-
山弯构造(Orocline)是指具有“马蹄形”或“弓”型弯曲形态的造山带系统(Carey,1955; Eldredge et al.,1985; Marshak,1988,2004; Weil et al.,2010)。最初通常指造山带或其某段绕一垂直轴发生构造旋转形成的弯曲(Marshak,1989; Xiao Wenjiao et al.,2018),后来扩大到所有具褶曲形态的山系(Eldredge et al.,1985)。它的形成和演化与板块俯冲增生、回撤、碰撞挤压等密切相关(Xiao Wenjiao et al.,2018)。如今,随着对山弯构造研究的不断深入,其成功应用于地质环境、构造条件及变形机制变化等方面的研究,如反映山链的基本形态与造山过程、盆地的原型特征解析、褶曲构造变形形成历史的研究、俯冲板片的不规则扭曲过程、逆冲带与前陆隆起的相互作用等方面的研究(Xiao Wenjiao et al.,2015,2018; 郭润华等,2017)。山弯构造与板块构造理论相结合,共同反映地球构造演化特征,成为近年来国际大地构造和构造地质学研究的一个热点方向(Xiao Wenjiao et al.,2015,2018)。
-
山弯构造在世界典型碰撞型和增生型造山带中普遍发育。许多与碰撞型造山带相关的山弯构造多在造山挤压背景下形成,呈紧闭型出现。其形成过程可分为两个阶段,首先是造山作用形成相对平直的山链,其次是在造山过程中受到垂直造山带的压应力发生挠曲(Johnston et al.,2013)。整个挠曲过程多在来自周缘地质体挤压作用的外界构造应力驱使下发生,如中扬子褶皱带的大巴山山弯构造(Shi Wei et al.,2012)、华北—华南之间的秦岭-大别山弯构造(Li Sanzhong et al.,2017)和喜马拉雅造山带中的柴北缘山弯构造(李正祥等,1996; 牟墩玲等,2018); 阿尔卑斯造山带中的Cantabria山弯构造(Şengör,2013; Shaw,2015)、Gibraltar山弯构造、Calabrian山弯构造、Aegean山弯构造及Cyprus山弯构造等(Rosenbaum,2014; Xiao Wenjiao et al.,2018)。增生型造山带相关的山弯构造一般具有较大的规模,多与板块俯冲后撤相关,是一种渐进式褶曲的山弯构造(Johnston et al.,2013),是在板块俯冲断离和后撤过程中形成的山弯构造。如发育于拉克兰造山带中的Texas山弯构造和Manning山弯构造(Li Pengfei et al.,2012,2014),以及发育于塔斯曼地区的山弯构造(Robert,2015); 位于北科迪勒拉造山带中的山弯构造(Colpron et al.,2015)及阿拉斯加山弯构造(Alaskan Orocline; Duane et al,1972),位于南美安第斯造山带中的Bolivian山弯构造等(Johnston et al.,2013)。
-
中亚造山带作为世界上最大的增生型造山带,其山弯构造非常发育,包括位于西部的哈萨克山弯构造(Xiao Wenjiao et al.,2015,2018; Li Pengfei et al.,2018)、中部的蒙古山弯构造(Wang Tao et al.,2021; Li Pengfei et al.,2021)及东部的中国东北山弯构造(Liu Yongjiang et al.,2021)等三大山弯构造体系(图1)。规模巨大的中亚造山带的形成与山弯构造体系有着密切的关系(Xiao Wenjiao et al.,2015,2018)。
-
1 中亚造山带中、西段山弯构造
-
中亚造山带(Central Asian Orogenic Belt,CAOB)位于西伯利亚板块—欧洲板块与华北板块—塔里木板块之间,西起乌拉尔山,向东经由哈萨克斯坦、天山、阿尔泰、蒙古、中国东北等地区,延伸至太平洋西岸,是全球规模最大的增生造山带(Şengör et al.,1993,2018; Windley et al.,2002,2007; Xiao Wenjiao et al.,2003,2015; Kröner et al.,2007)。Windley et al.(2002,2007)的研究认为,中亚造山带是由大量岩浆弧、增生杂岩、增生地体、蛇绿混杂岩、弧相关的盆地、海山及微地块等构成的复杂拼贴体,是典型的增生造山带。Xiao Wenjiao et al.(2003,2009,2015,2018)做了更为深入的研究,认为中亚造山带是古亚洲洋(Paleo-Asian Ocean)长期(约600~250 Ma)俯冲消减的产物,是由多洋盆、多俯冲带、多向汇聚形成的复式增生造山带。其形成经历了多岛弧、微地块及地体等的碰撞、增生及相应岩浆弧等链状地质体的褶曲过程。
-
近年来,越来越多的研究表明,伴随古亚洲洋闭合过程和中亚造山带增生,链状地质体褶曲所形成的山弯构造是该巨型增生造山系成为全球规模最大增生造山系统的重要原因,也是其显著特征之一(Xiao Wenjiao et al.,2018; Li Pengfei et al.,2018,2021; Liu Yongjiang et al.,2021; Wang Tao et al.,2021)。
-
目前,在中亚造山带的西部和中部分别识别出了“哈萨克斯坦山弯构造”(Xiao Wenjiao et al.,2018; Li Pengfei et al.,2018)和“蒙古山弯构造”(Xiao Wenjiao et al.,2018; Li Pengfei et al.,2021; Wang Tao et al.,2021)。哈萨克斯坦山弯构造主体位于中国新疆准噶尔盆地以西的哈萨克斯坦境内,由泥盆纪岩浆岩弧大角度弯曲形成,包括成吉思汗弧(北翼)、伊犁弧(南翼)和科克切塔夫-北天山弧(核部)(Xiao Wenjiao et al.,2015; 图1),并显示出显著的航磁异常特征。古地磁数据显示,哈萨克斯坦山弯构造的形成主要经历了两个期次的大角度相对褶曲旋转。第一期发生在晚泥盆世—早石炭世,其北翼岩浆弧相对南翼岩浆弧进行了约112°~126°的顺时针旋转。第二期发生在晚石炭世—二叠纪,北翼岩浆弧在该时期内发生了约15°~28°的顺时针旋转,而南翼岩浆弧则发生了约39°~40°的逆时针旋转(Li Pengfei et al.,2018)。其中第一期旋转动力学机制主要为古亚洲洋俯冲板片的后撤驱动,第二期则是由于西伯利亚、塔里木及波罗地板块的碰撞拼合挤压驱动。
-
蒙古山弯构造位于中亚造山带北部和西伯利亚板块南部,随鄂霍茨克洋自西向东的剪刀式闭合而形成(图1)。其主体由向北东开口并高度弯曲的二叠纪—三叠纪岩浆弧构成(Li Pengfei et al.,2013)。北翼为萨彦-贝加尔-斯塔诺夫岩浆岩带,南翼为中蒙古-额尔古纳-马门地块西缘及邻区岩浆岩带,而核部主要是Zavkhan地块以东的Zag弧弯曲形成。其形成过程主要受控于晚石炭世至侏罗纪西伯利亚板块的顺时针旋转和鄂霍茨克洋的俯冲后撤而剪刀式闭合的联合机制(Wang Tao et al.,2021),具体为北侧安第斯型大陆边缘向南后撤旋转,南侧东西方向的洋内弧向北后撤旋转,造成了岩浆弧向山弯构造内部逐渐年轻,向北东古大洋不断后退迁移(Wang Tao et al.,2021)。
-
图1 中亚造山带三大山弯构造体系
-
Fig.1 Three oroclines in the Central Asian Oroganic Belt
-
与中亚造山带西段、中段同属古亚洲洋构造域的东段经历了相似的链状岛弧增生与褶曲过程,然而相关的山弯构造研究过程却相对欠缺,制约了对整个中亚造山带构造演化的理解。Liu Yongjiang et al.(2021)依据中亚造山带东段构造特征及演化历史,从古生代岩浆弧对比、沉积相特征及古地磁等方面总结了中亚造山带东段链状地质体随古亚洲洋东段闭合的褶曲及山弯构造形成过程,提出了“中国东北山弯构造”的模型。但相关研究仍处于初期阶段,需要更多系统深入的研究来探讨该过程。本文根据目前中亚造山带东段的最新研究进展,在系统分析当前认识的基础上重新厘定了中国东北地区主要构造单元的构造性质,同时进一步解析和完善“中国东北山弯构造”的构造演化过程。
-
2 中亚造山带东段构造演化研究进展
-
2.1 主要构造单元属性的重新认识
-
中亚造山带东段北以鄂霍茨克缝合带为界同西伯利亚板块毗邻,南以索伦克尔-西拉木伦-长春-延吉缝合带为界同华北克拉通相接,东部为西太平洋俯冲增生陆缘。中国东北地区占据其主体核心部分,是了解该地区构造演化的关键。一直以来有许多学者对中国东北地区开展过大量研究(唐克东等,1989; 李锦轶等,1998,2019; Wu Fuyuan et al.,2002,2011; Xiao Wenjiao et al.,2003; 张兴洲等,2012; 周建波等,2012; 徐备等,2014; Liu Yongjiang et al.,2017; 许文良等,2019; 图1,2),划定了自北西向南东由额尔古纳地块、兴安地块、松辽地块及佳木斯-兴凯地块组成的微板块构造格局(徐备等,2014; Liu Yongjiang et al.,2017; 许文良等,2019)。随着研究的深入,特别是高精度地质定年技术的发展,额尔古纳地块和佳木斯-兴凯地块前寒武纪基底的属性基本被证实和认可(Feng Zhiqiang et al.,2018a,2018b; 李伟民等,2020; Liu Yongjiang et al.,2021)。而关于兴安地块和松辽地块的属性认识则存在较大的分歧(吴福元等,2000; 李锦轶等,2019; Liu Yongjiang et al.,2021; Ma Yongfei et al.,2021)。基于近年来的大量年代学数据和研究,我们认为兴安地块和松辽地块为俯冲增生地体,张广才岭是佳木斯地块的陆缘弧(详见下文),并据此进行了构造单元的厘定(图2)。
-
2.1.1 兴安增生地体
-
传统上认为兴安增生地体是一个具有统一前寒武纪结晶基底的古老地块,代表性基底岩石组合为主体分布于大兴安岭北段的兴华渡口群、新开岭群、落马湖群、额尔古纳河组、倭勒根群及佳疙疸组等变质岩系(如:内蒙古自治区地质矿产局,1991; 黑龙江省地质矿产局,1993,1997)。上述岩系均遭受较强的变质变形作用,显示出较为“古老”的岩貌特征。随着地质年代学的发展和大量精确定年数据的获得,发现之前认为的前寒武纪基底岩石组合多为古生代或中生代地质体(孙巍,2014; Sun Wei et al.,2014; 孙巍等,2017; 钱程等,2018b; 表1)。因此,很多学者认为“兴安地块”并不具有统一的前寒武纪基底,而是一个与俯冲作用密切相关的增生带(Li Jinyi,2006; Wu Fuyuan et al.,2011; 孙巍等,2017; 刘永江等,2019; Liu Yongjiang et al.,2021; 表1),由一系列增生杂岩、岛弧岩浆岩带、蛇绿混杂岩带等组成的增生地体(苏养正,1996; Li,2006; Wu Fuyuan et al.,2011; 李仰春等,2013; 孙巍等,2017; Feng Zhiqiang et al.,2018a,2018b),称为兴安增生地体(Wu Fuyuan et al.,2011; Liu Yongjiang et al.,2017; 刘永江等,2019; Ma Yongfei et al.,2021)。
-
有学者将锡林浩特微地块作为兴安地块的一部分,认为兴安地块具有古老的基底(孙立新等,2013a; Xu et al.,2015; 许文良等,2019),或者以兴安增生地体变质岩系或沉积岩系中存在的前寒武纪锆石年龄为依据,认为其具有统一的前寒武纪基底(徐备等,2014; 周建波等,2014; 许文良等,2019)。我们的研究表明,兴安增生地体的大规模形成与新林-喜桂图洋的闭合(500 Ma; Liu Yongjiang et al.,2017; Feng Zhiqiang et al.,2018a,2018b)及贺根山-嫩江洋古洋壳的俯冲后撤密切相关(Ma Yongfei et al.,2020,2021; Liu Yongjiang et al.,2021),由一系列的沟-弧-盆最终闭合增生构成(刘永江等,2019; 李锦轶等,2019)(详见2.2.2节)。
-
图2 东北地区基本构造单元划分图(据Liu Yongjiang et al.,2021修改)
-
Fig.2 Tectonic division of NE China (modified after Liu Yongjiang et al., 2021)
-
2.1.2 松辽增生地体
-
有关“松辽地块”是否具有统一前寒武纪基底的问题也一直具有争议,传统观点认为其具有统一的前寒武纪基底(李双林和欧阳自远,1998; 张梅生等,1998),由张广才岭群、东风山群、一面坡群及风水沟河群等变质岩系组成,但缺乏具体的年代学依据。近期的年代学研究发现上述岩系并非前寒武纪地质体,而是古生代—中生代的地质体(Wang Feng et al.,2012)。吴福元等(2000)对松辽盆地200多个钻孔基底岩石岩芯的研究表明,松辽盆地基底岩性主要由浅变质—未变质的古生代地层、花岗岩和片麻岩组成,形成年代多为晚古生代及晚中生代,这些证据亦说明松辽盆地不存在统一的前寒武纪结晶基底。松辽盆地报道的前寒武纪地质体的分布和规模均十分有限,仅代表局部残存的外来的前寒武纪构造碎片(李锦轶等,2019),并不能反映松辽地块存在前寒武纪的结晶基底,该观点同时也得到了Sr-Nd同位素证据支持(Wu Fuyuan et al.,2011)。因此,“松辽地块”主体不具备统一的前寒武纪基底。
-
