环流方向发生重大改变,进而影响全球大洋生态系统,但有关地球历史上几个超大陆聚散如何影响大洋环流的研究目前还处于空白。

  • 要确定超大陆聚合和裂解是否导致古大洋环流方向的改变和重组,应该开展Pangea、Rodinia和Columbia/Nuna三个超大陆存在期间和裂解之后全球主要大陆边缘海相沉积盆地古水流的恢复与重建工作,因为大陆边缘海相沉积盆地的古流向信息会在沉积地层中以特定的标志保留下来, 根据这些特定的标志就可以判断和恢复古水流的方向。判断和恢复古水流应该将确定局部水流方向的微观研究方法与确定大范围水流方向的宏观研究方法相结合,前者包括各种沉积构造、砾石及长形生物化石的定向排列、地层倾角测井、磁化率各向异性等,而后者包括重矿物分析、岩石成分分析、砂砾岩百分含量变化、沉积相及沉积体系展布、地层厚度变化、地震地层学研究及古生物研究等(陈妍等,2008)。然而,目前每一种恢复和重建古水流的方法都有很大的缺欠。因此,要确定超大陆聚散是否导致大洋环流方向的改变与重组,关键的技术问题是完善和建立一套确定大陆边缘海相沉积盆地古水流恢复和重建的综合方法。

  • 3 超大陆聚散对海水温度和盐度的影响

  • 超大陆聚合导致许多古大洋盆地的消失,最终出现一个超大陆被一个超大洋所环绕的洋陆分布格局,如Rodinia超大陆对应于Mirovoi洋。因此,在超大陆存在期间,大洋环流受大陆海岸线的制约程度相对减弱,不同地域海水温度主要受纬度所控,低纬度区暖海水可以畅通无阻地流入高纬度区与冷海水混合,导致全球大洋海水温度差和盐度变化的降低。相反,超大陆裂解常常会导致许多新的洋盆的出现,如Rodinia超大陆的裂解曾导致七个新大洋:莫桑比克洋(Mozambique Ocean)、原特提斯洋(Proto-Tethyan Ocean)、莫森洋(Mawson Ocean)、泛古洋(Panthalassic Ocean)、古亚洲洋(Paleo-Asian Ocean)、阿达马斯托洋(Adamastor Ocean)和伊阿帕托斯洋(Iapetus Ocean)的开启(Zhao Guochun et al., 2018)。不同大洋之间被裂解的大陆块所阻隔,海水不能自由地流通,造成七个大洋在海水温度、盐度和蒸发量方面的不同(Warren,2021)。例如,传统观点认为南、北美大陆之间的巴拿马地峡是在三百万年前才形成(Keigwin, 1978; Jackson and O'Dea, 2013; Coates and Stallard, 2013),即在3Ma以前,北美大陆和南美大陆之间并未像今天这样连在一起,温暖的太平洋海水可以自由地从南美与北美大陆之间的海峡流入大西洋并被大西洋北上的Gulf洋流带到北冰洋,导致北冰洋海水温度升高,盐度增大和增发量升高;水蒸气进入大气圈后冷却并通过降雪方式在北极形成巨厚的冰层。尽管近年来有学者提出南、北美大陆之间的巴拿马地峡可能早在15~10Ma前就已形成(Bacon et al., 2015; Montes et al., 2015; O'Dea et al., 2016),该实例仍然可以说明大陆海岸地形的改变不仅会导致大洋环流方向的改变,也会改变大洋海水温度和盐度,而超大陆聚散是导致大陆海岸地形发生变化的主要方式,势必会对大洋海水的温度和盐度产生重要影响,进而影响全球大洋生态系统和地球的宜居环境。

  • 图3 全球主要洋流分布

  • Fig.3 Patterns of major oceanic currents in the world

  • (after Byron Inouye:https://manoa.hawaii.edu/exploringourfluidearth/physical/atmospheric-effects/ocean-surface-currents)

