en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李厚民,男,1962年生。博士,研究员,长期从事金属矿床成矿作用和资源评价研究。E-mail:lihoumin2002@163.com。

参考文献
Bekker A, Slack J F, Planavsky N, Krapez B, Hofmann A, Konhauser K O, Rouxel O J. 2010. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105: 467~508.
参考文献
Beukes N J, Gutzmer J, Mukhopadhyay J. 2003. The geology and genesis of high-grade hematite iron ore deposits. Applied Earth Science, 112: 18~25.
参考文献
Canfield D E. 2005. The early history of atmospheric oxygen. Homage to Robert M. Garrels. Annual Review of Earth Planetary Sciences, 33: 1~36.
参考文献
Chakrabarti R, Knoll A H, Jacobsen S B, Fischer W W. 2012. Si isotope variability in Proterozoic cherts. Geochimica et Cosmochimica Acta, 91: 187~201.
参考文献
Chen Jing, Li Houmin, Li Lixing, Yang Xiuqing, Liu Mingjun, Yao Tong, Hu Bin, Zhang Jinyou. 2014. Fluid inclusions and oxygen isotope study of the Sijiaying BIF in the eastern Hebei Province. Acta Petrologica Sinica, 30(5): 1253~1268 (in Chinese with English abstract).
参考文献
Chen Jing, Li Houmin, Luo Dike, Li Lixing, Yang Xiuqing, Liu Mingjun, Yao Tong, Hu Bin. 2015. Formation age, geochemical characteristics and geological significance of the Zhalanzhangzi BIF in eastern Hebei Province. Geological Bulletin of China, 34(5): 919~929 (in Chinese with English abstract).
参考文献
Cheng Yuqi. 1953. Preliminary comments on the exploration of iron deposits in China. Acta Geologica Sinica, 33(2): 120~134 (in Chinese).
参考文献
Cheng Yuqi. 1957. The problem of high-grade iron ore genesis in Precambrian Anshan-type banded iron deposits in the Liaoning and Shandong provinces, in the northeast of China. Acta Geologica Sinica, 37(2): 153~180 (in Chinese with English abstract).
参考文献
Cheng Yuqi, Zhao Yiming, Lu Songnian. 1978. Main types-groups of iron deposits of China. Acta Geologica Sinica, 52(4): 253~268 (in Chinese with English abstract).
参考文献
Cheng Yuqi, Wen Guang. 1982. On certain problems of regional minerogenetic analysis. Regional Geology of China, 2: 93~101 (in Chinese with English abstract).
参考文献
Cheng Yuqi, Chen Yuchuan, Zhao Yiming, Song Tianrui. 1983. Further discussion on the problems of minerogenetic series of mineral deposits. Bulletin Chinese Academy of Geological Sciences, 6: 1~66 (in Chinese with English abstract).
参考文献
Chu Xuelei, Chen Jinshi, Wang Shouxin. 1986. Study on the sulfur isotope fractionation mechanism and physicochemical conditions for deposit formation in Luohe iron ore. Chinese Journal of Geology, 26(3): 189~195 (in Chinese with English abstract).
参考文献
Cloud P. 1973. Paleoecological significance of the banded iron formation. Economic Geology, 68: 1135~1143.
参考文献
Du Lilin, Yang Chonghui, Ren Liudong, Song Huixia, Geng Yuansheng, Wan Yusheng. 2012. 2. 2~2. 1 Ga magma event in Lüliang area and its tectonic significance. Acta Petrologica Sinica, 28(9): 2751~2769 (in Chinese with English abstract).
参考文献
Fu Jianfei, Wang Ende, Xia Jianming, Men Yekai, Chen Huijun, You Xinxing, Cheng Lin. 2014. Geochemical characteristics and sedimentary paleoenvironment of iron ore in the mountains of Liaoning Province. Geology in China, 41(6): 1929~1943 (in Chinese with English abstract).
参考文献
Gross G A. 1965. Geology of iron deposits in Canada, Vol. 1. general geology and evaluation of iron deposits. Canadian Geological Survey. Economic Geology Report.
参考文献
Hagemann S G, Angerer T, Duuring P, Rosière C A, Figueiredoe Silva R C, Lobato L, Hensler A S, Walde D H G. 2016. BIF-hosted iron mineral system: a review. Ore Geology Reviews, 76: 317~359.
参考文献
Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2017. Chronology, geochemical, Si and Fe isotopic constraints on the origin of Huoqiu banded iron formation (BIF), southeastern margin of the North China Craton. Precambrian Research, 298: 351~364.
参考文献
Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2019. Genesis of Huoqiu banded iron formation (BIF), southeastern North China Craton, constraints from geochemical and Hf-O-S isotopic characteristics. Journal of Geochemical Exploration, 197: 60~69.
参考文献
Hu Guyue, Li Yanhe, Fan Changfu, Zhao Yue, Hou Kejun, Wang Tianhui. 2015. Paleoproterozoic magnesite and borate deposits from eastern Liaoning Province: with a discussion about synchrono-heteropic facies of sedimentary mineralization. Mineral Deposits, 34(3): 547~564 (in Chinese with English abstract).
参考文献
Jia Xingjie, Li Huaiqian, Zheng Hongju. 2012. Geological characteristics and deep prospecting of Henan Wu iron and steel mine. Gold Science and Technology, 20(2): 25~31 (in Chinese with English abstract).
参考文献
Jiang Shaoyong, Ding Tiping, Wan Defang, Li Yanhe. 1992. Characteristics of silicon isotopic composition of ancient striped ferrosilicon construction (BIF) in Gongchangling, Liaoning. Science in China, 22(6): 626~631(in Chinese).
参考文献
Jiang Yongnian. 1990. A study on serpentin in the iron ore of Zhaoanzhuang in Wuyang, Henan. Geological Prospecting Series, 5(2): 40~49 (in Chinese with English abstract).
参考文献
Jiang Yongnian. 1991. Study on fluoroapatite in iron ore in Zhaoanzhuang, Wuyang, Henan. Geology and Mineral Prospecting Series, 6(1): 58~66 (in Chinese with English abstract).
参考文献
Jiang Yongnian, Chen Yonghua. 1986. Discussion on the genesis of iron ore in Zhaoanzhuang, Wuyang, Henan. Journal of Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 16: 1~64 (in Chinese with English abstract).
参考文献
Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90(10): 1473~1499.
参考文献
Lan Caiyun, Zhang Lianchang, Zhao Taiping, Wang Changle, Li Hongzhong, Zhou Yanyan. 2013. Mineralogical and geochemical characteristics of BIF iron ore in Wuyang, Henan Province, and indications of the genesis of deposits. Acta Petrologica Sinica, 29(7): 2567~2582 (in Chinese with English abstract).
参考文献
Li Houmin, Liu Mingjun, Li Lixing, Yang Xiuqing, Chen Jing, Yao Liangde, Hong Xuekuan, Yao Tong. 2012. Geology and geochemistry of the marble in the Gongchangling iron ore deposit in Liaoning Province and their metallogenic significance. Acta Petrologica Sinica, 28(11): 3497~3512 (in Chinese with English abstract).
参考文献
Li Houmin, Liu Mingjun, Li Lixing, Yang Xiuqing, Chen Jing, Yao Tong. 2014. SHRIMP U-Pb geochronology of zircon from the garnet-rich altered rocks in the mining area II of the Gongchangling iron deposit: constraints on the age of the high-grade iron deposit. Acta Petrologica Sinica, 30(5): 1205~1217 (in Chinese with English abstract).
参考文献
Li Houmin, Zhang Zengjie, Li Lixing, Zhang Zhaochong, Chen Jing, Yao Tong. 2014. Types and general characteristics of the BIF-related iron deposits in China. Ore Geology Reviews, 57: 264~287.
参考文献
Li Houmin, Yang Xiuqing, Li Lixing, Zhang Zhaochong, Liu Mingjun, Chen Jing. 2015. Desilicification and iron activation-reprecipitation in the high-grade magnetite ores in BIFs of the Anshan-Benxi area, China: evidence from geology, geochemistry, and stable isotopic characteristics. Journal of Asian Earth Sciences, 113: 998~1016.
参考文献
Li Junping, Li Yongfeng, Xie Kejia. 2012. Geological characteristics of Taihua Group in Wuyang area, Henan Province and its significance in controlling minerals. Mineral Resources and Geology, 26(1): 30~34 (in Chinese with English abstract).
参考文献
Li Lixing, Li Houmin, Xu Yingxia, Chen Jing, Yao Tong, Zhang Longfei, Yang Xiuqing, Liu Mingjun. 2015. Zircon growth and ages of migmatites in the Algoma-type BIF-hosted iron deposits in Qianxi Group from eastern Hebei Province, China: timing of BIF deposition and anatexis. Journal of Asian Earth Sciences, 113: 1017~1034.
参考文献
Li Lixing, Li Houmin, Liu Mingjun, Yang Xiuqing, Meng Jie. 2016. Timing of deposition and tectonothermal events of banded iron formations in the Anshan-Benxi area, Liaoning Province, China: evidence from SHRIMP U-Pb zircon geochronology of the wall rocks Journal of Asian Earth Sciences, 129: 276~293.
参考文献
Li Lixing, Zi Jianwei, Li Houmin, Rasmussen Birger, Wilde Simon A, Sheppard Stephen, Ma Yubo, Meng Jie, Song Zhe. 2019. High-grade magnetite mineralization at 1. 86 Ga in Neoarchean banded iron formations, Gongchangling, China: in situ U-Pb geochronology of metamorphic-hydrothermal zircon and monazite. Economic Geology, 114(6): 1159~1175.
参考文献
Li Lixing, Zi Jianwei, Meng Jie, Li Houmin, Rasmussen B, Sheppard S, Wilde S A, Li Yanhe. 2020. Using in situ monazite and xenotime U-Pb geochronology to resolve the fate of the “missing” banded iron formation-hosted high-grade hematite ores of the North China Craton. Economic Geology, 115(1): 189~204.
参考文献
Li Shuguang. 1982. Geochemical model for the genesis of Gongchangling rich magnetite deposit in China. Geochimica, (2): 113~121 (in Chinese with English abstract).
参考文献
Li Shuguang, Zhi Xiachen, Chen Jiangfeng, Wang Junxin, Deng Yanyao. 1983. Origin of graphites in Early Precambrian banded iron formation in Anshan, China. Geochimica, (2): 162~169 (in Chinese with English abstract).
参考文献
Li Yanhe, Hou Kejun, Wan Defang, Zhang Zengjie. 2010. The formation mechanism of Precambrian banded ferrosilicon construction and the atmosphere and oceans of the early Earth. Acta Geologica Sinica, 84(9): 1359~1373 (in Chinese with English abstract).
参考文献
Li Yanhe, Hou Kejun, Wan Defang, Zhang Zengjie. 2012. Geochemistry of Algoma type and Superior type ferrosilicon construction. Acta Petrologica Sinica, 28(11): 3513~3519 (in Chinese with English abstract).
参考文献
Li Yanhe, Hou Kejun, Wan Defang, Zhang Zengjie, Yue Guoliang. 2014. Precambrian banded iron formations in the North China Craton: silicon and oxygen isotopes and genetic implications. Ore Geology Reviews, 57: 299~307.
参考文献
Li Yanhe, Duan Chao, Han Dan, Chen Xinwang, Wang Conglin, Yang Bingyang, Zhang Cheng, Liu Feng. 2014a. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the Middle-Lower Yangtze River area. Acta Petrologica Sinica, 30(5): 1355~1368 (in Chinese with English abstract).
参考文献
Li Yanhe, Zhang Zengjie, Hou Kejun, Duan Chao, Wan Defang, Hu Guyue. 2014b. Genesis of sedimentary metamorphic iron-rich ore in Anben region of Liaoning Province: isotope evidence of Fe, Si, O and S. Acta Geologica Sinica, 88(12): 2351~2372 (in Chinese with English abstract).
参考文献
Liu Chaohui, Zhao Guochun, Liu Fulai, Shi Jianrong. 2014. Geochronological and geochemical constraints on the Lüliang Group in the Lüliang Complex: implications for the tectonic evolution of the Trans-North China Orogen. Lithos, 198-199: 298~315.
参考文献
Liu Lixin, Li Huaiqian, Jia Xingjie, Wang Weizhong, Wang Xia. 2014. Geological characteristics and genesis analysis of iron ore in Zhaoanzhuang Formation, Wuyang iron ore field, Henan Province. Mineral Resources and Geology, 28(4): 431~434 (in Chinese with English abstract).
参考文献
Liu Lushan, Fu Haitao, Liu Zhongyuan, Leng Wenfang, Wu Yue. 2015. Distribution and genesis of high-grade iron ore in Anshan-Benxi region. Geology and Resources, 24(4): 341~346 (in Chinese with English abstract).
参考文献
Liu Mingjun, Li Houmin, Li Lixing, Yang Xiuqing, Yao Liangde, Hong Xuekuan, Chen Jing. 2012. Petrological characteristics of silicate-like rocks in the second ore area of the Gongchangling iron ore deposit in Liaoning Province. Rock or Mineral Analysis, 31(6): 1067~1076 (in Chinese with English abstract).
参考文献
Liu Mingjun, Li Houmin, Li Lixing, Yang Xiuqing, Yao Liangde, Hong Xuekuan, Chen Jing, Yao Tong, Bai Yun. 2013. Fluid inclusions in the second ore area of the Gongchangling iron ore deposit in Liaoning. Mineral Deposits, 32(5): 989~1002 (in Chinese with English abstract).
参考文献
Liu Mingjun, Li Houmin, Xue Chunji, Yao Liangde, Wen Yi, Xu Zongxian. 2014. Geochemical characteristics of ores and silica-like rocks in the second ore area of Gongchangling iron ore deposit in Liaoning Province and their prospecting significance. Acta Geologica Sinica, 88(10): 1917~1931 (in Chinese with English abstract).
参考文献
Liu Mingjun, Zeng Qingdong, Li Houmin, Li Lixing, Wen Yi, Yao Liangde, Gao Yeshun. 2017. The metallogenic age of iron activation and re-enrichment in Anben area of Liaoning Province: evidence of the age of Re-Os of molybdenum ore in Qidashan iron ore deposits. Mineral Deposits, 36(1): 237~249 (in Chinese with English abstract).
参考文献
Liu Shuwen, Zhang Jian, Li Qiuli, Zhang Lifei, Wang Wei, Yang Pengtao. 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173~190.
参考文献
Luo Mingqiang. 2009. Structural ore control study of Wuyang iron ore field in Henan Province. Journal of Henan Polytechnic University: Natural Science Edition, 28(5): 577~582 (in Chinese with English abstract).
参考文献
Maliva R G, Knoll A H, Simonson B M. 2005. Secular change in the Precambrian silica cycle: insights from chert petrology. Geological Society of America Bulletin, 117(7-8): 835~845.
参考文献
Men Yekai, Wang Ende, Fu Jianfei, Jia Sanshi, You Xinwei, He Qiangwen. 2019. Geology and geochemistry of the Yuanjiacun banded iron formation in Shanxi Province, China: constraints on the genesis. Geological Magazine, 156(11): 1839~1862.
参考文献
Meng Jie, Li Houmin, Li Lixing, Li Jieru. 2018. Constraints of sedimentary age of iron ore deposits in Taihua Group Tieshan Temple, south margin of Craton, North China—zircon U-Pb dating and Hf isotopic evidence. Acta Geologica Sinica, 92(1): 125~141 (in Chinese with English abstract).
参考文献
Meng Jie, Li Houmin, Li Lixing, Santosh M, Song Zhe, Yang Xiuqing. 2018. Petrological and geochemical constraints on the protoliths of serpentine-magnetite ores in the Zhaoanzhuang iron deposit, southern North China Craton. Acta Geologica Sinica (English Edition), 2(92): 627~665.
参考文献
Meng Jie, Li Houmin, Li Yanhe, Zhang Zhaochong, Li Lixing, Song Zhe. 2019. Stable isotope (S, Mg, B) constraints on the origin of the early Precambrian Zhaoanzhuang serpentine-magnetite deposit, southern North China Craton. Minerals, 9(6): 377.
参考文献
Morris R C, Wolff K H. 1985. Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes; a conceptual model. Handbook of Strata-bound and Stratiform Ore Deposits, 13: 73~235.
参考文献
Ohmoto H, Rye R D. 1979. Isotopes of sulfur and carbon. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley, 509~567.
参考文献