近年来松辽盆地西部锡林浩特地区及西缘中部龙江地区(图3)相继报道了前寒武纪地质体的存在,但是其规模都很小,Liu Yongjiang et al.(2021)分别称之为锡林浩特微地块与龙江微地块。锡林浩特微地块的前寒武纪基底年龄主要为中、新元古代(1.5~1.3 Ga; 孙立新等,2013a,2018,2020); 龙江微地块的前寒武纪基底年龄以古元古代为主(1.9~1.8 Ga; 张超等,2018; 程招勋等,2018),少量新太古代年龄(2.7~2.6 Ga; 钱程等,2018a; 吴新伟,2018)。在松辽盆地南缘也有少量前寒武纪年龄报道(图3),包括南缘长春西南部地区的古元古代花岗岩(1.9~1.8 Ga; 裴福萍等,2006; 王颖等,2006),四平东北部的中元古代花岗岩(~1.4 Ga,Li Changhai et al.,2021)。上述地区的前寒武纪地质体规模十分有限,只能说明该区存在古老陆块的碎片(李锦轶等,2019)。Wu Fuyuan et al.(2005)通过年代学对比与Nd同位素研究认为,松辽盆地南缘古老碎块可能来源于华北克拉通等周缘古老陆块,规模较小,仅限于局部地区,松辽盆地的大部与主体基底组成物质仍为古生代花岗质岩(吴福元等,2000)。Li Changhai et al.(2021)则认为四平东北部花岗岩的形成于哥伦比亚超大陆裂解相关的伸展构造背景,其具有波罗地或者劳伦大陆亲缘性,而非源于塔里木、华北或西伯利亚板块等周缘地体,属外来地块。锡林浩特微地块与龙江微地块具有与华北克拉通相似的年代学峰值(Zhao Guochun et al,2012),指示其具有华北亲缘性(Ma Yongfei et al.,2021)。另外,两个微地块代表性岩体具有与华北克拉通相似的Hf同位素和Sr-Nd同位素特征(吴福元等,2000; Wu Fuyuan et al.,2011; 张超等,2018),进一步证实了上述观点。
-
因此,“松辽地块”实质上是一主体由古生代岩浆岩组成的增生地体,其中包含锡林浩特、龙江等前寒武纪微地块和一些古老物质碎片,总体规模较小,在古大洋俯冲过程中通过块体周缘的陆缘增生相互连接聚合拼贴或者胶结于增生岩浆弧中,因此,松辽增生地体主体仍以古生代增生地体为主(Liu Yongjiang et al.,2021; Ma Yongfei et al.,2021)。
-
2.1.3 张广才岭陆缘弧
-
张广才岭位于松辽盆地东缘,佳木斯地块西缘,呈近南北走向展布,向北延伸入俄罗斯境内。传统上认为张广才岭是松辽地块的组成部分(徐备等,2014; Liu Yongjiang et al.,2017; 许文良等,2019)。然而,最近李锦轶等(2019)报道了位于张广才岭西缘的龙凤山蛇绿岩,时代大致为石炭纪。基于此我们推测松辽增生地体的西部边界可能以龙凤山蛇绿岩为界(图2),另外,张广才岭与其西缘松辽增生地体的古生代岩浆事件具有迥异的规律(Liu Yongjiang et al.,2021)。首先,张广才岭报道有很多早古生代岩浆事件,相应的早古生代地质体从敦化北到伊春并向北延伸至俄罗斯远东地区,构成一条南北走向的早古生代岩浆岩带(图8)。而龙凤山蛇绿岩以西的松辽增生地体除了内部锡林浩特、龙江古老残块周围发育有少量早古生代的岩浆事件,主体部分则没有早古生代岩浆事件报道。其次,晚古生代时期,龙凤山蛇绿岩以西的松辽增生地体报道有许多360~300 Ma岩浆事件(Liu Yongjiang et al.,2021),相应地质体总体呈面状展布。而以东的张广才岭地区则以300~240 Ma岩浆事件为主(付俊彧等,2019; Liu Yongjiang et al.,2021)。上述早、晚古生代岩浆事件统计分析表明,张广才岭与松辽增生地体有着不同的古生代岩浆岩分布特征及迁移规律,预示着二者具有不同的构造演化历史,并非统一的构造单元。
-
图3 松辽增生地体及周缘前寒武纪微地块及古老陆块碎片分布特征(英文缩写含义同图2)
-
Fig.3 Precambrian micro-blocks and ancient fragments in the Songliao accretionary terrane (SAT) and adjacent units (see Fig.2 for the abbreviations)
-
另一方面,传统观点认为张广才岭前寒武纪基底的代表性岩石组合为张广才岭群、东风山群、一面坡群及风水沟河群(黑龙江省地质矿产局,1997; 李双林等,1998; 张梅生和彭向东,1998)。然而,近年的年代学研究表明,上述岩石组合多为古生代或中生代的地质体(Wang Feng et al.,2012; Liu Yongjiang et al.,2021),仅在北部的伊春地区存在前寒武纪地质体,主体年龄以新元古代为主(757 Ma,权京玉,2013; 747~561 Ma和805~561 Ma,高福红等,2016; 929~871 Ma,Luan Jinpeng et al.,2019; 821 Ma,Wang Feng et al.,2014)。这些前寒武纪地质体规模一般不大,分布相对集中,从年龄分布特征来看与佳木斯地块基底相似,主体为新元古代,指示其具有佳木斯地块的亲缘性(Liu Yongjiang et al.,2021; Ma Yongfei et al.,2021)。Luan Jinpeng et al.(2019)对伊春地区前寒武纪地质体的变质研究表明,其在492 Ma 和 546~530 Ma两个时期经历了与佳木斯地块同步的两期泛非变质事件(Geng Yuansheng et al.,2018),表明伊春地区新元古代地质体是佳木斯地块前寒武纪基底物质的组成部分。
-
张广才岭地区普遍发育早古生代俯冲增生岩浆岩带。在塔东—曙光一带,发育一系列早古生代岩浆岩(516~420 Ma)(Wang Zhiwei et al.,2017),包括二长岩、二长斑岩、二长花岗岩及黑云母花岗斑岩等酸性侵入岩,岩石地球化学分析表明,其具有钙碱性特征和富集轻稀土元素和大离子亲石元素而亏损重稀土元素和高场强元素的右倾型稀土与微量元素分布特征,是典型的大陆边缘弧性质的岩浆岩(Wang Zhiwei et al.,2017)。此外,分布于张广才岭汤旺河流域及木兰县、尚志市等地的早—中奥陶世宝泉组由大量的流纹质凝灰熔岩、凝灰岩及片理化酸性熔岩等组成(黑龙江省地质矿产局,1997),表明了早古生代频繁的岩浆活动。分布于铁力市安邦一、木兰县六合屯、宜春市十五林场、向阳、宏川等地区的中奥陶世大青组包含了大量的安山岩、辉石安山岩及安山质熔结凝灰岩等中性火山岩(黑龙江省地质矿产局,1997),同样证实了张广才岭地区早古生代频繁的岩浆活动事件。最近的东北地区大地构造相图(1∶150万)编制结果表明(付俊彧等,2019),自张广才岭北部的嘉荫—伊春到南部的塔东—尔站地区,均有早古生代地质体的分布,年龄分布在497~432 Ma之间。
-
上述分析表明,张广才岭具有和佳木斯地块相似的前寒武纪基底组成,两者具有较好的亲缘性,张广才岭主体是早古生代的陆缘岩浆弧,而其西侧的松辽增生地体主体为晚古生代的增生杂岩。另外,原来认为分隔张广才岭和佳木斯地块的黑龙江洋(刘永江等,2019)早古生代并不存在(详见2.2.1节),因此,早古生代张广才岭不可能是原松辽地块的东部陆缘,而应该是佳木斯地块西缘的大陆边缘弧。
-
2.2 主要洋盆及洋陆转换
-
2.2.1 古亚洲洋东段古生代洋陆格局新认识
-
古亚洲洋是一个典型的多岛洋,古生期间由一系列分支洋盆和散布其间的地块、增生地体或洋岛组成(Xiao Wenjiao et al.,2015; Liu Yongjiang et al.,2017)。其最初于新元古代(~750 Ma)随罗迪尼亚超大陆的裂解而形成,位于北半球劳亚古陆和南半球冈瓦纳古陆之间(Zhao Guochun et al.,2018; 马永非,2019),经历了多洋盆多旋回演化与复杂俯冲增生历史,最终于晚古生代末期至早中生代闭合(Xiao Wenjiao et al.,2015; Liu Yongjiang et al.,2021),是一个规模较大、演化时间较长的古大洋,主导了中亚地区的陆壳增生(Şengör et al.,1993,2018; Windley et al.,2002,2007; Xiao Wenjiao et al.,2015)。
-
根据对中亚造山带东段主要构造单元属性的新认识,结合蛇绿混杂岩和大洋地层沉积的研究,我们恢复了古亚洲洋东段古生代的基本洋陆格局。位于现今中国东北地区西部额尔古纳地块、兴安增生地体及松辽增生地体之间的新林-喜桂图洋与贺根山-嫩江洋,以及南部与华北克拉通之间的索伦洋均已基本得到认可(徐备等,2014; Liu Yongjiang et al.,2017; Feng Zhiqiang et al.,2018; 刘永江等,2019; 许文良等,2019; Ma Yongfei et al.,2020,2021); 然而,由于张广才岭是佳木斯地块西缘的陆缘弧,我们就必须重新认识中国东北地区东部古生代的洋陆新格局。传统上将牡丹江—依兰一带的黑龙江杂岩定义为早古生代的蛇绿岩,认为张广才岭和佳木斯地块之间在早古生代时期存在一个黑龙江洋(Wang Zhiwei et al.,2017; 刘永江等,2019; 许文良等,2019)。但是,近年来的年代学研究表明,黑龙江杂岩的形成时代为二叠纪晚期至早中生代(Li Weimin et al.,2011; 吕长禄等,2016; 李伟民等,2020),代表古太平洋俯冲背景下佳木斯地块西缘裂陷形成的晚古生代末期至早中生代寿命有限的小洋盆——牡丹江洋(刘永江等,2019),并非早古生代洋盆。此外,佳木斯地块东缘宝清地区和张广才岭西缘的泥盆纪沉积具有相似的物源组成(Meng En et al.,2010),也进一步说明当时张广才岭和佳木斯地块是一个整体。因此,早古生代张广才岭和佳木斯地块之间不存在黑龙江洋,张广才岭作为佳木斯地块西缘的陆缘弧是由其西侧的龙凤山洋(Liu Yongjiang et al.,2021)向佳木斯地块之下俯冲形成的陆缘弧。
-
综上,古亚洲洋东段古生代基本洋陆格局可划分为西部的额尔古纳地块与兴安增生地体之间的新林-喜桂图洋,兴安增生地体和松辽增生地体之间的贺根山-嫩江洋,东部的佳木斯地块与松辽增生地体之间的龙凤山洋,及南部的松辽增生地体和华北克拉通之间的索伦洋(图4)。
-
2.2.2 额尔古纳地块东南活动陆缘与兴安增生地体的形成
-
“西太平洋型”俯冲来源于现今太平洋西岸俯冲体系的模型总结(Isozaki et al.,2010),显著特点是随着大洋板块由平板俯冲到后撤,形成典型的沟-弧-盆体系(Isozaki et al.,2010),并发育有大量洋岛和海山,最终大洋闭合时形成由多期弧陆碰撞构成的规模较大的增生地体(Hasegawa et al.,2009)。“安第斯型”俯冲是根据太平洋东岸与俯冲相关的安第斯型造山带总结的模型(Ramos,1999; Ramos et al.,2000),其典型特征是前进式平板俯冲与总体挤压的构造背景,在大陆边缘形成俯冲相关岩浆弧,但不发育沟-弧-盆体系(Li Zhengxiang et al.,2012)。
-
图4 古亚洲洋东段早古生代洋陆格局示意图(不具有地理位置意义)
-
Fig.4 Distribution of the Early Paleozoic oceans and continents in the eastern Paleo-Asian Ocean
-
(1)早古生代西太平洋型俯冲。新元古代末期—寒武纪,额尔古纳地块东南缘为西太平洋型的活动大陆边缘,新林-喜桂图洋内发育有嘎仙-吉峰-环宇洋内弧(697~628 Ma)、头道桥洋岛海山(511 Ma)和新林蛇绿岩(669 Ma)等地质体(Feng Zhiqiang et al.,2019; Gou Jun et al.,2020; Liu Yongjiang et al.,2021)。寒武纪晚期这些洋岛和洋内弧拼贴增生于额尔古纳地块东南缘,新林-喜桂图洋闭合(500 Ma)(Feng Zhiqiang et al.,2016; 刘永江等,2019; Liu Yongjiang et al.,2021)。随后,贺根山-嫩江洋持续向额尔古纳地块增生陆缘之下俯冲,多宝山-阿尔山洋内岛弧(510~480 Ma)拼贴增生,形成兴安增生地体的主体部分(刘永江等,2019)。在早奥陶世—早志留世贺根山-嫩江洋向西俯冲后撤,形成多宝山-阿尔山(480~440 Ma)火山弧,在兴安增生地体上大致沿呼玛—新林—大乌苏和雅鲁—兴隆—伊尔施一带拉张形成初始弧后盆地(大乌苏蛇绿岩,~470 Ma; 雅鲁-兴隆镁铁质岩,447~430 Ma)(Feng Zhiqiang et al.,2018a,杨晓平等,2022)。另外,奥陶纪至中—晚志留世,在嫩江—扎兰屯一带形成了系列弧火山岩(杨晓平等,2022)。同时,在早古生代岛弧之间,发育大规模洋板块沉积序列,如卧都河地区的奥陶纪板岩、大理岩和灰岩洋板块序列; 黑河地区的志留纪板岩、粉砂岩、泥岩洋板块序列; 柴河地区的板岩、泥岩夹安山岩洋板块序列等,代表了弧后伸展与弧后盆地的形成(Feng Zhiqiang et al.,2018a; 刘永江等,2019; 杨晓平等,2022)。因此,从新林-喜桂图洋的闭合到贺根山-嫩江洋古洋壳的持续向西俯冲后撤,形成了一系列岛弧与弧后盆地,构成典型西太平洋型沟弧盆体系(图5a~e),这一系列的弧陆碰撞和岛弧拼贴形成了兴安增生地体的主体。
-
(2)晚古生代安第斯型俯冲。晚古生代,贺根山-嫩江洋经历了晚古生代早期(420~360 Ma)的一个平静期,形成了泥鳅河组和大民山组等沉积地层。之后于早石炭世重新开启了俯冲(Liu Yongjiang et al.,2021)。在兴安增生地体东缘(多宝山—扎兰屯)形成了360~330 Ma的晚古生代岩浆弧,在松辽增生地体西缘(龙江—乌兰浩特)则形成了相应的早石炭世岩浆弧,表明了早石炭世贺根山-嫩江洋同时向兴安和初始松辽增生地体之下的双向俯冲作用(Ma Yongfei et al.,2020,2021)。与早古生代不同,晚古生代岩浆弧的代表性岩体规模较小,均具有大陆边缘弧的特征,是典型“安第斯型”俯冲形成的陆缘岩浆弧(图5f~h)。贺根山-嫩江洋最终于早石炭世晚期沿贺根山-黑河缝合带闭合,兴安增生地体与初始松辽增生地体碰撞拼贴(Liu Yongjiang et al.,2017,2021; Ma Yongfei et al.,2020)。
-
2.2.3 佳木斯地块西缘安第斯型俯冲与张广才岭陆缘弧的形成
-
龙凤山蛇绿岩位于黑龙江省五常县东南部龙凤山水库北西侧(李锦轶等,2019),是松辽增生地体与张广才岭陆缘弧的构造结合部位,其围岩基质为一套变质碎屑岩,岩块为蛇纹岩、辉长岩和玄武岩等,将其命名为龙凤山蛇绿岩。并根据混杂岩中辉长岩锆石初步定年结果,认为其可能形成于石炭纪初期(李锦轶等,2019)。结合龙凤山北部黑龙宫以西地区出露的辉长岩,Liu Yongjiang et al.(2021)建议将该构造带作为张广才岭陆缘弧与松辽增生地体之间的缝合线,其前身对应的洋盆称为龙凤山洋。目前龙凤山蛇绿岩和区域相关地质体研究程度较低,关于龙凤山缝合带的具体位置,龙凤山洋的演化等均需要进一步工作。