  • 目前,古海水温度重建主要依靠古生物学指标和地球化学指标两种方法,其中前者已从最初仅能够定性分析的标志及其组合等方法发展到能够定量分析的转换函数统计法,而后者从传统的氧同位素(δ18O)过渡到微量元素(如13C-2H、13C-18O等)、生物标志化合物(UK37,TEX86)、耦合同位素Δ47等指标(杜勇等,2018)。目前广泛应用的古盐度的估算方法主要有微量元素法、同位素法和其他地化参数法。其中微量元素法主要有锶-钡法、锶-钙法和硼元素法;同位素法主要包括碳、氧同位素法和硼同位素法,而其他地化参数法主要有钾-钠法和沉积磷酸盐法(杜勇等,2018)。然而,无论古生物学指标方法还是地球化学方法重建古海水温度和盐度,都主要适用于研究显生宙Pangea超大陆聚散对大洋海水温度和盐度的影响,因为这些研究方法或直接依赖于生物化石指标或间接地依赖于对生物成因岩石开展的微量元素法、同位素法和其他地化参数法研究,这极大地限制了有关Rodinia和Columbia/Nuna超大陆聚散对大洋海水温度和盐度的影响研究,因为在与Rodinia和Columbia/Nuna超大陆聚散有关的中—新元古代地层中,生物化石和生物成因的岩石都是非常有限的。因此,要确定超大陆聚散如何影响海水温度和盐度,关键的技术问题是在现有的古海水温度和盐度重建方法基础上,完善或新建一套适用于中—晚元古代沉积地层(生物化石或生物成因岩石稀缺)古海水温度和盐度的确定方法。

  • 4 超大陆聚散对全球气候及生物圈的影响

  • 一些学者认为,太阳系中之所以只有地球能从最初荒凉无寂的行星演变成当今生机勃勃的宜居星球,是因为地球上有板块构造(Korenaga, 2012; Forley, 2015; Woo, 2017)。一方面,板块构造可将生命主要组成元素(C、H、O、N、S、P等)通过大洋中脊或弧后盆地火山喷气热柱(Hydrothermal vents)从地球深部带到地表大洋中,在那里经历由无机分子到有机分子,再由有机分子到初始单细胞生命的演化过程(Korenaga, 2012)。另一方面,通过大洋中脊或岛弧火山作用喷射到大气圈中的二氧化碳气体会溶解于雨滴中,雨水流入河流最终汇入大海,在此过程中碳元素会形成碳酸盐岩成为洋壳的一部分,板块俯冲会将碳元素随洋壳一起送回到地幔中,从而完成碳循环(Carbon cycle)。因此, 板块构造环境下的碳循环像一个地球恒温器,通过调节大气圈中的CO2浓度,形成有利于初始生命形式存活和进一步繁衍的温室性气候(Woo, 2017)。然而,地球表面这种恒温气候在超大陆聚合和裂解过程中会被改变,甚至形成一些极端气候条件,导致一些生命的灭绝或复苏。例如,在超大陆聚合过程中,一方面地幔岩浆喷发至地表的机会明显减少,通过火山射气进入大气圈中的CO2含量会急剧降低;另一方面,大陆聚合碰撞导致的大陆风化作用增强也会降低大气中CO2含量。大气中CO2含量的降低会形成极端寒冷干燥的气候环境,即所谓的Icehouse冰期环境,致使冰碛岩在低纬度地区广泛出现,一些植物和动物难以存活或发生生命大灭绝。相反,在超大陆裂解过程中,超级地幔柱不仅会把生命的主要组成元素(C、H、O、N、S、P等)从地球深部带到地表大洋中,而且会通过巨量火山喷发将大量的CO2带入到大气圈中,形成温暖潮湿的气候,即所谓的Greenhouse环境,有利于生命的复苏或大爆发。

