-
中—晚寒武世在地球历史上是一个较为特殊的时期,它前承早寒武世的生命大爆发,后接早奥陶世的生物大辐射,处在两者的过渡期,期间发生了多次较大的碳同位素漂移事件,如DICE(Drumian Carbon Isotope Excursion)和ROECE(Redlichiid-Olenellid Extinction Carbon Isotope Excursion)负漂移及SPICE(Steptoean Positive Carbon Isotope Excursion)正漂移等(Zhu et al.,2004; Gill et al.,2011; Dahl et al.,2014; Li et al.,2018,2020; Liu et al.,2021b; Rooney et al.,2022; Zhang et al.,2022),以及多次生物灭绝事件,如第二世-苗岭世之交的Redlichiid-Olenellid三叶虫灭绝事件和End-Marjuman灭绝事件等(Babcock et al.,2015; Gerhardt and Gill,2016; Zhu et al.,2018; Rasmussen et al.,2019; Peng et al.,2020; Sundberg et al.,2020; Zhang et al.,2021; Deng et al.,2021),这些都表明当时的海洋环境受到了巨大扰动。前人对中—晚寒武世的研究多集中于探讨海洋的氧化还原状态及其与生物演化之间的关系,主要是利用铀同位素和钼同位素等反映全球性海洋总体氧化还原状态的指标、以及铁组分等反映底层水体氧化还原状态的指标对深水沉积的剖面进行研究,且所涉及的时间尺度大多较短,分辨率也不高(Dahl et al.,2010,2014; Gill et al.,2011,2021; LeRoy et al.,2019,2021; Lu et al.,2020),因此对当时海洋浅层水体的长期氧化还原演化的详细情况知之甚少,而浅海生态系统是绝大多数海洋需氧生物的栖息地,约束其氧化还原状态对了解海洋环境变化与生物演化的联系至关重要。此外,对驱动中—晚寒武世这些生物和环境变化的具体因素也缺乏系统研究。鉴此,为了更好地了解和探讨碳循环扰动、海洋浅层水体的氧化还原状态、生物群落更替和海平面波动之间的驱动因素和反馈机制,需要分析研究该关键时期的浅海碳酸盐岩沉积的局域环境氧化还原状态演变及其与大陆化学风化输入等潜在驱动因素变化之间的关系。
-
基于上述研究背景,本文选取王村剖面作为研究对象。该剖面包含了从寒武系乌溜阶至排碧阶连续的浅海沉积的碳酸盐岩地层,前人对其已进行过较多的沉积学和生物地层学等方面的研究(Peng et al.,1992,2009; Saltzman et al.,2000; Zhu et al.,2004),具有进一步研究中—晚寒武世地球表层环境变化与生物事件之间关系的价值。本文通过对该剖面浅海碳酸盐岩地层高分辨率Ce异常及碳、锶同位素演化研究,研究中—晚寒武世浅海的氧化还原环境演变与生物演化之间的关系,并探讨导致环境变化的潜在驱动因素。
-
1 区域地质背景
-
华南板块位于欧亚大陆东南缘,毗邻西太平洋,其北为华北板块,两者以苏鲁-大别-秦岭造山带为分界线,其西以龙门山-横断山断裂与青藏高原相连,西南方则以哀牢山-松马缝合带与印支板块相接(Zhao and Cawood,2012)。在华南板块内部,又细分成北部的扬子地块和南部的华夏地块,传统上认为两者的分界线为NE—NEE走向的江山-绍兴断裂带(江绍断裂带)(Zhao et al.,2011)。扬子地块被认为在约750 Ma前由罗迪尼亚大陆裂解形成(Wang and Li,2003),其基底主要由稳定的古元古代—太古宙结晶基底及晚中元古代—早新元古代褶皱带组成,并被新元古代—中三叠世海相地层不整合覆盖(Zheng et al.,2008; Zhao and Cawood,2012)。
-
王村剖面位于扬子地块南缘,出露于湖南省永顺县酉水河北岸的X019公路旁(东经109°58′,北纬28°43′; 图1)(Peng et al.,2009),为酉水河南岸的罗依溪剖面(寒武纪古丈阶底的金钉子剖面)的副剖面(Li et al.,2020)。其沉积相属于江南斜坡带,位于扬子地块浅海碳酸盐岩台地相和江南深水盆地沉积相之间的一个过渡相带(图1)(Peng,1992,Saltzman et al.,2000)。王村剖面的寒武纪地层自下而上依次包括清虚洞组、敖溪组和花桥组(图1),表现为一个向上变浅的沉积序列(Zhu et al.,2004)。下寒武统清虚洞组的下部主要由泥灰岩、球粒泥晶灰岩组成,上部主要由水平层状泥晶灰岩组成,偶有黑色页岩产出,属于深水盆地边缘相沉积物(Zhu et al.,2004)。敖溪组由下部的白云质灰岩和上部无化石的层状白云岩组成,顶部附近夹有黑色页岩,该黑色页岩代表江南斜坡带内最深的沉积物。敖溪组被含有大量化石的花桥组所覆盖。花桥组由韵律层状泥灰岩和钙质页岩组成,并有少量白云质石灰岩夹层(Saltzman et al.,2000; Peng et al.,2009),自下而上沉积环境由深水斜坡过渡到台地边缘(Zhu et al.,2004)。
-
图1 我国主要板块分布情况(a); 华南扬子地块的古地理复原图(b)(据Li et al.,2020修改); 湘西酉水河沿岸部分地区位置图(c)(据Peng et al.,2009修改,红色方框为王村剖面所在位置); 本文实测和采样的王村剖面的地层柱状图(d)
-
Fig.1 Distribution of China's main tectonic plates (a) ; a generalized paleogeographic reconstruction for the Yangtze Block (b) (modified after Li et al., 2020) ; geographic map of part of western Hunan Province, along the Youshui River (c) (red box represents the position of the Wangcun section, modified after Peng et al., 2009) ; stratigraphic column of Wangcun section (d)
-
2 分析方法
-
从王村剖面采集的新鲜的岩石样品被切成小块,以避开任何蚀变的部分(如方解石脉、燧石结核、风化面),再将其粉碎到200目。样品的粉碎在南京大学内生金属矿床成矿机制研究国家重点实验室完成。
-
2.1 碳酸盐岩的无机碳同位素和氧同位素分析
-
碳酸盐岩样品的无机碳同位素和氧同位素的分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成。测试方法依据Spöetl and Vennemann(2003),在70℃条件下,100 μg左右微钻获取的样品粉末与饱和正磷酸在Kiel IV碳酸盐自动进样系统中反应4 h,生成CO2气体。经过低温纯化的CO2在Thermo Finnigan MAT253质谱仪中进行碳氧同位素的测定。每间隔8个样品重复一次标样(GBW04416)的测量,以监测仪器的准确度和精密度。碳酸盐的无机碳同位素和氧同位素组成表示为相对于国际标样Vienna-PeeDee Belemnite(V-PDB)偏差的千分偏差(即分别为δ13Ccarb和δ18Ocarb),即:
-
基于标样(GBW04416)分析的长期相对误差小于0.1‰(1SD)。
-
2.2 有机碳同位素和TOC含量的分析方法
-
碳酸盐岩样品的有机碳同位素、TOC含量的分析工作在中国科学院南京地理与湖泊研究所流域地理学重点实验室完成。样品预处理和测试方法依据Li et al.(2020),将大约3 g岩石样品粉末用2 mol/L的过量盐酸进行酸化处理24 h,以完全除去样品中的碳酸盐。4000 r/min离心10 min以上,丢弃上清液,向沉淀中滴入一滴浓盐酸未见起泡来确认样品中的碳酸盐已除尽。随后在沉淀中加入超纯水对样品进行多次清洗,直至上清液变为中性(pH>7)。将不溶残渣在实验室烘箱中于50℃下进行干燥。称取适量不溶残渣置于锡杯中,在EA3000元素分析仪中反应生成CO2气体,进行TOC含量的测定,标样GSD-26和GSD-33被用于对系统进行准确度和精密度的监测,长期分析的相对误差小于0.08%。根据获得的TOC含量数据,称取适量不溶残渣于锡杯中,反应生成CO2气体,气体输送到Thermo Finnigan MAT253同位素质谱仪中进行碳同位素的测量。标样B2151-C、B2153-C、B2155-C、B2157-C被用于对系统进行准确度和精密度的监测。有机碳同位素组成表示为相对于国际标样Vienna-PeeDee Belemnite(V-PDB)偏差的千分偏差(δ13Corg),即:
-
基于上述四个标样长期分析的相对误差小于0.2‰(2SD)。
-
2.3 主量和微量元素含量分析
-
碳酸盐岩样品中碳酸盐部分的主量、微量元素(包括稀土元素)含量分析在南京大学表生地球化学教育部重点实验室和中国科学院南京地质与古生物研究所现代古生物学和地层学国家重点实验室完成。为避免非碳酸盐相的污染,溶样和测试方法参照Tostevin et al.(2016a),称取含约25 mg碳酸盐的岩石样品粉末(25~100 mg不等)用去离子水清洗,然后加入足够体积的2%(w/v)微量纯级别的硝酸溶解样品中约20%的碳酸盐。样品在室温条件下置于摇床上搅拌20 min,然后离心,丢弃上清液。将残渣用去离子水清洗三遍后,再加入足够体积的2%(w/v)硝酸溶解样品中约40%的碳酸盐。室温条件下在摇床上搅拌20 min,随后离心,用移液枪小心吸出上清液,再用微量纯级别的3%硝酸稀释到5~10 mL用于分析。采用电感耦合等离子体发射光谱(ICP-OES,Thermo Fisher Scientific 6300)测定主量元素含量,标样JDo-1、OSIL被用于对系统进行准确度和精密度的监测,长期分析精度优于3%(2SD)。采用四极杆电感耦合等离子体质谱仪(Quadrupole ICP-MS,Agilent 7900)测定微量元素含量,标样JDo-1、OSIL、GSR-5被用于对仪器进行准确度和精密度的监测,长期分析精度优于5%(2SD)。
-
2.4 锶同位素分析
-
碳酸盐岩样品中碳酸盐的Sr同位素分析在南京大学内生金属矿床成矿机制研究国家重点实验室和中国科学院南京地质与古生物研究所现代古生物学和地层学国家重点实验室完成。为避免样品中所含硅酸盐碎屑对碳酸盐的污染,溶样和测试方法参考Li et al.(2011)和 Zhou et al.(2020),称取含约100 mg碳酸盐的岩石样品粉末(100~400 mg不等),用去离子水清洗,然后加入足够体积的0.1 mol/L醋酸溶解20%的碳酸盐,反应充分后离心,丢弃上清液。将不溶残渣用去离子水清洗三遍后,再加入足够体积的0.1 mol/L醋酸溶解50%的碳酸盐。反应充分后离心,用移液枪小心吸出上清液,转移到15 mL特氟龙溶样罐中,置于电热板上120℃蒸干,再重新溶解于2 mol/L的盐酸中。使用Sr特效树脂分离提纯Sr,以消除Rb等同量异位素对质谱分析的干扰。使用南京大学内生金属矿床成矿机制研究国家重点实验室的Triton MC-TIMS和中国科学院南京地质与古生物研究所现代古生物学和地层学国家重点实验室的Neptune Plus MC-ICP-MS测定Sr同位素组成。对标样SRM-987的长期测量结果为87Sr/86Sr=0.710252(±0.000016)。
-
3 结果
-
3.1 碳、氧同位素
-