Qian Xianglin. 1985. Geology of Precambrian Iron Ores in Eastern Hebei Province, China. Shijiazhuang: Hebei Science and Technology Press, 1~31 (in Chinese with English abstract).
参考文献
Rasmussen B, Fletcher I R, Muhling J R, Thorne W S, Broadbent G C. 2007. Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth Planetary Science Letters, 258: 249~259.
参考文献
Shen Qihan, Song Huixia. 2015. Progress, prospecting and key scientific problems in origin researches of high-grade iron ore of the banded iron formation (BIF) in the North China Craton. Acta Petrologica Sinica, 31(10): 2795~2815 (in Chinese with English abstract).
参考文献
Steinhoefel G, Horn I, Blanckenburg F. 2009. Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation. Geochimica et Cosmochimica Acta, 73(18): 5343~5360.
参考文献
Sumner D Y. 1997. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa. American Journal of Science, 297(5): 455~487.
参考文献
Taylor D, Dalstra H J, Harding A E, Broadbent G C, Barley M E. 2001. Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia. Economic Geology, 96: 837~873.
参考文献
Wan Yusheng, Dong Chunyan, Xie Hangqiang, Wang Shijin, Song Mingchun, Xu Zhongyuan, Wang Shiyan, Zhou Hongying, Ma Mingzhu, Liu Ddunyi. 2012. Formation ages of Early Precambrian BIFs in the North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9): 1447~1478 (in Chinese with English abstract).
参考文献
Wan Yusheng, Dong Chunyan, Xie Hangqiang, Xie Shiwen, Liu Shoujie, Bai Wenqian, Ma Mingzhu, Liu Dunyi. 2018. Formation age of BIF-bearing Anshan Group supra-crustal rocks in Anshan-Benxi area: new evidence from SHRIMP U-Pb zircon dating. Earth Science—Journal of China University of Geosciences, 43(1): 57~81 (in Chinese with English abstract).
参考文献
Wan Yusheng, Ma Mingzhu, Dong Chunyan, Xie Hangqiang, Xie Sshiwen, Ren P, Liu Dunyi. 2015. Widespread late Neoarchean reworking of Meso- to Paleoarchean continental crust in the Anshan-Benxi area, North China Craton, as documented by U-Pb-Nd-Hf-O isotopes. American Journal of Science, 315: 620~670.
参考文献
Wang Changle, Zhang Lianchang, Dai Yanpei, Lan Caiyun. 2015. Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang Complex, North China. Lithos, 212-215: 231~246.
参考文献
Wang Changle, Peng Zidong, Tong Xiaoxue, Huang Hua, Zheng Mengtian, Zhang Lianchang, Zhai Mingguo. 2017. Late Neoarchean supracrustal rocks from the Anshan-Benxi terrane, North China Craton: new geodynamic implications from the geochemical record. American Journal of Science, 317: 1095~1148.
参考文献
Wang Ende, Xia Jianming, Zhao Chunfu, Fu Jianfei. Hou Genqun. 2012. Discussion on the formation mechanism of magnetite enrichment in Gongchangling iron ore deposits. Acta Geologica Sinica, 86(11): 1761~1772 (in Chinese with English abstract).
参考文献
Wang Ende, Xia Jianming, Zhao Chunfu, Fu Jianfei, Hou Genqun. 2013. Study on the material source and sedimentary paleogeographic environment of iron ore deposits in Gongchangling. Mineral Deposits, 32(2): 380~396 (in Chinese with English abstract).
参考文献
Wang Ende, Xia Jianming, Fu Jianfei, Jia Sanshi, Men Yekai. 2014. Formation mechanism of Gongchangling high-grade magnetite deposit hosted in Archean BIF, Anshan-Benxi area, northeastern China. Ore Geology Reviews, 57: 308~321.
参考文献
Wang Ende, Han Changik, Xia Jianming, Fu Jianfei, Li Guangshu, Jia Sanshi, Men Yekai. 2015a. Geochemical characterization of Archaean amphibolites from the eastern part of Anshan-Benxi iron producing area, northeastern China: implication for tectonic setting of BIFs. Geological Journal, 51: 480~498.
参考文献
Wang Ende, Han Changik, Xia Jianming, Yun Sunggi. 2015b. Geochemistry and tectonic significance of chlorite amphibolite in Nanfen BIF, Benxi area, northeastern China. Journal of Geoscience and Environment Protection, 3: 54~61.
参考文献
Wang Huichu, Miao Peisen, Kang Jianli, Ren Yunwei, Zhang Jiahui, Li Jianrong, Xiang Zhenqun, Xiao Zhibin. 2020. Newevidence for the formation age of the Lüliang Group. Acta Petrologica Sinica, 36(8): 2313~2330 (in Chinese with English abstract).
参考文献
Wang Shoulun. 1986. The genetic types of rich iron deposits of Anshan Group in Anshan-Benxi area. Mineral Deposits, 5(4): 14~23 (in Chinese with English abstract).
参考文献
Wang Weizhong, Li Huaiqian, Jia Xingjie, Wang Xia. 2015. Restoration of ore-bearing rocks and paleoenvironment in Wuyangiron ore field, Henan. Mineral Exploration, 6(4): 413~419 (in Chinese with English abstract).
参考文献
Xia Jianming, Wang Ende, Zhao Chunfu, Mne Yekai. 2011. The formation mechanism of the redox environment in the rich iron deposits of Gongchangling. Journal of Northeastern University (Natural Science), 32(11): 1643~1646 (in Chinese with English abstract).
参考文献
Xu Deru, Wu Chuanjun, Lv Guxian, Zhou Yueqiang, Yu Liangliang, Zhang Jianling, Hu Guocheng, Hou Maozhou. 2015. Application of lithospheric rheology in structural metallogenesis: taking BIF-type iron-rich ore deposits as an example. Geotectonica et Metallogenia, 39(1): 93~109 (in Chinese with English abstract).
参考文献
Yang Xiaoyong, Wang Bohua, Du Zhenbao, Wang Qicai, Wang Yuxian, Tu Zhengbiao, Zhang Wenli, Sun Weidong. 2012. On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of North China Carton. Acta Petrologica Sinica, 28(11): 3476~3496 (in Chinese with English abstract).
参考文献
Yang Xiuqing, Li Houmin, Xue Chunji, Li Lixing, Liu Mingjun, Chen Jing. 2013. Geochemical characteristics of two types of ore in the iron ore deposit of Waitoushan in Liaoning Province and their restrictions on mineralization. Acta Geologica Sinica, 87(10): 1580~1592 (in Chinese with English abstract).
参考文献
Yang Xiuqing, Li Houmin, Li Lixing, Yao Tong, Chen Jing, Liu Mingjun. 2014a. Geochemical characteristics of banded iron construction in Liaoning-Hebei region: Ⅱ. characteristics of principal elements. Acta Petrologica Sinica, 30(5): 1218~1238 (in Chinese with English abstract).
参考文献
Yang Xiuqing, Li Houmin, Li Lixing, Ma Yubo, Chen Jing, Liu Mingjun, Yao Tong, Chen Weishi, Yao Liangde. 2014b. Study on fluid inclusions and isotopic characteristics of sulfur, hydrogen and oxygen in iron ore deposits in the Anshan-Benxi area of Liaoning Province. Acta Geologica Sinica, 88(10): 1917~1931 (in Chinese with English abstract).
参考文献
Yao Tong, Li Houmin, Yang Xiuqing, Li Lixing, Chen Jing, Zhang Jinyou, Liu Mingjun. 2014. Geochemical characteristics of striped iron construction in Liaoning-Hebei region: II. characteristics of rare earth elements. Acta Petrologica Sinica, 30(5): 1239~1252 (in Chinese with English abstract).
参考文献
Yao Tong, Li Houmin, Li Wenjun, Li Lixing, Zhao Chuang. 2015. Origin of the disseminated magnetite pyroxenite in the Tieshanmiao-type iron deposits in the Wuyang region of Henan Province. China. Journal of Asian Earth Sciences, 113: 1235~1252.
参考文献
Yu Shouyun, Liang Yuehan, Du Shaohua, Li Shanze, Liu Kangjuan. 1981. Discussion on the geological characteristics of late Tieshanmiao-type iron ore in the western Anhui region of central Henan and Western Anhui. Journal of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, (3): 68~83 (in Chinese with English abstract).
参考文献
Zhang Lianchang, Zhai Mingguo, Wan Yusheng, Guo Jinghui, Dai Yanjing, Wang Changle, Liu Li. 2012. Research on Precambrian BIF iron ore in North China: progress and problems. Acta Petrologica Sinica, 28(11): 3431~3445 (in Chinese with English abstract).
参考文献
Zhang Lianchang, Dai Yanpei, Wang Changle, Liu Li, Zhu Mingtian. 2014. Age, material sources and formation setting of Precambrian BIFs iron deposits in Anshan-Benxi area. Journal of Earth Sciences and Environment, 36(4): 1~15 (in Chinese with English abstract).
参考文献
Zhang Xiaojing, Zhang Lianchang, Xiang Peng, Wan Bo, Pirajno F. 2011. Zircon U-Pb age, Hf isotopes, and geochemistry of Shuichang Algoma-type banded iron formation, North China Craton: constraints on the ore-forming age and tectonic setting. Gondwana Research, 20(1): 137~148.
参考文献
Zhang Zhaochong, Hou Tong, Santosh M, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan, Wang Meng. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: an overview. Ore Geology Reviews, 57: 247~263.
参考文献
Zhang Zhaochong, Li Houmin, Li Jianwei, Song Xieyan, Hu Hao, Li Lixing, Chai Fengmei, Hou Tong, Xu Deru. 2021. Geological settings and metallogenesis of high-grade iron deposits in China. Science China Earth Sciences, 64(5): 691~715.
参考文献
Zhao Yiming. 2013. Main genetic types and geological characteristics of iron-rich ore deposits in China. Mineral Deposits, 32(4): 685~704 (in Chinese with English abstract).
参考文献
Zhao Yiming, Lin Wenwei, Bi Chengsi, Li Daxin, Jiang Chongjun. 2012. Skarn Deposits in China. Beijing: Geological Publishing House, 1~410 (in Chinese with English abstract).
参考文献
Zhou Shitai. 1994. Geology of Banded Iron Deposits in Anshan-Benxi Area. Beijing: Geological Publishing House, 1~276 (in Chinese with English abstract).
参考文献
Zhu Jinchu, Zhang Fusheng, Xu Keqin. 1988. Depositional environment and metamorphism of Early Proterozoic iron formation in the Lüliangshan region, Shanxi Province, China. Precambrian Research, 39: 39~50.
参考文献
陈靖, 李厚民, 李立兴, 杨秀清, 刘明军, 姚通, 胡彬, 张进友. 2014. 冀东司家营BIF铁矿流体包裹体及氧同位素研究. 岩石学报, 30(5): 1253~1268.
参考文献
陈靖, 李厚民, 罗迪柯, 李立兴, 杨秀清, 刘明军, 姚通, 胡彬. 2015. 冀东柞栏杖子BIF地球化学特征、形成时代及其地质意义. 地质通报, 34(5): 919~929.
参考文献
程裕淇. 1953. 对于勘探中国铁矿问题的初步意见. 地质学报, 33(2): 120~134.
参考文献
程裕淇. 1957. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 37(2): 153~180.
参考文献
程裕淇, 赵一鸣, 陆松年. 1978. 中国几组主要铁矿类型. 地质学报, 52(4): 253~268.
参考文献
程裕淇, 闻广. 1982. 区域成矿分析若干问题. 中国区域地质, 2: 93~101.
参考文献
程裕淇, 陈毓川, 赵一鸣, 宋天锐. 1983. 再论矿床的成矿系列问题. 中国地质科学院院报, 6: 1~66.
参考文献
储雪蕾, 陈锦石, 王守信. 1986. 罗河铁矿的硫同位素分馏机制和矿床形成的物理化学条件的研究. 地质科学, 26(3): 189~195.
参考文献
杜利林, 杨崇辉, 任留东, 宋会侠, 耿元生, 万渝生. 2012. 吕梁地区2. 2~2. 1 Ga岩浆事件及其构造意义. 岩石学报, 28(9): 2751~2769.
参考文献
付建飞, 王恩德, 夏建明, 门业凯, 陈慧钧, 尤欣慰, 成林. 2014. 辽宁眼前山铁矿元素地球化学特征与沉积古环境研究. 中国地质, 41(6): 1929~1943.
参考文献
侯可军, 万德芳, 张增杰. 2012. Algoma型和Superior型硅铁建造地球化学对比研究. 岩石学报, 28(11): 3513~3519.
参考文献
胡古月, 李延河, 范昌福, 赵悦, 侯可军, 王天慧. 2015. 辽东古元古代菱镁矿矿床与硼酸盐矿床: 同期异相沉积成矿探讨. 矿床地质, 34(3): 547~564.
参考文献
贾兴杰, 李怀乾, 郑洪举. 2012. 河南舞钢铁矿地质特征及深部找矿研究. 黄金科学技术, 20(2): 25~31.
参考文献
蒋少涌, 丁悌平, 万德芳, 李延河. 1992. 辽宁弓长岭太古代条带状硅铁建造(BIF)的硅同位素组成特征. 中国科学, 22(6): 626~631.
参考文献
蒋永年. 1990. 河南舞阳赵案庄铁矿中利蛇纹石的研究. 地质找矿论丛, 5(2): 40~49.
参考文献
蒋永年. 1991. 河南舞阳赵案庄铁矿中氟磷灰石的研究. 地质找矿论丛, 6(1): 58~66.
参考文献
蒋永年, 陈勇华. 1986. 河南舞阳赵案庄铁矿的成因探讨. 中国地质科学院天津地质矿产研究所所刊, 16: 1~64.
参考文献
兰彩云, 张连昌, 赵太平, 王长乐, 李红中, 周艳艳. 2013. 河南舞阳铁山庙式BIF铁矿的矿物学与地球化学特征及对矿床成因的指示. 岩石学报, 29(7): 2567~2582.
参考文献
李厚民, 刘明军, 李立兴, 杨秀清, 陈靖, 姚良德, 洪学宽, 姚通. 2012. 辽宁弓长岭铁矿区大理岩地质地球化学特征及其成矿意义. 岩石学报, 28(11): 3497~3512.
参考文献
李厚民, 刘明军, 李立兴, 杨秀清, 姚良德, 陈靖, 姚通. 2014. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义. 岩石学报, 30(5): 1205~1217.
参考文献
李俊平, 李永峰, 谢克家. 2012. 河南舞阳地区太华群地质特征及其控矿意义. 矿产与地质, 26(1): 30~34.
参考文献
李曙光. 1982. 弓长岭富磁铁矿床成因的地球化学模型. 地球化学, (2): 113~121.
参考文献
李曙光, 支霞臣, 陈江峰, 王俊新, 邓衍尧. 1983. 鞍山前寒武纪条带状含铁建造中石墨的成因. 地球化学, (2): 162~169.
参考文献
李延河, 侯可军, 万德芳, 张增杰. 2010. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋. 地质学报, 84(9): 1359~1373.
参考文献
李延河, 侯可军, 万德芳, 张增杰. 2012. Algoma型和Superior型硅铁建造地球化学对比研究. 岩石学报, 28(11): 3513~3519.
参考文献
李延河, 段超, 韩丹, 陈新旺, 王丛林, 杨秉阳, 张成, 刘锋. 2014a. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用. 岩石学报, 30(5): 1355~1368.
参考文献
李延河, 张增杰, 侯可军, 段超, 万德芳, 胡古月. 2014b. 辽宁鞍本地区沉积变质型富铁矿的成因: Fe、 Si、O、S同位素证据. 地质学报, 88(12): 2351~2372.
参考文献
刘立新, 李怀乾, 贾兴杰, 王伟中, 王夏. 2014. 河南省舞阳铁矿田赵案庄组铁矿地质特征及成因分析. 矿产与地质, 28(4): 431~434.
参考文献
刘陆山, 付海涛, 刘忠元, 冷文芳, 武悦. 2015. 鞍山-本溪地区富铁矿分布规律及成因探讨. 地质与资源, 24(4): 341~346.
参考文献
刘明军, 李厚民, 李立兴, 杨秀清, 姚良德, 洪学宽, 陈靖. 2012. 辽宁弓长岭铁矿床二矿区类矽卡岩的岩石矿物学特征. 岩矿测试, 31(6): 1067~1076.
参考文献
刘明军, 李厚民, 李立兴, 杨秀清, 姚良德, 洪学宽, 陈靖, 姚通, 白云. 2013. 辽宁弓长岭铁矿床二矿区流体包裹体研究. 矿床地质, 32(5): 989~1002.
参考文献
刘明军, 李厚民, 薛春纪, 姚良德, 文屹, 许宗宪. 2014. 辽宁弓长岭铁矿床二矿区矿石及类矽卡岩的地球化学特征及其找矿意义. 地质学报, 88(10): 1917~1931.
参考文献
刘明军, 曾庆栋, 李厚民, 李立兴, 文屹, 姚良德, 高业舜. 2017. 辽宁鞍本地区铁质活化再富集成因富铁矿的成矿时代——齐大山铁矿床辉钼矿Re-Os年龄证据. 矿床地质, 36(1): 237~249.
参考文献
罗明强. 2009. 河南省舞阳铁矿田构造控矿研究. 河南理工大学学报: 自然科学版, 28(5): 577~582.
参考文献
孟洁, 李厚民, 李立兴, 李洁茹. 2018. 华北克拉通南缘太华群铁山庙铁矿床沉积时代的约束——锆石U-Pb定年及Hf同位素证据. 地质学报, 92(1), 125~141.
参考文献
钱祥麟. 1985. 冀东前寒武纪地质. 石家庄: 河北科学技术出版社. 1~31.
参考文献
沈其韩, 宋会侠. 2015. 华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题. 岩石学报, 31(10): 2795~2815.
参考文献
万渝生, 董春艳, 颉颃强, 王世进, 宋明春, 徐仲元, 王世炎, 周红英, 马铭株, 刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年. 地质学报, 86(9) : 1447~1478.
参考文献
万渝生, 董春艳, 颉颃强, 谢士稳, 刘守偈, 白文倩, 马铭株, 刘敦一. 2018. 鞍山-本溪地区鞍山群含BIF表壳岩形成时代新证据: 锆石SHRIMP U-Pb定年. 地球科学, 43(1): 57~81.
参考文献
王恩德, 夏建明, 赵纯福, 付建飞, 侯根群. 2012. 弓长岭铁矿床磁铁富矿形成机制探讨. 地质学报, 86(11): 1761~1772.
参考文献
王恩德, 夏建明, 赵纯福, 付建飞, 侯根群. 2013. 弓长岭铁矿床物质来源及沉积古地理环境研究. 矿床地质, 32(2): 380~396.
参考文献
王惠初, 苗培森, 康健丽, 任云伟, 张家辉, 李建荣, 相振群, 肖志斌. 2020. 吕梁群时代归属新证据. 岩石学报, 36(8): 2313~2330.
参考文献
王守伦. 1986. 鞍本地区鞍山群富铁矿成因类型的讨论. 矿床地质, 5(4): 14~23.
参考文献
王伟中, 李怀乾, 贾兴杰, 王夏. 2015. 河南舞阳铁矿田含矿岩系原岩及古环境恢复. 矿产勘查, 6(4): 413~419.
参考文献
夏建明, 王恩德, 赵纯福, 门业凯. 2011. 弓长岭富铁矿氧化还原环境的形成机制. 东北大学学报(自然科学版), 32(11): 1643~1646.
参考文献
许德如, 吴传军, 吕古贤, 周岳强, 于亮亮, 张建岭, 胡国成, 侯茂洲. 2015. 岩石流变学原理在构造成矿研究中的应用——以BIF型富铁矿床为例. 大地构造与成矿学, 39(1): 93~109.
参考文献
杨晓勇, 王波华, 杜贞保, 王启才, 王玉贤, 涂政标, 张文利, 孙卫东. 2012. 论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制. 岩石学报, 28(11): 3476~3496.
参考文献
杨秀清, 李厚民, 薛春纪, 李立兴, 刘明军, 陈靖. 2013. 辽宁歪头山铁矿床两类矿石地球化学特征及其对成矿作用的制约. 地质学报, 87(10): 1580~1592.
参考文献
杨秀清, 李厚民, 李立兴, 姚通, 陈靖, 刘明军. 2014a. 辽冀地区条带状铁建造地球化学特征: Ⅱ. 主量元素特征. 岩石学报, 30(5): 1218~1238.
参考文献
杨秀清, 李厚民, 李立兴, 马玉波, 陈靖, 刘明军, 姚通, 陈伟十, 姚良德. 2014b. 辽宁鞍山-本溪地区铁矿床流体包裹体和硫、氢、氧同位素特征研究. 地质学报, 88(10): 1917~1931.
参考文献
姚通, 李厚民, 杨秀清, 李立兴, 陈靖, 张进友, 刘明军. 2014. 辽冀地区条带状铁建造地球化学特征: Ⅱ. 稀土元素特征. 岩石学报, 30(5): 1239~1252.
参考文献
俞受鋆, 梁约翰, 杜绍华, 李善择, 刘抗娟. 1981. 豫中皖西地区晚太古代铁山庙型铁矿成矿地质特征和含铁盆地轮廓的探讨. 中国地质科学院宜昌地质矿产研究所所刊, (3): 68~83.
参考文献
张连昌, 翟明国, 万渝生, 郭敬辉, 代堰锫, 王长乐, 刘利. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431~3445.
参考文献
张连昌, 代堰锫, 王长乐, 刘利, 朱明田. 2014. 鞍山-本溪地区前寒武纪条带状铁建造铁矿时代、物质来源与形成环境. 地球科学与环境学报, 36(4): 1~15.
参考文献
张招崇, 李厚民, 李建威, 宋谢炎, 胡浩, 李立兴, 柴凤梅, 侯通, 许德如. 2021. 我国铁矿成矿背景与富铁矿成矿机制. 中国科学: 地球科学, 51(6): 827~852.
参考文献
赵一鸣. 2013. 中国主要富铁矿床类型及地质特征. 矿床地质, 32(4): 685~704.
参考文献
赵一鸣, 林文蔚, 毕成思, 李大新, 蒋崇俊. 2012. 中国矽卡岩矿床. 北京: 地质出版社, 1~410.
参考文献
周世泰. 1994. 鞍山-本溪地区条带状铁矿地质. 北京: 地质出版社, 1~276.
目录contents