-
新元古代至早寒武世,佳木斯地块及以西地区的东风山群与塔东群,以发育灰岩、石英砂岩、变质形成的大理岩、石英岩及二云母石英片岩层为主,老道庙沟组及晨明组以灰岩、泥质灰岩层为主,夹泥岩、粉砂岩等细碎屑岩层(黑龙江省地质矿产局,1997)。这些沉积明显缺少火山岩地层,总体构成一套类似被动陆缘型海相沉积序列,且沉积层产状稳定、厚度均一、分选性好,反映出稳定的沉积环境(Wang Feng et al.,2014; 高福红等,2014)。指示该时期龙凤山洋处于稳定的扩张期。晚寒武世—中志留世(500~420 Ma),龙凤山洋向佳木斯地块发生安第斯型俯冲,在佳木斯地块西缘形成张广才岭陆缘岩浆弧(Liu Yongjiang et al.,2021)。原尚志群中识别出来的大规模陆缘火山岩组合,以及塔东-曙光陆缘岩浆弧等形成,其时代大致从北向南依次变新(Wang Zhiwei et al.,2017),反映了龙凤山洋的俯冲始于张广才岭北段并依次向南扩展(图6a、b)。在晚古生代早期的泥盆纪,进入420~360 Ma的岩浆寂静期,龙凤山洋停止俯冲,形成了黑龙宫组的被动陆缘型沉积(图6c; 黑龙江省地质矿产局,1997)。早石炭世,龙凤山洋开启了对松辽增生地体的俯冲,早石炭世末期,龙凤山洋沿张广才岭西缘龙凤山一带闭合(图6d、e; Liu Yongjiang et al.,2021)。
-
图5 额尔古纳地块东南缘早古生代“西太平洋型”俯冲与晚古生代“安第斯型”俯冲
-
Fig.5 The Early Paleozoic “Western Pacific type” and Late Paleozoic “Andean type” subduction along the southeastern margin of the Eguna block
-
相对于兴安增生地体,张广才岭陆缘弧规模较小,主体由早古生代至晚古生代早期龙凤山洋俯冲相关的陆缘岩浆弧组成,缺少洋岛型火山岩和弧后伸展相关沉积盆地,是典型的安第斯型俯冲陆缘造山带(图6b、d)。
-
2.2.4 索伦洋古生代双向俯冲与晚古生代末期—早中生代初剪刀式闭合
-
索伦洋是中亚造山带东段与华北克拉通之间的一个古洋盆,是古亚洲洋东段最南侧的一个分支洋盆。由于与索伦洋古洋壳相关的蛇绿岩为中亚造山带东段最年轻的洋壳物质代表,预示着较其他分支洋盆闭合都晚,多数研究据此将索伦洋作为古亚洲洋东段最终闭合的主洋盆(Xiao Wenjiao et al.,2003,2015; Liu Yongjiang et al.,2017; 许文良等,2019; 李锦轶等,2019)。
-
图6 龙凤山洋古生代“安第斯型”俯冲
-
Fig.6 The Paleozoic “Andean type” subduction of Longfengshan Ocean
-
由于缺失物质记录,古生代之前关于索伦洋的研究相对较少,其可能随着罗迪尼亚超大陆的裂解已经存在(图7a; Ma Yongfei et al.,2021)。古地磁资料研究表明,早古生代华北克拉通伴随着交替性的逆时针和顺时针旋转而向北位移(Huang Baochun et al.,2018),驱使索伦洋古洋壳的俯冲和系列岩浆活动。在华北克拉通北缘,随着索伦洋古洋壳的南向后撤式俯冲,自南向北依次形成了白乃庙岛弧和温都尔庙增生杂岩带(Xiao Wenjiao et al.,2003; 刘敦一等,2003; Zhang Shuanhong et al.,2014; 李俊建等,2015; Ma Shouxian et al.,2019),呈现出“西太平洋型”俯冲特点。而索伦洋古洋壳的北向俯冲则形成了一系列弧岩浆事件,出露于现今的苏左旗地区,可划分为两期,呈现出“安第斯型”俯冲特点(图7b、c)。因此,早古生代索伦洋总体表现为南向的“西太平洋型”和北向的“安第斯型”双向俯冲特征。
-
图7 索伦洋早、晚古生代至中生代双向俯冲构造演化图
-
Fig.7 Tectonic evolution of Solonker Ocean from Early to Late Paleozoic and Early Mesozoic
-
早古生代末期至晚古生代初期阶段,华北克拉通停止了北向的漂移和旋转运动,变得相对静止和稳定(Huang Baochun et al.,2018),同时索伦洋的俯冲运动也逐渐微弱至停止,进入了一个相对稳定的时期(420~360 Ma; Liu Yongjiang et al.,2021)。在此期间,总体以稳定和局部伸展的构造背景为主(张超等,2022),在达茂旗、四子王旗、镶黄旗及奈曼旗一带形成了一套浅海相的砂岩、灰岩、板岩、变泥岩及生物礁等构成的一套岩石组合,称为西别河组,时代置于早泥盆世。在敖汉旗前坤头沟一带,形成了一套总体为地槽型沉积为特点的浅海相砂岩、板岩及灰岩组合,中间夹少量火山岩,称为前坤头沟组(图7d; 内蒙古自治区地质矿产局,1991)。
-
晚泥盆世末期至早石炭世,华北克拉通重新启动了快速的旋转和漂移(Huang Baochun et al.,2018)。与此同时,索伦洋也开启了新一轮双向俯冲。但与早古生代双向俯冲不同,晚古生代至早中生代古洋壳的南向俯冲在华北克拉通北缘造山带处形成了系列岩浆岩(张拴宏等,2007; 刘建峰等,2013),总体为挤压汇聚构造背景,火成岩岩石组合表现出陆缘岩浆弧的特征,表现为“安第斯型”俯冲。而索伦洋的北向俯冲则呈现出幕式特征,各时期岩浆活动前锋随时间推移而不断向南迁移(刘建峰等,2022),分别形成宝力道俯冲增生杂岩、巴彦敖包-迪彦庙俯冲增生杂岩等,显示出“西太平洋型”俯冲后撤特征(图7e、f)。因此,索伦洋晚古生代至早中生代整体显示出向南“安第斯型”和向北“西太平洋型”的双向俯冲特征。
-
大量研究表明,索伦洋最终闭合位置为索伦克尔—西拉木伦—长春—延吉一线,时间大致为晚二叠世至早中三叠世(260~240 Ma; 图7g),自西向东逐渐变新的岩浆岩(刘永江等,2019)和晚二叠世至早中三叠世华北克拉通(逆时针)和中亚造山带东段(顺时针)相对旋转的古地磁资料(Huang Baochun et al.,2018; Ren Qiang et al.,2020; Zhang Donghai et al.,2021a,2021b)指示,其闭合方式为自西向东剪刀式闭合(刘永江等,2019; 许文良等,2019; 李锦轶等,2019)。
-
2.3 古生代弧岩浆岩的分布规律
-
兴安增生地体和张广才岭陆缘岩浆弧是中亚造山带东段早古生代弧岩浆岩增生最为显著的两个构造单元。西部的兴安增生地体(图8),早古生代岩浆事件自南部的东乌旗(500~430 Ma)、到中部的阿尔山—扎兰屯(520~450 Ma)、再到北部的嫩江—多宝山(500~435 Ma)均有分布,空间上组成一条规模巨大的北东向早古生代岩浆岩带(Feng Zhiqiang et al.,2018b; Wang Tao et al.,2018; Liu Yongjiang et al.,2021; 杨晓平等,2022)。岩石组合与地球化学分析显示,兴安岩浆岩带由与俯冲相关的岛弧和洋岛等组成,是新林-喜桂图洋和贺根山-嫩江洋俯冲增生作用的产物,构成了兴安增生地体的主体(Ma Yongfei et al.,2020,2021)。在东部的张广才岭地区(图7),分布一条近南北走向的早古生代岩浆岩带,自南部牡丹江地区(497~461 Ma)延伸至中部和北部的依兰—伊春—嘉荫等地区(516~432 Ma),该岩浆岩带的岩石组合及地化特征显示典型的陆缘岩浆弧特征(Wang Zhiwei et al.,2017; Liu Yongjiang et al.,2021),是龙凤山洋古洋壳向佳木斯地块西缘俯冲增生形成的岩浆弧,构成了张广才岭陆缘弧的主体。
-
对兴安和张广才岭早古生代岩浆事件的年龄统计分析发现,两者有着相同的岩浆演化规律和峰值年龄特征(图9),都发育有500 Ma、479~472 Ma、460 Ma、450 Ma及434 Ma岩浆活动峰值,表明两个岩浆岩带的形成具有同步性,在早古生代晚期可能为一条相互连接的兴安-张广才岭岩浆岩带(Liu Yongjiang et al.,2021)。
-
2.4 古生代沉积建造
-
晚古生代,中国东北及邻区有两个重要的海相地层沉积期,分别为早泥盆世与中二叠世(王成文等,2009)。早泥盆世,松辽盆地以西大兴安岭地区代表性沉积地层为泥鳅河组,代表性岩石组合为灰绿色、黄绿色、灰黑色长石石英砂岩、粉砂岩、泥质粉砂岩、凝灰质粉砂岩,夹生物碎屑灰岩、珊瑚礁灰岩透镜体,下部偶夹少量火山岩。产腕足、珊瑚等化石,是一套浅海相碎屑岩夹碳酸盐岩沉积序列(内蒙古自治区地质矿产局,1991)。松辽盆地以东的张广才岭和佳木斯地区代表性早泥盆世沉积地层为黑龙宫组和黑台组。黑龙宫组也是一套浅海相沉积,由灰绿色、灰黄色、灰紫色砂砾岩、砂岩、凝灰砂岩、灰黑色板岩、结晶灰岩、薄层石灰岩、碎屑石灰岩、泥质页岩组成。黑台组为一套海相—陆相的碳酸盐岩—碎屑岩组合,自下而上划分为3个岩性段。下部为砂砾岩段:由砂岩、砂砾岩、砂质板岩组成; 中部为灰岩段:由砂质灰岩、泥质岩、薄层灰岩等组成; 上部为砂板岩段:由杂砂岩、钙质砂岩与板岩互层夹凝灰砂岩组成(黑龙江省地质矿产局,1997)。在纵向上组成了一个海进韵律和一个海退韵律,构成一个较完整的旋回。灰岩层中产丰富的海相生物化石,有腕足类、珊瑚、苔藓虫、双壳类、棘皮类、三叶虫、层孔虫、牙形刺等(黑龙江省地质矿产局,1993,1997; 王成文等,2009)。可见,整个东北地区早泥盆世沉积反映了古亚洲洋该时期滨岸带的空间展布特征(图10)。
-
图8 早古生代兴安岩浆弧与张广才岭岩浆弧空间展布特征(英文缩写含义同图2; 引自Liu Yongjiang et al.,2021)
-
Fig.8 Distribution of the Early Paleozoic magmatic belts in the Xing'an range and Zhangguangcai range (see Fig.2 for the abbreviations, from Liu Yongjiang et al., 2021)
-
中二叠世,松辽盆地以西地区代表性沉积地层为哲斯组,为一套滨浅海相沉积序列,上部为灰绿、灰色页岩、砂岩,灰黄色含砾粗粒长石砂岩、中细粒长石砂岩夹生物碎屑灰岩透镜体,下部为厚层块状生物灰岩、砂岩和青灰色燧石条带灰岩等。海相碎屑岩、硅酸盐岩是其重要组成序列,含丰富腕足、珊瑚等化石,构成著名的哲斯动物群(内蒙古自治区地质矿产局,1991; 王成文等,2008,2009)。松辽盆地以东张广才岭地区以土门岭组为代表,岩性以砂板岩为主,夹灰岩、酸性凝灰岩及凝灰砂岩透镜体,沉积韵律明显,富产腕足等化石,是一套滨浅海相沉积地层(黑龙江省地质矿产局,1993,1997)。因此,哲斯组与土门岭组共同反映了中二叠世东北地区古亚洲洋滨岸沉积的空间发育特征(图10)。
-
可见,早泥盆世时期,古亚洲洋滨岸带位于额尔古纳地块和佳木斯地块增生岩浆岩带南缘,呈带状展布。中二叠世,随着古亚洲洋的俯冲后撤及额尔古纳-佳木斯地块南缘增生杂岩带向南部的生长,古亚洲洋海岸向南部退却。
-
3 中亚造山带东段山弯构造及其演化
-
3.1 山弯构造的组成
-
3.1.1 额尔古纳-佳木斯地块链及增生岩浆岩带
-
东部地区的古生代构造格局表现为一个完整的由东、中、西三部分组成的山弯构造,其西翼由额尔古纳地块及其东南侧的早古生代兴安增生地体构成; 东翼部为佳木斯地块及其西侧的早古生代张广才岭陆缘弧; 中部为晚古生代松辽增生地体。
-
图9 兴安增生地体(XAT)(a)与张广才岭陆缘弧(ZCMA)(b)早古生代岩浆事件对比
-
Fig.9 Relative probability plots of early Paleozoic magmatic events of XAT (a) and ZCMA (b)
-
古地磁资料表明,中亚造山带东部地质体在早古生代主体位于赤道附近,当时额尔古纳地块陆缘形成兴安增生地体,佳木斯地块陆缘形成张广才岭陆缘增生弧。同时,两地块可能相距较近构成一个带状展布的地块链,之后经历了总体的向北漂移,晚古生代到达北半球,之后持续北移(Kravchinsky et al.,2002; Metelkina et al.,2013; Gordienko et al.,2018; Torsvik,2019; Ren Qiang et al.,2020; Zhang Donghai et al.,2021b)。同时,由于古亚洲洋的俯冲和后撤,导致地块链发生弯曲。二叠纪末期—早三叠世可能由于蒙古鄂霍茨克洋的俯冲使得额尔古纳-兴安地体进一步逆时针旋转。在松辽盆地东部,泛大洋大致在晚石炭世开启了对佳木斯地块东缘的俯冲,导致佳木斯-张广才岭块体也进一步顺时针旋转,松辽增生地体则被围陷于中间部位。山弯核部的最北部可能延伸至俄罗斯远东地区。
-
3.1.2 晚古生代古地理格局
-
王成文等(2009)通过对早泥盆世和中二叠世两个沉积期典型剖面的系统研究发现,在松辽盆地西部,早泥盆世海相地层分布于中蒙古的Saishand地区,向北东延伸至中国境内的阿尔山—满洲里—黑河一带,向北进入俄罗斯远东地区。之后又折回中国境内,在松辽盆地东部地区沿伊春—牡丹江—延吉一线,并环绕佳木斯地块分布(图10)。中二叠世,陆相沉积分布在北部,而南侧为海相,分布于额济纳旗-二连浩特-齐齐哈尔-松辽盆地-佳木斯地块南缘,松辽盆地中生代下部发育有大套的中二叠世哲斯组。
-
总体来说,两个沉积期的地层空间上呈褶曲的带状平行分布特征,早泥盆世晚期地层分布于中二叠世沉积层北部,而且中二叠世沉积表现为北陆南海的特征,说明当时北部为额尔古纳地块-兴安增生地体和佳木斯地块-张广才岭陆缘弧构成的古陆,而南部为古亚洲洋,构造了北陆南海的古地理格局,反映古亚洲洋北岸逐渐向南退却(王成文等,2009; Liu Yongjiang et al.,2021)。以松辽盆地为界,随着山弯构造的形成,西侧地层转为北东向展布,东侧地层转为北西或近南北展布,构成向南开口的弯曲沉积条带(图10),指示晚古生代晚期松辽盆地是一个古亚洲洋的海湾。
-
3.1.3 中国东北与蒙古、俄罗斯远东地区构造单元对比
-
中国东北山弯构造有相当部分均延伸出境,如西翼向南西延伸至中蒙古地区,向北东延伸至俄罗斯境内,东翼也向北延伸至俄罗斯境内。因此,要全面认识中国东北山弯构造,有必要探讨相应地质体在境外的延伸情况。