王村剖面碳酸盐岩δ13Ccarb变化幅度和趋势(附表1)与前人的研究结果(Zhu et al.,2004)基本吻合。剖面自下而上,最下部清虚洞组的δ13Ccarb记录了ROECE负漂移的上升段(rising limb),敖溪组出现δ13Ccarb正漂移,峰值达2.2‰。花桥组最下部的地层δ13Ccarb记录了完整的DICE负漂移,低谷值达2.3‰,向上紧接着发生了一次快速的δ13Ccarb正漂移,峰值达1.7‰。之后一直到Lejopyge laevigata首现层,δ13Ccarb都维持在0‰附近。Lejopyge laevigata首现层向上,发生了一次快速轻微的正漂移(峰值为1.1‰)并迅速回落至0‰值附近。再向上δ13Ccarb发生明显正漂移,即记录了SPICE的上升段,峰值达4‰左右。有机碳的碳同位素(δ13Corg)的变化与δ13Ccarb的变化趋势基本耦合(n=363,R2=0.73),但剖面自下而上265~337 m层段的δ13Corg比δ13Ccarb的增幅相对较大,402~461 m层段的δ13Ccarb比δ13Corg增幅相对较大。δ13Corg的同位素值变化于32.1‰~25.4‰之间,与前人的研究结果基本一致,但剖面自下而上265~337 m层段的δ13Corg值相对高于前人结果(Saltzman et al.,2000,2011; Li et al.,2018)。TOC含量变化于0.02%~1.17%之间,平均值为0.23%(n=82)。 碳酸盐氧同位素δ18Ocarb值变化于10.3‰~5.6‰之间,绝大多数(n=155)样品的δ18Ocarb值大于10‰,少数(n=8)样品小于10‰(附表1)。
-
3.2 主量和微量元素
-
岩石样品中碳酸盐部分的元素含量是通过将第二步酸浸液(见2.3节)中的元素的质量除以相应的(CaCO3+MgCO3)的质量而得到的,而(CaCO3+MgCO3)的质量是根据同一酸浸液中Ca和Mg的含量计算得出。将样品稀土元素含量相对于后太古宙澳大利亚页岩的稀土元素含量(PAAS; Pourmand et al.,2012)进行标准化,并计算Ce异常(CeN/CeN*; CeN为样品测试结果经PAAS标准化之后的Ce含量,CeN*是根据PAAS标准化之后邻近的其他稀土元素含量而推算的Ce含量,推算方法有很多种,经典的推算方法是据与Ce相邻的元素La和Pr含量标准化后进行内插,公式如下:
-
因为在海洋样品中通常会存在La过剩,因此以上计算方法可能会导致Ce的人为假异常(de Baar et al.,1991; Bau and Dulski,1996; Lawrence et al.,2006; Ling et al.,2013)。在这种情况下,预测的标准化La含量可以先通过Pr和 Nd计算得出(LaN*=PrN×(PrN×NdN)2);(Lawrence et al.,2006),然后再将得到的LaN*代入到式(1)中:
-
Eu异常和Gd异常的计算公式为:
-
轻稀土(LREE)与重稀土(HREE)之间的差异可用PrN/ErN比值来表示(Lawrence et al.,2006)。
-
3.2.1 清虚洞组微量元素特征
-
清虚洞组碳酸盐岩样品的稀土总量(ΣREE)变化范围为51.6×10-6~114.9×10-6(平均89.2×10-6)。其PAAS标准化稀土分布型式(后文中提到稀土分布型式都是相对于PAAS标准化后的)的特点为:① 多数样品(n=4)表现出重稀土富集,PrN/ErN比值范围为0.72~0.93,少数样品(样品号552 qxd、561 qxd)表现出轻微的轻稀土富集,PrN/ErN比值分别为1.11和1.04,总体平均值为0.89; ② 轻微的Ce正异常,CeN/CeN*值范围为1.12~1.22(均值为1.17); ③ 相对较明显的Gd正异常,GdN/Gd*N值范围为1.28~1.49(均值1.39); ④ 轻微的Eu正异常,EuN/Eu*N值的范围为1.05~1.14(均值1.09); ⑤ Y/Ho比值范围为40.5~52.8(均值44.6),高于球粒陨石的Y/Ho比值(>36)。此外,Ba含量的变化范围为26.8×10-6~159.7×10-6(均值71.2×106); U含量的变化范围为0.21×10-6~1.39×10-6(均值0.62×10-6)(附表2)。
-
3.2.2 敖溪组微量元素特征
-
敖溪组样品的ΣREE的变化范围为0.42×10-6~92.2×10-6(均值8.31×10-6)(附表2)。其稀土分布型式的特点为:① 大部分样品(n=15)表现出重稀土富集,PrN/ErN比值范围为0.79~1.04,少数样品(n=5)表现出轻稀土富集,PrN/ErN比值范围为1.13~2.15,总体平均值为1.06; ② 敖溪组中部样品存在较明显的Ce异常(<0.9),CeN/CeN*值范围为0.53~0.91,最下部和上部样品无Ce负异常,CeN/CeN*值范围为1.01~1.28,总体平均值为1.01; ③ 轻微至较强的Gd正异常,GdN/Gd*N值范围为1.12~1.89(均值1.54); ④ 轻微至较强的Eu正异常,EuN/Eu*N值的范围为0.98~7.33(均值2.13); ⑤ 大部分样品(n=19)的Y/Ho比值范围为41.7~92.7,个别样品(518 ax)的Y/Ho比值为31.5,总体平均值为59.5。此外,Ba含量的变化范围为2.64×10-6~812.1×10-6(均值63.48×10-6); U含量的变化范围为0.06×10-6~1.55×10-6(均值0.66×10-6)(附表2)。
-
3.2.3 花桥组微量元素特征
-
花桥组样品的ΣREE的变化范围为0.08×10-6~199.4×10-6(均值为21.0×10-6)。其稀土分布型式的特点为:① 大部分样品(n=76)表现出重稀土富集(PrN/ErN比值范围为0.40~1.03); 少数样品(n=11)表现出轻稀土富集(PrN/ErN比值范围为1.07~1.29)。花桥组全部样品的总体平均值为0.79; ② 花桥组部分层段出现明显的Ce异常(<0.9),CeN/CeN*值范围为0.03~0.88; 其余样品无Ce异常,CeN/CeN*值范围为0.92~1.28; 总体平均值为0.96; ③ 轻微至较强的Gd正异常,GdN/Gd*N值范围为1.19~2.04(均值1.49); ④ 轻微至较强的Eu正异常,EuN/Eu*N值的范围为0.92~70.4(均值5.73); ⑤ 大部分样品(n=81)的Y/Ho比值范围为37.8~82.0,高于球粒陨石的Y/Ho比值(>36); 少数样品的Y/Ho比值较低(29.7~35.0)。花桥组全部样品的总体平均值为57.5。此外,Ba含量的变化范围为14.6×10-6~1448×10-6(均值133.1×10-6); U含量的变化范围为0.15×10-6~4.83×10-6 (均值1.43×10-6)(附表2)。
-
3.3 Sr同位素
-
王村剖面碳酸盐岩的87Sr/86Sr值变化范围为0.70895~0.71017(均值0.70938)。清虚洞组样品的87Sr/86Sr值普遍偏高,变化范围为0.70980~0.71017(均值0.709996)。敖溪组样品的87Sr/86Sr值普遍较低,变化范围为0.70895~0.70944(均值0.70916),且该组地层自下而上87Sr/86Sr值先逐渐降低而后逐渐升高。花桥组样品的87Sr/86Sr值变化幅度较大,变化范围为0.70907~0.70983(均值0.70941); 剖面中自下而上171~223 m层段个别样品的87Sr/86Sr值偏高(达0.7098); 与花桥组最下部层段相比,自下而上235~461 m层段花桥组的87Sr/86Sr值相对较低(0.709245~0.709607)(附表2)。
-
4 讨论
-
4.1 成岩作用和非碳酸盐组分污染影响评估
-
在利用碳酸盐岩恢复重建古海水地球化学特征之前,成岩作用和非碳酸盐相污染(如陆源碎屑、铁锰氧化物等)对碳酸盐的化学成分和同位素组成的影响需要加以甄别和剔除。
-
4.1.1 对碳-氧同位素组成影响的评估
-
相对于海水而言,淡水成岩流体的碳同位素和氧同位素一般偏低,Mn含量偏高和Sr含量偏低,所以成岩作用会导致碳酸盐岩的δ13Ccarb和δ18Ocarb的协同降低以及Mn/Sr比值升高(Kaufman and Knoll,1995; Derry,2010)。王村剖面样品在有关元素-同位素协变图中无明显相关性(图2),表明其δ13Ccarb受成岩流体的影响较小,基本保存了沉积时的原始信息。通常认为,成岩作用等次生过程不能导致无机碳和有机碳同位素值发生协同变化(Knoll et al.,1986),因此δ13Ccarb和δ13Corg是否耦合被用来区分未受改造的沉积记录和受改造后的记录。在本文分析数据的基础上,汇编了前人对王村剖面样品同时分析的δ13Ccarb和δ13Corg结果(Saltzman et al.,2011; Li et al.,2020),发现王村剖面样品的δ13Ccarb和δ13Corg耦合程度极高(n=363,R2=0.73,图2),说明两者受成岩作用的影响可能较小。另外,沉积岩的有机质会在成岩过程中发生热降解(thermal degradation),降解过程中较轻的12C优先被迁移出,最终造成有机碳同位素值δ13Corg和全岩总有机碳含量(TOC)之间的负相关(Hayes et al.,1983; Schidlowski and Aharon,1992)。然而,王村剖面样品的δ13Corg与TOC不存在统计学上明显的相关性(n=308,R2=0.29,图2),特别是TOC<0.1%的样品,两者间几无统计学上的相关性(n=64; R2=0.03,图2)。综上所述,王村剖面样品的δ13Ccarb和δ13Corg受成岩作用的影响很小。
-
4.1.2 对稀土元素影响的评估
-
Ce异常是一个对成岩作用或白云岩化不敏感的指标(Banner et al.,1988; Webb and Kamber,2000; Webb et al.,2009),这是因为方解石与海水之间的REE分配系数很高(>100; Webb and Kamber,2000; Zhao et al.,2014),且REE在水流体中的溶解度极低,在成岩流体中REE的浓度也低。因此,除非水/岩比值极高的情况(>104; Banner and Hanson,1990),否则一般碳酸盐岩中的稀土元素是抗成岩作用的,近年来对巴哈马群岛碳酸盐岩以及中国南海第四纪岛屿碳酸盐岩的成岩作用所进行的研究,也证实了碳酸盐岩中的REE在成岩作用过程中的保守行为(Liu et al.,2019,2021a; Luo et al.,2021)。
-
另一方面,在用酸浸提取碳酸盐相成分的过程中,必须有效规避非碳酸盐相的污染,因为非碳酸盐相的稀土含量(>100×10-6)往往显著高于碳酸盐的稀土含量,酸浸过程中前者的少量浸出就会淹没碳酸盐所记录的原始的海洋信号(van Kranendonk et al.,2003; Nothdurft et al.,2004; Ling et al.,2013)。碳酸盐岩成分复杂,除了碳酸盐矿物外,常含有黏土矿物等陆源碎屑、铁锰氧(氢氧)化物和有机质等组分。酸浸碳酸盐组分的过程中最有可能的污染物是细粒黏土,其稀土分布型式较为平坦,明显不同于海水的特征(Pourmand et al.,2012; Tostevin et al.,2016a)。海洋自生铁锰氧(氢氧)化物也有可能对碳酸盐的稀土含量造成污染,其稀土分布型式与海水相比,Y异常较弱甚至存在明显的Y亏损,且一般具有Ce的正异常(Bau and Dulski,1996)。为了最大程度避免以上非碳酸盐相的污染,本文在综合前人关于碳酸盐岩浸出实验成果(Ling et al.,2013; Zhang et al.,2015; Tostevin et al.,2016a; Cao et al.,2020)的基础上,考虑简化实验步骤以达到快速分析大量样品的效果,采用了Tostevin et al.(2016a) 提出的分步浸取方法(具体内容见前述分析方法)。关于非碳酸盐相影响的地球化学评估,前人根据碳酸盐相和非碳酸盐相在化学组成上的巨大差异提出了以下一系列指标:① 酸浸液的稀土分布型式是否具有海水的特征,即从轻稀土到重稀土的逐渐富集,La、Gd和Lu的正异常以及高Y/Ho比值(>36)。王村剖面的大部分碳酸盐岩样品(n=89)的分析结果显示类似海水的稀土分布型式(图3),但稀土分布左倾型式不明显,即经过PAAS标准化后HREE相对LREE的富集不明显,这有可能跟王村剖面碳酸盐岩样品沉积深度较浅有关(见后述)。LREE倾向于被吸附在锰氧(氢氧)化物的活性表面,这是造成海水左倾型稀土分布型式的主要原因,而锰氧(氢氧)化物颗粒由于自身重力不断下沉,因此在现代海洋水柱中浅水的轻重稀土分异程度反而不如中深层水体明显(Planavsky et al.,2010a; Ling et al.,2013; Kamber et al.,2014); ② 就稀土含量而言,碳酸盐矿物与硅酸盐矿物相差悬殊。在海洋沉积物中,陆源硅酸盐碎屑的ΣREE通常比纯碳酸盐高一至三个数量级(Zhong and Mucci,1995; Garzanti et al.,2011; Gong et al.,2021)。因此,硅酸盐矿物的微量浸出会造成酸浸液中的ΣREE陡增。根据前人的研究成果(Webb and Kamber,2000; Nothdurft et al.,2004; Ling et al.,2013)以及王村剖面样品的实际情况,本文认为酸浸液中ΣREE<20×10-6的样品受非碳酸盐相的污染较小; ③ 在陆源化学风化产物溶解于海水的过程中,Al、Sc和Th是极难溶的(Taylor and McLenan,1985; Zhao et al.,2014),因此这些元素的含量在泥页岩等海相沉积的碎屑岩的研究中常作为陆源输入的示踪指标(Wei et al.,2020a,2020b)。海洋自生沉积碳酸盐矿物被认为记录海水的原始信号,其Al、Sc和Th浓度远低于陆源硅酸盐矿物(Webb and Kamber,2000; Kamber et al.,2004; Zhao et al.,2014),因此这三种元素在酸浸液中的含量常被用来评估碳酸盐岩酸浸过程受陆源硅酸盐矿物的影响(Ling et al.,2013; Wei et al.,2018,2021b)。碳酸盐岩全岩粉末样品酸浸液受陆源硅酸盐矿物元素被部分浸出所污染在所难免,应用Al、Sc、Th元素含量的阈值来筛选出保存原始信号的REE数据是相对可取的做法。结合前人的研究成果(Planavsky et al.,2010a; Ling et al.,2013; Bellefroid et al.,2018a)以及本研究的实际情况,本文将碳酸盐岩样品酸浸法提取的碳酸盐中的Al<200×10-6,Sc<2×10-6,Th<0.5×10-6作为筛选数据的阈值使用。王村剖面的碳酸盐岩样品的酸浸液中相应元素的含量大多小于阈值,且与CeN/CeN*的相关性较差(图2),说明其受陆源硅酸盐矿物的影响较小,基本可用于反映海水的信号。