    摘要

    我国铁矿床类型有沉积变质型、岩浆型、接触交代-热液型(矽卡岩型)、火山岩型、沉积型和风化淋滤型6种,以沉积变质型最为重要。我国的沉积变质型铁矿床主要分布于华北克拉通,以鞍山式铁矿为代表,沉积时代为新太古代末,为阿尔果马型条带状铁建造(BIF)变质而成;吕梁地区的袁家村式铁矿为苏比利尔型BIF变质而成,BIF沉积时代为2.384~2.210 Ga或新太古代末;舞阳、霍邱地区的沉积变质型铁矿可能为苏比利尔型BIF变质产物,BIF沉积时代分别为2.473~2.468 Ga、<2.54 Ga。BIF的形成与缺氧环境向大氧化事件初期的层化海洋环境过渡有关,海水中巨量溶解的铁质部分氧化,在初始层化海洋氧化还原界面附近的浅海环境以胶体形式沉淀。我国的BIF遭受区域变质变形作用,成为条带状磁铁石英岩,作为沉积变质型铁矿开发利用。BIF经历后期流体改造可形成富铁矿,形成机制有“去硅富铁”、“铁质活化再富集”和“去碳酸盐富铁”3种,弓长岭富铁矿的成矿年龄为1.85 Ga左右,由BIF“去硅富铁”而成;齐大山富铁矿可能形成于2.5 Ga,由BIF“铁质活化再富集”而成;袁家村富铁矿形成于1.41~1.34 Ga,可能由含碳酸盐的BIF“去碳酸盐富铁”而成。

    Abstract

    Iron deposits in China include the sedimentary-metamorphic type, magmatic Fe-Ti-(V) type, contact metasomatic-hydrothermal (skarn) type, volcanic rock-hosted type, sedimentary type and weathering-leaching type, among which the first type is the most important. Iron deposits of the sedimentary-metamorphic type are mainly distributed in the North China Craton, represented by the Anshan subtype that formed by the metamorphosed Algoma-type banded iron formation (BIF). The Yuanjiacun subtype iron deposits in the Lüliang area formed by metamorphosed Superior-type banded iron formation that deposited at 2.384 to 2.210 Ga. The sedimentary-metamorphic iron deposits distributed in the Wuyang and Huoqiu might also be the results of metamorphosed Superior-type banded iron formation, which are deposited at 2.473 to 2.468 Ga and <2.54 Ga, respectively. The deposition of banded iron formation is related to the stratified marine environment at the early stage of the transition from anoxic environment to the great oxidation event. The enormous amount of dissolved iron in seawater was partially oxidized and then precipitated in the form of colloids in the shallow marine environment near the redox interface of the stratified ocean. The banded iron formation in China experienced intense regional metamorphism and deformation, and became banded magnetite quartzite, which can be utilized as sedimentary metamorphic iron ore. High-grade iron ore forms by hydrothermal replacement of BIF, with iron-enrichment mechanism including desilicification, iron activation-reprecipitation and decarbonization. The Gongchangling high-grade iron deposit formed by desilicification process at 1.85 Ga, the Qidashan high-grade iron deposit formed by iron activation-reprecipitation process at 2.5 Ga, and the Yuanjiacun high-grade iron deposit formed by decarbonization at 1.41~1.34 Ga.