-
中国东北山弯构造西翼的额尔古纳地块向南西方向的中蒙古地区,Ereendavaa地块也是一个具有元古宙基底的地块,基底物质岩性包括片麻岩、角闪岩、片岩、大理岩等,普遍被后期沉积和火山物质覆盖,并被寒武纪和泥盆纪花岗质岩浆侵入(Badarch et al.,2002)。Idermeg地块在Ereendavaa地块的南部,二者相邻,其基底物质由片麻岩、闪长岩、片岩、千枚岩组成,普遍被新元古代至寒武纪的大理岩、石英岩及砂岩覆盖,并被中晚寒武世花岗质岩浆侵入(Marinov et al.,1973; Badarch et al.,2002)。可见,额尔古纳地块与中蒙古的Ereendavaa和Idermeg两个地块具有相同的基底物质组成。同样,俄罗斯境内的马门地块也具有与额尔古纳地块相似的基底物质组成和早古生代岩浆岩事件(Khanchuk,2006; Serezhnikov and Volkova,2007; Sorokin et al.,2017a)。因此,额尔古纳地块与西南方向中蒙古地区的Ereendavaa和Idermeg地块以及北东方向俄罗斯远东境内的马门地块可以对比(图11),构成Ereendavaa(Idermeg)-额尔古纳-马门联合地块(简写为EEMB)。
-
Fig.10 Sedimentary facies distribution of the Early Devonian and Middle Permian in Northeast China and adjacent area (after Wang Chengwen et al., 2008, 2009)
-
图11 中国东北地区(据Liu Yongjiang et al.,2021)与蒙古中南部(Badarch et al.,2002)和俄罗斯远东地区南部(Sorokin et al.,2017b)构造单元的对比
-
Fig.11 Correlation of the tectonic units in NE China (modified from Liu Yongjiang et al., 2021) and Mongolia (modified from Badarch et al., 2002) and Russia Far-East (modified from Sorokin et al., 2017b)
-
图12 东北主要构造单元寒武纪(约500 Ma)(a、b)、奥陶纪早期(约480 Ma)(c)与早泥盆世(约420 Ma)(d、e、f)的大地构造位置及早古生代构造演化(图例与简称见图14)
-
Fig.12 Tectonic location of main tectonic units of NE China of Cambrian (ca.500 Ma) (a, b) , Early Ordovician (ca.480 Ma) (c) and Early Devonian (ca.420 Ma) (d, e, f) , and their tectonic evolution during Early Paleozoic time (legends and abbreviations refer to Fig.14)
-
在Idermeg以南的南蒙古地区,包括近乎平行的两个北东走向狭长地体:Mandalovoo和Nuhetdavaa地体。其中,Mandalovoo地体主体由奥陶纪—石炭纪火成岩与沉积岩组成的,并经过强烈的构造变形改造作用(Badarch et al.,2002)。Nuhetdavaa地体由志留纪花岗岩、花岗闪长岩,以及晚古生代侵入岩与具沟-弧-盆体系的沉积岩构成。两个地体总体上均缺乏统一的前寒武纪基底,以增生造山为主要成因,同中国境内的兴安增生地体可以对比(图11)。
-
俄罗斯远东境内的布列亚地块主体由古生代及早中生代侵入岩组成(Khanchuk,2006; Sorokin et al.,2011; Sorokin et al,2012),其前寒武纪基底主要为太古宙变质杂岩与变质沉积岩(Zabrodin et al.,2007; Khanchuk,2006; Serezhnikov et al,2007)、元古宙变质沉积地层(Khanchuk,2006; Zabrodin et al.,2007)及新元古代岩浆杂岩(Sorokin et al.,2017b)组成。布列亚地块与佳木斯地块经历了相同的新元古代与早古生代变质事件,说明他们至少在新元古代以来已经是统一的地块(Sorokin et al.,2019)。同时,南部的兴凯地块也具有与佳木斯地块相同的前寒武纪基底与古生代构造岩浆事件,构成统一的近南北展布的布列亚-佳木斯-兴凯地块(简写为BJKB)(图11)。
-
图13 东北主要构造单元晚泥盆世(约360 Ma)大地构造位置(a)及晚古生代构造演化(b~d)(图例与简称见图14)
-
Fig.13 Tectonic location of the main units of NE China in the Late Devonian (ca.360 Ma) (a) , and their tectonic evolution during Late Paleozoic (b~d) (Legends and abbreviations refer to Fig.14)
-
3.2 中国东北山弯构造演化
-
3.2.1 早前寒武纪古亚洲洋活动陆缘
-
早寒武世,EEMB与BJKB的古纬度位于赤道附近(图12a),大致在西伯利亚克拉通的西北方向。且两大地块相距并不远,可能以某个转换断层相隔(图12b)。在EEMB北部(当时的方位,下同),受古亚洲洋洋内俯冲作用影响,形成了头道桥-新林-多宝山洋内岛弧带,构成西太平洋型活动陆缘,以该带为界,将古亚洲洋分割为新林-喜桂图洋和贺根山-嫩江洋(图12b)。在BJKB北部,龙凤山洋向BJKB陆缘发生安第斯型俯冲(图12b)。
-
3.2.2 早古生代古亚洲洋板片俯冲后撤与陆缘岩浆岩带的增生
-
晚寒武世早期(~500 Ma),随着头道桥-新林-嘎仙-吉峰-环宇洋岛和岛弧(未来的兴安增生地体)与额尔古纳地块的拼贴,新林-喜桂图洋闭合(Fig.12c),后缘的贺根山-嫩江洋持续俯冲,开启了兴安增生地体大规模生长的序幕。同时,龙凤山洋对BJKB北缘发生安第斯型俯冲,导致了张广才岭陆缘弧的增生。寒武纪末期,EEMB与BJKB通过构造运移及陆缘增生大致连接形成一个近东西向展布的地块链。奥陶纪—志留纪(485~420 Ma)贺根山-嫩江-龙凤山洋向EEMB-BJKB地块链持续俯冲,兴安增生地体与张广才岭陆缘弧持续增生扩大,同时,地块链发生顺时针旋转,由原来的近东西向展布旋转至北西西向展布(图12d、e)。
-
在中亚造山带东段南缘,索伦洋于早古生代早期开启了双向俯冲模式,南向俯冲在华北克拉通北缘形成了白乃庙岛弧、温都尔庙增生杂岩带等。北向俯冲形成了宝力道岛弧等早古生代增生体,并与锡林浩特微地块和龙江微地块一并构成了松辽增生地体雏形,并在随后索伦洋的俯冲后撤过程中不断增生(图12f)。
-
3.2.3 晚古生代东北山弯的褶曲就位
-
(1)泥盆纪(420~360 Ma)。整个东北亚转入了一个构造-岩浆活动寂静期,在贺根山-嫩江-龙凤山洋周缘发育了被动陆缘型沉积,如泥鳅河组、黑龙宫组等(图13a、b)。
-
(2)早石炭世(360~330 Ma)。索伦洋和贺根山-嫩江-龙凤山大洋再次开始俯冲和后撤,EEMB-BJKB地块链发生弯曲,并继续顺时针旋转,其东南缘转变为安第斯型活动陆缘(图13c)。同时,贺根山-嫩江-龙凤山洋也开始向初始松辽增生地体北缘俯冲。南部索伦洋重新启动了向南侧华北克拉通北缘和北侧松辽增生地体南缘的双向俯冲。
-
图14 东北主要构造单元二叠纪(约260 Ma)大地构造位置(a)及晚古生代末期—中生代构造演化(b~d)
-
Fig.14 Permian (ca.260 Ma) tectonic location (a) and Early Paleozoic-Mesozoic tectonic evolution (b~d) of the major units of NE China
-
AFR—非洲板块; ANT—南极板块; ARB—阿拉伯板块; AUS—澳大利亚板块; BAL—波罗的板块; Tr—塔里木板块; IC—印支板块; IND—印度板块; NAM—北美板块; NC—华北板块; SAM—南美板块; SC—华南板块; SIB—西伯利亚板块; MOO—蒙古-鄂霍次克洋; PAO—古亚洲洋; EEMB—Ereendavaa(Idermeg)-额尔古纳-马门联合地块; BJKB—布列亚-佳木斯-兴凯地块; XAT—兴安增生地体; ZCMA—张广才岭陆缘弧; SAT—松辽增生地体; XXS—新林-喜桂图缝合带; LFS—龙凤山缝合带; SXCYS—索伦克尔-西拉木伦-长春-延吉缝合带
-
AFR—Africa; ANT—Antarctica; ARB—Arabia; AUS—Australia; BAL—Baltica; Tr—Tarim; IC—Indochina; IND—India; NAM—North America; NC—North China; SAM—South America; SC—South China; SIB—Siberia; MOO—Mongo-Okhotsk Ocean; PAO—Paleo-Asian Ocean; EEMB—Ereendavaa-Erguna-Mamyn block; BJKB—Bureya-Jiamusi-Khanka block; XAT—Xing'an accretionary terrane; ZCMA—Zhangguangcai range continental marginal arc; SAT—Songliao accretionary terrane; XXS—Xinlin-Xiguitu suture; LFS—Longfengshan suture; SXCYS—Solonker-Xar Moron-Changchun-Yanji suture
-
(3)晚石炭世(330~310 Ma)。根据Bretshtein and Klimova(2007)的古地磁研究,该时期内中国东北及华北发生了大幅度的向北位移,从原来的低纬度地区到了高纬度地区。贺根山-嫩江-龙凤山洋也于晚石炭世早期(~320 Ma)闭合,松辽增生地体的主体沿贺根山—黑河—龙凤山一线碰撞拼贴于EEMB-BJMB地块链南缘(图13d)。至此,整个东北地区各构造单元聚合为一个统一的地块,部分文献中称为佳蒙地块(王成文等,2008; Liu Yongjiang et al.,2017)。
-
南部索伦洋古洋壳继续发生南北双向俯冲,其中北侧表现为西太平洋型俯冲,随着索伦洋向北的持续俯冲和后撤,导致链状的东北地块群发生向南的弯曲。同时,EEMB北西侧的鄂霍茨克洋可能开启了向EEMB西缘的俯冲,在BJKB东北侧泛大洋开启了向BJKB北缘的俯冲作用。另外,泛大洋向BJKB俯冲的同时也开始出现洋内俯冲,形成洋岛(未来的跃进山增生杂岩)。
-
(4)晚石炭世—中二叠世(310~260 Ma)。伴随着索伦洋向北的持续俯冲和后撤,东北地区东—西两侧地质体发生进一步的相向弯曲,山弯构造的雏形基本形成。同时,泛大洋向西的俯冲导致跃进山杂岩拼贴就位于佳木斯地块东缘(图14a、b)。松辽增生地体南缘因相对褶曲而形成一个向南开口的半封闭海湾,索伦洋继续南北双向俯冲并快速萎缩。且西侧洋盆的缩小速率要远大于东侧,形成空间上西窄东宽的喇叭形洋盆(图14b)。
-
(5)晚二叠世—早中三叠世(260~240 Ma)。索伦洋继续俯冲、后撤,西北部蒙古-鄂霍茨克洋向南东的俯冲和东部泛大洋向西的俯冲进一步导致山弯构造东、西两翼的弯曲。同时华北克拉通发生显著逆时针旋转,导致索伦洋西侧于晚二叠世沿索伦克尔—西拉木伦—长春—延吉一线呈西早东晚的剪刀式闭合(图14c)。在东部,泛大洋洋壳发生俯冲后撤,佳木斯地块进入弧后伸展构造背景,在晚二叠世末—早三叠世沿着牡丹江—依兰发生陆内裂解,牡丹江洋打开(图14c)。
-
(6)晚三叠世—晚侏罗世(230~150 Ma)。随着东部古太平洋的持续俯冲,导致饶河杂岩增生拼贴于佳木斯地块东缘,牡丹江洋闭合,同时,中国东北山湾最终形成(图14d)。
-
4 结论
-
(1)中亚造山带东段主要由具有前寒武纪基底的额尔古纳地块和佳木斯地块及其张广才岭陆缘弧、兴安增生地体以及包含有少量古老残块的松辽增生地体组成,其间分别由古亚洲洋的分支新林-喜桂图洋、贺根山-嫩江洋与龙凤山洋隔开,南部由古亚洲洋主洋盆——索伦洋与南侧华北克拉通相隔。
-
(2)早古生代,西部额尔古纳地块东南部(现今方位,下同)为西太平洋型活动陆缘,发育有嘎仙-吉峰-环宇洋内弧和头道桥洋岛海山,大约500 Ma随着新林-喜桂图洋的关闭,这些洋内弧和洋岛拼贴增生于额尔古纳地块东南缘。随后贺根山-嫩江洋的俯冲和后撤形成了一系列沟-弧-盆体系,持续的俯冲导致弧陆碰撞和陆缘增生,形成兴安增生地体的主体。同时,东部佳木斯地块西部发育有龙凤山洋的安第斯型俯冲活动陆缘,在佳木斯地块西缘形成了张广才岭陆缘弧。伴随着各大洋的俯冲和陆缘增生,额尔古纳地块和佳木斯地块以及它们的陆缘增生带构成了一个早古生代近东西向展布的地块链。南部以锡林浩特-龙江古老残块为核心发生陆缘俯冲,形成松辽增生地体雏形。索伦洋发生双向俯冲,并通过弧陆碰撞产生陆缘增生,总且体呈现出北向安第斯型俯冲和南向西太平洋型俯冲的特点。
-
(3)晚古生代,伴随索伦洋向北的俯冲消减和后撤,总体呈现出北向西太平洋型和南向安第斯型的俯冲特点,而北向俯冲后撤作用导致早古生代形成的地块链不断向南弯曲,构成山弯构造的雏形,索伦洋逐渐演变成半封闭的海湾。晚古生代末期到早中生代索伦洋的最终闭合以及西北部蒙古鄂霍茨克洋和东部泛大洋的俯冲挤压,使山弯构造的两翼进一步旋转与褶曲,早期的古老地块、增生地体、弧岩浆岩、沉积建造等发生汇聚,最终形成一个以额尔古纳地块和兴安增生地体为西翼,佳木斯地块和张广才岭陆缘弧为东翼,松辽增生地体为核心的大规模中国东北山弯构造。
-
参考文献
-
Badarch G, Cunningham D W, Windley B F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Science, 21 (1): 87~110.