-
图2 王村剖面中—上寒武统碳酸盐岩样品的成岩作用及非碳酸盐组分污染判别图(a~i)
-
Fig.2 Cross-plots (a~i) for evaluating the influences of diagenesis and contamination of non-carbonate components on the Middle-Upper Cambrian carbonate samples from the Wangcun section
-
此外,如果使用前述式(3)计算,那么王村剖面绝大部分样品(n=106)都具有轻微至较强的Eu正异常。热液一般具有较平坦或者HREE亏损的稀土分布型式和Eu的正异常(Bau and Dulski,1996; Douville et al.,1999),因此在海水与热液混合的地方,可能会出现较大的Eu正异常(Michard et al.,1986)。Eu正异常也可能是由于样品中较高的Ba含量干扰质谱分析造成的假异常(Dulski et al.,1994),这可以通过Ba/Nd与Eu异常的相关性图来判别(Jarvis et al.,1989)。王村剖面样品的Eu异常数据与Ba/Nd比值的相关性极高(n=113,R2=0.95,图略),表明这些样品的Eu正异常是由Ba的分析干扰产生的假异常。王村剖面碳酸盐岩样品的高Ba含量也与Wei et al.(2021a)统计的早古生代古海洋沉积物高Ba含量相一致,与早古生代广泛缺氧的深水中存在较大的溶解Ba储库有关。
-
4.1.3 对Sr同位素组成影响的评估
-
由于陆源碎屑的87Sr/86Sr值较高(~0.7120),因此其少量浸出会使测得的87Sr/86Sr偏高; 另一方面,Sr同位素对成岩作用尤其陆源淡水成岩作用的影响也比较敏感。因此,本文在上述对碳-氧同位素及稀土元素影响的评估的基础上,结合前人有关成岩作用对Sr同位素影响的研究成果(Burke et al.,1982; Kaufman et al.,1993; Derry et al.,1994; Denison et al.,1994; Montañez et al.,1996; Young et al.,2009; Li et al.,2011,2013; Zhou et al.,2020),叠加采用了总锶含量[Sr]>150×10-6,Mn/Sr<0.2,Rb/Sr<0.001和δ18O>10‰作为受成岩作用影响小的样品筛选标准(He et al.,2017)。
-
图3 王村剖面碳酸盐岩样品的页岩(PAAS,据McLennan,1989)标准化稀土分布型式图
-
Fig.3 Shale normalized (PAAS, after McLennan, 1989) REY patterns of carbonate samples from Wangcun section
-
检验碳酸盐岩全岩是否保存了海洋Sr同位素信号的最好方法是将样品测试值与保存良好的化石材料中获得的公认的海水Sr同位素曲线进行对比(Edwards et al.,2015; Conwell et al.,2022)。但是,寒武纪化石材料缺乏,Sr同位素曲线存在争议,因此,本文汇编整理了前人发表的中—晚寒武世Sr同位素数据(n=207),材料包括化石和保存较好的碳酸盐岩样品(Dension and Shields 1998; Prokoph et al.,2008; Zhang et al.,2022)。由于上文提到的污染都会导致碳酸盐岩87Sr/86Sr值偏高,因此测得的低值是相对可信的,故本文对汇编的同一时间段(以Ma为单位)的87Sr/86Sr数据内数值最低的10% 数据,运用LOESS拟合法生成了一条相对高分辨的海水Sr同位素变化曲线(图4),与GTS2020中提出的寒武纪标准全球海水87Sr/86Sr曲线对比(McArthur et al.,2020),都在早—中寒武世之交显示87Sr/86Sr的下降以及随后的逐渐上升,但在鼓山期末期(~501 Ma)之后相比GTS2020曲线较低,可能与本文选取相对可信的低值有关。总的来看,本文的拟合曲线是符合海水Sr同位素变化趋势的,而分辨率较寒武纪GTS2020曲线大为提高。
-
将本文分析测定的王村剖面Sr同位素数据与本文的LOESS拟合曲线比较,显示本文测定数据在趋势上与上述拟合曲线有一定的吻合之处,但除了敖溪组的部分样品外,其他组的大多数样品的87Sr/86Sr值略高于拟合曲线值。这说明本文分析的样品虽然经过了严格的地球化学筛选,但其Sr同位素值仍受到一定程度的成岩作用和/或硅酸盐成分浸出的影响。此外,海水的Sr同位素值也可能受到局部环境因素的影响,在与开放海联通较差的局限环境如陆缘海、河口、峡湾、潟湖和海湾等,陆源Sr的影响较大,导致局部海水的87Sr/86Sr值相对偏高(Andersson et al.,1992; Ingram and Sloan,1992; Basu et al.,2001; Jones et al.,2014; Shao et al.,2018; El Meknassi et al.,2018,2020)。最近的研究表明,陆缘地下水排泄或河流输入颗粒的溶解释放的Sr对沿岸海水Sr的源-汇平衡的影响也比预想的要大得多(Beck et al.,2013; Jones et al.,2014; Mayfield et al.,2021)。因此,大陆边缘区域海水的Sr浓度和87Sr/86Sr值并不总是能够代表全球海洋。前人的沉积学研究表明,花桥组上部地层沉积环境水深较浅,靠近台地边缘,也许这是导致其碳酸盐岩全岩记录的Sr同位素值偏高的原因之一。
-
图4 地球化学指标和生物多样性变化曲线
-
Fig.4 Stratigraphic overview of the geochemical proxy and biodiversity
-
(a)—王村剖面无机碳同位素δ13Ccarb;(b)—王村剖面CeN/CeN*;(c)—王村剖面87Sr/86Sr分析数据及从文献汇编的中—晚寒武世海水87Sr/86Sr数据图,图中蓝色三角形为王村剖面样品87Sr/86Sr数据,蓝色圆圈代表引自Zhang et al.(2022)的87Sr/86Sr数据,紫色圆圈代表引自Prokoph et al.(2008) 的 87Sr/86Sr数据,黄色圆圈代表引自Dension et al.(1998)的87Sr/86Sr数据,绿色曲线为GTS2020报道的同时期海水87Sr/86Sr变化曲线,红色曲线为从文献汇编的87Sr/86Sr数据最低10%的LOESS拟合结果;(d)—华南中—晚寒武世三叶虫多样性变化曲线(据Zhang et al.,2021修改);(e)—华南中—晚寒武世总体物种丰富度变化曲线(据Deng et al.,2021修改);(f)—全球中—晚寒武世总体物种丰富度变化曲线(据Fan et al.,2020修改)
-
(a) —δ13Ccarb profile of Wangcun section; (b) —CeN/CeN* profile of Wangcun section; (c) —87Sr/86Sr profile of Wangcun section and 87Sr/86Sr data collected from previously published papers; blue triangle: 87Sr/86Sr data cited from Zhang et al. (2022) ; blue circle: 87Sr/86Sr data cited from Prokoph et al. (2008) ; yellow circle: 87Sr/86Sr data cited from Dension et al. (1998) ; solid green line: coveal marine 87Sr/86Sr curve reported by GTS2020; solid red line: LOESS-fitted line of lowest 10% of the published coeval 87Sr/86Sr data; (d) —trilobite diversity in South China during middle-late Cambrian (modified after Zhang et al., 2021) ; (e) —overall species diversity in South China during middle-late Cambrian (modified after Deng et al., 2021) ; (f) —global overall species diversity during middle-late Cambrian (modified after Fan et al., 2020)
-
4.2 Ce异常示踪浅海氧化还原状态
-
4.2.1 Ce异常示踪浅海氧化还原状态原理
-
典型的现代海水的稀土元素分布型式是平滑的左倾型(图5),其特点为:①从LREE到 HREE逐渐富集。产生这种现象的原因在于HREE相对优先与碳酸根离子络合,而LREE则相对容易被铁、锰氧(氢氧)化物、黏土或有机质表面吸附(Sholkovitz et al.,1994; Nozaki and Alibo,2003; Tostevin,2021; Zhang et al.,2022)。② 出现La、Gd和Lu正异常以及强烈的Ce负异常(约0.06~0.16; Byrne and Sholkovitz,1996; Ling et al.,2013)。La、Gd和Lu相对于相邻REE略有富集可能是由于其原子内的电子排布导致的。这种异常的分布模式被称为“四分组效应(tetrad effects)”,在4f电子层填充四分之一(Nd和Pm之间)、四分之三(Ho和Er之间)和完全充满(Lu)处可能出现异常,通常很小(De Baar et al.,1985; Byrne and Kim,1990; Bolhar et al.,2007; Tostevin et al.,2016a; Zhang et al.,2022)。③ Y富集(高于球粒陨石的Y/Ho比值36),这是因为虽然Y和REE(包括Ho)的化学性质类似,但是与REE元素相比,Y的颗粒活性(particle reactivity)显著偏弱,因而Y被颗粒物质表面吸附而从海水中移除的程度显著低于REE,导致海水Y/Ho比值较高(>44)(Bau et al.,1997; Nozaki et al.,1997; Planavsky et al.,2010a)。海水REE分布型式的特征可以被用来确定古老岩石中原始海水信号的保存程度(Ling et al.,2013; Tostevin et al.,2016a; Liu et al.,2019,2021a; Tostevin,2021)。