  • 我国铁矿资源丰富,但是由于富铁矿极度缺乏,绝大部分铁矿石长期依赖进口,使得铁矿成为我国最为紧缺的大宗战略性矿产之一。沉积变质型铁矿是我国铁矿主要类型,其中的富铁矿一直是人们关注的重点,已有众多学者进行了研究(程裕淇,1953, 1957;李曙光,1982;王守伦,1986;夏建明等,2011;赵一鸣,2013;李延河等,2014b;Li Houmin et al.,2015;刘陆山等,2015;沈其韩和宋会侠,2015;许德如等,2015;Zhang Zhaochong et al., 2021)。尤其是程裕淇先生早对勘探中国铁矿问题提出了初步意见(程裕淇,1953),对辽宁和山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题进行了研究(程裕淇,1957),对铁矿床类型进行了划分(程裕淇等,1978),对包括沉积变质型铁矿在内的若干区域成矿问题进行了分析(程裕淇和闻广,1982),论述了沉积变质型铁矿的成矿系列问题(程裕淇等,1983)。值此《地质学报》创刊100周年暨纪念程裕淇先生诞辰110周年之际,本文简要介绍国家“973”项目“我国富铁矿形成机制与预测研究”(2012CB416800)及后续研究中有关沉积变质型铁矿主要研究成果。

  • 1 BIF基本特征

  • 1.1 世界BIF基本特征

  • 前寒武纪条带状铁建造(Banded iron formation,简称BIF)是世界上最重要的铁矿资源类型和地球早期特有的化学沉积建造类型,主要沉积于中太古代—古元古代(3.2~1.8Ga),记录了地球早期岩石圈、水圈、大气圈和生物圈的状态及演化,广泛分布于澳大利亚、巴西、南非和中国等地古老的克拉通中(Klein,2005;Bekker et al.,2010)。前人根据BIF的岩石组合和构造地质环境将其划分为阿尔果马(Algoma)型和苏比利尔(Superior)型(Gross,1965)。不同时代和不同类型BIF的硅氧同位素组成非常相似,强烈亏损30Si,δ30SiNBS-28为较大的负值;阿尔果马型和苏比利尔型BIF的铁同位素和硫同位素非质量分馏效应明显不同,阿尔果马型BIF的Δ33S多为负值,而苏比利尔型BIF的Δ33S多为正值;阿尔果马型BIF富集重铁同位素,δ56FeIRMM-144多为高正值,而苏比利尔型BIF相对富集轻铁同位素,δ56FeIRMM-144多为负值或小正值;相对而言,阿尔果马型BIF与火山活动关系更密切,距离同期火山活动中心更近,多形成于深水盆地,环境更加还原(李延河等,2012;侯可军等,2012)。

  • 1.2 辽冀地区BIF基本特征

  • 我国的沉积变质型铁矿床主要由早前寒武纪BIF变质而成,主要分布于华北克拉通(Li Houmin et al.,2014;Zhang Zhaochong et al.,2014)。前人研究认为,我国的早前寒武纪BIF主要为阿尔果马型,以条带状磁铁石英岩为特色,以鞍山式沉积变质型铁矿为代表(万渝生等,2012;张连昌等,2014)。辽冀地区(主要包括鞍山-本溪地区和冀东地区)位于华北克拉通东北部,产出有诸多大型-特大型鞍山式铁矿床。虽然辽冀地区BIF大多为形成于新太古代绿岩带中的阿尔果马型,且普遍发生了混合岩化,但不同矿区BIF形成环境和受后期改造的程度不一致,鞍本地区BIF变质级别为绿片岩相—角闪岩相,冀东地区BIF经历了绿片岩相—麻粒岩相的变质作用。

  • 研究团队系统研究了辽冀地区BIF的主量元素特征(杨秀清等,2014a;付建飞等,2014;Wang Ende et al.,2015a, 2015b),鞍山-本溪地区SiO2+TFe2O3平均为95.10%,冀东地区SiO2+TFe2O3平均为88.06%,CaO和MgO含量仅次于SiO2和TFe2O3,Al2O3、TiO2、K2O、Na2O、MnO、P2O5含量很低,表明BIF原岩为一种化学沉积岩,主要为含有少量碳酸盐泥的硅质和铁质的胶体沉积;虽然辽冀不同地区BIF经历了不同级别的变质作用,形成了不同的矿物组合,但是氧化物含量却变化不大,说明变质反应主要为等化学反应;鞍本地区和冀东地区BIF碱质含量也存在差异,前者的Na2O和K2O含量均低于后者,且后者Na2O<K2O,结合野外地质特征,可能暗示了混合岩化作用对冀东地区的影响更为显著。

  • 我们还系统研究了辽冀地区BIF的微量元素特征(姚通等,2014;Wang Ende et al.,2015a, 2015b),结果表明:① 所有样品的稀土元素总量较低,Y/Ho比值较高,经后太古宙平均澳大利亚页岩(PAAS)标准化后呈现重稀土相对富集、轻稀土相对亏损的配分模式,La异常不明显,强烈的Eu正异常和明显的Y正异常,揭示研究区铁矿石成矿物质主要来源于海底高温热液和周围海水的混合溶液;与冀东地区BIF相比,鞍本地区BIF的Eu异常更为明显,说明鞍本地区BIF显示更多的热液特征。② 铁矿石的Ce/Ce*变化范围为0.77~1.09,缺乏明显的Ce负异常,说明其沉积于还原的海水环境。③辽冀地区BIF的稀土元素总量、Eu异常、Y异常和Y/Ho比值变化范围均比较大,可能与BIF沉积过程中碎屑物质的加入有关;与鞍本地区相比,冀东地区BIF的Eu正异常、Y正异常程度均小于鞍本地区,热液和海水特征均不明显,Y/Ho比值更接近球粒陨石(26~28),可能暗示冀东地区有更多的碎屑物质的加入。

  • 1.3 吕梁地区BIF基本特征

  • 山西吕梁地区袁家村铁矿是我国公认的苏必利尔型BIF,除条带状磁铁石英岩、条带状赤铁石英岩外,还有大量条带状闪石磁铁石英岩、条带状赤铁碳酸盐岩、黑硬绿泥石磁铁石英岩、黑硬绿泥石赤铁石英岩,条带状闪石磁铁石英岩中的角闪石为镁铁闪石,Al、Ca含量很低,表明原始沉积的条带状铁建造由富Fe、Si、Mg的岩石组成,经变质形成石英、磁铁矿、镁铁闪石组合;条带状赤铁碳酸盐岩中的碳酸盐多为菱铁矿,表明其原始沉积的条带状铁建造由赤铁矿和铁碳酸盐组成,Si含量很少,表明我国公认的苏必利尔型BIF以含有碳酸盐岩为特色。袁家村BIF中同沉积的火山物质不明显,形成于被动大陆边缘环境,有少量陆源物质加入,稀土元素和铁同位素表明其形成于缺氧海洋环境,石英的硅、氧同位素组成表明BIF与海底热液活动有关,受海水和热液混合控制,成矿物质源自热液对镁铁质洋壳的萃取;在层化的古海洋的氧化还原转换带,还原海水中的铁质和硅质分别由于氧化和过饱和发生沉淀(Men Yekai et al.,2019)。

  • 1.4 舞阳地区BIF基本特征

  • 除袁家村铁矿床外,我国其他地区是否存在苏必利尔型BIF一直存在争议。我们对河南舞阳和安徽霍邱地区的BIF进行了研究,认为它们也为苏比利尔型BIF。河南舞阳铁山庙式铁矿床中铁矿层与大理岩互层,矿体内见条带状矿化大理岩(白色)与块状透辉石磁铁矿层(黑色)互层,表明铁矿化与碳酸盐关系密切。显微镜下,铁山庙式铁矿的矿石类型主要由石英、磁铁矿、透辉石不同比例组合而成,从辉石磁铁矿大理岩、碳酸盐磁铁矿辉石岩、条带状磁铁辉石岩、到条带状辉石磁铁石英岩,碳酸盐逐渐减少,铁质及硅质逐渐增多。铁山庙式铁矿的主量元素:SiO2为32.63%~56.49%,FeO为26.33%~57.34%,Al2O3为0.30%~1.46%,MgO为1.17%~8.51%,CaO为1.77%~16.52%,Na2O为0.10%~2.68%,K2O为0.01%~0.96%,MnO为0.09%~1.93%,TiO2为0.01%~0.11%,P2O5为0.01%~0.07%,可见主要由铁、硅、钙、镁组成,其他组分含量很低,尤其是铝和钛含量很低,反映其既不是陆源碎屑沉积,又不是基性火山沉积,而可能与袁家村铁矿等国内外苏必利尔型BIF一样,是化学沉积的产物;铁山庙式铁矿石及其磁铁矿的稀土元素PAAS标准化配分模式图上,可见明显的铕正异常和钇正异常,明显的铕正异常是热水沉积的标志,而明显的钇正异常反映了海水的特征;铁山庙式铁矿石及其蚀变岩中石英的δ30SiNBS-28为-1.7‰~0.1‰、平均值为-0.74‰,与华北克拉通BIF中石英的δ30SiNBS-28为-2.0‰~-0.3‰、平均-0.80‰(李延河等,2010)十分一致,也与现代海底黑烟囱、泉华及热水沉积硅质岩的硅同位素组成相似。这些特征表明,铁山庙式铁矿也是与海底热液有关的化学沉积岩(Yao Tong et al.,2015)。

  • 河南舞阳赵案庄铁矿以发育磁铁矿和蛇纹石为特征,残留富镁橄榄石,常见金云母、磷灰石、白云石、硬石膏,矿石低Ti、Cr、Ni,贫Al高Mg。赵案庄铁矿床矿体隐伏地下,研究程度很低,一直存在火山沉积-变质(罗明强,2009;贾兴杰等,2012;刘立新等,2014;王伟中等,2015)和岩浆侵入-变质(俞受鋆等,1981;蒋永年和陈勇华,1986;蒋永年,1990, 1991;李俊平等,2012;兰彩云等,2013)两种不同的成因认识。本研究发现:① 在赵案庄铁矿区前人所谓的超镁铁侵入体中,有自形粒状橄榄石分布于自形柱粒状角闪石粒间,二者为平衡共生关系,这种共生关系由岩浆平衡结晶产生的可能性不大;② 铁矿石中可见碳酸盐与磁铁矿、磷灰石、橄榄石(已蛇纹石化)平衡共生,这种矿物共生组合也不支持岩浆成因或岩浆变质成因;③ 矿体围岩斜长角闪岩由基性火山岩变质而成,其中磁铁矿Ti含量高,磁铁矿中可见钛铁矿叶片;而铁矿石中磁铁矿含Ti很低,没有钛铁矿出溶叶片;在铁矿石中经常可见硬石膏,与磷灰石、磁铁矿等共生,其δ34S为20.9‰,显示海水硫酸盐成因,也不支持岩浆成因;④ 在矿体中有白云石大理岩,其中有磁铁矿、磷灰石和已蛇纹石化的橄榄石,暗示了铁矿与白云质大理岩的成因联系;⑤ 铁矿石中残留的橄榄石含铁低,Fo为84~91,与成铁矿的超镁铁岩中含铁高的橄榄石差异明显,而与镁矽卡岩中橄榄石类似,橄榄石、金云母等矿物组合也是镁矽卡岩中典型矿物组合(赵一鸣等,2012)。因此我们认为,赵案庄铁矿与岩浆岩的亲缘性很低,可能是化学沉积产物变质或热液改造而来(孟洁等,2018;Meng Jie et al., 2018)。赵案庄式铁矿中黄铁矿的δ34SV-CDT值为11.5‰~13.9‰,硬石膏的δ34SV-CDT值为20.01‰~22.43‰,平均21.14‰。按照黄铁矿-石膏硫同位素平衡分馏公式:Δ34S硫酸盐-黄铁矿≈1000lnα硫酸盐-黄铁矿=2.762×106T-2±1(Ohmoto and Rye,1979),计算的平衡温度为616~753℃,这一方面说明矿区的硫化物与硫酸盐达到了同位素交换平衡,另一方面说明它们经历了616~753℃的区域变质作用。这表明它们是区域变质之前就存在的,是沉积的,在区域变质过程中达到了硫同位素平衡。如果矿床中的硫主要来自深源岩浆,δ34SΣSV-CDT≈0,根据质量平衡,在硫酸盐和磁铁矿/赤铁矿普遍存在的情况下,硫化物的δ34SV-CDT应为很低的负值(Ohmoto and Rye,1979)。本区赵案庄式铁矿中黄铁矿的δ34SV-CDT远高于幔源硫的分布范围,在已知的成矿条件下,幔源岩浆硫(δ34SΣSV-CDT≈0)无论如何都不可能演化出如此高的δ34SV-CDT值;矿床中石膏的δ34SV-CDT值为20.01‰~22.43‰,与长江中下游地区玢岩铁矿的硫同位素组成(20‰左右)及其围岩三叠纪周冲村组膏盐层中硬石膏的硫同位素组成(28‰左右;储雪蕾等,1986;李延河等,2014a)相似,表明赵案庄铁矿中的硫化物及硫酸盐为海相沉积来源,而不是来自原始岩浆(Meng Jie et al.,2019)。赵案庄铁矿床的Mg同位素组成比岩浆岩的Mg同位素轻,而与现代海水的镁同位素组成(-1.00‰~-0.80‰)接近,并落入白云岩Mg同位素组成的范围内,可以推测赵案庄铁矿床中的Mg不是地幔来源,而应该是海相富镁碳酸盐来源;矿体中富电气石岩夹层中电气石δ11B介于-0.2‰~3.6‰之间,平均为2‰,与海相蒸发岩成因来源的电气石B同位素特征一致,表明赵案庄铁矿床的富电气石岩中B应该为海相蒸发来源(Meng Jie et al.,2019)。赵案庄铁矿中硫酸盐具有明显硫的非质量分馏,也非岩浆或后期热液成因,而是海水沉积的。

  • 1.5 霍邱地区BIF基本特征

  • 分布于华北克拉通东南缘的霍邱BIF赋存于中级变质的霍邱群中,为苏比利尔型BIF或介于阿尔果马和苏比利尔型之间的过渡类型(杨晓勇等,2012);主微量元素特征显示BIF为化学沉积,但有陆源碎屑的混入;亏损LREE、正铕和钇异常等稀土元素特征及强烈亏损30Si显示BIF沉淀于有热液参与的海水环境;黄铁矿δ34S为-2.84‰~4.38‰,反映为幔源流体与沉积物的混合硫;Δ33S值为-0.08‰~1.03‰,反映霍邱BIF沉淀远离火山中心;富集56Fe同位素表明海水中仅部分Fe2+氧化为Fe3+沉淀,为大氧化事件初期;碎屑锆石的Hf模式年龄为3.1~3.0Ga、2.9~2.7Ga、2.5Ga,反映霍邱地区有3次地壳增生(Hou Kejun et al.,2017, 2019)。

  • 2 BIF形成条件及形成机制

  • 2.1 BIF沉积时代

  • 沉积时代BIF重要形成条件之一。早期人们采用Rb-Sr等时线法和Sm-Nd等时线法等方法,将鞍本地区赋存铁建造的鞍山群的沉积时代限定为新太古代,并自下而上依次划分为茨沟组、大峪沟组和樱桃园组;将冀东地区赋存铁建造的地层自下而上依次限定为古太古界曹庄岩组、中太古界迁西岩群、新太古界遵化岩群、新太古界滦县岩群和新太古界朱杖子岩群;将河南舞阳地区赋存铁建造的地层自下而上依次限定为新太古界太华岩群赵案庄组和铁山庙组(钱祥麟,1985;周世泰,1994)。

  • 上述各地区的含矿岩系之间多以断层接触,上下关系缺乏直接地质证据,而且采用的Rb-Sr等时线法和Sm-Nd等时线法等定年方法的准确度较差。因此,近年来人们多采用较精确的锆石SHRIMP U-Pb方法进行年龄测定,将华北克拉通BIF的沉积时代限定在2.550~2.500Ga(Zhang Xiaojing et al.,2011;万渝生等,2012, 2018;张连昌等,2012;Li Houmin et al.,2015;Wan Yusheng et al.,2015;Li Lixing et al.,2016;Wang Changle et al.,2017)。我们开展的BIF定年工作成果如下:

  • (1)鞍本地区阿尔果马型BIF的绿片岩相-低角闪岩相围岩中锆石能够保留原岩信息,但高角闪岩相围岩中锆石发生了不同程度的重结晶。6个BIF围岩样品中的岩浆锆石SHRIMP U-Pb年龄将BIF的沉积时代限定为2.56~2.53Ga(Li Lixing et al.,2016):齐大山2530±6Ma、东鞍山2544±8Ma、眼前山2555±19Ma、弓长岭2539±25Ma、偏岭2559±7Ma,梨树沟2547±16Ma,与华北克拉通2.5Ga左右的地壳增生事件相一致;绿片岩相变质岩中锆石还记录了2.72~2.65Ga的火山活动,可能反映了2.7Ga的一次地壳增长事件;这些围岩中的变质锆石记录了1.88~1.84Ga的构造-热事件,如南芬的1874±9Ma可能反映的是后期热液改造形成富铁矿的年龄。

  • (2)冀东阿尔果马型BIF经历了高级变质和混合岩化。混合岩化可能会形成磁铁富矿,但混合岩化的时代还不确定。我们对8个BIF围岩样品的锆石进行了深入研究,对BIF的沉积年龄和混合岩化年龄进行了限定,通过CL图像识别出6个连续的锆石生长阶段(Li Lixing et al.,2015):继承的岩浆锆石、亮的再吸收环带、暗的重结晶前缘、暗灰的扩散晕、亮灰的增生带、亮的再吸收边。增生带是原生锆石与混合岩化熔体反应时Zr发生固态扩散的产物,导致原生锆石在不同阶段发生化学再平衡及残留岩浆锆石局部同结构再沉淀生长。继承岩浆锆石核及独立岩浆锆石SHRIMP U-Pb年龄限定BIF的沉积时代为2.520Ga;代表混合岩化事件的亮灰锆石增生带和新生同构锆石的U-Pb年龄为2.511~2.485Ga,稍晚于BIF沉积年龄。BIF沉积事件与新太古代岩浆活动时代一致,而混合岩化年龄与华北克拉通东部陆块区域变质事件时代一致。陈靖等(2015)对冀东地区柞栏杖子BIF矿体夹层黑云斜长变粒岩进行SHRIMP锆石U-Pb定年,获得207Pb/206Pb年龄加权平均值为2572±8Ma(MSWD=5.8),可代表柞栏杖子BIF的形成年龄。

  • (3)舞阳地区铁山庙铁矿区矿体顶板钠长石黑云母片岩中锆石的SHRIMP U-Pb年龄集中在两个区间(孟洁等,2018):一个为2478±12Ma,另一个年龄为1961±28Ma,后者代表了该区强烈的高角闪岩相-麻粒岩相区域变质及混合岩化年龄,但前者是围岩及BIF沉积的时代还是沉积之前的继承锆石年龄,需要进一步确认。穿插围岩及铁矿体的花岗岩脉也有两个年龄:一个为2463±10Ma,另一个为1918±14Ma,后者代表了花岗岩形成年龄,反映该花岗岩是混合岩化的产物;前者与钠长石黑云母片岩的2478±12Ma年龄基本一致,代表了继承原岩锆石的年龄。因此,2.463~2.478Ga是铁山庙式铁矿围岩及BIF沉积的时代。

  • (4)霍邱BIF围岩锆石的LA-ICP-MS U-Pb年龄,将BIF沉积时代限定在2.54Ga,将变质时代限定在1.8Ga(Hou Kejun et al.,2017)。

  • (5)吕梁袁家村BIF赋存于袁家村组变沉积岩地层中间层位,变质程度自北向南逐渐增强,变质相也相应的从低绿片岩相渐变至角闪岩相(Zhu Jinchu et al.,1988)。在袁家村BIF中发育有赤铁矿富矿,并且是我国华北克拉通仅有的与BIF有关的赤铁矿富矿。多数学者通过袁家村组上覆最老地层单元和下伏最新地层单元的锆石U-Pb年龄,将袁家村组的沉积年龄约束在2.38~2.21Ga之间,认为该年龄范围可代表袁家村BIF的沉积时代(杜利林等,2012; Liu Shuwen et al.,2012;Liu Chaohui et al., 2014; Wang Changle et al.,2015)。然而,王惠初等(2020)发现侵入到袁家村组的变辉长岩的成岩年龄为2530±10Ma,认为袁家村组的沉积时代为新太古代。通过对与赤铁矿富矿共生的磷钇矿和独居石进行U-Pb定年,得到2期年龄,较早的一期反映了袁家村BIF绿片岩相变质时代为1.94Ga,较晚的一期反映了袁家村BIF中赤铁矿富矿的成矿时代为1.41~1.34Ga(Li Lixing et al.,2020)。

  • 综上所述,可见华北克拉通阿尔果马型BIF沉积时代为2.56~2.52Ga,区域变质(混合岩化)时代为2.510~2.485Ga,在约1.85Ga还有一次区域变质,稍后的热液改造形成富铁矿的时代为1.85Ga左右;苏比利尔型BIF沉积时代稍晚,为2.54~2.21Ga,区域变质时代为1.94~1.8Ga,热液改造形成富铁矿的时代为1.41~1.34Ga。我国华北克拉通上的BIF可能“灾变性”地沉积于2.5Ga左右,与国外的BIF从3.8Ga到1.8Ga均有发育完全不同。这种差异可能是构造背景的差异造成的,从而决定了我国BIF和富铁矿与国外的不同。

  • 2.2 BIF沉积环境

  • 原始沉积环境是BIF又一重要形成条件,也是富铁矿形成的重要控制因素。因此,本文对南非BIF的沉积环境进行了简单考察,对中国弓长岭、袁家村和舞阳地区铁山庙式铁矿的沉积环境进行了研究。

  • 2.2.1 南非BIF形成环境

  • 南非古元古代Transvaal组BIF的下伏地层为页岩、碳酸盐岩和砂岩,其中页岩层面上有雨痕和泥裂,灰岩中发育鲕粒,砂岩中发育波痕和交错层(图1),反映该BIF沉积于浅海环境。

  • 2.2.2 袁家村BIF沉积环境

  • 山西袁家村铁矿区铁矿体的围岩有变质石英砂岩和含炭千枚岩(图2),变质石英砂岩与铁矿体直接接触,整合产出,显微镜下见变质石英砂岩中的变余碎屑结构被很好地保留,石英碎屑仍呈浑圆状,磨圆度好,胶结物变质为细粒硅质,分布于变余的石英碎屑粒间。由于BIF与变余石英砂岩直接接触并整合产出,限定了BIF沉淀于浅海环境。

  • 2.2.3 弓长岭BIF沉积环境

  • 辽宁弓长岭BIF沉积的古构造环境为大陆岛弧的弧后盆地(王恩德等,2013)。弓长岭铁矿二矿区的含铁建造自下而上依次为底部斜长角闪岩系(变质基性火山岩)、下含铁岩系、变粒岩系(变质酸性火山岩,习称K层)、上含铁岩系、大理岩、蚀变的变质泥质岩及云母石英片岩。其中上含铁岩系顶板的云母石英片岩是石英砂岩变质而成还是硅质岩变质而成,是解决BIF沉积环境的关键。为恢复云母石英片岩的原岩,本研究测定了石英片岩中的硅氧同位素组成,并与条带状磁铁石英岩中石英进行对比。由图3可见,云母石英片岩中石英的氧同位素明显低于磁铁石英岩中石英的氧同位素组成,而云母石英片岩中石英的硅同位素组成明显高于磁铁石英岩中石英的硅同位素组成。这表明云母石英片岩与磁铁石英岩中硅质来源不同,即云母石英片岩不是热液硅质岩变质而成。结合其与大理岩共生,推测由石英砂岩变质而成,即限定了弓长岭BIF初始沉积于浅海环境(李厚民等,2012)。

  • 2.2.4 舞阳铁山庙BIF沉积环境

  • 河南舞阳铁山庙式铁矿的围岩变质程度深,达高角闪岩相—麻粒岩相,近矿围岩有大理岩和“白粒岩”。其中“白粒岩”主要由石英组成,有少量钾长石,显微镜下见石英呈变余碎屑结构的浑圆状,钾长石呈不均匀、不规则状分布于石英粒间(图4),表明可能由石英砂岩变质而成,钾长石可能由泥质胶结物变来。

  • 为进一步恢复“白粒岩”的原岩,本研究测定了“白粒岩”的硅氧同位素组成,并与条带状辉石磁铁石英岩中石英进行对比。从图4可见,“白粒岩”中石英的硅-氧同位素组成与辉石磁铁石英岩中石英的硅-氧同位素组成有明显差别,这表明“白粒岩”不是热液硅质岩变质而成,而是石英砂岩变质而成,即限定了铁山庙式BIF初始沉积于浅海环境。

  • 弓长岭、袁家村、舞阳铁山庙式铁矿初始沉积于浅海环境,不仅可以与国外对比,而且为BIF形成于缺氧环境之后大氧化事件初期层化海洋氧化还原界面附近的沉积模式提供了地质依据,具有重要理论意义。

  • 图1 南非古元古代Transvaal超群和太古宙Pongola超群BIF围岩中浅海相标志

  • Fig.1 A sign of neritic facies developed in the wall rocks of the BIF of the Paleoproterozoic Transvaal Supergroup and Archean Pongola Supergroup, South Africa

  • (a)—Transvaal超群页岩层面上雨痕和泥裂;(b)—Transvaal超群叠层石层面波痕;(c)—Pongola超群砂岩中交错层理; (d)—Transvaal超群灰岩中鲕粒

  • (a)—Raindrop imprint and desiccation crack on the shale layer of the Transvaal Supergroup; (b)—desiccation crack on the stromatolite layer of the Transvaal Supergroup; (c)—cross bedding developed in the sandstone of the Pongola Supergroup; (d)—ooid developed in the limestone of the Transvaal Supergroup

  • 2.3 BIF沉积时的氧化还原环境

  • 铁为变价元素,氧化作用是BIF的重要形成条件。国内外研究者普遍认为,地球早期的大气和海洋处于缺氧环境,在2.5~2.3Ga期间发生了大氧化事件,大气和海洋中氧急剧增加,硫同位素的非质量分馏表征了这一重大变化。但是,BIF的沉积是否与缺氧环境和大氧化事件有关,目前是一个激烈争论的热点话题。我国的早前寒武纪BIF是否与缺氧环境和大氧化事件有关?本文通过铁同位素研究和硫同位素非质量分馏的研究,提出了一些认识。

  • 通过对华北克拉通BIF的Fe同位素进行研究,鞍本地区BIF铁矿δ56Fe的变化范围为0.08‰~1.27‰,平均值为0.52‰;冀东地区BIF铁矿δ56Fe的变化范围为0.19‰~1.12‰,平均值为0.72‰;五台地区BIF铁矿δ56Fe的变化范围为0.64‰~0.99‰,平均值为0.80‰;吕梁地区BIF铁矿δ56Fe的变化范围为0.03‰~0.76‰,平均值为0.30‰。这些铁矿的Fe同位素组成均为正值,这是由于海水中二价铁是部分氧化而非完全氧化沉淀的结果,表明铁矿沉淀时的海水为低氧逸度环境,并未将铁全部氧化,只有30%Fe被氧化沉淀;且从新太古代到古元古代,铁矿石的δ56Fe有减小的趋势,由于铁同位素比值受氧化程度的制约,氧化程度越高,δ56Fe越小,至完全氧化沉淀时,δ56Fe约为0。因此,铁同位素的组成特征可能暗示了华北地区BIF铁矿的沉积环境均为低氧逸度环境,当时的海洋处于大氧化事件的初期,海水并未完全氧化,可能存在层化海洋。吕梁地区BIF的沉积环境比其他地区BIF沉积环境的氧逸度高,与其沉积时代更年轻、海洋氧化程度更高有关。

  • 图2 山西袁家村铁矿围岩变质石英砂岩及含碳千枚岩

  • Fig.2 Wall rocks of metamorphosed quartz sandstone and carbonaceous phyllite of the iron orebody in the Yuanjiacun deposit, Shanxi Province

  • (a)—变质砂岩与含碳千枚岩直接接触;(b)—变质砂岩与铁矿体直接接触;(c)—富铁矿脉及失铁石英岩;(d)—变质石英砂岩,胶结物为硅质,少量泥质变为绢云母(正交偏光)

  • (a)—Metamorphic sandstone in direct contact with carbonaceous phyllite; (b)—metamorphic sandstone in direct contact with iron orebody; (c)—high-grade ore vein and iron-leaching quartzite; (d)—metamorphic quartz sandstone with siliceous cementation, with a small amount of mud changed to sericite (cross-polarized light)

  • 硫同位素的非质量分馏效应发生与否被认为与地球的大气环境有关:大于2.45Ga,地球大气缺氧,太阳紫外线可以穿越大气层到达地表,非质量分馏明显;2.09Ga以来,地球大气氧化,太阳紫外线很难到达地表,非质量分馏消失。因此,BIF中硫同位素非质量分馏的发现为了解地球早期大气成分及其演化开辟了一条独特的新途径,是判断地球早期大气环境的重要判据之一。赵案庄式铁矿硫酸盐的Δ33S值为-0.35‰~3.06‰,其中Δ33S<-0.30‰的1个样品,非质量分馏明显;-0.30‰~0.30‰的24件样品,非质量分馏不明显;>0.30‰的10件样品,非质量分馏明显。部分样品有明显的硫同位素非质量分馏效应表明硫酸盐的硫来自部分缺氧的大气环境,即大氧化事件初期。

  • 2.4 BIF形成机理

  • 2.4.1 BIF沉淀形式

  • 由于我国早前寒武纪BIF经历了强烈的变质变形作用,因此其最初沉积形式无从研究。本文对对澳大利亚、巴西、北美和南非变质很浅的BIF进行了研究,发现其BIF最初是以铁硅质胶体的形式沉淀的,现在仍保留鱼籽状的变余胶体结构形态(图5),是胶体沉淀的最直接证据。