-
Carey S W. 1955. The orocline concept in geotectonics. Papers and Proceedings of the Royal Society of Tasmania, 89: 255~289.
-
Cheng Zhaoxun, Wang Yan, Qian Cheng, Yang Xiaoping, Li Zhonghui, Liu Hongwei, Xiao Lin. 2018. The discovery of the Paleoproterozoic metamorphic rocks in Ulanhot, Inner Mongolia, and its geological significance. Geological Bulletin of China, 37(9): 1599~1606 (in Chinese with English abstract).
-
Eldredge S, Bachtadse V, Van Der Voo R. 1985. Paleomagnetism and the orocline hypothesis. Tectonophysics, 119 (1-4): 153~179.
-
Colpron M, Crowley J L, Gehrels G, Long D G F, Murphy D C, Beranek L, Bickerton L. 2015. Birth of the northern Cordilleran orogen, as recorded by detrital zircons in Jurassic synorogenic strata and regional exhumation in Yukon. Lithosphere, 7(5): 541~562.
-
Ding Xue. 2010. Study on metamorphism-deformation of metamorphic rockseries of Jiageda Formation, Manzhouli E'ergona region. Master Degree dissertation of Jilin University ( in Chinese with English abstract).
-
Duane R P, David B S. 1972. An Alaska Jurassic Palaeomagnetic pole and the Alaska Orocline. Nature Physical Science, 237(71): 25~26.
-
Feng Zhiqiang, Liu Yongjiang, Liu Binqiang, Wen Quanbo, Li Weimin, Liu Qing. 2016. Timing and nature of the Xinlin-Xiguitu Ocean: constraints from ophiolitic gabbros in the northern Great Xing'an Range, eastern Central Asian Orogenic Belt. International Journal of Earth Sciences, 105(2): 491~505.
-
Feng Zhiqiang, Liu Yongjiang, Wu Peng, Jin Wei, Li Weiming, Wen Quanbo, Zhao Yingli, Zhou Jianping. 2018a. Silurian magmatism on the eastern margin of the Erguna Block, NE China: evolution of the northern Great Xing'an Range. Gondwana Research, 61(1): 46~62.
-
Feng Zhiqiang, Liu Yongjiang, Li Long, She Hongquan, Jiang Liwei, Du Binying, Liu Yuwei, Li Weimin, Wen Quanbo, Liang Chenyue. 2018b. Subduction, accretion, and collision during the Neoproterozoic-Cambrian orogeny in the Great Xing'an Rang, NE China: insights from geochemistry and geochronology of the Ali River ophiolitic mélange and arc-type granodiorites. Precambrian Research, 311(0): 117~135.
-
Feng Zhiqiang, Liu Yongjiang, Li Long, Jin Wei, Jiang Liwei, Li Weimin, Wen Quanbo, Zhao Yingli. 2019. Geochemical and geochronological constraints on the tectonic setting of the Xinlin ophiolite, northern Great Xing'an Range, NE China. Lithos, 326: 213~229.
-
Fu Junyu, Zhu Qun, Yang Yajun, Zhang Guangyu, Li Dongtao. 2019. Geological Map of the People's Republic of China(1∶5, 000, 000; NE China). Beijing: Geological Publishing House (in Chinese).
-
Gao Fuhong, Yang Yang, Wang Feng, Xu Wenliang. 2014. Determination of the Early Paleozoicstrata in eastern Heilongjiang Province: evidence from field geology and detrital zircon U-Pb geochronology. Earth Science, 39(5): 499~508 (in Chinese with English abstract).
-
Gao Fuhong, Wang Lei, Xu Wenliang, Wang Feng. 2016. Age andprovenance of the Late Paleozoic Strata in Lesser Xing'an Range: evidence from field geology and detrital zircon U-Pb ages. Journal of Jilin University (Earth Science Edition), 46(2): 469~481(in Chinese with English abstract).
-
Geng Yuansheng, Shen Qihan, Song Huixia. 2018. Metamorphic petrology and geology in China: a review. China Geology, 1: 137~157.
-
Gou Jun, Sun Deyou, Ren Yunsheng, Liu Yongjiang, Zhang Shuyi, Fu Changliang, Wang Tianhao, Wu Pengfei, Liu Xiaoming. 2013. Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: geochronological, geochemical and Hf isotopic evidence. Journal of Asian Earth Sciences, 67-68: 114~137.
-
Gou Jun, Sun Deyou, Deng Changzhou, Feng Zhao, Tang Zhongyuan. 2020. Petrogenesis of the Neoproterozoic Xinlin ophiolite, northern Great Xing'an Range, northeastern China: implications for the evolution of thenortheastern branch of the Paleo-Asian Ocean. Precambrian Research, 350: 105925.
-
Guo Runhua, Li Sanzhong, Suo Yanhui, Wang Qian, Zhao Shujuan, Wang Yini, Liu Xiao Guang, Zhou Zaizheng, Li Jing, Lan Haoyuan, Wang Pengchen, Guo Lingli. 2017. Indentation of North China Block into Greater South China Block and Indosinian Orocline. Earth Science Frontiers, 24(4): 171~184 (in Chinese with English abstract).
-
Gordienko I V, Меtеlkin D V, Vetluzhskikh L I, Mikhaltsov N E, Kulakov E V. 2018. New palaeomagnetic data from Argun terrane. Testing its association with Amuria and the Mongol-Okhotsk Ocean. Geophysical Journal International, 213(3): 1463~1477.
-
Han Jie, Zhou Jianbo, Li Long, Song Mingchun. 2017. Mesoproterozoic (~1. 4 Ga) A-type gneissic granites in the Xilinhot terrane, NE China: first evidence for the breakup of Columbia in the eastern CAOB. Precambrian Research, 296: 20~38.
-
Hasegawa A, Nakajima J, Uchida N, Okada T, Zhao D, Matsuzawa T, Umino N. 2009. Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic observations: an overview. Gondwana Research, 16(3-4): 370~400.
-
HBGMR (Heilongjiang Bureau of Geology and Mineral Resources). 1993. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House (in Chinese).
-
HBGMR (Heilongjiang Bureau of Geology and Mineral Resources). 1997. 1∶500, 000 HeilonggongGeological Map (Heilonggong Sheet). Harbin: Heilongjiang Survey Publishing House (in Chinese).
-
Hou Wenzhu, Zhao Guochun, Han Yigui, Eizenhoefer P R, Liu Qian. 2020. A ~2. 5 Ga magmatic arc in ne china: new geochronological and geochemical evidence from the Xinghuadukou complex. Geological Journal, 55(4): 2550~2571.
-
Huang Baochun, Yan Yonggang, Piper J D A, Zhang Donghai, Yi Zhiyu, Yu Shan, Zhou Tinghong. 2018. Paleomagnetic constraints on the paleogeography ofthe East Asian blocks during Late Paleozoic and Early Mesozoic times. Earth-Science Reviews, 186(1): 8~36.
-
IMBGMR (Inner Mongolian Bureau of Geology Mineral Resources). 1991. Regional geology of Inner Mongolia. Beijing: Geological Publishing House (in Chinese).
-
Isozaki Y, Aoki K, Nakama T, Yanai S. 2010. New insight into a subduction-related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese islands. Gondwana Research, 18 (1): 82~105.
-
Johnston S T, Weil A B, Gutié R A G. 2013. Oroclines: thick and thin. Geological Society of America Bulletin, 125(5-6): 643~663.
-
Khanchuk A I. 2006. Geodynamics, Magmatism, and Metallogeny of Eastern Russia, Book 1. Vladivostok: Dal'nauka (in Russian).
-
Kravchinsky V A, Sorokin A A, Courtillot V. 2002. Paleomagnetism of Paleozoic and Mesozoicsediments from the southern margin of Mongol-Okhotsk ocean, Far Eastern Russia. Journal of Geophysical Research: Solid Earth, 107(B10): 2253.
-
Kröner A, Windley B F, Badarch G, Tomurtogoo O, Hegner E, Jahn B M, Gruschka S, Khain E V, Demoux A, Wingate M T D. 2007. Accretionary growth and crustformation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. Geological Society of America Bulletin, 200: 181~209.
-
Li Changhai, Liu Zhenghong, Dong Xiaojie, Xu Zhongyuan, Wen Kai, Wang Shijie, Wang Cheng and Gao Yu. 2021. Mesoproterozoic (1. 4 Ga) magmatism in the liaoyuan accretionary belt, ne china: new implications for tectonic affinity and crustal evolution of microcontinents along the southern central asian orogenic belt. Precambrian Research, 365: 106389.
-
Li Jinyi. 1998. Some new ideas on tectonics of NE China and neighboring areas. Geological Review, 44(4): 339~347 (in Chinese with English abstract).
-
Li Jinyi. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3-4): 207~224.
-
Li Jinyi, Liu Jianfeng, Qu Junfeng, Zheng Rongguo, Zhao Shuo, Zhang Jin, Wang Lijia, Zhang Xiaowei. 2019. Paleozoictectonic units of Northeast China: continental blocks or orogenic Belts? Earth Science, 44(10): 3157~3177 (in Chinese with English abstract).
-
Li Junjian, Dang Zhicai, Zhao Zelin, Shi Yuruo, Liu Dunyi, Li Chao, Qu Wenjun, Wang Cunxian, Fu Chao, Tang Wenlong, Zhang Tong, Wang Shouguang, Zhou Hongying, Zhao Lijun, Liu Xiaoxue. 2015. The Metallogenic Epochs of Bainaimiao Copper Deposit in Inner Mongolia. Acta Geologica Sinica, 89(8): 1448~1457 (in Chinese with English abstract).
-
Li Pengfei, Rosenbaum G. Donchak P J T. 2012. Structural evolution of the Texas Orocline, eastern Australia. Gondwana Research, 22(1): 279~289.
-
Li Pengfei, Rosenbaum G. 2014. Does the Manning Orocline exist? new structural evidence from the Inner Hinge of the Manning Orocline (eastern Australia). Gondwana Research, 25(4): 1599~1613.
-
Li Pengfei, Sun Min, Rosenbaum G, Yuan Chao, Safanova I, Cai Keda, Jiang Yingde, Zhang Yunying. 2018. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Aasian Orogenic Belt. Journal of Asian Earth Sciences, 153: 42~56.
-
Li Pengfei, Sun Min, Tserendash N, Fred J, Hu Wanwan, Chao Yuan. 2021. First structural observation around the hinge of the Mongolian Orocline (Central Asia): implications for the geodynamics of oroclinal bending and the evolution of the Mongol-Okhotsk Ocean. The Geological Society of America Bulletin, 134(7-8): 1994~2006.
-
Li Sanzhong, Jahn B M, Zhao Shujuan, Dai Liming, Li Xiyao, Suo Yanhui, Guo Lingli, Wang Yongming, Liu Xiaochun, Lan Haoyuan, Zhou Zaizheng, Zheng Qiliang, Wang Pengcheng. 2017. Triassic southeastward subduction of north china block to south china block: insights from new geological, geophysical and geochemical data. Earth-Science Reviews, 166: 270~285.
-
Li Shuanglin, Ouyang Ziyuan. 1998. Tectonic framework and evolution of Xing'anling-Mongolian Orogenic Belt (XMOB) and its adjacent region. Marine Geologyand Quaternary Geology, 18(3): 45~54 (in Chinese with English abstract).
-
Li Weimin, Liu Yongjiang, Zhao Yingli, Feng Zhiqiang, Zhou Jianping, Wen Quanbo, Liang Chenyue, Zhang Duo. 2020. Tectonic evolution of the Jiamusi Block, NE China. Acta Petrologica Sinica, 36(3): 665~684 (in Chinese with English abstract).
-
Li Weimin, Takasu A, Liu Yognjiang, Genser J, Zhao Yinglli, Han Guoqing, Guo Xinzhuan. 2011. U-Pb and 40Ar/39Ar age constrains on protolish and high-P/T type metamorphism of the Heilongjiang complex in the Jiamusi massif, NE China. Journal of Mineralogical and Petrological Sciences, 106(6): 326~331.
-
Li Yangchun, Wang Yan, Wu Ganguo, Jin Zheyan, Zhang Da, Yang Xiaoping. 2013. The provenance characteristics of Tongshan Formation in North Zhalantun area of the Da Hinggan Mountains: the constraint of geochemistry and LA-ICP-MS U-Pb dating of detrital zircons. Geology in China, 40(2): 391~402 (in Chinese with English abstract).
-
Li Zhenxiang, Fang Dajun, Powell C M, Lou Gang. 1996. Oroclinal bending and block rotations in South China since the Mesozoic: geological and paleomagnetic evidence. Chinese Science Bulletin, 41(5): 446~450 (in Chinese with English abstract).
-
Li Zhengxiang, Li Xianhua, Chung Sunlin, Lo Chinghua, Xu Xisheng, Li Wuxian. 2012. Magmatic switch-on and switch-off along the south China continental margin since the Permian: transition from an Andean-type to a Western Pacific- type plate boundary. Tectonophysics, 532-535: 271~290.
-
Liu Dunyi, Jian Ping, Zhang Qi, Zhang Fuqin, Shi Yuhui, Shi Guanghai, Zhang lvqiao, Tao hua. 2003. SHRIMP dating of adakities in the Tulingkai ophiolite, Inner Mongolia: evidence for the Early Paleozoic subduction. Acta Geologica Sinica, 77(3): 317~327 (in Chinese with English abstract).
-
Liu Jianfeng, Li Jinyi, Chi Xiaoguo, Feng Qianwen, Hu Zhaochu, Zhou Kun. 2013. Early Devonian felsic volcanic rocks related to the arc-continent collision on the northern margin of North China Craton: evidences of zircon U-Pb dating and geochemical characteristics. Geological Bulletin of China, 32(2-3): 267~278 (in Chinese with English abstract).
-
Liu Jianfeng, Li Jinyi, Zhao Shuo, Zhang Jin, Zheng Rongguo, Zhang Wenlong, Lv Qianlu, Zheng Peixi. 2022. Crustal accretion and Paleo-Asian Ocean evolution during Late Paleozoic-Early Mesozoic in southeastern Central Asian Orogenic Belt: evidence from magmatism in Linxi-Dongwuqi area, southeastern Inner Mongolia. Acta Petrologica Sinica, 38(8): 2181~2215 (in Chinese with English abstract).
-
Liu Yongjiang, Li Weimin, Feng Zhiqiang, Wen Quanbo, Neubauer F, Liang Chenyue. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43: 123~148.