-
在自然界中,REY通常呈单一的+3价,Ce和Eu是其中例外的具有多价态的元素。Ce可以呈+3或+4价形式,在氧化水体中,可溶的Ce3+被吸附到锰或铁氧(氢氧)化物的活性表面,通过非生物的(Koeppenkastrop and de Carlo,1992; Bau,1999)或者微生物介导(Moffett,1990)被催化氧化成Ce4+,Ce4+不溶于海水,导致海水中Ce含量相对于其他稀土元素而言亏损(即Ce负异常),而锰氧(氢氧)化物表面相对富集Ce(即Ce正异常)(Sholkovitz et al.,1994; Bau et al.,1996)。在水位相对较深的缺氧水体中,由于来自浅层水体的锰氧(氢氧)化物沉淀的溶解,释放出较多的Ce3+到周围水体中,而缓解Ce亏损的程度(de Baar et al.,1988; German et al.,1991; Bau et al.,1997)。因此,氧化还原界面(redoxcline)之下的缺氧水体没有Ce负异常(German et al.,1991)。
-
图5 重要自然环境和矿物的页岩标准化稀土分布型式(据Tostevin et al.,2016a)
-
Fig.5 Shale normalized REY patterns representing key natural environments and minerals (after Tostevin et al., 2016a)
-
稀土元素被分为轻稀土(LREE)、中稀土(MREE)和重稀土(HREE)三类
-
The rare earth elements are grouped into light (LREE) , medium (MREE) and heavy (HREE)
-
前人的研究表明,非生物成因的自生海洋沉积物,如无机碳酸盐、铁建造(BIF)、磷酸盐和燧石等,其类似海水的REE分布型式表明,它们可以记录海水的REE特征,这为运用分析这些沉积物的稀土含量来重建古代海水稀土成分变化特别是氧化还原状态的变化提供了依据(German and Elderfield,1990; Webb and Kamber,2000; Bolhar and Kranendonk,2007; Planavsky et al.,2010a; Ling et al.,2013)。Ce的氧化还原电位高于Mn,Mn2+氧化成Mn4+的所需的海水氧浓度高于10 μmol/L(German et al.,1991; Johnson et al.,1992),而Ce3+氧化成Ce4+需在锰氧(氢氧)化物的表面催化完成,因此Ce氧化而产生Ce异常的水体含氧量下限应高于10 μmol/L(Tostevin et al.,2016b)。另外,根据Alibo and Nozaki(1999) 对现代广海和黑海的研究,Ce被吸附和氧化主要发生在生物活动频繁的表层海水,而不是主要在深层氧化水中,且由于重力导致锰氧(氢氧)化物颗粒向下沉降过程中吸附并氧化周围海水中的Ce,使Ce随之沉淀析出的量超过相邻的其他REE,导致周围海水Ce呈负异常,从海水中成核形成的碳酸盐颗粒保留其颗粒周围海洋的Ce异常特征,但由于碳酸盐颗粒并不一定是在水-沉积物界面成核生长而形成,而是在上覆海水中成核生长形成并向下沉积,因此碳酸盐岩并不一定反映沉积深度水体的氧化还原状态,而是反映其上覆水体的氧气含量(Grotzinger and James,2000; Ling et al.,2013)。因此,海洋自生碳酸盐沉积物所记录的Ce异常更有可能示踪浅海的氧化还原状态。
-
4.2.2 浅海短暂增氧与生物多样性增长的耦合
-
本文Ce异常分析结果(如图6)表明,王村剖面中—晚寒武世碳酸盐岩地层自早至晚记录了四次Ce负异常(N1、N2、N3和N4,其CeN/CeN*值均为0.8以下),分别位于乌溜期(509~504.5 Ma)、鼓山期(504.5~500.5 Ma)、古丈期(500.5~497 Ma)和排碧期(497~494 Ma)。其中分别位于乌溜期、古丈期和排碧期的N1、N3和N4较为明显而持续,而位于鼓山期的N2较为短促。浅海碳酸盐岩所记录的随时间变化的Ce异常变化主要受以下两个因素的影响:① 大气或浅海氧含量的变化; ② 海平面的变化,即碳酸盐岩沉积的深度的变化(Ling et al.,2013)。虽然中—晚寒武世全球海平面波动频繁,期间经历了多次海侵和海退事件(Rasmussen et al.,2019),但是前人关于王村剖面详细的沉积学研究表明,该剖面自下而上碳酸盐岩的沉积深度逐渐变浅,沉积相也由深水盆地相逐渐演变为台地边缘相(Peng,1992; Zhu et al.,2004),如果深度的变化是控制Ce异常的主要因素,那么从敖溪组到花桥组,CeN/CeN*值应逐渐升高; 这与王村剖面Ce异常变化情况明显不同。此外,王村剖面全岩样品的碳酸盐含量(%CaCO3)与CeN/CeN*之间不存在统计上的相关性(n=60,R2=0.0004,图略),这也说明沉积相的变化并不是导致王村剖面样品CeN/CeN*值变化的主要因素。基于以上分析,本文认为明显的Ce负异常主要反映浅海自由氧含量的增加,其中鼓山期的Ce负异常与Sperling et al.(2015)和Li et al.(2017)统计的中寒武世铁组分数据反映的鼓山期海洋氧化情况相一致,尽管铁组分指标对缺氧条件更加敏感,其主要反映沉积时底层局部水体的氧化还原状态(Canfield et al.,2007,2008; Poulton et al.,2010; Wei et al.,2020a,2020b)。Jiang et al.(2022)最近报道了中国西北塔里木盆地516~506 Ma之间沉积的海洋硬石膏的硫和氧同位素组成,并利用CPOS耦合模型模拟生成了随时间的变化曲线,发现大气氧浓度在509~506 Ma(乌溜期)之间明显增加,也与本文的Ce负异常结果相一致。
-
图6 王村剖面无机碳同位素δ13Ccarb、CeN/CeN*和U/(Ca+Mg)×103数据
-
Fig.6 δ13Ccarb, CeN/CeN* and U/ (Ca+Mg) ×103 profiles of Wangcun secion
-
大量的研究表明,宏观多细胞动物的辐射可能与地球表面环境的巨大变化有关,特别是与大气和海洋氧含量的显著提高密切相关,因为运动能力、捕食行为和骨骼化等复杂的生理行为被认为需要较高的氧气水平(Tostevin et al.,2016b; Wang et al.,2018; Wei et al.,2018),全球大气和浅海环境氧含量的提高也可能扩大动物的宜居生态空间范围,并促进食物链复杂化,从而加快动物进化速度(Chen et al.,2015; Edwards et al.,2017; He et al.,2019)。
-
比较本文的Ce异常研究所揭示的浅海氧化演变情况与最近Zhang et al.(2021)和Deng et al.(2021)对中—晚寒武世华南地区三叶虫和整体物种丰富度以及Fan et al.(2020)对中—晚寒武世全球物种丰富度的高时间分辨率的统计(图4),可以发现浅海短暂增氧发生的时间与三叶虫和整体物种丰富度高峰出现的时段基本耦合(图4),如乌溜期的浅海短暂增氧大致对应该时期三叶虫种属多样性的高峰,古丈期的浅海短暂增氧大致对应该时期三叶虫种属和整体物种丰富度的高峰,排碧期早期的浅海短暂增氧期间虽然没有对应的三叶虫种属数量的增长,但是该时期华南地区整体物种丰富度存在一个小高峰,这说明动物多样性可能与海水增氧有一定的关系。
-
前人的研究表明,早—中寒武世之交(约509 Ma)发生的碳同位素负漂(ROECE)以及乌溜期和鼓山期之交(约504.5 Ma)发生的碳同位素负漂(DICE)的时间点都对应一次广泛的全球海侵事件以及三叶虫灭绝事件(Montañe et al.,2000; Babcock et al.,2007; Howley et al.,2010; Pagès et al.,2016; Zhu et al.,2018)。海侵期间底层缺氧/硫化水体扩张及上涌,将溶解态有机质(DOC)带到氧化的浅海,有机质被氧化而使海水富12C,导致碳酸盐的δ13Ccarb负漂移(Cañadas et al.,2022),同时由于缺氧/硫化水体的入侵而使浅海区三叶虫灭绝。在缺氧/硫化底层水扩张的同时,有机碳和黄铁矿的埋藏速率也在增加(Gill et al.,2011; Dahl et al.,2014),因此在短暂的负漂移之后,海洋δ13Ccarb发生正漂,并向大气持续释放氧气(Saltzman et al.,2011; Edwards et al.,2017),最终导致浅海溶解氧含量发生增加和/或氧化水体的扩张(He et al.,2019)。随后深海的通风(ventilation)增强,导致有机碳和黄铁矿的埋藏效率下降,海洋净产氧量降低,阻碍了海洋进一步的氧化(Algeo et al.,2007; He et al.,2019)。海洋通风会导致浅海的溶解氧下渗,通过形成铁氧(氢氧)化物-磷络合物来增强沉积物中的磷固定,降低表层水的初级生产力以及有机质的下沉通量,最终推动底层水的快速氧化,但这也使海洋净产氧量降低(图7; van Cappellen and Ingall,1996; Algeo et al.,2007; He et al.,2019)。由于氧化剂的净减少可能是巨大的,最终导致深水再次缺氧,如此引起重复的碳同位素旋回(He et al.,2019)。Pulsipher et al.(2021) 统计分析了78个记录SPICE的剖面,发现75%的剖面在SPICE的上升段之前紧挨着一个小的δ13Ccarb负漂移(1‰~2‰),如华南地区的瓦儿岗剖面和碓边剖面,且这个短暂的负漂移被认为与Marjumiid-Pterocephaliid三叶虫灭绝界线同时(Saltzman et al.,1995)。有研究者将这个小负漂移归因于冷的富12C的深水进入到较浅的富13C的陆架环境中(类似于海侵事件)所致(Saltzman et al.,1995; Perfetta et al.,1999),小负漂移前的生物为浅海三叶虫种群占主导的Crepicephalus生物带(biozone),小负漂移阶段的生物转变成深水三叶虫种群占主导的Aphelaspis生物带(Stitt,1975; Palmer,1984; Schiffbauer et al.,2017)。具体过程为,首先是大部分大陆架内栖息的浅水三叶虫组合的灭绝,但该组合中的少数三叶虫种属存活,并在随后的第二幕灭绝事件中被灭绝; 陆架区域被深海三叶虫组合所占据(Palmer,1965a,1965b,1979; Stitt,1971; Taylor,2006)。类似的三叶虫动物群更迭事件在中—晚寒武世反复发生,因此古生物学家将记录了一个完整周期的连续地层命名为生物层段(Biomere)(Palmer,1984; Taylor,2006),并认为这种现象可能与海平面上升引起的生态空间变化有关(Ludvigsen,1982; Westrop and Ludvigsen,1987; Westrop,1988)。但是王村剖面在紧邻SPICE正漂移之前的地层没有记录到明显的碳同位素负漂(图6),可能是采样分辨率还不够造成的。
-
综上所述,王村剖面中—晚寒武世碳酸盐岩所记录的浅海多次增氧事件或许是地球表层系统本身存在的动态反馈机制的反映(图7),而浅海的短暂增氧可能促进了同时期生物辐射的发生。
-
4.2.3 浅海短暂增氧:“局部”或“全球”
-