  • 2.4.2 BIF形成机理

  • BIF最显著的特征是硅铁韵律层的存在,韵律层的成因也是长久以来广为争议的“地质之谜”。Cloud et al.(1973)认为BIF中韵律层是微生物周期性产氧的结果。BIF微区铁、硅同位素和不同条带之间对比研究是揭开硅铁韵律层成因的关键手段。Steinhoefel et al.(2009)采用飞秒激光剥蚀多接收等离子质谱(fsLA-MC-ICPMS)微区原位分析技术对津巴布韦太古宙富碳酸盐(Magnetite-carbonate-chert)BIF的硅、铁同位素进行了微区分层研究,各微层全层的δ56Fe和δ30Si值协同变化。根据铁硅同位素在微层中的变化规律提出了硅铁韵律层的形成机制:海底热液活动较弱时形成硅质层,海底热液活动强烈时形成铁质层,海底热液的脉动式喷发形成硅铁韵律层。

  • 图3 辽宁弓长岭铁矿云母石英片岩与BIF中石英硅同位素组成(a)、氧同位素组成(b)及原岩恢复(c)

  • Fig.3 Silicon and oxygen isotopes of quartz of mica-quartz schist and BIF (a, b) as well as protolith reconstruction (c) of the Gongchangling iron ore deposit, Liaoning Province

  • 图4 河南舞阳铁山庙式铁矿“白粒岩”及其与辉石磁铁石英岩中石英硅同位素(a)和氧同位素(b)对比

  • Fig.4 Silicon and oxygen isotopes of quartz of the white-colored metasedimentary rock and pyroxene magnetite quartzite (a, b) of the Tieshamiao-type iron deposits, Wuyang area, Henan Province

  • BIF在太古宙和古元古代大规模广泛分布,表明地球早期火山和海底热水喷气活动非常强烈,规模很大,可能呈面型分布,海水温度较高,海水中溶解Si的浓度可能达到无定型硅(Amorphous silica)的饱和状态(Maliva et al.,2005),海水中Fe2+的浓度比现在高得多,可能在2×10-6~50×10-6之间(Sumner et al.,1997;Canfield,2005)。

  • 我们根据BIF的硅氧同位素组成特征及其在硅质条带与相邻磁铁矿条带中的变化规律,提出了BIF中硅-铁韵律层形成的新机制(Li Yanhe et al.,2014):每次海底喷气活动都带来大量Fe、Si等成矿物质和酸性、还原性气体。海水中Si和Fe的沉淀分为两个阶段。第一阶段,热水溶液喷发到海底以后,由于与海水混合,温度突然下降,硅在海水中的浓度达到过饱和状态,首先以硅胶形式从海水中快速沉淀下来,形成硅质条带;当时海水中溶解硅的浓度很高,沉淀出来的硅只占海水硅储库中很小的份额;由于硅同位素动力学分馏,首先沉淀的硅δ30Si NBS-28值最低。第二阶段,随着热水溶液与海水的逐步混合,溶液温度不断降低,pH、Eh值不断升高,一部分Fe2+逐渐被氧化成Fe3+,生成Fe(OH)3沉淀,形成铁质条带;由于当时海洋中氧逸度很低,Fe2+的氧化需要一定的时间,因此铁质沉淀的时间较硅质沉淀稍晚;该阶段海水中SiO2的溶解度接近饱和状态,除有磁铁矿沉淀之外,仍有少量SiO2随之一同沉淀下来;由于硅同位素动力学分馏,导致第二阶段随铁质条带一同沉淀的硅质δ30Si值有所升高。每次海底喷气活动都造成Si、Fe依次先后沉淀,分别形成硅质层和铁质层,一套韵律层代表了一次大的海底喷气活动,海底热液喷气的周期性活动形成了BIF。海水中剩余的硅被搬运到远离喷口的地方沉淀下来形成燧石。同时代非BIF燧石的δ30Si为较高的正值,很好地证明了这一点(Chakrabarti et al.,2012)。

  • 图5 国外BIF及其中鱼籽状变余胶粒

  • Fig.5 Banded iron formation abroad with fish roe-like palimpsest colloidal grains

  • 巴西卡拉加斯条带状赤铁燧石岩:(a)—手标本;(b)—单偏光;(c)—反射光,鱼籽状变胶粒、强烈韧性剪切及赤铁矿化;澳大利亚哈姆斯利盆地Dales Gorge条带状赤铁碧玉岩:(d)—野外露头;(e)—单偏光;(f)—正交偏光,条带状赤铁碧玉岩中浸染状碳酸盐自形晶;(g)—南非Ventersdorp超群条带状磁铁石英岩;(h)—南非Transvaal超群条带状赤铁碧玉岩;(i)—加拿大拉布拉多赤铁碧玉岩中鱼籽状变胶粒(单偏光)

  • Banded hematiteitabirite in Carajás, Brazil: (a)—hand specimen; (b)—plane-polarized light; (c)—reflected light, fish roe-like colloidal grains, intense ductile shear and hematitization; banded hematite jaspilite in Dales Gorge Member of the Hamersley basin, Australia: (d)—field outcrop; (e)—plane-polarized light; (f)—crossed-polarized light, euhedral carbonate minerals disseminated in the banded hematite jaspilite; (g)—banded magnetite quartzite of the Ventersdorp Supergroup, South Africa; (h)—banded hematite jaspilite of the Transvaal Supergroup, South Africa; (i)—fish roe-like colloidal grains in hematite jaspilite of the Labrador, Canada (plane-polarized light)

  • 本文对澳大利亚变质很浅的BIF中硅质条带和富铁条带中石英的硅同位素进行研究,硅质条带中石英的硅同位素组成系统地低于其相邻的富铁条带中石英的硅同位素组成。由于相同温度条件下,先沉淀的硅质硅同位素组成低,而后沉淀的硅质其硅同位素组成高,因此这一结果表明:BIF形成时,硅质先沉淀,铁质后沉淀。进一步支持了上述条带状构造形成机理的认识,表明条带状构造是同生沉积形成的,是硅质和铁质的沉淀存在先后造成的。

  • 2.4.3 BIF沉淀机理

  • 结合前述我国华北克拉通BIF形成于浅海环境,建立其沉积模式如下:① 中—新太古代,古陆壳很薄,容易拉张形成海盆,富含铁质的幔源基性—超基性岩浆大量喷发到海底,形成以基性—超基性岩为主体的新生洋壳。这时由于大气缺氧,因此海洋仅上部水体含氧,其下巨大体积的水体缺氧。在海底同生断裂地震泵的作用下,海水发生对流循环,从新生洋壳中萃取了大量铁质,溶解于下部水体中。② 大氧化事件初期,开始形成层化的海洋,海洋表层水体被氧化,下部巨量水体仍处于缺氧环境。此时溶解了巨量Fe2+的海水在上升洋流等的作用下,运移到浅海环境潮线以下的层化海洋氧化—还原界面附近,由于Fe2+被氧化为Fe3+,铁质大量沉淀成矿。由于上升洋流的活动是周期性的,因此形成了条带状构造。这一模式解释了我国华北克拉通的BIF沉积于浅海环境、形成时代十分集中、铁同位素和硫同位素非质量分馏所反映的部分缺氧部分氧化的特征。当然,国外大于2.5Ga的BIF的形成,需要其他机制来合理解释。

  • 3 沉积变质型铁矿成矿机制

  • 初始沉积的BIF不仅粒度细小,而且硅质和铁质没有分离,即使初始沉积物变为了磁铁矿,工业利用价值仍很差,国外的绝大部分BIF就是这种情况。本研究发现我国的BIF之所以能够开采利用,除了经过变质作用矿物粒度变粗外,韧性变形是重要因素。变质作用的静态重结晶虽然使得石英和磁铁矿粒度变粗,但石英中仍包裹有大量细粒及尘点状的磁铁矿;当发生韧性变形时,石英和磁铁矿进行了充分分离,石英变得洁净;并且韧性变形带有利于后期热液活动,使得石英和磁铁矿既充分分离,又重结晶变粗,利于工业选矿利用。如冀东磨盘山铁矿区变质达麻粒岩相的静态重结晶的自形石英中包裹磁铁矿,而韧性变形使磁铁矿和石英重组,分别集中(图6a、b);马兰庄铁矿区变质静态重结晶半自形石英包裹磁铁矿,而韧性变形使磁铁矿和石英重组,分别集中(图6c、d)。

  • 冀东司家营沉积变质型铁矿床可划分出5个演化期次,分别为沉积期、绿帘-角闪岩相变质期、褶皱变形期、韧性剪切和热液蚀变期以及抬升氧化期。条纹条带状磁铁石英岩的石英中包裹体均一温度为352~560℃、流体压力为0.11~0.20GPa、盐度为0.4%~3.3%NaCleq,代表了绿帘-角闪岩相变质作用的温压条件;条带状磁铁石英岩、块状磁铁石英岩和黄铁矿石英脉的石英中包裹体均一温度集中于153~211.8℃,盐度为0.5%~22.6%NaCleq,条纹状磁铁石英岩中磁铁矿的δ18O值为1.4‰~2.8‰,条带状和块状磁铁石英岩中磁铁矿的δ18O值为1.7‰~6.2‰,表明低温热液流体参与了沉积变质型铁矿床的形成(陈靖等,2014)。

  • 4 富铁矿形成机制

  • 4.1 富铁矿成矿时代

  • 弓长岭二矿区富铁矿的成因前人研究均认为与后期热液改造有关,但对热液成因争论很大,主要集中在是变质热液还是混合岩化热液。由于受定年技术的限制,富铁矿的成矿时代确定困难,因而富矿成因悬而未决。弓长岭二矿区富铁矿体围岩蚀变强烈,以发育由石榴石、镁铁闪石、绿泥石以及少量磷灰石、电气石、黑云母等组成的蚀变岩为特征。我们有幸在该蚀变岩中发现了热液锆石并对其进行了SHRIMP U-Pb年龄测定,获得锆石年龄为1.85Ga左右,锆石的稀土元素配分形式也进一步佐证该锆石为热液成因(李厚民等,2014)。弓长岭一矿区的富铁矿体位于钠长石化花岗岩外接触带,接触带上具有明显的蚀变分带(图7a),自岩体向外依次为:① 钠长石化花岗岩:由自形—他形板条状钠长石(60%)和他形粒状石英(40%)组成,花岗结构;钠长石新鲜具有不规则状、镶嵌状聚片双晶,可见原斜长石交代假象(图7b)。② 云英岩化花岗岩:为花岗岩强蚀变产物,主要由石英(50%)和白云母(40%)组成,还有少量绿泥石、电气石、磁铁矿等(图7c)。③ 石榴石蚀变岩:主要由石榴石组成,少量磁铁矿,在石榴石中有网脉状绿泥石、白云母、黄铁矿及黄铜矿(图7d)。④ 块状铁矿石:由自形粒状磁铁矿(60%)和充填磁铁矿粒间空隙的赤铁矿(40%)组成,磁铁矿可能为原BIF继承物,而赤铁矿应是热液叠加改造的产物(图7e)。⑤ 磁铁云母绿泥岩:由绿泥石、白云母、磁铁矿为主组成,矿物颗粒粗大,杂乱分布,含少量电气石(图7f)。⑥ 绿泥石石榴石岩:主要由绿泥石(40%)和石榴石(60%)组成,含少量磁铁矿,还有少量石英、黄铁矿和黄铜矿呈网脉穿插交代石榴石(图7g)。钠长石化花岗岩中锆石具有明显震荡环带,为岩浆成因锆石,锆石LA-ICP-MS年龄有一组最新年龄,9颗锆石的上交点年龄为1843±37Ma(MSWD=10.5),加权平均年龄为1852±27Ma(MSWD=6),该年龄代表了与富矿有关的钠长石化花岗岩的成岩年龄,也限定了该区富铁矿的成矿年龄。Li Lixing et al.(2019)获得弓长岭二矿区富铁矿体近矿蚀变岩中石榴石共生的独居石和锆石原位U-Pb年龄为1.86Ga。由此看来,该矿区富铁矿形成于1.85Ga左右,是花岗质岩浆活动驱动的大气降水热液改造原BIF的结果(见后述),花岗岩的年龄应代表BIF改造富化的年龄,该富铁矿既不是前人认为的混合岩化热液成因(混合岩化发生在2.5Ga左右),也不是前人认为的变质热液成因(变质作用发生于1.85Ga以前)。

  • 图6 冀东地区变质及韧性变形对BIF中石英与磁铁矿分离和变粗的影响

  • Fig.6 Effects of metamorphism and ductile deformation on the separation and coarsening of quartz and magnetite of the BIFs, eastern Hebei Province

  • (a)—条带状磁铁石英岩自形石英中包裹磁铁矿,变质达麻粒岩相(磨盘山铁矿,正交偏光);(b)—条带状磁铁石英岩韧性变形使磁铁矿和石英重组,分别集中(磨盘山铁矿,单偏光);(c)—辉石磁铁石英岩中半自形石英包裹磁铁矿(马兰庄铁矿,正交偏光);(d)—条带状磁铁石英岩中韧性变形使磁铁矿和石英重组,分别集中(马兰庄铁矿,单偏光)

  • (a)—Banded magnetite quartzite with magnetite enclosed in euhedral quartz, with metamorphism reaching granulite facies (the Mopanshan iron deposit, crossed-polarized light); (b)—banded magnetite quartzite with magnetite and quartz reorganized and concentrated respectively by ductile deformation (the Mopanshan iron ore, plane-polarized light); (c)—pyroxene magnetite quartzite with magnetite enclosed in subhedral quartz (the Malanzhuang iron deposit, crossed-polarized light); (d)—banded magnetite quartzite with magnetite and quartz reorganized and concentrated respectively by ductile deformation (the Malanzhuang iron deposit, plane-polarized light)

  • 4.2 富铁矿热液改造成矿作用

  • 二十世纪我国“富铁会战”结果表明我国富铁矿找矿前景不乐观,认为国外的富铁矿是在稳定的克拉通环境下,BIF经历长期的风化淋滤作用“去硅富铁”形成的;而我国的华北克拉通活动性太强,不具备像国外那样的长期风化淋滤条件和保存条件。

  • 本文通过对国外富铁矿的研究发现,国外富铁矿也是热液改造BIF形成的,成矿作用也具备BIF、构造和热液活动三大条件。证据如下:

  • (1)在澳大利亚哈默斯利盆地的Newman铁矿,BIF主体为变质很浅的赤铁燧石岩,但在断裂构造发育处有富铁矿化,其围岩BIF受到热液作用,局部变为条带状赤铁石英岩,热液磁铁矿条带与热液石英条带斜交,铁碧玉岩边部可见呈马牙状的活化石英(图8a~d);在巴西的卡拉加斯铁矿区和铁四角铁矿区,BIF主体也是条带状赤铁燧石岩,但在局部构造有利部位形成富铁矿时,BIF被热液改造为条带状、条纹状的磁铁石英岩(图8e~l)。