-
Liu Yongjiang, Feng Zhiqiang, Jiang Liwei, Jin Wei, Li Weiming, Guan Qingbin, Wen Quanbo, Liang Chenyue. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China. Acta Petrologica Sinica, 35(10): 3017~3047 (in Chinese with English abstract).
-
Liu Yongjiang, Li Weimin, Ma Yongfei, Feng Zhiqiang, Guan Qingbin, Li Sanzhong, Chen Zhaoxu, Liang Chenyue, Wen Quanbo. 2021. An orocline in the eastern Central Asian Orogenic Belt. Earth-Science Reviews, 221: 103808.
-
Luan Jinpeng, Xu Wenliang, Wang Feng, Wang Zhiwei, Guo Peng. 2017. Age and geochemistry of Neoproterozoic granitoids in the Songnen-Zhangguangcairange massif, NE China: petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 148: 265~276.
-
Luan Jinpeng, Yu Jiejiang, Yu Jielu, Cui Yacuan, Xu Wenliang. 2019. Early Neoproterozoic magmatism and the associated metamorphism in the Songnenmassif, NE China: petrogenesis and tectonic implications. Precambrian Research, 328: 250~268.
-
Lü Changlu, Xiao Qinghui, Feng Junling, Yu Yuejiang, Yang Fushen, Deng Changzhou. 2016. LA-ICP-MS U-Pb ages of zircons from metamorphic basalt and metamorphic accumulated gabbro in Yilan area, Heilongjiang Province, and their geological implications. Geological Bulletin of China, 35(7): 1081~1094 (in Chinese with English abstract).
-
Ma Shouxian, Wang Zongqi, Zhang Yingli, Sun Jianxun. 2019. Bainaimiao arc as an Exotic Terrane Along the Northern Margin of the North China Craton: evidences from petrography, zircon U-Pb dating, and geochemistry of the Early Devonian deposits. Tectonics, 38(8): 2606~2624.
-
Ma Yongfei. 2019. The late Paleozoic tectonic evolution of the central Great Xing'an Range, NE China. PhD degree dissertation of Jilin University (in Chinese with English abstract).
-
Ma Yongfei, Liu Yongjiang, Qin Tao, Sun Wei, Zang Yanqing, Zhang Yujin. 2020. Late Devonian to early Carboniferous magmatism in the western Songliao-Xilinhot block, NE China: implications for eastward subduction of the Nenjiang oceanic lithosphere. Geological Journal, 55(3): 2208~2231.
-
Ma Yongfei, Liu Yongjiang, Peskov Y A, Wang Yan, Song Weimin, Zhang Yujin, Qian Cheng, Liu Tongjun. 2021. Paleozoic tectonics of the eastern Central Asian Orogenic Belt in NE China. China Geology, 4: 1~24.
-
Marinov N A, Zonenshain L P, Blagonravov V A. 1973. Geology of the Mongolian People's Republic. 2. Magmatism, Metamorphism, Tectonic Nedra. Moscow (in Russian).
-
Marshak S. 1988. Kinematics of orocline and arc formation in thin skinned orogens. Tectonics, 7(1): 73~86.
-
Marshak S, Tabor J R. 1989. Structure of the Kingston orocline in the Appalachian fold-thrust belt. Geological Society of America Bulletin, 101(5): 683~701.
-
Marshak S. 2004. Salients, recesses, arcs, oroclines, and syntaxes: a review of ideas concerning the formation of map-view curves in foldthrust belts. In: McClay K R, ed. Thrust Tectonics and Hydrocarbon Systems: AAPG Memoir. AAPG, 82: 131~156.
-
Meng En, Xu Wenliang, Pei Fuping, Yang Debin, Yu Yang, Zhang Xingzhou. 2010. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics, 485(1-4): 42~51.
-
Metelkina D V, Gordienkoc I V, Vetluzhskikhc L I, Mikhaltsov N E. 2013. Geology and Paleomagnetism of the Vendian and Lower Cambrian Deposits from Argun Terrane (Eastern Transbaikalia). Doklady Earth Sciences, 449 (1): 284~289.
-
Miao Laicheng, Fan Weiming, Zhang Fuqin, Liu Dunyi, Jian Ping, Shi Guanghai, Tao Hua, Shi Yuhui. 2003. Zircon SHRIMP geochronology of the Xinkailing Kele complex in the northwestern Lesser Xing'an Range, and its geological implication. Chinese Science Bulletin, 48(22): 2315~2323(in Chinese with English abstract).
-
Miao Laicheng, Liu Dunyi, Zhang Fuqin, Fan Weimin, Shi Yuruo, Xie Hangqiang. 2007. Zircon SHRIMP U-Pb ages of the “Xinghuadukou Group” in Hanjiayuanzi and Xinlin areas and the “Zhalantun Group” in Inner Mongolia, Da Hinggan Mountains. Chinese Science Bulletin, 52 (8): 1112~1124 (in Chinese with English abstract).
-
Mu Dunling, Li Sanzhong, Wang Qian, Zhao Shujuan, Li Xiyao, Zhou Zaizheng, Liu Xiaoguang. 2018. The Early Paleozoic orocline in the eastern Qaidam basin. Acta Petrologica Sinica, 34(12): 3721~3738 (in Chinese with English abstract).
-
Pei Fuping, Xu Wenliang, Yang Debing, Zhao Quanguo, Liu Xiaoming, Hu Zhaohu. 2006. ZirconU-Pb geochronology of basement metamorphic rocks in the Songliao basin. Chinese Science Bulletin, 51(24): 2881~2887 (in Chinese with English abstract).
-
Qian Cheng, Chen Huijun, Lu Lu, Pang Xuejiao, Qin Tao, Wang Yan. 2018a. The Discovery of Neoarchean granite in Longjiang area, Heilongjiang Province. Acta Geoscientica Sinica, 39(1): 27~36 (in Chinese with English abstract).
-
Qian Cheng, Lu Lu, Qin Tao, Li Linchuan, Chen Huijun, Cui Tianri, Jiang Bin, Na Fuchao, Sun Wei, Wang Yan, Wu Xinwei, Ma Yongfei. 2018b. The early Late Paleozoic granitic magmatism in the Zhalantun region, northern Great Xing'an Range, NE China: constraints on the timing of amalgamation of Erguna-Xing'an and Songnen blocks. Acta Geologica Sinica, 92(11): 2190~2214 (in Chinese with English abstract).
-
Qian Cheng, Lu Lu, Wang Yan, Guo Rongrong, Tang Zhen. 2020. Age and geochemistry of amphibolite in Shuangsheng area, eastern Inner Mongolia: new evidence from the Paleoproterozoic basement of Bainaimiao island arc. Geological Bulletin of China, 39(6): 905~918 (in Chinese with English abstract).
-
Quan Jingyu, Chi Xiaoguo, Zhang Rui, Sun Wei, Fan Lefu, Hu Zhaochu. 2013. LA-ICP-MS U-Pb geochronology of detrital zircon from the Neoproterozoic Dongfengshan Group in Songnen masiff and its geological significance. Geological Bulletin of China, 32(2-3): 353~364 (in Chinese with English abstract).
-
RamosV A. 1999. Plate tectonic setting of the Andean Cordillera. Episodes, 22 (3): 183~190.
-
Ramos V A, Aleman A. 2000. Tectonic evolution of the Andes. In: Cordani U G, Thomaz F A, Campos D A, eds. Tectonic Evolution of South America. 31st International Geological Congress, Rio de Janeiro, Brazil, 635~688.
-
Ren Qiang, Zhang Shihong, Gao Yangjun, Zhao Hanqing, Wu Huaichun, Yang Tianshui, Li Haiyan. 2020. New Middle-Late Permian paleomagnetic and geochronological results from Inner Mongolia and their paleogeographic implications. Journal of Geophysical Research: Solid Earth, 125(7): e2019JB019114.
-
Robert J M. 2015. Oroclines in the Tasmanides. Journal of Structural Geology, 80: 72~98. Rosenbaum G. 2014. Geodynamics of oroclinal bending: insights from the Mediterranean. Journal of Geodynamics, 82: 5~15.
-
Şengör A M C, Natal'in B A, Burtman U S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364: 209~304.
-
Şengör A M C. 2013. The Pyrenean Hercynian Keirogen and the Cantabrian Orocline as genetically coupled structures. Journal of Geodynamics, 65: 3~21.
-
Şengör A M C, Natal'In B A, Sunal G, Voo R V D. 2018. Thetectonics of the Altaids: crustal growth during the construction of the continental lithosphere of Central Asia between~750 and~130 Ma ago. Annual Review of Earth and Planetary Sciences, 46(1): 439~494.
-
Serezhnikov A N, Volkov Y R. 2007. In: Vol'skii A S, ed. State Geological Map of the Russian Federation. 1∶1000000. 3rd Generation. Sheet N-52 (Zeya). Far East Series. VSEGEI, St. Petersburg.
-
Shao Jun, Li Yongfei, Zhou Yongheng, Wang Hongbo, Zhang Jing. 2015. Neo-Archaeanmagmatic event in Eguna massif of Northeast China: evidence from the Zircon LA-ICP-MS dating of the gneissic monzogranite from the drill. Journal of Jilin University: Earth Scirnce Edition, 45(2): 364~373.
-
Shaw J, Johnston S T, Gutiérrez-Alonso G. 2015. Orocline formation at the core of Pangea: a structural study of the Cantabrian orocline, NW Iberian Massif. Lithosphere, 8(1): 1941~8264.
-
Shi Wei, ZhangYueqiao, Dong Shuwen, Hu Jiamin, Wiesinger M, Ratschbacher L, Jonckheere R, Li Jianhua, Tian Mi, Chen Hong, Wu Guoli, Ma Licheng, Li Hailong. 2012. Intra-continental Dabashan orocline, southwestern Qinling, central China. Journal of Asian Earth Sciences, 46: 20~38.
-
Sorokin A A, Kotov A B, Salnikova E B, Sorokin A P, Yakovleva S Z, Plotkina Y V, Gorokhovskii B M. 2011. The Early Paleozoic age of granitoids of the Kiviliyskii complex of the Bureya terrane (eastern flank of the Central Asian Fold Belt). Doklady Earth Sciences, 440: 1253~1257.
-
Sorokin A A, Kudryashov N M. 2012. The first geochronological evidence for Late Paleozoic granitoid magmatism in the Bureya Terrane (east of the Central Asian Fold Belt). Doklady Earth Sciences, 447(2): 1292~1296.
-
Sorokin A A, Ovchinnikov R O, Kudryashov N M, Kotov A B, Kovach V P. 2017a. Two stages of Neoproterozoic magmatism in the evolution of the Bureya continental massif of the Central Asian Fold Belt. Russian Geology and Geophysics, 58(10): 1171~1187.
-
Sorokin A A, Kudryashov N M, Kotov A B, Kovach V P. 2017b. Age and tectonic setting of the early Paleozoic magmatism of the Mamyn Terrane, Central Asian Orogenic Belt, Russia. Journal of Asian Earth Sciences, 144: 22~39.
-
Sorokin A A, Ovchinnikov R O, Xu W L, Kovach V P, Yang H, Kotov A B, Ponomarchuk V A, Travin A V, Plotkina Y V. 2019. Ages and nature of the protolith of the Tulovchikha metamorphic complex in the Bureyamassif, Central Asian Orogenic Belt, Russia: evidence from U-Th-Pb, Lu-Hf, Sm-Nd, and 40Ar/ 39Ar data. Lithos, 332-333: 340~354.
-
Sun wei, Chi Xiaoguo, Zhao Zhi, Pan Shiyu, Liu Jianfeng, Zhang Rui, Quan Jinyu. 2014. Zircon geochronology constraints on the age and nature of‘Precambrian metamorphic rocks’in the Xing'an block of Northeast China. International Geology Review, 56(6): 672~694.
-
Su Yangzheng. 1996. Paleozoic stratigraphy of Hinggan stratigraphical province. Jilin Geology, 15(3-4): 23~34 (in Chinese with English abstract).
-
Sun Lixin, Ren Bangfang, Zhao Fengqing, Gu Yongchang, Li Yanfeng, Liu Hui. 2013a. Zircon U-Pb dating and Hf isotopic compositions of the Mesoporterozoic granitic gneiss in Xilinhot Block, Inner Mongolia. Geological Bulletin of China, 32(2-3): 327~340 (in Chinese with English abstract).
-
Sun Lixin, Ren Bangfang, Zhao Fengqing, Ji Shiping, Geng Jianzhen. 2013b. Late Paleoproterozoic magmatic records in the Eergunamassif: evidences from the zircon U-Pb dating of granitic gneisses. Geological Bulletin of China, 32(2): 341~352 (in Chinese with English abstract).
-
Sun Lixin, Ren Bangfang, Wang Shuqing, Xu Xinying, Zhang Yun. 2018. Petrogenesis of the Mesoproterozoic Gneissic Granite in the Sonid Left Banner Area, Inner Mongolia, and its tectonic implications. Acta Geologica Sinica, 92(11): 2167~2189 (in Chinese with English abstract).
-
Sun Lixin, Zhang Yun, Li Yanfeng, Xu Fan, Ren Bangfang. 2020. Zircon U-Pb age and geochemistry of the Mesoproterozoic gneissic granite from Abaga Banner, Inner Mongolia and its tectonic significances. Acta Petrologica Sinica, 36(3): 781~798 (in Chinese with English abstract).
-
Sun Wei. 2014. Zircon geochronology constraints on the age and nature of “Precambrian metamorphic rocks” and Lower Paieozoic in the Xing'an block of northeast China. PhD degree dissertation of Jilin University (in Chinese with English abstract).
-
Sun Wei, Chi Xiaoguo, Song Weimin, Zhao Zhi, Liu Jianfeng, Pan Shiyu, Zhang Rui, Quan Jingyu, Si Xiaoliang, Na Fuchao, Ma Yongfei, Zang Yanqing, Liu Yingcai. 2017. Zircon Geochronology Constraints on the Age and Nature of ‘Precambrian Metamorphic Rocks’ in the Xing'an Block of Northeast China. Geological Review, 63: 293~294 (in Chinese with English abstract).
-
Tang Jian, Xu Wenliang, Wang Feng, Wang Wei, Xu Meijun, Zhang Yihan. 2013. Geochronology and geochemistry of Neoproterozoic magmatism in the Ergunamassif, NE China: petrogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian Research, 224: 597~611.
-
Tang Kedong. 1989. On tectonic development of the fold belts in the north margin of Sino-Koreanplatform. Geosecience, 3(2): 198~204.
-
Torsvik T H. 2019. Earth history: a journey in time and space from base to top. Tectonophysics, 760: 297~313.
-
Wang Chengwen, Jin Wei, Zhang Xingzhou, Ma Zhihong, Chi Xiaoguo, Liu Yongjiang, Li Ning. 2008. New understanding of the Late Paleozoic tectonics in Northeastern China and adjacent areas. Journal of Stratigraphy, 32(2): 119~136.