海洋产氧量升高的途径包括初级生产力增加和有机碳及硫化物埋藏量增加,有机碳埋藏量增加导致δ13Ccarb正漂移。王村剖面碳酸盐岩Ce负异常N1、N4对应有明显的δ13Ccarb正漂移,而Ce负异常N2、N3则未有对应的δ13Ccarb正漂移(图6)。其可能原因如下:① REE与碳酸盐在海洋中的居留时间不同。REE(包括Ce)在海水中居留时间较短(50~130 a左右; Alibo and Nozaki,1999),而海水更新(seawater turnover)一次大约需要1~2 ka(Broecker and Peng,1982),因此海洋中REE是不均一的,Ce异常响应/反映局部海水的氧化还原状态; 而碳酸盐的海洋居留时间(0.1~0.2 Ma)远长于海水更新时间,所以碳酸盐沉积物的碳同位素随时间的变化可以用来示踪全球碳循环的变化。N1、N4对应有δ13Ccarb的明显正漂移,说明这两次浅海增氧事件可能是全球性的,而 N2、N3无对应的δ13Ccarb明显正漂移,说明这两次浅海增氧可能是局部事件,并不具有全球性。② 王村剖面这两段显示Ce负异常(N2、N3)而无δ13Ccarb正漂的原因可能与该两个时期海洋的氧化还原分层有关。海洋的生物泵效应,即初级生产者选择性利用12C,会导致表层海水δ13C较高,而底层海水δ13C较低的现象。Li et al.(2018)通过研究华南地区三个不同深度沉积的SPICE剖面后,发现存在明显依赖水深的δ13Ccarb梯度,最大差异达~2.3‰,介于混合良好的现代广海差异(约1‰~2‰)和明显分层的黑海的梯度值(~7‰)之间,认为晚寒武世的扬子地块南缘海域可能是混合不充分的和氧化还原分层的。王村剖面碳酸盐的U/(Ca+Mg)比值(表征海洋的U储库大小)变化情况如图6,可以看出相对于乌溜期和排碧期而言,鼓山期和古丈期的U/(Ca+Mg)比值明显较高,这说明这两个时间段海洋的U储库相对较大。U是氧化还原敏感元素,缺氧还原沉积物是海洋中U的主要汇,因此在外源输入不变的前提下,海洋U储库的大小与海底缺氧面积的大小呈负相关关系(Brennecka et al.,2011; Marenco et al.,2016),也即鼓山期和古丈期这两个时间段海底的缺氧面积可能相对较小。相对较小的深海缺氧面积与有机碳等还原物质的埋藏量较小相对应,因而也与碳同位素正漂移不明显相对应,这与鼓山阶、古丈阶两段地层虽有较明显Ce负异常而无明显δ13Ccarb正漂移相一致。但另一方面,在氧化还原分层的鼓山阶、古丈阶两阶段海洋中,碳酸盐沉积物虽然在相对氧化的表层海水中沉淀出来,却往往在缺氧的底层水下沉积和成岩(Grotzinger and James,2000; Chen et al.,2021)。Chen et al.(2021)发现形成于缺氧底层水中的碳酸盐沉积物的铀浓度比在表层海水中沉淀的原生方解石高出6~18倍,认为是缺氧条件下U6+被还原成不溶的U4+,导致化变层(chemocline)以下的碳酸盐沉积物中U显著富集。因此,王村剖面鼓山阶和古丈阶碳酸盐岩中U的相对富集可能并不反映海洋U储库的增大,反而是缺氧条件下还原性的U4+早期成岩累积的结果。综合来看,王村剖面中鼓山阶和古丈阶地层所记录的浅海增氧更可能是局部区域的,因此并没有显示明显的碳同位素正漂移。
-
图7 海洋的动态反馈机制(据Algeo et al.,2007修改)
-
Fig.7 Marine dynamic feedback mechanism (modified after Algeo et al., 2007)
-
CycleⅠ—生产力-缺氧反馈; Cycle Ⅱ—有机碳埋藏-氧化反馈
-
Cycle I—productivity-anoxia feedback; Cycle II—Corg burial- feedback
-
综上所述,王村剖面碳酸盐岩样品记录到的四次明显的Ce负异常,其中位于排碧期和乌溜期的两次(N4和N1)可能指示了全球表层海水的广泛增氧,而位于鼓山期和古丈期的两次(N2和N3)可能为限于扬子地块边缘海的局部增氧。
-
4.3 海洋Sr同位素演化示踪大陆风化演变
-
大陆风化是联通陆地和海洋的最重要的途径之一,大陆风化向海洋输入大量阳离子和维持生命的营养物质(如磷),在推动海洋化学成分的演变、进而促进生物辐射方面发挥了潜在的关键作用(Planavsky et al.,2010b; Zhang et al.,2014; Reinhard et al.,2017)。前人对于中—晚寒武世海洋环境与生物协同演化的研究,主要聚焦在海洋氧化还原状态对生物的影响(Gill et al.,2011,2021; Dahl et al.,2014; Saltzman et al.,2015; Pruss et al.,2019),而对海洋氧化还原变化背后的控制因素的详细研究目前仍不多见。寒武纪时期,地球处于温室气候(McKenzie et al.,2016; Hearing et al.,2018; Goldberg et al.,2021),同时伴随着一系列大尺度的构造事件,大陆风化速度极高,因此可能对海洋的氧化还原状态、初级生产力以及动物的辐射具有巨大的影响。海水87Sr/86Sr比值长久以来被作为大陆风化的代用指标(如Montañez et al.,1996; Goddéris et al.,2017; Wei et al.,2019),其原理是主要由长英质岩石组成的大陆地壳的87Sr/86Sr值显著高于主要由镁铁质岩石组成的洋壳、地幔物质的值,因此海水的Sr同位素组成可以反映陆源物质相对于海底热液和地幔物质输入的比例(如Cox et al.,2016)。另外,由于Sr的海洋居留时间较长(~1 Ma),比海洋混合时间(~1 ka)大三个数量级,因此同一时期全球海水具有均匀的87Sr/86Sr值,这是利用87Sr/86Sr值进行地史上地层对比的基础。用于重建海水87Sr/86Sr变化的理想材料是保存良好的微晶方解石和抗成岩作用的磷酸盐质生物化石,如中生代的箭石或古生代的腕足和牙形刺化石(Edwards et al.,2015; McArthur et al.,2020)。然而,中—晚寒武世的地层中经常缺乏或没有保存完好的这类化石,碳酸盐岩是可连续采样的较好保存海洋Sr同位素的地层(Li et al.,2013; Bellefroid et al.,2018b; Chen et al.,2022)。因此,本文采用了较为严格的地球化学筛选标准,从本文测得的碳酸盐岩全岩87Sr/86Sr数据中筛选出成岩作用和硅酸盐碎屑污染最小的数据,用于代表海水的87Sr/86Sr值。此外,本文从已发表的文献中汇编代表该时期海洋87Sr/86Sr的数据,利用LOESS拟合方法生成海洋87Sr/86Sr随时间变化的最佳拟合曲线(详见4.1.3节)。拟合曲线被用于与王村剖面碳酸盐岩的87Sr/86Sr比对,以检验碳同位素地层对比确定的沉积年龄。
-
如上所述,长英质大陆地壳岩石的风化,使海洋87Sr/86Sr值升高; 而玄武质岩石的风化将使海洋87Sr/86Sr值降低。由于玄武岩的风化速率比长英质大陆地壳大5~10倍,玄武质大火成岩省的喷发虽然会在短时间内释放大量的岩浆气体(如CO2、SO2等),但在更长的时间尺度内,由于玄武质火成岩的高速风化,而消耗和降低大气CO2浓度,并降低海水的87Sr/86Sr值(White and Brantley,1995; Dessert et al.,2001; Cox et al.,2016)。
-
从本文拟合生成的高分辨率Sr同位素变化曲线(图4),寒武纪第四期—乌溜期的交界处(~509 Ma)海水的87Sr/86Sr值突然下降,这在时间上与Kalkarindji大火成岩省喷发后的风化和ROECE碳同位素负漂的时间较为吻合(Montañez et al.,2000; Glass et al.,2006; Jourdan et al.,2014),因此可以合理地推测Kalkarindji大火成岩省的喷发可能直接导致了该时期Redlichiid-Olenellid三叶虫灭绝事件和碳同位素负漂事件(ROECE)。随后,由于硅酸盐风化增强使得大气CO2浓度下降,温度下降,同时向大陆架地区输入大量的营养物质,导致表层海洋的初级生产力升高,向大气和浅海释放的氧气增多,造成浅海增氧,最终促进生物的辐射。Royer et al.(2014) 通过GEOCARBSULF地球化学数值模型模拟的显生宙大气CO2浓度变化曲线中,早—中寒武世之交CO2浓度下降明显; 前人基于生物磷酸盐的氧同位素值δ18O和碳酸盐岩全岩的团簇同位素值(clumped isotope)Δ47重建早古生代地球表面温度的变化情况,结果显示早—中寒武世温度下降明显(Wotte et al.,2019; Goldberg et al.,2021)。另外,前人的研究结果认为与ROECE同期的海侵事件使得缺氧/硫化水体上涌,造成了Redlichiid-Olenellid三叶虫的大规模灭绝以及碳同位素负漂移(Schmid,2017; Liu et al.,2021b),而大陆风化的增强会促进初级生产力和微生物对硫酸盐还原,导致H2S在深部海水中的积累,并由随后的海侵和上涌带入到大陆架,造成生物灭绝(图8)。上述海水的87Sr/86Sr、大气 CO2浓度和地表温度变化及海洋生物的演变可能都是由Kalkarindji大火成岩省喷发所引发的地球表层系统的一系列变化。
-
Sr同位素拟合曲线显示海水87Sr/86Sr值在乌溜期—鼓山期之交(~504.5 Ma)、古丈期中期(~499 Ma)和古丈期—排碧期之交(~497 Ma)都有轻微增加,说明大陆风化通量可能有所增加,这也许是这三个时间点之后不久浅海发现增氧证据的潜在原因之一。Rooney et al.(2022) 最近对一个典型的SPICE页岩剖面进行Os同位素和Nd同位素的研究,发现紧邻SPICE正漂移之前海水的放射成因Os同位素组成越来越高,而Nd同位素值则基本保持不变,认为是陆源风化增强所致,也与本文的结果一致。
-
综上所述,Sr同位素数据表明,大陆风化增强可能是王村剖面中—晚寒武世碳酸盐岩样品所记录的浅海多次增氧的一个潜在诱因。
-
5 结论
-
(1)湘西北王村剖面中—晚寒武世碳酸盐岩地层存在四个Ce负异常,指示扬子地块南缘在中—晚寒武世发生过四次浅海短暂增氧,分别位于乌溜期(约509~504.5 Ma)、早鼓山期(约505 Ma)、古丈期(约500.5~497 Ma)和早排碧期(约497~496 Ma)。
-
(2)早排碧期和乌溜期的浅海增氧伴有碳酸盐的碳同位素正漂移,可能代表了全球表层海水的广泛增氧,而早鼓山期和古丈期的浅海增氧未伴有碳酸盐的碳同位素正漂移,可能是限于扬子地块边缘海的局部增氧。
-
图8 大陆风化与海洋氧化还原状态之间联系的示意图(据Wei et al.,2020b修改)
-
Fig.8 Schematic diagram of links between continental weathering and marine redox states (modified after Wei et al., 2020b)
-
OMZ—最小含氧带
-
OMZ—abbreviation for Oxygen Minimum Zone
-
(3)寒武纪中晚期的浅海氧化还原波动与生物演变两者之间具有关联性。大陆风化增强可能是浅海增氧的诱因之一。
-
附件:本文附件(附表1~2)详见 http://www.geojournals.cn/dzxb/dzxb/article/abstract/202303095?st=article_issue
-
参考文献
-
Algeo T J, Ingall E. 2007. Sedimentary Corg: P ratios paleocean ventilation and Phanerozoic atmospheric po2. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 130~155.
-
Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater: Particle association shale-normalization and Ce oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363~372.
-
Andersson P S, Wasserburg G J, Ingri J. 1992. The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth and Planetary Science Letters, 113(4): 459~472
-
Babcock L E, Robison R A, Rees M N, Peng Shanchi, Saltzman M R. 2007. The Global boundary Stratotype Section and Point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains Utah USA. Episodes, 30(2): 85~95.