  • 图7 辽宁弓长岭铁矿一矿区钠长石化花岗岩及其与富铁矿接触带上蚀变矿化分带

  • Fig.7 The alteration zone in the contact between the albitite granite and the high-grade iron orebody of the Gongchangling mining area one, Liaoning Province

  • (a)—钠长花岗岩接触带矿化蚀变外貌;(b)—花岗岩中钠长石化的斜长石及核部绢云母化(正交偏光);(c)—含电气石绿泥石的白云母石英片岩(正交偏光);(d)—石榴石及磁铁矿均被绿泥石网脉交代(单偏光);(e)—块状铁矿石中,自形粒状磁铁矿的粒间空隙被赤铁矿充填(反射光);(f)—含电气石的磁铁白云母绿泥石岩(单偏光);(g)—石榴石中包裹的磁铁矿中,有黄铁矿黄铜矿化(反射光)

  • (a)—High-grade iron mineralization and alteration in the contact zone of the albite granite; (b)—albitization of plagioclase with the core characterized by sericitization in granite (crossed-polarized light); (c)—tourmaline-and chlorite-bearing muscovite-quartz schist (crossed-polarized light); (d)—garnet and magnetite metasomatized by chlorite stockworks (plane-polarized light); (e)—euhedral magnetite and interstitial hematite in the massive iron ore (reflected light); (f)—tourmaline-bearing magnetite-muscovite-chlorite rock (plane-polarized light); (g)—magnetite enclosed in garnet intergrown with pyrite and chalcopyrite (reflected light)

  • (2)为进一步验证这些粗粒的石英和磁铁矿是热液改造成因而不是表生常温流体改造成因,本文对巴西铁四角地区富铁矿石中的石英 (<5%)进行流体包裹体岩相学和显微测温研究,获得了50组数据。石英中的原生流体包裹体可以分为三种:气液两相、含CO2三相和含子矿物流体包裹体。其中含子矿物流体包裹体含量甚微,子矿物为立方体石盐,未获得测温数据。所测50组数据中:43组为气液两相包裹体,气相充填度8%~20%,形态为菱形、矩形、椭圆形和三角形,长轴范围5~20 μm;7组为含CO2三相流体包裹体,部分在室温下呈两相,降温后出现三相,CO2气液两相占整个包裹体体积10%~25%,其中气相组成占整个CO2相的60%~70%,形态为菱形、椭圆形和三角形,长轴范围6~24 μm。流体包裹体均一温度介于148.5~240.2℃之间,集中分布于180~200℃之间(图9),平均187.1℃。流体包裹体盐度介于14.1%~24.6%NaCleq之间,平均19.8%NaCleq(图9)。因此,巴西铁四角地区形成富铁矿的热液为中温、中高盐度的热液流体。

  • 4.3 富铁矿成矿的硅铁分离机理

  • 程裕淇(1957)将鞍山式贫矿中的富铁矿分为4种类型:① 由贫矿经含铁热液(气)交代富集生成者(磁铁矿或赤铁矿、假象赤铁矿或磁铁赤铁混合矿石);② 由贫矿经热液淋滤(并可能有部分交代作用)富集生成者(磁铁矿);③ 与贫矿同时形成并经历相同变化的富矿(磁铁矿、赤铁矿);④ 由贫矿经潜水淋滤去硅而生成者(赤铁矿、褐铁矿)。本文在前人研究成果的基础上,提出贫铁矿“去硅富铁”、“铁质活化再富集”、“去碳酸盐富铁”的富铁矿成矿机制。

  • 图8 澳大利亚、巴西BIF及热液改造现象

  • Fig.8 Hydrothermal replacement of BIFs from Australia and Brazil

  • 澳大利亚哈默斯利盆地:条带状赤铁石英岩中赤铁矿条带状残留的褐铁矿化燧石岩,石英条带重结晶强,(a)—单偏光;(b)—正交偏光;(c)—赤铁矿条带与石英条带斜交(正交偏光);(d)—铁碧玉岩中自形假象赤铁矿及其边部活化石英呈马牙状(正交偏光);巴西卡拉加斯:(e)—鱼籽状或鲕粒状赤铁燧石岩,粒间为赤铁矿(单偏光);(f)—赤铁矿燧石条带和褐铁矿石英条带(正交偏光);(g)—条带状碳酸盐磁铁石英岩(正交偏光);(h)—条纹状磁铁石英岩(正交偏光);巴西铁四角:(i)—赤铁燧石岩(正交偏光);(j)—石英脉中残留的条带状赤铁矿(正交偏光);(k)—条带状赤铁石英岩,有活化石英条带(正交偏光);(l)—条带状赤铁石英岩(正交偏光)

  • Hamersley basin, Australia:Banded hematite quartzite with residual limonite silexite and strong recrystallization of quartz bands, (a)—plane-polarized light; (b)—crossed-polarized light; (c)—oblique crossing hematite bands and quartz bands (crossed-polarized light); (d)—euhedral martite and activated quartz in the hematite jaspilite (crossed-polarized light); Carajás, Brazil: (e)—fish roe-like or oolitic hematite itabirite with interstitial hematite (plane-polarized light); (f)—hematite-chert bands and limonite-quartz bands (crossed-polarized light); (g)—banded carbonate-magnetite quartzite (crossed-polarized light); (h)—banded magnetite-quartzite (crossed-polarized light); Quadrilátero Ferrífero, Brazil: (i)—hematite itabirite (crossed-polarized light); (j)—residual hematite bands in quartz veins (crossed-polarized light); (k)—banded hematite quartzite with activated quartz bands (crossed-polarized light); (l)—banded hematite quartzite (crossed-polarized light)

  • 4.3.1 富铁矿“去硅富铁”成矿机制

  • 辽宁弓长岭铁矿床二矿区的磁铁富矿达大型规模,是我国唯一的与早前寒武纪BIF有关的大型磁铁富矿床。前人对弓长岭二矿区富铁矿进行了大量研究,李曙光(1982)李曙光等(1983)认为沉积阶段形成了氧化铁与碳酸铁的混合物,角闪岩相区域变质阶段菱铁矿分解形成含石墨的磁铁富矿,热液阶段变质水或混合岩化热液交代形成富铁矿。王守伦(1986)认为厚大贫矿层叠加后期地质作用使铁质进一步富集形成富铁矿。沈其韩和宋会侠(2015)对包括弓长岭富铁矿在内的华北克拉通BIF中富铁矿成因类型的研究进展、远景和存在的科学问题进行了总结。刘陆山等(2015)认为中生代花岗岩可能也参与了部分矿区富铁矿的形成过程。我们研究了富铁矿的形成时代和形成机理,建立了富铁矿“去硅富铁”成矿机制。弓长岭富铁矿与贫铁矿、蚀变岩的稀土元素组成、磁铁矿铁同位素和岩石铁同位素、富铁矿和贫铁矿的硅同位素等特征均表明,富铁矿是贫铁矿层经过后期热液改造形成的(王恩德等,2012;刘明军等,2012, 2013, 2014;杨秀清等,2013, 2014b;李厚民等,2014;李延河等,2014b;Wang Ende et al.,2014)。我们研究认为这种改造流体是碱性的再循环大气降水,热液循环的驱动力是花岗岩浆活动。证据如下:

  • 图9 巴西铁四角富铁矿中石英中包裹体均一温度(a)和均一温度-盐度二元图解(b)

  • Fig.9 Diagrams of homogenization temperatures (a) and homogenization temperatures-salinities (b) of the fluid inclusions hosted in quartz of the high-grade hematite ores, Quadrilátero Ferrífero, Brazil

  • (1)富铁矿体的围岩蚀变以石榴石发育为特色,这种蚀变发生于中碱性条件,碱性流体有利于“去硅富铁”;贫矿石中可见磁铁矿交代石英形成富铁矿、“吞噬”石英条带的现象;活化出来的硅质在附近的贫铁矿体中形成了白色的石英网脉;围岩大理岩强烈阳起石化和镁铁闪石化,有大理岩残留(Li Houmin et al.,2015)。

  • (2)在弓长岭一矿区可见块状富铁矿石由磁铁矿(含量50%~60%)和赤铁矿(40%~50%)组成,磁铁矿呈自形粒状;而分布于磁铁矿粒间的赤铁矿呈片状、不规则状,不是磁铁矿的交代假象,而与磁铁石英岩中石英的晶形和产态类似(图7e)。由于磁铁矿与赤铁矿显然不是同一期次形成的,赤铁矿晚于磁铁矿,因此可能是磁铁石英岩中石英被赤铁矿替代而成。这是“去硅富铁”形成富铁矿的直接证据。

  • (3)弓长岭贫铁矿中磁铁矿的氧同位素集中在两个峰值,较高的峰值可能代表未受热液流体改造的影响,而较低的峰值与富铁矿中磁铁矿的氧同位素组成一致;石英的氧同位素具有类似的规律(李延河等,2014b)。这种规律性可能反映了低18O的流体改造贫铁矿形成富矿,而低18O的流体最可能是大气降水,而不是混合岩化热液或变质热液(Li Houmin et al.,2015)。

  • (4)弓长岭铁矿区贫矿及富矿中硫同位素均变化很大,尤其是富铁矿,多为高正值,显示地层硫的特点,与变质和混合岩化后均一化的硫同位素特点明显不同,也显示成矿流体不是岩浆热液或变质热液,可能是再循环的大气降水热液(Li Houmin et al.,2015)。

  • (5)弓长岭富铁矿蚀变围岩中发现大量与富铁矿紧密共生的电气石。为了示踪B的来源,本文对其进行了B同位素测试。测试结果显示,弓长岭富铁矿蚀变围岩中电气石的δ11B为3.3‰~17.0‰(JX为14.5‰~17.0‰、GCL为3.3‰~7.3‰、DM为3.3‰~7.0‰),与上覆元古宇辽河群硼镁矿、菱镁矿等蒸发沉积变质岩特有的硼同位素组成一致(胡古月等,2015),而与弓长岭矿区远离富铁矿的云母石英片岩(ZC)中电气石的硼同位素组成(δ11B为-13.9‰~-10.8‰)(图10)及绝大部分岩浆岩、沉积岩和变质岩的δ11B值(-10‰±3‰)截然不同。由于辽河群中硼镁矿、菱镁矿和富镁碳酸盐是目前已知在鞍本地区附近δ11B值最高的B源,可以将富铁矿蚀变围岩电气石中异常高的δ11B值解释为:大气降水淋滤了上覆辽河群蒸发盐地层中的硼酸盐矿物,下渗并参与了富铁矿的形成过程,形成了δ11B值较高的富铁矿蚀变岩中的电气石;辽河群蒸发盐富含Na、Cl、Mg、B、CO2-3、SO2-4等矿化剂,成矿溶液淋滤了辽河群蒸发盐地层中的硼酸盐、氯化钠、硫酸盐和碳酸盐等成矿物质,使成矿溶液具氧化偏碱性的特征。硅在碱性条件下迁移,酸性条件沉淀,而铁在氧化条件下稳定,在还原条件下迁移。硼同位素为弓长岭富铁矿的去硅富铁成因提供了关键依据,这与弓长岭富铁矿中黄铁矿的δ34S值和石墨的δ13C值明显偏高是一致的(李延河等,2014b)。

  • 图10 辽宁弓长岭铁矿二矿区云母石英片岩、富铁矿蚀变岩和上覆地层辽河群变质岩的硼同位素组成

  • Fig.10 Boron isotopes of the mica-quartz schist, altered rocks of the high-grade iron ore and metamorphic rocks of the hanging Liaohe Group of the Gongchangling mining area two, Liaoning Province

  • (6)弓长岭二矿区Fe6上盘蚀变岩中石榴石的δ30Si为-1.1‰~-0.4‰,平均-0.7‰(蒋少涌等,1992), 与BIF中石英的δ30Si的值-2.3‰~-0.9‰相近,指示硅主要来自BIF(支持“去硅富矿”),部分来自泥质围岩。变质火山岩中石榴石的δ30Si为0.0‰~0.1‰,与BIF的值明显不同,而与片岩和变粒岩相近。根据上述地质地球化学依据,建立弓长岭富铁矿“去硅富铁”成矿机制为(Li Houmin et al.,2015):① 1.8Ga时,鞍本地区发生了花岗岩浆侵入活动,在岩浆活动热力的驱动下,低18O的大气降水下渗,淋滤古元古代辽河群中的碳酸盐、海水硫酸盐和含硼岩石,并被岩浆侵入体加热形成碱性热液流体。② 该热液流体沿构造破碎带交代贫铁矿层,“去硅富铁”形成富铁矿及其以石榴石为特色的、含电气石的蚀变岩。③ 淋出的硅质一部分运移到贫铁矿体中的裂隙中形成石英网脉,一部分运移到围岩中形成以石榴石为特色的蚀变岩,一部分与围岩碳酸盐结合形成阳起石、镁铁闪石等蚀变岩。

  • 4.3.2 富铁矿“铁质活化再富集”成矿机制

  • 齐大山-王家堡子矿区富铁矿的规模达中型,富铁矿体顺层产于贫铁矿层中,受顺层断裂构造控制,贫铁矿与富铁矿的稀土元素配分形式类似,说明富矿是由贫矿经后期热液改造形成的。与齐大山-王家堡子铁矿类似的还有南芬等多个铁矿床。

  • 这类铁矿床中的富铁矿规模小,与弓长岭差别明显。我们研究认为其富铁矿是“铁质活化再富集”形成的(杨秀清等,2014b;Li Houmin et al.,2015)。依据如下:

  • (1)齐大山-王家堡子铁矿失铁石英岩发育,显示有大量铁质被活化淋失;富铁矿的围岩蚀变以酸性条件下的黑云母化和中性条件下的绿泥石化和绢云母化为主。

  • (2)富矿石与贫矿石中磁铁矿的δ18O值差异大,表明富铁矿中磁铁矿因活化迁移而发生了氧同位素分馏;而失铁石英岩中石英与贫铁矿中石英的δ18O值没有明显差异,表明在贫铁矿失铁过程中石英的氧同位素没有明显分馏,可能表明流体没有对硅质产生影响(李延河等,2014b),这与磁铁矿中“铁质活化迁移,异地再富集”形成富铁矿脉、而硅质原地不动形成失铁石英岩的宏观地质证据吻合。

  • (3)富铁矿石与贫铁矿石中黄铁矿的δ34SV-PDB值类似,均为接近0的负值(李延河等,2014b),反映其成矿流体中外来硫的加入不明显,支持混合岩化热液成因。混合岩化使得硫同位素高度均一化。