-
Wang Chengwen, Sun Yuewu, Li Ning, Zhao Guowei, Ma Xiaoqin. 2009. Tectonic implications of Late Paleozoic stratigraphic distribution in Northeast China and adjacent region. Science China: Serie D-Earth Science, 52(5): 619~626.
-
Wang Feng, Xu Wenliang, Meng En, Cao Huahua, Gao Fuhong. 2012. Early Paleozoic amalgamation of the Songnen-Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: geochronological and geochemical evidence from granitoids and rhyolites. Journal of Asian Earth Sciences, 49: 234~248.
-
Wang Feng, Xu Wenliang, Gao Fuhong, Zhang Haihong, Pei Fuping, Zhao Lei, Yang Yang. 2014. Precambrian terrane within the Songnen-Zhangguangcai range massif, NE China: evidence from U-Pb ages of detrital zircons from the Dongfengshan and Tadong Groups. Gondwana Research, 26(1): 402~413.
-
Wang Tao, Tong Ying, Wang Xiaoxia, Mao Jianren, Zhang Hongrui, Huang He, Li Shan, Guo Lei, Zhang Jianjun. 2018. Some progress on understanding the Phanerozoic granitoids in China. China Geology, 1: 84~108.
-
WangTao, TongYing, XiaoWenjiao, Guo Lei, Windley B F, Donskaya T, Li Shan, Narantsetseg T, Zhang Jianjun. 2021. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age-data. National Science Reviews, 9(5): 167~178.
-
Wang Ying, Zhang Fuqin, Zhang Dawei, Miao Laicheng, Li Tiesheng, Xie Hangqiang, Meng Qingren, Liu Dongyi. 2006. Zircon SHRIMP U-Pb dating of meta-diorite from the basement of the Songliaobasin and its geological significance. Chinese Science Bulletin, 51(15): 1877~1883 (in Chinese with English abstract).
-
Wang Zhiwei, Pei Fuping, Xu Wenliang, Cao Huahua, Wang Zijin. 2015. Geochronology and geochemistry of Late Devonian and Early Carboniferous igneous rocks of central Jilin Province, NE China: implications for the tectonic evolution of the eastern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 97: 260~278.
-
Wang Zhiwei, Xu Wenliang, Pei Fuping, Guo Peng, Wang Feng, Li Yu. 2017. Geochronology and geochemistry of early Paleozoic igneous rocks from the Zhangguangcai range, northeastern China: constraints on tectonic evolution of the eastern Central Asian Orogenic Belt. Lithosphere, 9 (5): 119~132.
-
Weil A B, Gutiérrez-Alonso G, Conan J. 2010. New time constraints on lithospheric-scale oroclinal bending of the Ibero-Armorican Arc: a palaeomagnetic study of earliest Permian rocks from Iberia. Journal of the Geological Society, 167(1): 127~143.
-
Windley B F, Kroner A, Guo Jinghui, Qu Guosheng, Li Yingyi, Zhang Chi. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. Journal of Geology, 110: 719~739.
-
Windley B F, Alexeiev D, Xiao Wenjiao, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164: 31~47.
-
Wu Cailai, Chen Anze, Gao Qianming, Zheng Yuan, Gao Yuanhong, Lei Min, Qing Haipeng. 2010. Discovery of the Paleo-proterozoic Granite in Taoshan, Yichun, Northeastern China. Acta Geologica Sinica, 84(9): 1325~1332 (in Chinese with English abstract).
-
Wu Fuyuan, Sun Deyou, Li Huimin, Wang Xiaolin. 2000. Zircon U-Pb ages of the basement rocks beneath the Songliao basin, NE China. Chinese Science Bulletin, 45(16): 1514~1518 (in Chinese with English abstract).
-
Wu Fuyuan, Sun Deyou, Li Huimin, Jahn B M, Wilde S A. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology, 187: 143~173.
-
Wu Fuyuan, Zhao Guochun, Wilde S A, Sun Deyou. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523~545.
-
Wu Fuyuan, Sun Deyou, Ge Wenchun, Zhang Yanbin, Grant M l, Wilde S, Jahn B M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1~30.
-
Wu Xinwei, Zhang Chao, Zhang Yujin, Guo Wei, Cui Tianri, Yang Yajun, Hu Jianfei, Song Wangbing. 2018. 2. 7 Ga Monzogranite on the Songnen massif and its geological implications. Acta Geologica Sinica (English Edition), 92: 801~802.
-
Wu Xinwei. 2018. Late Paleozoic Tectonic evolution of the orogenic belt insouthern of Zhalantun area, Inner mongolia. PhD degree dissertation of Jilin University (in Chinese with English abstract).
-
Xiao Wenjiao, Windley B F, Hao Jiejing, Zhai Mingguo. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt. Tectonics, 22: 1069~1089.
-
Xiao Wenjiao, Windley B F, Huang Baochun, Han Chunming, Yuan Chao, Chen Hanlin, Sun Ming, Sun Shu, Li Jiliang. 2009. End-Permian to Mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98: 1189~1217.
-
Xiao Wenjiao, Windley B F, Sun Shu, Li Jiliang, Huang Baochun, Han Chunming, Yuan Chao, Sun Ming, Chen Hanlin. 2015. A tale of amalgamation of three Permo-Triassic collage systems in central Asia: oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43: 477~507.
-
Xiao Wenjiao, Windley B F, Han Chunming, Liu Wei, Wan Bo, Zhang Jien, Ao Songjian, Zhang Zhiyong, Song Doingfang. 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Science Reviews, 186: 94~128.
-
Xu Bei, Zhao Pan, Bao Qingzhong, Zhou Yongheng, Wang Yanyang, Luo Zhiwen. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Mengorogenic belt (XMOB). Acta Petrologica Sinica, 30(7): 1841~1857 (in Chinese with English abstract).
-
Xu Bei, Zhao Pan, Wang Yangyang, Liao Wen, Luo Zhiwen, Bao Qingzhong, Zhou Yongheng. 2015. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183~196.
-
Xu Meijun, Xu Wenliang, Wang Feng, Gao Fuhong. 2012. Age, association and provenance of the “Neoproterozoic” Fengshuigouhe Group in the northwestern Lesser Xing'an Range, NE China: constraints from zircon U-Pb geochronology. Journal of Earth Science, 23(6): 786~801.
-
Xu Wenliang, Sun Chenyang, Tang Jie, Luan Jinpeng, Wang Feng. 2019. Basement nature and tectonic evolution of the Xing'an-Mongolian orogenic belt. Earth Science, 44(5): 1620~1646 (in Chinese with English abstract).
-
Yang Hao, Ge Wenchun, Zhao Guochun, Bi Junhui, Wang Zhihui, Dong Yu, Xu Wenliang. 2017. Zircon U-Pb ages and geochemistry of newly discovered Neoproterozoic orthogneisses in the Mishan region, NE China: constraints on the high-grade metamorphism and tectonic affinity of the Jiamusi-Khanka Block. Lithos, 268-271: 16~31.
-
Yang Huaben, Liu Yu, Zheng Jilin, Liang Zhongkai, Wang Xiaoyong, Tang Xuefeng, Su Yanping. 2017. Petrogenesis and geological significance of Neoproterozoic amphibolite and granite in Bowuleshan area, Ergunamassif, Northeast China. Geological Bulletin of China, 36(2-3): 342~356 (in Chinese with English abstract).
-
Yang Xianli. 2007. Geological characteristics and study of detrical zircon geochronology of epimetamorphic rock series in Zhalantun area. Master degree dissertation of Jilin University (in Chinese with English abstract).
-
Yang Xiaoping, Zhong Hui, Yang Yajun, Jiang Bin, Qian Cheng, Ma Yongfei, Zhang Chao. 2022. Research progress on the subduction-accretion complex: reconstruction of the tectonic framework of the Great Xing'an Range. Earth Science Frontiers, 29(2): 94~114 (in Chinese with English abstract).
-
Zabrodin V Y, Gur'yanov V A, Kislyakov S G, Kremenetskaya N A, Makhinin A V, Opalikhina E S. 2007. In: Roganov G V, Ed. State Geological Map of the Russian Federation. 1∶1000000. 3rd Generation. Sheet N-53 (Shantar Islands). St. Petersburg: Far East Series.
-
Zhao Shuo, Xu Wenliang, Tang Jie, Li Yu, Guo Peng. 2016a. Neoproterozoicmagmatic events and tectonic attribution of the Erguna massif: constraints from geochronological, geochemical and Hf isotopic data of intrusive rocks. EarthScience, 41(11): 1803~1829 (in Chinese with English abstract).
-
Zhao Shuo, Xu Wenliang, Wang Feng, Wang Wei, Tang Jie, Zhang Yihan. 2016b. Neoproterozoicmagmatisms in the Erguna massif, NE China: evidence from zircon U-Pb geochronology. Earth Science, 40(3): 559~573 (in Chinese with English abstract).
-
Zhang Chao, Wu Xinwei, Liu Zhenghong, Zhang Yujin, Guo Wei, Quan Jingyu. 2018. Precambrian geological events on the western margin of Songnen massif: evidence from LA-ICP-MS U-Pb geochronology of zircons from Paleoproterozoic granite in the Longjiang area. Acta Petrologica Sinica, 34(10): 3137~3152 (in Chinese with English abstract).
-
Zhang Chao, Quan Jingyu, Zhang Li, Ge Jintao, Zhang Lidong. 2022. Devonian extension of the eastern section of the northern margin of the North China Plate: evidence from post-collision magmatic rocks in Changtu area, northern Liaoning Province. Acta Petrologica Sinica, 38(8): 2345~2363 (in Chinese with English abstract).
-
Zhang Donghai, Huang Baochun, Meert J G, Zhao Jie, Zhao Qian. 2021a. Micro-blocks in NE Asia amalgamated into the unified Amuria block by 300 Ma: first paleomagnetic evidence from the Songliao block, NE China. Journal of Geophysical Research: Solid Earth, 126: 3~21.
-
Zhang Donghai, Huang Baochun, Zhao Guochun, Meert J G, Williams S, Zhou Tinghong. 2021b. Quantifying the extent of the Paleo-Asian Ocean during the Late Carboniferous to Early Permian. Geophysical Research Letters, 48: e2021GL094498.
-
Zhang Meisheng, Peng Xiangdong, Sun Xiaomeng. 1998. The paleozoic tectonic geographical pattern of Northeast China. Liaoning Geogloy, 2: 91~96 (in Chinese with English abstract).
-
Zhang Shuanhong, Zhao Yue, Liu Jian, Hu Jianming, Chen Zhengle, Li Miao, Pei Junling, Chen Zhenyu, Zhou Jianxiong. 2007. Emplacement depths of the Late Paleozoic-Mesozoic granitoid intrusions from the northern North China block and their tectonic implications. Acta Petrologica Sinica, 23(3): 625~638 (in Chinese with English abstract).
-
Zhang Shuanhong, Zhao Yue, Ye Hao, Liu Jianming, Hu Zhaochu. 2014. Origin and evolution of the Bainaimiao arc belt: implications for crustal growth in the southern Central Asian Orogenic belt. Geological Society of American Bulletin, 126(9-10): 1275~1300.
-
Zhang Xingzhou, Ma Yuxia, Chi Xiaoguo, Zhang Fengxu, Sun Yuewu, Guo Ye, Zeng Zhen. 2012. Discussion on Phanerozoic Tectonic Evolution in Northeastern China. Journal of Jilin University (Earth Science Edition), 42(5): 1269~1285 (in Chinese with English abstract).
-
Zhang Yihan, Xu Wenliang, Tang Jie, Wang Feng, Xu Meijun, Wang Wei. 2014. Age and provenance of the Ergunahe Group and the Wubinaobao Formation, northeastern Inner Mongolia, NE China: implications for tectonic setting of the Erguna massif. International Geology Review, 56(6): 653~671.
-
Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13~54.
-
Zhao Guochun, Wang Yuejun, Huang Baochun, Dong Yunpeng, Li Sanzhong, Zhang Guowei, Yu Shan. 2018. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262~286.
-
Zhou Jianbo, Zeng Weishun, Cao Jialin, Han Jie, Guo Xiaodan. 2012. The tectonic framework and Evolution of the NE China: from ~500 Ma to 180 Ma. Journal of Jilin University (Earth Science Edition), 42(5): 1298~1329 (in Chinese with English abstract).
-
Zhou Jianbo, Wang Bin, Zeng Weishun, Cao Jialin. 2014. Detrital zircon U-Pb dating of the Zhalantun Metamorphic Complex and its tectonic implications, Great Xing'an, NE China. Acta Petrologica Sinica, 30(7): 1879~1888 (in Chinese with English abstract).
-
程招勋, 汪岩, 钱程, 杨晓平, 李中会, 刘洪伟, 肖林. 2018. 内蒙古乌兰浩特古元古代变质岩系的发现及其地质意义. 地质通报, 37(9): 1599~1606.
-
丁雪. 2010. 满洲里-额尔古纳地区佳疙疸组变质岩系变质变形研究. 吉林大学硕士学位论文.
-
付俊彧, 朱群, 杨雅君, 张广宇, 李东涛. 2019. 中国大地构造相图(1∶5, 000, 000; 东北). 北京: 地质出版社.
-
高福红, 杨扬, 王枫, 许文良. 2014. 黑龙江省东部早古生代地层的确定: 地质与碎屑锆石U-Pb年代学证据. 地球科学: 中国地质大学学报, 39(5): 499~508.
-
高福红, 王磊, 许文良, 王枫. 2016. 小兴安岭“晚古生代”地层的时代与物源: 地质与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 46(2): 170~182.
-
郭润华, 李三忠, 索艳慧, 王倩, 赵淑娟, 王旖旎, 刘晓光, 周在征, 李瑾, 兰浩圆, 王鹏程, 郭玲莉. 2017. 华北地块揳入大华南地块和印支期弯山构造. 地学前缘, 24(4): 171~184.
-
黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社.
-
黑龙江省地质矿产局. 1997. 黑龙江省岩石地层. 武汉: 中国地质大学出版社.
-
李锦轶. 1998. 中国东北及邻区若干地质构造问题的新认识. 地质论评, 44: 339~347.
-
李锦轶, 刘建峰, 曲军峰, 郑荣国, 赵硕, 张进, 王励嘉, 张晓卫. 2019. 中国东北地区古生代构造单元: 地块还是造山带? 地球科学, 44(10): 3157~3177.
-
李俊建, 党智财, 赵泽霖, 石玉若, 刘敦一, 李超, 屈文俊, 王存贤, 付超, 唐文龙, 张彤, 王守光, 周红英, 赵丽君, 刘晓雪. 2015. 内蒙古白乃庙铜矿床的成矿时代——来自SHRIMP锆石U-Pb和辉钼矿Re-Os年龄的新证据. 地质学报, 89(8): 1448~1457.
-
李双林, 欧阳自远. 1998. 兴蒙造山带及邻区的构造格局与构造演化. 海洋地质与第四纪地质, 18(3): 45~54.
-
李伟民, 刘永江, 赵英利, 冯志强, 周建平, 温泉波, 梁琛岳, 张夺. 2020. 佳木斯地块构造演化. 岩石学报, 36(3): 665~684.