  • 上述理论推演能很好地得到显生宙Pangea超大陆聚散过程与全球气候变化和生命辐射灭绝关系的支持。如图4所示,在石炭纪和二叠纪,伴随南半球Gondwana大陆与北半球各个大陆聚合形成Pangea超大陆,大气中CO2浓度明显降低,形成冰室型气候(Icehouse),冰碛岩分布纬度降低;一些人甚至提出二叠纪末至三叠纪初(PTB)的生命大灭绝(Mass Extinction)事件就是Pangea超大陆聚合所导致的极端寒冷干旱气候所致(Nancy and Murphy, 2013; Nancy, 2014)。相反,有学者认为寒武纪的生命大爆发与Rodinia超大陆和冈瓦纳大陆块裂解有密切关系(Nancy and Murphy, 2013; Nancy, 2014)。当然,更多学者认为二叠纪末至三叠纪初(PTB)的生命大灭绝(Mass Extinction)是与西伯利亚大火成岩省有关(Ogdena and Sleep, 2011)。

  • 图4 显生宙冰室气候和温室气候与全球海平面、大气CO2和冰碛岩分布纬度之间关系(据Warren, 2021)

  • Fig.4 Relationship between icehouse and greenhouse periods, eustacy and global CO2, along with the latitudinal extent of glacial tillite during Phanerozoic time; warm greenhouse conditions prevail over much of the Phanerozoic (after Warren, 2021)

  • 上述这些推论主要是根据显生宙历史时期大气中CO2浓度变化的恢复和一些生命灭绝与复苏与Pangea超大陆聚合和裂解的时间对应关系得出的。为了检验这些结论的可靠性和进一步深入研究超大陆聚散对大气圈和生物圈的影响,我们有必要优先开展元古宙大气圈中CO2浓度恢复,以确定大气中CO2浓度的降低和升高与真核生命灭绝和复苏的关系及其与Columbia/Nuna和Rodinia超大陆聚合和裂解是否存在像显生宙那样的对应关系。

  • 元古宙大气圈中CO2浓度恢复极为困难,许多建立在显生宙和新生代大气CO2浓度的恢复方法(如冰芯气泡、土壤、植物体、海洋沉积物、湖泊沉积物等测定法)都失去效用。目前通常是通过分析前寒武纪的土壤或其他沉积物中铁矿物的类型,对当时大气CO2浓度的上限值进行过估计(周鑫等,2013)。当含Fe2+硅酸盐在风化成壤过程中受雨水的淋滤,土壤剖面上部的Fe2+会逐渐向下部迁移淀积,导致富含Fe元素的矿物(如绿泥石)在土壤下部大量出现。在不同条件下,Fe2+在土壤中淋滤淀积形成的铁矿物类型不同,根据铁矿物的类型即可推断其淀积形成时的大气CO2的浓度。尽管该方法能够估计年代较为久远地质时期的大气CO2浓度, 但精度误差较大,且难以获得CO2浓度的连续序列(周鑫等,2013)。因此,建立一种适用于元古宙大气圈中CO2浓度恢复的方法是确定超大陆聚散如何影响大气圈和生物圈的关键技术问题。

  • 5 结论

  • 根据以上讨论,本文得出以下几点结论:

  • (1)超大陆的聚合会导致大陆总体面积的减少和大洋面积的增加,从而导致全球海平面的下降;相反,在大陆或超大陆裂解期间,大陆地壳会遭受拉伸减薄,大陆面积相对增加,大洋面积减少,海平面上升;另外,导致超大陆裂解的超级地幔柱所喷发的巨量玄武岩会导致洋壳加厚,也会导致海平面的上升。

  • (2)超大陆的聚合和裂解事件会导致大陆海岸线发生全球规模的重组,因而致使大洋环流方向发生重大改变。

  • (3)在超大陆存在期间,大洋环流受大陆海岸线的制约程度相对减弱,不同地域海水温度和盐度主要受纬度所控,低纬度区暖海水可以畅通无阻地流入高纬度区与冷海水混合,导致全球大洋海水温度差和盐度变化的降低。相反,超大陆裂解常常会导致许多新的洋盆的出现,不同洋盆海水温度和盐度差别较大。