-
Babcock L E, Peng Shanchi, Brett C E, Zhu Maoyan, Ahlberg P, Bevis M, Robison R A. 2015. Global climate sea level cycles and biotic events in the Cambrian Period. Palaeoworld, 24(1-2): 5~15.
-
Banner J L, Hanson G N, Meyers W J. 1988. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): Implications for REE mobility during carbonate diagenesis. Journal of Sedimentary Research, 58(3): 415~432.
-
Banner J L, Hanson G N. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123~3137.
-
Basu A R, Jacobsen S B, Poreda R J, Dowling C B, Aggarwal P K. 2001. Large groundwater strontium flux to the oceans from the Bengal basin and the marine strontium isotope record. Science, 293(5534): 1470~1473.
-
Bau M. 1999. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation Y-Ho fractionation and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63(1): 67~77.
-
Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations Transvaal Supergroup South Africa. Precambrian Research, 79(1-2): 37~55.
-
Bau M, Möller P, Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(1-2): 123~131.
-
Beck A J, Charette M A, Cochran J K, Gonneea M E, Peucker-Ehrenbrink B. 2013. Dissolved strontium in the subterranean estuary—Implications for the marine strontium isotope budget. Geochimica et Cosmochimica Acta, 117: 33~52.
-
Bellefroid E J, Hood A, Hoffman P F, Thomas M D, Reinhard C T, Planavsky N J. 2018a. Constraints on Paleoproterozoic atmospheric oxygen levels. Proceedings of the National Academy of Sciences, 115(32): 8104~8109.
-
Bellefroid E J, Planavsky N J, Miller N R, Brand U, Wang Chunjiang. 2018b. Case studies on the utility of sequential carbonate leaching for radiogenic strontium isotope analysis. Chemical Geology, 497: 88~99.
-
Bolhar R, van Kranendonk M J. 2007. A non-marine depositional setting for the northern Fortescue Group Pilbara Craton inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Research, 155(3-4): 229~250.
-
Brennecka G A, Herrmann A D, Algeo T J, Anbar A D. 2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences, 108(43): 17631~17634.
-
Broecker W S, Peng T H. 1982. Tracers in the Sea. Palisades, New York: Eldigio Press.
-
Burke W H, Denison R E, Hetherington E A, Koepnick R B, Nelson H F, Otto J B. 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10(10): 516.
-
Byrne R H, Kim K H. 1990. Rare earth element scavenging in seawater. Geochimica et Cosmochimica Acta, 54(10): 2645~2656.
-
Cañadas F, Papineau D, Leng M J, Li Chao. 2022. Extensive primary production promoted the recovery of the Ediacaran Shuram excursion. Nature Communications, 13: 148.
-
Canfield D E, Poulton S W, Narbonne G M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315(5808): 92~95.
-
Canfield D E, Poulton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, Strauss H. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321(5891): 949~952.
-
Cao Cheng, Liu Xiaoming, Bataille C P, Liu Chao. 2020. What do Ce anomalies in marine carbonates really mean? A perspective from leaching experiments. Chemical Geology, 532: 119413.
-
Chen Xi, Ling Hongfei, Vance D, Shields-Zhou G A, Zhu Maoyan, Poulton S W, Och L M, Jiang Shaoyong, Li Da, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications, 6: 7142.
-
Chen Xi, Zhou Ying, Shields G A. 2022. Progress towards an improved Precambrian seawater 87Sr/86Sr curve. Earth-Science Reviews, 224: 103869.
-
Chen Xinming, Romaniello S J, McCormick M M, Sherry A, Havig J R, Zheng Wang, Anbar A D. 2021. Anoxic depositional overprinting of 238U/235U in calcite: When do carbonates tell black shale tales? Geology, 49(10): 1193~1197.
-
Conwell C T, Saltzman M R, Edwards C T, Griffith E M, Adiatma Y D. 2022. Nd isotopic evidence for enhanced mafic weathering leading to Ordovician cooling. Geology, 50(8): 886~890.
-
Cox G M, Halverson G P, Stevenson R K, Vokaty M, Poirier A, Kunzmann M, Li Zhengxiang, Denyszyn S W, Strauss J V, Macdonald F A. 2016. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball. Earth Earth and Planetary Science Letters, 446: 89~99.
-
Dahl T W, Hammarlund E U, Anbar A D, Bond D P G, Gill B C, Gordon G W, Knoll A H, Nielsen A T, Schovsbo N H, Canfield D E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences, 107(42): 17911~17915.
-
Dahl T W, Boyle R A, Canfield D E, Connelly J N, Gill B C, Lenton T M, Bizzarro M. 2014. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. Earth and Planetary Science Letters, 401: 313~326.
-
De Baar H J W, Bacon M P, Brewer P G, Bruland K W. 1985. Rare earth elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 49(9): 1943~1959.
-
De Baar H J W, German C R, Elderfield H, van Gaans P. 1988. Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochimica et Cosmochimica Acta, 52(5): 1203~1219.
-
De Baar H J W, Schijf J, Byrne R H. 1991. Solution chemistry of the rare earth elements in seawater. European Journal of Solid State Inorganic Chemistry, 28: 357~373.
-
Deng Yiying, Fan Junxuan, Zhang Shuhan, Fang Xiang, Chen Zhongyang, Shi Yukun, Wang Haiwen, Wang Xinbing, Yang Jiao, Hou Xudong, Wang Yue, Zhang Yuandong, Chen Qing, Yang Aihua, Fan Ru, Dong Shaochun, Xu Huiqing, Shen Shuzhong. 2021. Timing and patterns of the Great Ordovician Biodiversification Event and Late Ordovician mass extinction: Perspectives from South China. Earth-Science Reviews, 220: 103743.
-
Denison R E, Koepnick R B, Fletcher A, Howell M W, Callaway W S. 1994. Criteria for the retention of original seawater 87Sr/86Sr in ancient shelf limestones. Chemical Geology, 112(1-2): 131~143.
-
Denison R E, Koepnick R B, Burke W H, Hetherington E A. 1998. Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chemical Geology, 152(3-4): 325~340.
-
Derry L A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth and Planetary Science Letters, 294(1-2): 152~162.
-
Derry L A, Brasier M D, Corfield R M, Rozanov A Y, Zhuravlev A Y. 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the ‘Cambrian explosion’. Earth and Planetary Science Letters, 128(3-4): 671~681.
-
Dessert C, Dupré B, François L M, Schott J, Gaillardet J, Chakrapani G, Bajpai S. 2001. Erosion of Deccan Traps determined by river geochemistry: Impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth and Planetary Science Letters, 188(3-4): 459~474.
-
Douville E, Bienvenu P, Charlou J L, Donval J P, Fouquet Y, Appriou P, Gamo T. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63(5): 627~643.
-
Dulski P. 1994. Interferences of oxide hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry Fresenius. Journal of Analytical Chemistry, 350(4-5): 194~203.
-
Edwards C T, Saltzman M R, Leslie S A, Bergström S M, Sedlacek A R C, Howard A, Bauer J A, Sweet W C, Young S A. 2015. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values. GSA Bulletin, 127(9-10): 1275~1289.
-
Edwards C T, Saltzman M R, Royer D L, Fike D A. 2017. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nature Geoscience, 10(12): 925~929.
-
El Meknassi S, Dera G, Cardone T, De Rafélis M, Brahmi C, Chavagnac V. 2018. Sr isotope ratios of modern carbonate shells: Good and bad news for chemostratigraphy. Geology, 46(11): 1003~1006.
-
El Meknassi S, Dera G, De Rafélis M, Brahmi C, Lartaud F, Hodel F, Jeandel C, Menjot L, Mounic S, Henry M, Besson P, Chavagnac V. 2020. Seawater 87Sr/86Sr ratios along continental margins: Patterns and processes in open and restricted shelf domains. Chemical Geology, 558: 119874.
-
Fan Junxuan, Shen Shuzhong, Erwin D H, Sadler P M, MacLeod N, Cheng Qiuming, Hou Xudong, Yang Jiao, Wang Xiangdong, Wang Yue, Zhang Hua, Chen Xu, Li Guoxiang, Zhang Yichun, Shi Yukun, Yuan Dongxun, Chen Qing, Zhang Linna, Li Chao, Zhao Yingying. 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475): 272~277.
-
Garzanti E, Andó S, France-Lanord C, Censi P, Vignola P, Galy V, Lupker M. 2011. Mineralogical and chemical variability of fluvial sediments 2 Suspended-load silt (Ganga-Brahmaputra Bangladesh). Earth and Planetary Science Letters, 302(1-2): 107~120.
-
Gerhardt A M, Gill B C. 2016. Elucidating the relationship between the later Cambrian end-Marjuman extinctions and SPICE Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 362~373.
-
German C R, Elderfield H. 1990. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 5(5): 823~833.
-
German C R, Holliday B P, Elderfield H. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553~3558.
-
Gill B C, Lyons T W, Young S A, Kump L R, Knoll A H, Saltzman M R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469(7328): 80~83.
-
Gill B C, Dahl T W, Hammarlund E U, LeRoy M A, Gordon G W, Canfield D E, Anbar A D, Lyons T W. 2021. Redox dynamics of later Cambrian oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 581: 110623.
-
Glass L M, Phillips D. 2006. The Kalkarindji continental flood basalt province: A new Cambrian large igneous province in Australia with possible links to faunal extinctions. Geology, 34(6): 461.
-
Goddéris Y, Donnadieu Y, Carretier S, Aretz M, Dera G, Macouin M, Regard V. 2017. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nature Geoscience, 10(5): 382~386.
-
Goldberg S L, Present T M, Finnegan S, Bergmann K D. 2021. A high-resolution record of early Paleozoic climate. Proceedings of the National Academy of Sciences, 118(6).
-
Gong Qiaolin, Li Fei, Lu Chaojin, Wang Haozheng, Tang Hao. 2021. Tracing seawater- and terrestrial-sourced REE signatures in detritally contaminated diagenetically altered carbonate rocks. Chemical Geology, 570: 120169.
-
Grotzinger J P, James N P. 2000. Precambrian carbonates: Evolution of understanding. In: Grotzinger J P, James N P, eds. Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. Society for Sedimentary Geology (SEPM) Special Publication, 67: 3~20.
-
Hayes J, Kaplan I, Wedeking K. 1983. Precambrian organic geochemistry preservation of the record. In: Schopf J W, ed. Earth's Earliest Biosphere: Its Origin and Evolution. Princeton University Press, 93~134.
-
He Tianchen. 2017. Isotopic constraints on the palaeoenvironmental conditions during the Cambrian radiation of animals. Doctoral thesis of University College London.
-
He Tianchen, Zhu Maoyan, Mills B J W, Wynn P M, Zhuravlev A Y, Tostevin R, von Strandmann P A E P, Yang Aihua, Poulton S W, Shields G A. 2019. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nature Geoscience, 12(6): 468~474.
-
Hearing T W, Harvey T H P, Williams M, Leng M J, Lamb A L, Wilby P R, Gabbott S E, Pohl A, Donnadieu Y. 2018. An early Cambrian greenhouse climate. Science Advances, 4(5): eaar5690.
-
Howley R A, Jiang Ganqing. 2010. The Cambrian Drumian carbon isotope excursion (DICE) in the Great Basin western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1-2): 138~150.
-
Ingram B L, Sloan D. 1992. Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science, 255(5040): 68~72.
-
Jarvis K E, Gray A L, McCurdy E. 1989. Avoidance of spectral interference on europium in inductively coupled plasma mass spectrometry by sensitive measurement of the doubly charged ion. Journal of Analytical Atomic Spectrometry, 4(8): 743.
-
Jiang Lei, Zhao Mingyu, Shen Anjiang, Huang Lili, Chen Daizhao, Cai Chunfang. 2022. Pulses of atmosphere oxygenation during the Cambrian radiation of animals. Earth and Planetary Science Letters, 590: 117565.
-
Johnson K S, Berelson W M, Coale K H, Coley T L, Elrod V A, Fairey W R, Iams H D, Kilgore T E, Nowicki J L. 1992. Manganese Flux from continental margin sediments in a transect through the oxygen minimum. Science, 257(5074): 1242~1245.