-
李仰春, 汪岩, 吴淦国, 金哲岩, 张达, 杨晓平. 2013. 大兴安岭北段扎兰屯地区铜山组源区特征: 地球化学及碎屑锆石U-Pb年代学制约. 中国地质, 40(2): 391~402.
-
李正祥, 方大钧, Powell C M, 楼刚. 1996. 华南中生代以来弯山构造的发育和地块相对旋转-地质和古地磁证据. 科学通报, 41(5): 446~450.
-
刘敦一, 简平, 张旗, 张福勤, 石玉若, 施光海, 张履桥, 陶华. 2003. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据. 地质学报, 77(3): 317~327.
-
刘建峰, 李锦轶, 迟效国, 冯乾文, 胡兆初, 周坤. 2013. 华北克拉通北缘与弧-陆碰撞相关的早泥盆世长英质火山岩-锆石U-Pb定年及地球化学证据. 地质通报, 32(2-3): 267~279.
-
刘建峰, 李锦轶, 赵硕, 张进, 郑荣国, 张文龙, 吕前露, 郑培玺. 2022. 中亚造山带东南部晚古生代-早中生代地壳增生和古亚洲洋演化: 来自内蒙古东南部林西-东乌旗地区岩浆岩的证据. 岩石学报, 38(8): 2181~2215.
-
刘永江, 冯志强, 蒋立伟, 金巍, 李伟民, 关庆彬, 温泉波, 梁琛岳. 2019. 中国东北地区蛇绿岩. 岩石学报, 35(10): 3017~3047.
-
吕长禄, 肖庆辉, 冯俊岭, 于跃江, 杨福深, 邓昌洲. 2016. 黑龙江依兰地区变玄武岩及变堆晶辉长岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 地质通报, 35(7): 1081~1094.
-
马永非. 2019. 大兴安岭中段晚古生代构造演化研究. 吉林大学博士毕业论文.
-
苗来成, 范蔚茗, 张福勤, 刘敦一, 简平, 施光海, 陶华, 石玉若. 2003. 小兴安岭西北部新开岭-科洛杂岩锆石 SHRIMP 年代学研究及其意义. 科学通报, 48(22): 2315~2323.
-
苗来成, 刘敦一, 张福勤, 范蔚茗, 石玉若, 颉颃强. 2007. 大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄. 科学通报, 52(8): 591~601.
-
牟墩玲, 李三忠, 王倩, 赵淑娟, 李玺瑶, 周在征, 刘晓光. 2018. 柴达木盆地东缘早古生代弯山构造. 岩石学报, 34(12): 3721~3738.
-
内蒙古自治区地质矿产局. 1991. 内蒙古区域地质. 北京: 地质出版社.
-
裴福萍, 许文良, 杨德彬, 赵全国, 柳小明, 胡兆初. 2006. 松辽盆地基底变质岩中锆石U-Pb年代学及其地质意义. 科学通报, 51(24): 2881~2887.
-
钱程, 陈会军, 陆露, 庞雪娇, 秦涛, 汪岩. 2018a. 黑龙江省龙江地区新太古代花岗岩的发现. 地球学报, 39(1): 27~36.
-
钱程, 陆露, 秦涛, 李林川, 陈会军, 崔天日, 江斌, 那福超, 孙巍, 汪岩, 吴新伟, 马永非. 2018b. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用-对额尔古纳-兴安地块和松嫩地块拼合时限的制约. 地质学报, 92(11): 2190~2214.
-
钱程, 陆露, 汪岩, 郭荣荣, 唐振. 2020. 内蒙古白乃庙岛弧发现古元古代变质基底—来自双胜地区斜长角闪岩年龄和地球化学的证据. 地质通报, 39(6): 905~918.
-
权京玉, 迟效国, 张蕊, 孙巍, 范乐夫, 胡兆初. 2013. 松嫩地块东部新元古代东风山群碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 地质通报, 32(2): 353~353.
-
邵军, 李永飞, 周永恒, 王宏博, 张璟. 2015. 中国东北额尔古纳地块新太古代岩浆事件—钻孔片麻状二长花岗岩锆石LA-ICP-MS测年证据. 吉林大学学报(地球科学版), 45(2): 364~373.
-
苏养正. 1996. 兴安地层区的古生代地层. 吉林地质, 15(3-4): 23~34.
-
孙立新, 任邦方, 王树庆, 许新英, 张云. 2018. 内蒙古苏尼特左旗中元古代片麻状花岗岩的成因及大地构造意义. 地质学报, 92(11): 2167~2189.
-
孙立新, 任邦方, 赵凤清, 谷永昌, 李艳峰, 刘卉. 2013a. 内蒙古锡林浩特地块中元古代花岗片麻岩的锆石U-Pb年龄和Hf同位素特征. 地质通报, 32(2-3): 327~340.
-
孙立新, 任邦方, 赵凤清, 冀世平, 耿建珍. 2013b. 内蒙古额尔古纳地块古元古代末期的岩浆记录——来自花岗片麻岩的锆石U-Pb年龄证据. 地质通报, 32(2): 341~352.
-
孙立新, 张云, 李艳锋, 许凡, 任邦方. 2020. 内蒙古阿巴嘎旗中元古代片麻状花岗岩锆石U-Pb年龄、地球化学特征及大地构造意义. 岩石学报, 36(3): 781~798.
-
孙巍. 2014. 兴安地块“前寒武纪变质岩系”-下古生界锆石年代学研究及其构造意义. 吉林大学博士毕业论文.
-
孙巍, 迟效国, 宋维民, 赵芝, 刘建峰, 潘世语, 张蕊, 权京玉, 司秋亮, 那福超, 马永非, 臧延庆, 刘英才. 2017. 对兴安地块前寒武纪变质基底的质疑——来自大兴安岭地区“前寒武纪”变质岩系锆石LA-ICP-MS U-Pb年代学证据. 地质论评, 63(增): 293~294.
-
唐克东. 1989. 中朝陆台北侧褶皱带构造发展的几个问题. 现代地质, 3(2): 195~204.
-
王成文, 金巍, 张兴洲, 马志红, 迟效国, 刘永江, 李宁. 2008. 东北及邻区晚古生代大地构造属性新认识. 地层学杂志, 32(2): 119~136.
-
王成文, 孙跃武, 李宁, 赵国伟, 马小琴. 2009. 中国东北及邻区晚古生代地层分布规律的大地构造意义. 中国科学(D辑), 39(10): 1429~1437.
-
王颖, 张福勤, 张大伟, 苗来成, 李铁胜, 颉颃强, 孟庆任, 刘敦一. 2006. 松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义. 科学通报, 51(15): 1811~1816.
-
吴才来, 陈安泽, 高前明, 郑元, 郜源红, 雷敏, 秦海鹏. 2010. 东北伊春地区桃山古元古代花岗岩的发现. 地质学报, 84(9): 1324~1332.
-
吴福元, 孙德有, 李惠民, 汪筱林. 2000. 松辽盆地基底岩石的锆石U-Pb年龄. 科学通报, 45(6): 656~660.
-
吴新伟. 2018. 内蒙古扎兰屯南部地区晚古生代造山带构造演化. 吉林大学博士学位论文.
-
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30: 1841~1857.
-
许文良, 孙晨阳, 唐杰, 栾金鹏, 王枫. 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620~1646.
-
杨华本, 刘玉, 郑吉林, 梁中恺, 王晓勇, 唐雪峰, 苏燕平. 2017. 额尔古纳地块玻乌勒山地区新元古代斜长角闪岩-片麻状花岗岩的成因及其地质意义. 地质通报, 36(Z1): 342~356.
-
杨现力. 2007. 扎兰屯浅变质岩系地质特征及碎屑锆石年代学研究. 吉林大学硕士学位论文.
-
杨晓平, 钟辉, 杨雅军, 江斌, 钱程, 马永非, 张超. 2022. 大兴安岭地区古生代构造格架重建: 来自俯冲增生杂岩研究进展. 地学前缘, 29(2): 94~114.
-
张超, 吴新伟, 刘正宏, 张渝金, 郭威, 权京玉. 2018. 松嫩地块西缘前寒武岩浆事件—来自龙江地区古元古代花岗岩锆石LA-ICP-MS U-Pb年代学证据. 岩石学报, 34(10): 3137~3152.
-
张超, 权京玉, 张丽, 葛锦涛, 张立东. 2022. 华北板块北缘东段泥盆纪伸展作用: 来自辽北昌图碰撞后岩浆岩的证据. 岩石学报, 38(8): 2345~2363.
-
张梅生, 彭向东. 1998. 中国东北区古生代构造古地理格局. 辽宁地质, 2: 91~96.
-
张拴宏, 赵越, 刘健, 胡健民, 陈正乐, 李淼, 裴军令, 陈振宇, 周剑雄. 2007. 华北地块北缘晚古生代-中生代花岗岩体侵位深度及其构造意义. 岩石学报, 23(3): 625~638.
-
张兴洲, 马玉霞, 迟效国, 孙凤旭, 孙跃武, 郭治, 曾振. 2012. 东北及内蒙古东部地区显生宙构造演化的有关问题. 吉林大学学报(地球科学版), 42: 1269~1285.
-
赵硕, 许文良, 唐杰, 李宇, 郭鹏. 2016a. 额尔古纳地块新元古代岩浆作用与微陆块构造属性: 来自侵入岩锆石U-Pb年代学、地球化学和Hf同位素的制约. 地球科学, 41(11): 1803~1829.
-
赵硕, 许文良, 王枫, 王伟, 唐杰, 张一涵. 2016b. 额尔古纳地块新元古代岩浆作用: 锆石U-Pb年代学证据. 大地构造与成矿学, 40(3): 559~573.
-
周建波, 曾维顺, 曹嘉麟, 韩杰, 郭晓丹. 2012. 中国东北地区的构造格局与演化: 从500 Ma到180 Ma. 吉林大学学报(地球科学版), 42: 1298~1329.
-
周建波, 王斌, 曾维顺, 曹嘉麟. 2014. 大兴安岭地区扎兰屯变质杂岩的碎屑锆石U-Pb年龄及其大地构造意义. 岩石学报, 30(7): 1879~1888.
-
摘要
中亚造山带东段位于西伯利亚和华北克拉通之间,经历了多构造体系叠加和多旋回洋陆转换的复杂演化过程,目前大量研究均以构造带为核心来限定区域构造格局,但一直争议较大。本文以构造单元的构造属性及其形成过程为主线,结合区域构造带演化,重新厘定了中国东北地区基本构造格局,建立了中国东北山弯构造演化模型。研究表明,古生代时期中国东北地区的主要构造单元由两个具前寒武纪基底的古老地块——额尔古纳地块和佳木斯地块及其张广才岭陆缘弧与两个古生代增生地体——兴安增生地体和松辽增生地体组成,其间由古亚洲洋分支新林-喜桂图洋、贺根山-嫩江洋、龙凤山洋和索伦洋分割。早古生代,西部额尔古纳地块东南部为西太平洋型活动陆缘,发育有嘎仙-吉峰-环宇洋内弧和头道桥等洋岛,~500 Ma随着新林-喜桂图洋的关闭,这些洋内弧和洋岛拼贴增生至额尔古纳地块东南缘。随后贺根山-嫩江洋的俯冲和后撤形成了一系列沟-弧-盆体系,持续的俯冲导致弧陆碰撞和陆缘增生,形成兴安增生地体的主体。同时,东部佳木斯地块西侧发育有龙凤山洋的安第斯型俯冲活动陆缘,形成了张广才岭陆缘弧。伴随着各大洋的俯冲和陆缘增生,额尔古纳地块和佳木斯地块以及它们的陆缘增生带构成了一个早古生代近东西向展布的地块链。南部以锡林浩特-龙江微地块为核心发生陆缘俯冲,形成松辽增生地体雏形。索伦洋发生双向俯冲,并通过弧陆碰撞产生陆缘增生。晚古生代,伴随着古亚洲洋的北向俯冲和后撤,早期形成的地块链逐渐发生向南弯曲。二叠纪末期—中三叠世古亚洲洋俯冲消减闭合以及西北部蒙古-鄂霍茨克洋和东部泛大洋的俯冲挤压,导致地块链进一步弯曲,同时,早期的古老地块、增生地体、弧岩浆岩、沉积建造等发生汇聚,最终形成一个以额尔古纳地块和兴安增生地体为西翼,佳木斯地块和张广才岭陆缘弧为东翼,松辽增生地体为核心的大规模山弯构造——中国东北山弯构造。
Abstract
The eastern Central Asian Orogenic Belt (CAOB), which located between Siberia Craton to the north and North China Craton to the south, has experienced complex evolutionary history of superposition of multi-tectonic domains and multi-cycle ocean-continental transition. Nowadays, majority of research try to reconstruct regional tectonic framework based on the main tectonic belts, however, there are always many controversial problems due to the uncertain positions and timing of the tectonic belts. This study focused on nature and formation process of main tectonic units, combining with evolution of regional tectonic belts, to redefine the basic tectonic framework of NE China, and establishing the pattern and evolutionary history of NE China Orocline. Our research shows that NE China region composed by two ancient blocks, Erguna and Jiamusi-Khanka blocks with Precambrian basements, and two accretionary terranes, Xing'an and Songliao accretionary terranes that formed by Paleozoic subduction-accretion process. These units were seperated by Xinlin-Xiguitu, Hegenshan-Nenjiang, Longfengshan and Solonker oceans. In the Early Paleozoic the SE Erguna block in the western NE China region was featured by “Western Pacific type” active continental margin, forming intra-oceanic arc of Gaxian-Jifeng-Huanyu and Toudaoqiao oceanic island, which together accreted to SE margin of Erguna block due to the closure of the Xinlin-Xiguitu Ocean at ca. 500 Ma. The following continuously retreat subduction of Hegenshan-Nenjiang oceanic lithosphere formed series of trench-arc-basin systems. The continuing collisions of the arc-continent led significant continental accretion to form the main parts of the future Xing'an accretionary terrane (XAT). Meanwhile, the west margin of Jiamusi block in eastern NE China region experienced “Andean type” subduction of Longfengshan oceanic lithosphere, forming Zhangguangcailing continental marginal arc (ZCMA) correspondingly. As a result, a huge west-to-east Early Paleozoic continental chain had been constructed by Erguna and Jiamusi blocks and their accretionary margins. In the south the subduction and accretion around Xilinhot and Longjiang ancient micro-continental fragments produced the primitive Songliao accretionary terrane (SAT). In the Late Paleozoic era, the Early Paleozoic continental chain experienced large scale rotation and bending due to the northward subduction and rollback of the Solonker ocean. During late Permain-middle Triassic the continental chain was further bulcked by both the subduction and rollback of Solonker ocean and the subduction compression of Mongol-Okhotsk Ocean and Panthalassa. The blocks, accretionary terranes, magmatic arcs and sediments were amalgamated and bended to form a huge NE China Orocline, with Erguna block and XAT as its western limb, Jiamusi block and ZCMA as its eastern limb, and SAT in the core.