  • (4)在超大陆的聚合期间,地幔岩浆喷发至地表的机会明显减少,通过火山射气进入大气圈中的CO2含量会急剧降低,从而形成极端寒冷干燥的冰室(Icehouse)气候,冰碛岩在低纬度地区广泛出现,不利于生物生存,或导致生物大量灭绝;相反,超大陆的裂解可能会导致大气中CO2浓度的增加并引起温暖潮湿性的气候(Greenhouse)和生命大复苏或大爆发。

  • (5)目前有关超大陆聚散的环境效应研究还处于初步阶段,而且主要局限于Pangea超大陆聚散对水圈、大气圈和生物圈的影响研究,一些研究结论的可靠性也有待于通过对Rodinia和Columbia/Nuna等更古老的超大陆聚散的研究结果加以证实。

  • 参考文献

    • Bacon C D, Silvestro D, Jaramillo C, Smith B T, Chakrabarty P, Antonelli A. 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of National Academy of Science USA, 112: 6110~6115.

    • Chen Yan, Chen Shiyue, Zhang Pengfei, Zhao Wei. 2008. On studying methods of paleo-ancient currents. Fault-Block Oil & Gas Field, 15: 37~40(in Chinese with English abstract).

    • Coates A G, Stallard R F. 2013. How old is the Isthmus of Panama? Bulletin of Marine Science, 89: 801~813.

    • Dalziel I W D. 1997. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin, 108: 16~42.

    • Du Yong, Zhu Yuanyuan, Song Huyue, Cao Ying, Song Haijun, Tong Jinnan, Qiu Haiou. 2018. Progress on the reconstruction proxies of the Paleo-seawater temperature. Bulletin of Geological Science and Technology, 37: 116~125(in Chinese with English abstract).

    • Evans D A D, Li Z X, Murphy J B. 2016. Supercontinent cycles through earth history. Geological Society, London, Special Publications, 424: 1~14.

    • Forley B J. 2015. The role of plate tectonic-climate coupling and exposed land area in the development of habitable climates on rocky planets. Astrophysical Journal, 812: 1~23.

    • Hoffman F P. 1991. Did breakout of Laurentia turn Gondwana inside-out? Science, 252: 1409~1411.

    • Ingalls M, Rowley D B, Currie B, Colman A S. 2016. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation. Nature Geoscience, 9: 848~853.

    • Jackson J B C, O'Dea A. 2013. Timing of the oceanographic and biological isolation of the Caribbean Sea from the Tropical Eastern Pacific Ocean. Bulletin of Marine Science, 89: 779~800.

    • Keigwin L D. 1978. Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores. Geology, 6: 630~634.

    • Korenaga J. 2012. Plate tectonics and planetary habitability: current status and future challenges. Annals of the New York Academy of Sciences, 1260: 87~94.

    • Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research, 160: 179~210.

    • Lubnina N V, Slabunov A. 2011. Reconstruction of the Kenorland supercontinent in the Neoarchean based on paleomagnetic and geological data. Moscow University Geology Bulletin, 66: 242~249.

    • Matte P, Mattauer M, Olivet J M, Griot D A. 1997. Continental subduction beneath Tibet and the Himalayan orogeny: a review. Terra Nova, 9: 264~270.

    • McMenamin M A S, McMenamin D L S. 1990. The Emergence of Animals: the Cambrian Breakthrough. New York: Columbia University Press.

    • Montes C, Cardona A, Jaramillo C, Pardo A, Silva J C, Valencia V, Ayala C, Pérez-Angel L C, Rodriguez-Parra L A, Ramirez V, Niño H. 2015. Middle Miocene closure of the Central American Seaway. Science, 348: 226~229.

    • Nance R D, Murphy B. 2013. Origins of the supercontinent cycle. Geoscience Frontiers, 4: 439~448.

    • Nance R D, Murphy B, Santosh M. 2014. The supercontinent cycle: a retrospective essay. Gondwana Research, 25: 4~29.