-
Jones M T, Gislason S R, Burton K W, Pearce C R, Mavromatis V, von Strandmann P A E P, Oelkers E H. 2014. Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry. Earth and Planetary Science Letters, 395: 91~100.
-
Jourdan F, Hodges K, Sell B, Schaltegger U, Wingate M T D, Evins L Z, Söderlund U, Haines P W, Phillips D, Blenkinsop T. 2014. High-precision dating of the Kalkarindji large igneous province Australia and synchrony with the Early-Middle Cambrian (Stage 4-5) extinction. Geology, 42(6): 543~546.
-
Kamber B S, Webb G E, Gallagher M. 2014. The rare earth element signal in Archaean microbial carbonate: Information on ocean redox and biogenicity. Journal of the Geological Society, 171(6): 745~763.
-
Kaufman A J, Jacobsen S B, Knoll A H. 1993. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 120(3-4): 409~430.
-
Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27~49.
-
Knoll A H, Hayes J M, Kaufman A J, Swett K, Lambert I B. 1986. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 321(6073): 832~838.
-
Koeppenkastrop D, De Carlo E H. 1992. Sorption of rare-earth elements from seawater onto synthetic mineral particles: An experimental approach. Chemical Geology, 95(3-4): 251~263.
-
Lawrence M G, Greig A, Collerson K D, Kamber B S. 2006. Rare earth element and yttrium variability in South East Queensland Waterways. Aquatic Geochemistry, 12(1): 39~72.
-
LeRoy M A, Gill B C. 2019. Evidence for the development of local anoxia during the Cambrian SPICE event in eastern North America. Geobiology, 17(4): 381~400.
-
LeRoy M A, Gill B C, Sperling E A, McKenzie N R, Park T S. 2021. Variable redox conditions as an evolutionary driver? A multi-basin comparison of redox in the middle and later Cambrian oceans (Drumian-Paibian). Palaeogeography, Palaeoclimatology, Palaeoecology, 566: 110209.
-
Li Chao, Jin Chengsheng, Planavsky N J, Algeo T J, Cheng Meng, Yang Xinglian, Zhao Yuanlong, Xie Shucheng. 2017. Coupled oceanic oxygenation and metazoan diversification during the early-middle Cambrian? Geology, 45(8): 743~746.
-
Li Da, Shields-Zhou G A, Ling Hongfei, Thirlwall M. 2011. Dissolution methods for strontium isotope stratigraphy: Guidelines for the use of bulk carbonate and phosphorite rocks. Chemical Geology, 290(3-4): 133~144.
-
Li Da, Ling Hongfei, Shields-Zhou G A, Chen Xi, Cremonese L, Och L, Thirlwall M, Manning C J. 2013. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China. Precambrian Research, 225: 128~147.
-
Li Dandan, Zhang Xiaolin, Hu Dongping, Chen Xiaoyan, Huang Wei, Zhang Xu, Li Menghan, Qin Liping, Peng Shanchi, Shen Yanan. 2018. Evidence of a large δ13Ccarb and δ13Corg depth gradient for deep-water anoxia during the late Cambrian SPICE event. Geology, 46(7): 631~634.
-
Li Dandan, Zhang Xiaolin, Zhang Xu, Zhu Hao, Peng Shanchi, Sun Lilin, Shen Yanan. 2020. A paired carbonate-organic δ13C approach to understanding the Cambrian Drumian carbon isotope excursion (DICE). Precambrian Research, 349: 105503.
-
Ling Hongfei, Chen Xi, Li Da, Wang Dan, Shields-Zhou G A, Zhu M Y. 2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research, 225: 110~127.
-
Liu Xiaoming, Hardisty D S, Lyons T W, Swart P K. 2019. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank. Geochimica et Cosmochimica Acta, 248: 25~42.
-
Liu Xiaoming, Kah L C, Knoll A H, Cui Huan, Wang Chao, Bekker A, Hazen R M. 2021a. A persistently low level of atmospheric oxygen in Earth's middle age. Nature Communications, 12(1): 351.
-
Liu Z R R, Zhou Meifu, Chen W T, Williams-Jones A E, Li Xiangdong, Yin Runsheng, O'Brien H, Lahaye Y. 2021b. Mercury and sulfur isotopic evidence for the linkages between the ca 510 Ma Kalkarindji large igneous province and trilobite crisis. Earth and Planetary Science Letters, 566: 116947.
-
Lu Xinze, Dahl T W, Zheng Wang, Wang Su, Kendall B. 2020. Estimating ancient seawater isotope compositions and global ocean redox conditions by coupling the molybdenum and uranium isotope systems of euxinic organic-rich mudrocks. Geochimica et Cosmochimica Acta, 290: 76~103.
-
Ludvigsen R. 1982. Upper Cambrian and Lower Ordovician trilobite biostratigraphy of the Rabbitkettle Formation. Western District of Mackenzie Royal Ontario Museum Toronto.
-
Luo Yun, Li Gang, Xu Weihai, Liu Jianguo, Cheng Jun, Zhao Jianxin, Yan Wen. 2021. The effect of diagenesis on rare earth element geochemistry of the Quaternary carbonates at an isolated coral atoll in the South China Sea. Sedimentary Geology, 420: 105933.
-
Marenco P J, Martin K R, Marenco K N, Barber D C. 2016. Increasing global ocean oxygenation and the Ordovician Radiation: Insights from Th/U of carbonates from the Ordovician of western Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 77~84.
-
Mayfield K M, Eisenhauer A, Santiago Ramos D P, Higgins J A, Horner T J, Auro M, Magna T, Moosdorf N, Charette M A, Gonneea M E, Brady C E, Komar N, Peucker-Ehrenbrink B, Paytan A. 2021. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr and Ba. Nature Communications, 12(1): 148.
-
McArthur J M, Howarth R J, Shields-Zhou G A, Zhou Y. 2020. Strontium isotope stratigraphy. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012. Elsevier Science Limited, 127~144.
-
McKenzie N R, Horton B K, Loomis S E, Stockli D F, Planavsky N J, Lee C A. 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science, 352(6284): 444~447.
-
McLennan S M. 1989. Rare-earth elements in sedimentary-rocks-influence of provenance and sedimentary processes. Review in Mineralogy, 21: 169~200.
-
Michard A, Albarède F. 1986. The REE content of some hydrothermal fluids. Chemical Geology, 55(1-2): 51~60.
-
Moffett J W. 1990. Microbially mediated cerium oxidation in sea water. Nature, 345(6274): 421~423.
-
Montañez I P, Banner J L, Osleger D A, Borg L E, Bosserman P J. 1996. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology, 24(10): 917.
-
Montañez I P, Osleger D A, Banner J L, Mack L, Musgrove M. 2000. Evolution of the Sr and C isotope composition of Cambrian Oceans. GSA Today, 10(5): 1~5.
-
Nothdurft L D, Webb G E, Kamber B S. 2004. Rare earth element geochemistry of Late Devonian reefal carbonates Canning basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68(2): 263~283.
-
Nozaki Y, Zhang Jing, Amakawa H. 1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148(1-2): 329~340.
-
Nozaki Y, Alibo D S. 2003. Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth elements in the northeastern Indian Ocean. Earth and Planetary Science Letters, 205(3-4): 155~172.
-
Pagès A, Schmid S. 2016. Euxinia linked to the Cambrian Drumian carbon isotope excursion (DICE) in Australia: Geochemical and chemostratigraphic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 65~76.
-
Palmer A. 1965a. Trilobites of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States. US Geological Survey Professional Paper, 493: 105.
-
Palmer A. 1965b. Biomere a new kind of biostratigraphic unit. Journal of Paleontology, 39: 149~153.
-
Palmer A. 1979. Biomere boundaries re-examined. Alcheringa, 3: 33~41.
-
Palmer A. 1984. The biomere problem: Evolution of an idea. Journal of Paleontology, 58(3): 599~611.
-
Peng Shanchi. 1992. Upper Cambrian biostratigraphy and trilobite faunas of the Cili-Taoyuan area, northwestern Hunan, China. Memoir of the Association Australasian Palaeontologists, 13: 1~119.
-
Peng Shanchi, Babcock L E, Zuo Jingxun, Lin Huanling, Zhu Xuejian, Yang Xianfeng, Robison R A, Qi Yuping, Bagnoli G, Chen Yongan. 2009. The Global Boundary Stratotype Section and Point (GSSP) of the Guzhangian Stage (Cambrian) in the Wuling Mountains northwestern Hunan China. Episodes, 32(1): 41~55.
-
Peng Shanchi, Babcock L E, Ahlberg P. 2020. The Cambrian Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale. Amsterdam: Elsevier, 565~629. Perfetta P J, Shelton K L, Stitt J H. 1999. Carbon isotope evidence for deep-water invasion at the Marjumiid-Pterocephaliid biomere boundary Black Hills, USA: A common origin for biotic crises on Late Cambrian shelves. Geology, 27(5): 403.
-
Planavsky N J, Bekker A, Rouxel O J, Kamber B, Hofmann A, Knudsen A, Lyons T W. 2010a. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta, 74(22): 6387~6405.
-
Planavsky N J, Rouxel O J, Bekker A, Lalonde S V, Konhauser K O, Reinhard C T, Lyons T W. 2010b. The evolution of the marine phosphate reservoir. Nature, 467(7319): 1088~1090.
-
Poulton S W, Fralick P W, Canfield D E. 2010. Spatial variability in oceanic redox structure 18 billion years ago. Nature Geoscience, 3(7): 486~490.
-
Pourmand A, Dauphas N, Ireland T J. 2012. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chemical Geology, 291: 38~54.
-
Prokoph A, Shields G A, Veizer J. 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 87(3-4): 113~133.
-
Pruss S B, Jones D S, Fike D A, Tosca N J, Wignall P B. 2019. Marine anoxia and sedimentary mercury enrichments during the Late Cambrian SPICE event in northern Scotland. Geology, 47(5): 475~478.
-
Pulsipher M A, Schiffbauer J D, Jeffrey M J, Huntley J W, Fike D A, Shelton K L. 2021. A meta-analysis of the Steptoean Positive Carbon Isotope Excursion: The SPICEraq database. Earth-Science Reviews, 212: 103442.
-
Rasmussen C M, Kröger B, Nielsen M L, Colmenar J. 2019. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proceedings of the National Academy of Sciences, 116(15): 7207~7213.
-
Reinhard C T, Planavsky N J, Gill B C, Ozaki K, Robbins L J, Lyons T W, Fischer W W, Wang Chunjiang, Cole D B, Konhauser K O. 2017. Evolution of the global phosphorus cycle. Nature, 541(7637): 386~389.
-
Rooney A D, Millikin A E G, Ahlberg P. 2022. Re-Os geochronology for the Cambrian SPICE event: Insights into euxinia and enhanced continental weathering from radiogenic isotopes. Geology, 50(6): 716~720.
-
Royer D L, Donnadieu Y, Park J, Kowalczyk J, Godderis Y. 2014. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. American Journal of Science, 314(9): 1259~1283.
-
Saltzman M R, Davidson J P, Holden P, Runnegar B, Lohmann K C. 1995. Sea-level-driven changes in ocean chemistry at an Upper Cambrian extinction horizon. Geology, 23(10): 893.
-
Saltzman M R, Ripperdan R L, Brasier M D, Lohmann K C, Robison R A, Chang W T, Peng S C, Ergaliev E K, Runnegar B. 2000. A global carbon isotope excursion (SPICE) during the Late Cambrian: Relation to trilobite extinctions organic-matter burial and sea level. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3-4): 211~223
-
Saltzman M R, Young S A, Kump L R, Gill B C, Lyons T W, Runnegar B. 2011. Pulse of atmospheric oxygen during the late Cambrian. Proceedings of the National Academy of Sciences, 108(10): 3876~3881.
-
Saltzman M R, Edwards C T, Adrain J M, Westrop S R. 2015. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology, 43(9): 807~810.