    • O'Dea A, Lessios H A, Coates A G, Eytan R I, Restrepo-Moreno S A, Cione A L, Collins L S, de Queiroz A, Farris D W, Norris R D, Stallard R F, Woodburne M O, Aguilera O, Aubry M P, Berggren W A, Budd A F, Cozzuol M A, Coppard S E, Duque-Caro H, Finnegan S, Gasparini G M, Grossman E L, Johnson K G, Keigwin L D, Knowlton N, Leigh E G, Leonard-Pingel J S, Marko P B, Pyenson N D, Rachello-Dolmen P G, Soibelzon E, Soibelzon L, Todd J A, Vermeij G J, Jackson J B C. 2016. Formation of the isthmus of Panama. Science Advances, 2: e160088.

    • Ogdena D E, Sleep N L. 2011. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 109: 59~62.

    • Rogers J J W, Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5: 5~22.

    • Unrug R. 1992. Supercontinent cycle and Gondwana assembly: component cratons and timing of suturing events. Journal of Dynamics, 12: 3~714.

    • Vail P R, Mitchum Jr R M, Thompson III S. 1977. Global cycles of relative changes of sea level. In: Payton C E, ed. Seismic Stratigraphy-Applications to Hydrocarbon Explorations, 26. American Association of Petroleum Geologists, Memoir, 83~97.

    • Warren J K. 2021. Evaporitedeposits. In: Alderton D, Elias S A, eds. Encyclopedia of Geology (Second Edition). Oxford: Academic Press, 945~977.

    • Wegener A. 1912. The origin of continents. Geologische Rundschau, 3: 276~292.

    • Williams H, Hoffman P F, Lewry J F, Monger J W H, Rivers T. 1991. Anatomy of North America: thematic portrayals of the continent. Tectonophysics, 187: 117~134.

    • Woo M. 2017. The unexpected ingredient necessary for life. BBC Earth. Doi: http: //www. bbc. com/earth/story/20170111-the-unexpected-ingredient-necessary-for-life?.

    • Worsley T R, Nance R D, Moody J B. 1984. Global tectonics and eustasy for the past 2 billion years. Marine Geology, 58: 373~400.

    • Xu Yiwei, Hu Xiumian. 2020. Review and prospects of studying methods to reconstruct eustatic sea-level changes in deep-time. Geological Journal of China Universities, 26: 395~410(in Chinese with English abstract).

    • Yakubchuk A S. 2019. From kenorland to modern continents: tectonics and metallogeny. Geotectonics, 53: 169~192.

    • Zhao Guochun, Wilde S A, Cawood P A, Sun M. 2000. Review of 2. 1-1. 8 Ga orogens and cratons in North America, Baltica, Siberia, central Australia, Antarctica, and North China: a pre-Rodinia supercontinent?. Geological Society of Australia, Abstracts, 59: 565.

    • Zhao Guochun, Cawood P A, Wilde S A, Sun Min. 2002. Review of global 2. 1-1. 8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59: 125~162.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews, 67: 91~123.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong, Zhang Jian. 2006. Some key issues in reconstructions of Proterozoic supercontinents. Journal of Asian Earth Sciences, 28: 3~19.

    • Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262~286.

    • Zhou Xin, Liu Lian, Guo Zhentang. 2013. Methods of recovering CO2 concentrations in the atmosphere in Earth's history. In: Ding Zhongli, ed. Research Approaches of Solid Earth Sciences. Beijing: Science Press, 39~54(in Chinese).

    • 陈妍, 陈世悦, 张鹏飞, 赵伟. 2008. 古流向的研究方法探讨. 断块油气田, 15: 37~40.

    • 杜勇, 朱园园, 宋虎跃, 曹莹, 宋海军, 童金南, 邱海鸥. 2018. 古海水温度重建指标新进展. 地质科技情报, 37: 116~125.

    • 许艺炜, 胡修棉. 2020. 深时全球海平面变化重建方法的回顾与展望. 高校地质学报, 26: 395~410.

    • 周鑫, 刘恋, 郭振堂. 2013. 地质历史时期大气CO2浓度恢复方法. 见: 丁仲礼(主编). 固体地球科学研究方法. 北京: 科学出版社, 39~54.

  • 参考文献

    • Bacon C D, Silvestro D, Jaramillo C, Smith B T, Chakrabarty P, Antonelli A. 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of National Academy of Science USA, 112: 6110~6115.

    • Chen Yan, Chen Shiyue, Zhang Pengfei, Zhao Wei. 2008. On studying methods of paleo-ancient currents. Fault-Block Oil & Gas Field, 15: 37~40(in Chinese with English abstract).

    • Coates A G, Stallard R F. 2013. How old is the Isthmus of Panama? Bulletin of Marine Science, 89: 801~813.

    • Dalziel I W D. 1997. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geological Society of America Bulletin, 108: 16~42.

    • Du Yong, Zhu Yuanyuan, Song Huyue, Cao Ying, Song Haijun, Tong Jinnan, Qiu Haiou. 2018. Progress on the reconstruction proxies of the Paleo-seawater temperature. Bulletin of Geological Science and Technology, 37: 116~125(in Chinese with English abstract).

    • Evans D A D, Li Z X, Murphy J B. 2016. Supercontinent cycles through earth history. Geological Society, London, Special Publications, 424: 1~14.

    • Forley B J. 2015. The role of plate tectonic-climate coupling and exposed land area in the development of habitable climates on rocky planets. Astrophysical Journal, 812: 1~23.

    • Hoffman F P. 1991. Did breakout of Laurentia turn Gondwana inside-out? Science, 252: 1409~1411.

    • Ingalls M, Rowley D B, Currie B, Colman A S. 2016. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation. Nature Geoscience, 9: 848~853.

    • Jackson J B C, O'Dea A. 2013. Timing of the oceanographic and biological isolation of the Caribbean Sea from the Tropical Eastern Pacific Ocean. Bulletin of Marine Science, 89: 779~800.

    • Keigwin L D. 1978. Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores. Geology, 6: 630~634.

    • Korenaga J. 2012. Plate tectonics and planetary habitability: current status and future challenges. Annals of the New York Academy of Sciences, 1260: 87~94.

    • Li Z X, Bogdanova S V, Collins A S, Davidson A, De Waele B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K, Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research, 160: 179~210.

    • Lubnina N V, Slabunov A. 2011. Reconstruction of the Kenorland supercontinent in the Neoarchean based on paleomagnetic and geological data. Moscow University Geology Bulletin, 66: 242~249.

    • Matte P, Mattauer M, Olivet J M, Griot D A. 1997. Continental subduction beneath Tibet and the Himalayan orogeny: a review. Terra Nova, 9: 264~270.

    • McMenamin M A S, McMenamin D L S. 1990. The Emergence of Animals: the Cambrian Breakthrough. New York: Columbia University Press.

    • Montes C, Cardona A, Jaramillo C, Pardo A, Silva J C, Valencia V, Ayala C, Pérez-Angel L C, Rodriguez-Parra L A, Ramirez V, Niño H. 2015. Middle Miocene closure of the Central American Seaway. Science, 348: 226~229.

    • Nance R D, Murphy B. 2013. Origins of the supercontinent cycle. Geoscience Frontiers, 4: 439~448.

    • Nance R D, Murphy B, Santosh M. 2014. The supercontinent cycle: a retrospective essay. Gondwana Research, 25: 4~29.

    • O'Dea A, Lessios H A, Coates A G, Eytan R I, Restrepo-Moreno S A, Cione A L, Collins L S, de Queiroz A, Farris D W, Norris R D, Stallard R F, Woodburne M O, Aguilera O, Aubry M P, Berggren W A, Budd A F, Cozzuol M A, Coppard S E, Duque-Caro H, Finnegan S, Gasparini G M, Grossman E L, Johnson K G, Keigwin L D, Knowlton N, Leigh E G, Leonard-Pingel J S, Marko P B, Pyenson N D, Rachello-Dolmen P G, Soibelzon E, Soibelzon L, Todd J A, Vermeij G J, Jackson J B C. 2016. Formation of the isthmus of Panama. Science Advances, 2: e160088.