-
Schidlowski M, Aharon P. 1992. Carbon cycle and carbon isotope record: Geochemical impact of life over 38 Ga of Earth history. In: Schidlowski M, Golubic S, Kimberley M M, Mckirdy D M, Trudinger P A, eds. Early Organic Evolution: Implications for Mineral and Energy Resources (1992). Springer-Verlag, 147~175.
-
Schiffbauer J D, Huntley J W, Fike D A, Jeffrey M J, Gregg J M, Shelton K L. 2017. Decoupling biogeochemical records extinction and environmental change during the Cambrian SPICE event. Science Advances, 3(3): 190~210.
-
Schmid S. 2017. Chemostratigraphy and palaeo-environmental characterisation of the Cambrian stratigraphy in the Amadeus Basin Australia. Chemical Geology, 451: 169~182.
-
Shao Yuexiao, Farkaš J, Holmden C, Mosley L, Kell-Duivestein I, Izzo C, Reis-Santos P, Tyler J, Törber P, Frýda J, Taylor H, Haynes D, Tibby J, Gillanders B M. 2018. Calcium and strontium isotope systematics in the lagoon-estuarine environments of South Australia: Implications for water source mixing carbonate fluxes and fish migration. Geochimica et Cosmochimica Acta, 239: 90~108.
-
Sholkovitz E R, Landing W M, Lewis B L. 1994. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta, 58(6): 1567~1579.
-
Sperling E A, Wolock C J, Morgan A S, Gill B C, Kunzmann M, Halverson G P, Macdonald F A, Knoll A H, Johnston D T. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523(7561): 451~454.
-
Spötl C, Vennemann T W. 2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications in Mass Spectrometry, 17(9): 1004~1006.
-
Stitt J H. 1971. Repeating evolutionary pattern in Late Cambrian biomeres. Journal of Paleontology, 45: 178~181.
-
Stitt J H. 1975. Adaptive radiation trilobite paleoecology and extinction, Ptychaspid biomere, late Cambrian of Oklahoma. Fossils and Strata, 4: 381~390.
-
Sundberg F A, Karlstrom K E, Geyer G, Foster J R, Hagadorn J W, Mohr M T, Schmitz M D, Dehler C M, Crossey L J. 2020. Asynchronous trilobite extinctions at the early to middle Cambrian transition. Geology, 48(5): 441~445.
-
Taylor J F. 2006. History and status of the biomere concept. Memoirs of the Association of Australasian Palaeontologists, 32: 247~265.
-
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell Oxford, 1~312.
-
Tostevin R. 2021. Cerium anomalies and paleoredox. Elements in Geochemical Tracers in Earth System Science. Cambridge University Press.
-
Tostevin R, Shields G A, Tarbuck G M, He Tianchen, Clarkson M O, Wood R A. 2016a. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438: 146~162.
-
Tostevin R, Wood R A, Shields G A, Poulton S W, Guilbaud R, Bowyer F, Penny A M, He Tianchen, Curtis A, Hoffmann K H, Clarkson M O. 2016b. Low-oxygen waters limited habitable space for early animals. Nature Communications, 7(1): 12818.
-
Van Cappellen P, Ingall E D. 1996. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science, 271(5248): 493~496.
-
Van Kranendonk M J, Webb G E, Kamber B S. 2003. Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 345 Ga stromatolitic carbonates in the Pilbara Craton and support for a reducing Archaean ocean. Geobiology, 1(2): 91~108.
-
Wang Dan, Ling Hongfei, Struck U, Zhu Xiangkun, Zhu Maoyan, He Tianchen, Yang Ben, Gamper A, Shields G A. 2018. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition. Nature Communications, 9(1): 2575.
-
Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122: 141~158.
-
Webb G E, Kamber B S. 2000. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64(9): 1557~1565.
-
Webb G E, Nothdurft L D, Kamber B S, Kloprogge J T, Zhao Jianxin. 2009. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Sedimentology, 56(5): 1433~1463.
-
Wei Guangyi, Planavsky N J, Tarhan L G, Chen Xi, Wei Wei, Li Da, Ling Hongfei. 2018. Marine redox fluctuation as a potential trigger for the Cambrian explosion. Geology, 46(7): 587~590.
-
Wei Guangyi, Hood A, Chen Xi, Li Da, Wei Wei, Wen Bin, Gong Zheng, Yang Tao, Zhang Zhaofeng, Ling Hongfei. 2019. Ca and Sr isotope constraints on the formation of the Marinoan cap dolostones. Earth and Planetary Science Letters, 511: 202~212.
-
Wei Guangyi, Planavsky N J, Tarhan L G, He Tianchen, Wang Dan, Shields G A, Wei Wei, Ling Hongfei. 2020a. Highly dynamic marine redox state through the Cambrian explosion highlighted by authigenic δ238U records. Earth and Planetary Science Letters, 544: 116361.
-
Wei Guangyi, Wei Wei, Wang Dan, Li Tao, Yang Xiaoping, Shields G A, Zhang Feifei, Li Gaojun, Chen Tianyu, Yang Tao, Ling Hongfei. 2020b. Enhanced chemical weathering triggered an expansion of euxinic seawater in the aftermath of the Sturtian glaciation. Earth and Planetary Science Letters, 539: 116244.
-
Wei Guangyi, Ling Hongfei, Shields G A, Hohl S V, Yang Tao, Lin Yibo, Zhang Feifei. 2021a. Revisiting stepwise ocean oxygenation with authigenic barium enrichments in marine mudrocks. Geology, 49(9): 1059~1063.
-
Wei Wei, Frei R, Klaebe R, Tang Dongjie, Wei Guangyi, Li Da, Tian Lanlan, Huang Fang, Ling Hongfei. 2021b. A transient swing to higher oxygen levels in the atmosphere and oceans at ~14 Ga. Precambrian Research, 354: 106058.
-
Westrop S R. 1988. Trilobite diversity patterns in an Upper Cambrian stage. Paleobiology, 14: 401~409.
-
Westrop S R, Ludvigsen R. 1987. Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary. Paleobiology, 13: 84~99.
-
White A F, Brantley S L. 1995. Chemical weathering rates of silicate minerals: An overview. Reviews in Mineralogy and Geochemistry, 31(1): 1~22.
-
Wotte T, Skovsted C B, Whitehouse M J, Kouchinsky A. 2019. Isotopic evidence for temperate oceans during the Cambrian Explosion. Scientific Reports, 9(1): 1~9.
-
Young S A, Saltzman M R, Foland K A, Linder J S, Kump L R. 2009. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate? Geology, 37(10): 951~954.
-
Zhang Kan, Zhu Xiangkun, Yan Bin. 2015. A refined dissolution method for rare earth element studies of bulk carbonate rocks. Chemical Geology, 412: 82~91.
-
Zhang Kun, Shields G A. 2022. Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution. Earth-Science Reviews, 229: p104015.
-
Zhang Pengyuan, Wang Yongli, Zhang Xiaojun, Wei Zhifu, Wang Gen, Zhang Ting, Ma He, Wei Jingyi, He Wei, Ma Xueyun, Zhu Chenxi. 2022. Carbon oxygen and strontium isotopic and elemental characteristics of the Cambrian Longwangmiao Formation in South China: Paleoenvironmental significance and implications for carbon isotope excursions. Gondwana Research, 106: 174~190.
-
Zhang Shuhan, Fan Junxuan, Morgan C A, Henderson C M, Shen Shuzhong. 2021. Quantifying the middle-late Cambrian trilobite diversity pattern in South China. Palaeogeography, Palaeoclimatology, Palaeoecology. 570: 110361.
-
Zhang Xingliang, Shu Degan, Han Jian, Zhang Zhifei, Liu Jianni, Fu Dongjing. 2014. Triggers for the Cambrian explosion: Hypotheses and problems. Gondwana Research, 25(3): 896~909.
-
Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13~54.
-
Zhao Junhong, Zhou Meifu, Yan Danping, Zheng Jianping, Li Jianwei. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39(4): 299~302.
-
Zhao Mingyu, Zheng Yongfei. 2014. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones. Geochimica et Cosmochimica Acta, 141: 508~531.
-
Zheng Yongfei, Wu Rongxin, Wu Yuanbao, Zhang Shaobing, Yuan Honglin, Wu Fuyuan. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen South China. Precambrian Research, 163(3-4): 351~383.
-
Zhong Shaojun, Mucci A. 1995. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 atm and high dissolved REE concentrations. Geochimica et Cosmochimica Acta, 59(3): 443~453.
-
Zhou Ying, von Strandmann P A E P, Zhu Maoyan, Ling Hongfei, Manning C, Li Da, He Tianchen, Shields G A. 2020. Reconstructing Tonian seawater 87Sr/86Sr using calcite microspar. Geology, 48(5): 462~467.
-
Zhu Maoyan, Zhang Junming, Li Guoxiang, Yang Aihua. 2004. Evolution of C isotopes in the Cambrian of China: Implications for Cambrian subdivision and trilobite mass extinctions. Geobios, 37(2): 287~301.
-
Zhu Maoyan, Yang Aihua, Yuan Jingliang, Li Guoxiang, Zhang Junming, Zhao Fangchen, Ahn S Y, Miao Lanyun. 2018. Cambrian integrative stratigraphy and timescale of China. Science China Earth Sciences, 62(1): 25~60.
-
摘要
中—晚寒武世(509~485 Ma)是地球历史上的一个动荡时期,期间发生了多次碳同位素漂移和生物灭绝事件,表明地球表层环境可能发生了剧烈变动。本文以湖南省永顺县王村剖面的清虚洞组、敖溪组和花桥组的碳酸盐岩地层为研究对象,通过碳、锶同位素地层学对比和稀土Ce异常的分析,揭示出扬子地块南缘在中晚寒武世发生了四次短暂的浅海短暂增氧(CeN/CeN*<0.8),分别位于乌溜期(约509~504.5 Ma)、早鼓山期(约505 Ma)、古丈期(约500.5~497 Ma)和早排碧期(约497~496 Ma),其中排碧期早期和乌溜期内发生的增氧可能指示了全球表层海水的广泛增氧,而鼓山期早期和古丈期内发生的增氧可能仅局限于扬子地块南部边缘海。根据最新的生物地层学研究成果,浅海短暂增氧发生的时间与华南地区三叶虫和总体的生物多样性高峰基本对应,指示浅海氧气含量的上升可能促进了生物多样性的发展。海水δ13C和87Sr/86Sr值的变化趋势指示大陆风化增强向海洋输入大量营养物质,导致表层海洋的初级生产力升高,可能是浅海氧化程度相对升高的重要驱动因素。
Abstract
The Middle-Late Cambrian (509~485 Ma) was an unsteady period in Earth history, during which several carbon isotope shifts and biological extinction events occurred, indicating that the Earth's environment may have experienced drastic changes. In this study, we report systematic δ13C, 87Sr/86Sr and Ce anomaly data of carbonate from the Wangcun section in South China. Our results suggest that four transient shallow marine oxidation pulses (CeN/CeN*<0.8) occurred in South China during the Middle-Late Cambrian, which located in Wuliuan (ca.509~504.5 Ma), Early Drumian (~505 Ma), Guzhangian (ca.500.5~497 Ma) and Early Paibi (ca.497~496 Ma), respectively. The oxidation pulses that occurred in Early Paibi and Wuliuan may be indicative of widespread oxidation of global surface seawater, while the other two pulses may represent local oxidation confined to the marginal seas in South China. When compared with the latest biostratigraphic findings, we suggest that the timing of the onset of the shallow marine oxidation pulses largely corresponds to the peak of trilobites and overall species diversity in South China, which indicates that shallow ocean oxygen rises may have contributed to the development of biodiversity animal radiations. The relative trends in seawater δ13C and 87Sr/86Sr values indicate that enhanced continental weathering may have resulted in increases of nutritional matter input to the sea and thus increase of marine primary productivity, which may have been an important driver of the shallow marine oxidation pulses.