    • Ogdena D E, Sleep N L. 2011. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proceedings of the National Academy of Sciences of the United States of America. 109: 59~62.

    • Rogers J J W, Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5: 5~22.

    • Unrug R. 1992. Supercontinent cycle and Gondwana assembly: component cratons and timing of suturing events. Journal of Dynamics, 12: 3~714.

    • Vail P R, Mitchum Jr R M, Thompson III S. 1977. Global cycles of relative changes of sea level. In: Payton C E, ed. Seismic Stratigraphy-Applications to Hydrocarbon Explorations, 26. American Association of Petroleum Geologists, Memoir, 83~97.

    • Warren J K. 2021. Evaporitedeposits. In: Alderton D, Elias S A, eds. Encyclopedia of Geology (Second Edition). Oxford: Academic Press, 945~977.

    • Wegener A. 1912. The origin of continents. Geologische Rundschau, 3: 276~292.

    • Williams H, Hoffman P F, Lewry J F, Monger J W H, Rivers T. 1991. Anatomy of North America: thematic portrayals of the continent. Tectonophysics, 187: 117~134.

    • Woo M. 2017. The unexpected ingredient necessary for life. BBC Earth. Doi: http: //www. bbc. com/earth/story/20170111-the-unexpected-ingredient-necessary-for-life?.

    • Worsley T R, Nance R D, Moody J B. 1984. Global tectonics and eustasy for the past 2 billion years. Marine Geology, 58: 373~400.

    • Xu Yiwei, Hu Xiumian. 2020. Review and prospects of studying methods to reconstruct eustatic sea-level changes in deep-time. Geological Journal of China Universities, 26: 395~410(in Chinese with English abstract).

    • Yakubchuk A S. 2019. From kenorland to modern continents: tectonics and metallogeny. Geotectonics, 53: 169~192.

    • Zhao Guochun, Wilde S A, Cawood P A, Sun M. 2000. Review of 2. 1-1. 8 Ga orogens and cratons in North America, Baltica, Siberia, central Australia, Antarctica, and North China: a pre-Rodinia supercontinent?. Geological Society of Australia, Abstracts, 59: 565.

    • Zhao Guochun, Cawood P A, Wilde S A, Sun Min. 2002. Review of global 2. 1-1. 8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59: 125~162.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews, 67: 91~123.

    • Zhao Guochun, Sun Min, Wilde S A, Li Sanzhong, Zhang Jian. 2006. Some key issues in reconstructions of Proterozoic supercontinents. Journal of Asian Earth Sciences, 28: 3~19.

    • Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262~286.

    • Zhou Xin, Liu Lian, Guo Zhentang. 2013. Methods of recovering CO2 concentrations in the atmosphere in Earth's history. In: Ding Zhongli, ed. Research Approaches of Solid Earth Sciences. Beijing: Science Press, 39~54(in Chinese).

    • 陈妍, 陈世悦, 张鹏飞, 赵伟. 2008. 古流向的研究方法探讨. 断块油气田, 15: 37~40.

    • 杜勇, 朱园园, 宋虎跃, 曹莹, 宋海军, 童金南, 邱海鸥. 2018. 古海水温度重建指标新进展. 地质科技情报, 37: 116~125.

    • 许艺炜, 胡修棉. 2020. 深时全球海平面变化重建方法的回顾与展望. 高校地质学报, 26: 395~410.

    • 周鑫, 刘恋, 郭振堂. 2013. 地质历史时期大气CO2浓度恢复方法. 见: 丁仲礼(主编). 固体地球科学研究方法. 北京: 科学出版社, 39~54.