  • (4)富铁矿和贫铁矿的铁同位素组成表明,富矿对贫矿有继承性,但富铁矿的铁同位素低于贫铁矿,尤其是南芬富铁矿石的铁同位素明显低于贫铁矿(李延河等,2014b),可能是铁质活化再富集过程中发生了分馏。

  • (5)在齐大山铁矿区,富铁矿体附近有大量花岗伟晶岩和同期粗粒石英脉,在石英脉中有粗粒辉钼矿。对该辉钼矿采用Re-Os同位素测年技术测得年龄为2.538Ga(刘明军等,2017)。该年龄代表了该矿区混合岩化的时代。由于富铁矿与伟晶岩等空间关系密切,推测其具有成因联系,富铁矿也可能形成于这一时期。

  • 图11 国内外多孔状赤铁富矿石

  • Fig.11 Porous high-grade hematite ores from China and abroad

  • 澳大利亚哈默斯利盆地多孔状赤铁富矿石:(a)—手标本,含定向孔洞;(b)—单偏光;(c)—正交偏光;巴西卡拉加斯:残留碳酸盐条纹条带的赤铁富矿石,(d)—手标本;(e)—正交偏光;(f)—反射光;中国山西袁家村:多孔状赤铁矿石,(g)—手标本;(h)—单偏光;(i)—反射光

  • Porous high-grade hematite ore of the Hamersley basin, Australia: (a)—hand specimen showing directional pores; (b)—plane-polarized light; (c)—crossed-polarized light; high-grade hematite ore with residual carbonate bands of the Carajás, Brazil: (d)—hand specimen; (e)—crossed-polarized light; (f)—reflected light; porous high-grade hematite ore of the Yuanjiacun, Shanxi, China: (g)—hand specimen; (h)—plane-polarized light; (i)—reflected light

  • 依据上述证据,我们认为齐大山等铁矿区富铁矿的“铁质活化再富集”成矿机理为:2.5Ga时期齐大山等地发生了强烈区域变质及混合岩化,有大量花岗伟晶岩和粗粒石英脉及辉钼矿形成;此时在强酸性热液作用下,贫铁矿中的Fe淋滤迁移形成失铁石英岩,同时形成以黑云母为主的酸性蚀变(Li Houmin et al.,2015)。由于混合岩化热液规模有限,因此造成鞍本地区乃至整个华北克拉通的BIF分布区虽然混合岩化十分强烈,富矿点多面广,但规模均不大。

  • 4.3.3 富铁矿“去碳酸盐富铁”成矿机制

  • 国外富铁矿主要为赤铁矿富矿,Morris(1985)提出的经典的BIF“表生风化淋滤”成矿模式曾经被广为接受。但是,进入二十一世纪以来,随着澳大利亚深部铁矿勘查的突破,研究者发现赤铁矿富矿体明显受构造控制(矿体延深超过100m)以及成矿流体温度在250℃左右,在此基础上提出了“深成热液交代”模式,认为沿构造通道的深部流体交代是形成大规模赤铁矿富矿的主要因素,而表生风化淋滤作用仅起次要作用(Taylor et al.,2001;Rasmussen et al.,2007;Hagemann et al.,2016)。

  • 国外的富铁矿多与苏必利尔型BIF有关,这些BIF中含有大量铁碳酸盐,可以发生“去碳酸盐化”形成富铁矿,有两种情况:

  • (1)酸性还原的流体交代由菱铁矿和氧化铁组成的BIF,菱铁矿被溶解,除去Fe2+,留下氧化铁,形成多孔状的富铁矿,国外多为这种富铁矿(Beukes et al.,2003)(图11a~f);这种富铁矿石在我国袁家村铁矿区也有发现(图11g~i)。

  • 图12 国内外酸性氧化流体“去碳酸盐富铁”形成的富铁矿

  • Fig.12 High-grade iron ores formed by decarbonization of BIF with acid and oxidized fluids from China and abroad

  • 澳大利亚哈默斯利盆地:条带状褐铁矿化赤铁矿石,(a)—手标本;(b)—单偏光;(c)—反射光;巴西铁四角:块状赤铁矿石,(d)—手标本;(e)—单偏光;(f)—反射光;巴西卡拉加斯:(g)—赤铁富矿手标本;(h)—韧性剪切及赤铁矿化,石英洁净(反射光);(i)—块状磁铁矿赤铁矿石(反射光);中国山西袁家村:(j)—条带状赤铁富矿;(k)—块状赤铁富矿;(l)—块状赤铁富矿(反射光)

  • Banded high-grade limonite-hematite ore of the Hamersley basin, Australia: (a)—hand specimen; (b)—plane-polarized light; (c)—reflected light; massive high-grade hematite ores of the Quadrilátero Ferrífero, Brazil: (d)—hand specimen; (e)—plane-polarized light; (f)—reflected light; Carajás, Brazil: (g)—hand specimen of high-grade hematite ore; (h)—ductile shear and hematite mineralization with clean quartz (reflected light); (i)—massive magnetite-hematite ore (reflected light); Yuanjiacun, Shanxi, China: (j)—banded high-grade hematite ore; (k)—massive high-grade hematite ore; (l)—massive high-grade hematite ore (reflected light)

  • (2)酸性氧化的流体交代由菱铁矿和氧化铁组成的BIF,菱铁矿中Fe2+氧化为Fe3+,与原有的赤铁矿一起,形成条带状的赤铁矿与褐铁矿条带相间的富铁矿,或条带状、块状的赤铁富矿。这类富铁矿在澳大利亚、巴西及我国袁家村铁矿区均存在(图12)。

  • BIF中的碳酸盐(菱铁矿等)在碱性流体环境中(无论氧化还是还原),均不发生变化。

  • 5 结论

  • (1)我国的BIF主要为阿尔果马型,苏比利尔型BIF较少。河南舞阳铁山庙、赵案庄和安徽霍邱BIF可能为苏比利尔型BIF,原岩可能含较多铁、镁、钙碳酸盐。

  • (2)我国阿尔果马型BIF形成时代为2.56~2.53Ga的新太古代末期,苏比利尔型BIF形成时代较晚,为2.54~2.21Ga。

  • (3)我国的BIF无论是阿尔果马型还是苏比利尔型,与国外类似,可形成于浅海环境。

  • (4)BIF的形成与大氧化事件初期的初始层化海洋环境有关,海水中巨量溶解的铁质部分氧化,在层化海洋氧化还原界面附近的浅海环境以胶体形式沉淀。

  • (5)我国的BIF遭受区域变质成为条带状磁铁石英岩,作为沉积变质型铁矿开发利用。

  • (6)BIF遭受后期流体改造可形成富铁矿,成矿机制有“去硅富铁”、“铁质活化再富集”和“去碳酸盐富铁”3种,弓长岭富铁矿的成矿年龄为1.85Ga左右,由BIF“去硅富铁”而成;齐大山富铁矿可能形成于2.5Ga,由BIF“铁质活化再富集”而成;袁家村富铁矿形成于1.41~1.34Ga,可能由含碳酸盐的BIF“去碳酸盐富铁”而成。

  • 谨以此文纪念程裕淇先生诞辰110周年及对我国铁矿床研究作出的巨大贡献!

  • 参考文献

    • Bekker A, Slack J F, Planavsky N, Krapez B, Hofmann A, Konhauser K O, Rouxel O J. 2010. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105: 467~508.

    • Beukes N J, Gutzmer J, Mukhopadhyay J. 2003. The geology and genesis of high-grade hematite iron ore deposits. Applied Earth Science, 112: 18~25.

    • Canfield D E. 2005. The early history of atmospheric oxygen. Homage to Robert M. Garrels. Annual Review of Earth Planetary Sciences, 33: 1~36.

    • Chakrabarti R, Knoll A H, Jacobsen S B, Fischer W W. 2012. Si isotope variability in Proterozoic cherts. Geochimica et Cosmochimica Acta, 91: 187~201.

    • Chen Jing, Li Houmin, Li Lixing, Yang Xiuqing, Liu Mingjun, Yao Tong, Hu Bin, Zhang Jinyou. 2014. Fluid inclusions and oxygen isotope study of the Sijiaying BIF in the eastern Hebei Province. Acta Petrologica Sinica, 30(5): 1253~1268 (in Chinese with English abstract).

    • Chen Jing, Li Houmin, Luo Dike, Li Lixing, Yang Xiuqing, Liu Mingjun, Yao Tong, Hu Bin. 2015. Formation age, geochemical characteristics and geological significance of the Zhalanzhangzi BIF in eastern Hebei Province. Geological Bulletin of China, 34(5): 919~929 (in Chinese with English abstract).

    • Cheng Yuqi. 1953. Preliminary comments on the exploration of iron deposits in China. Acta Geologica Sinica, 33(2): 120~134 (in Chinese).

    • Cheng Yuqi. 1957. The problem of high-grade iron ore genesis in Precambrian Anshan-type banded iron deposits in the Liaoning and Shandong provinces, in the northeast of China. Acta Geologica Sinica, 37(2): 153~180 (in Chinese with English abstract).

    • Cheng Yuqi, Zhao Yiming, Lu Songnian. 1978. Main types-groups of iron deposits of China. Acta Geologica Sinica, 52(4): 253~268 (in Chinese with English abstract).

    • Cheng Yuqi, Wen Guang. 1982. On certain problems of regional minerogenetic analysis. Regional Geology of China, 2: 93~101 (in Chinese with English abstract).

    • Cheng Yuqi, Chen Yuchuan, Zhao Yiming, Song Tianrui. 1983. Further discussion on the problems of minerogenetic series of mineral deposits. Bulletin Chinese Academy of Geological Sciences, 6: 1~66 (in Chinese with English abstract).

    • Chu Xuelei, Chen Jinshi, Wang Shouxin. 1986. Study on the sulfur isotope fractionation mechanism and physicochemical conditions for deposit formation in Luohe iron ore. Chinese Journal of Geology, 26(3): 189~195 (in Chinese with English abstract).

    • Cloud P. 1973. Paleoecological significance of the banded iron formation. Economic Geology, 68: 1135~1143.

    • Du Lilin, Yang Chonghui, Ren Liudong, Song Huixia, Geng Yuansheng, Wan Yusheng. 2012. 2. 2~2. 1 Ga magma event in Lüliang area and its tectonic significance. Acta Petrologica Sinica, 28(9): 2751~2769 (in Chinese with English abstract).

    • Fu Jianfei, Wang Ende, Xia Jianming, Men Yekai, Chen Huijun, You Xinxing, Cheng Lin. 2014. Geochemical characteristics and sedimentary paleoenvironment of iron ore in the mountains of Liaoning Province. Geology in China, 41(6): 1929~1943 (in Chinese with English abstract).

    • Gross G A. 1965. Geology of iron deposits in Canada, Vol. 1. general geology and evaluation of iron deposits. Canadian Geological Survey. Economic Geology Report.

    • Hagemann S G, Angerer T, Duuring P, Rosière C A, Figueiredoe Silva R C, Lobato L, Hensler A S, Walde D H G. 2016. BIF-hosted iron mineral system: a review. Ore Geology Reviews, 76: 317~359.

    • Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2017. Chronology, geochemical, Si and Fe isotopic constraints on the origin of Huoqiu banded iron formation (BIF), southeastern margin of the North China Craton. Precambrian Research, 298: 351~364.

    • Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2019. Genesis of Huoqiu banded iron formation (BIF), southeastern North China Craton, constraints from geochemical and Hf-O-S isotopic characteristics. Journal of Geochemical Exploration, 197: 60~69.

    • Hu Guyue, Li Yanhe, Fan Changfu, Zhao Yue, Hou Kejun, Wang Tianhui. 2015. Paleoproterozoic magnesite and borate deposits from eastern Liaoning Province: with a discussion about synchrono-heteropic facies of sedimentary mineralization. Mineral Deposits, 34(3): 547~564 (in Chinese with English abstract).

    • Jia Xingjie, Li Huaiqian, Zheng Hongju. 2012. Geological characteristics and deep prospecting of Henan Wu iron and steel mine. Gold Science and Technology, 20(2): 25~31 (in Chinese with English abstract).

    • Jiang Shaoyong, Ding Tiping, Wan Defang, Li Yanhe. 1992. Characteristics of silicon isotopic composition of ancient striped ferrosilicon construction (BIF) in Gongchangling, Liaoning. Science in China, 22(6): 626~631(in Chinese).

    • Jiang Yongnian. 1990. A study on serpentin in the iron ore of Zhaoanzhuang in Wuyang, Henan. Geological Prospecting Series, 5(2): 40~49 (in Chinese with English abstract).

    • Jiang Yongnian. 1991. Study on fluoroapatite in iron ore in Zhaoanzhuang, Wuyang, Henan. Geology and Mineral Prospecting Series, 6(1): 58~66 (in Chinese with English abstract).

    • Jiang Yongnian, Chen Yonghua. 1986. Discussion on the genesis of iron ore in Zhaoanzhuang, Wuyang, Henan. Journal of Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 16: 1~64 (in Chinese with English abstract).

    • Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90(10): 1473~1499.

    • Lan Caiyun, Zhang Lianchang, Zhao Taiping, Wang Changle, Li Hongzhong, Zhou Yanyan. 2013. Mineralogical and geochemical characteristics of BIF iron ore in Wuyang, Henan Province, and indications of the genesis of deposits. Acta Petrologica Sinica, 29(7): 2567~2582 (in Chinese with English abstract).

    • Li Houmin, Liu Mingjun, Li Lixing, Yang Xiuqing, Chen Jing, Yao Liangde, Hong Xuekuan, Yao Tong. 2012. Geology and geochemistry of the marble in the Gongchangling iron ore deposit in Liaoning Province and their metallogenic significance. Acta Petrologica Sinica, 28(11): 3497~3512 (in Chinese with English abstract).

    • Li Houmin, Liu Mingjun, Li Lixing, Yang Xiuqing, Chen Jing, Yao Tong. 2014. SHRIMP U-Pb geochronology of zircon from the garnet-rich altered rocks in the mining area II of the Gongchangling iron deposit: constraints on the age of the high-grade iron deposit. Acta Petrologica Sinica, 30(5): 1205~1217 (in Chinese with English abstract).

    • Li Houmin, Zhang Zengjie, Li Lixing, Zhang Zhaochong, Chen Jing, Yao Tong. 2014. Types and general characteristics of the BIF-related iron deposits in China. Ore Geology Reviews, 57: 264~287.

    • Li Houmin, Yang Xiuqing, Li Lixing, Zhang Zhaochong, Liu Mingjun, Chen Jing. 2015. Desilicification and iron activation-reprecipitation in the high-grade magnetite ores in BIFs of the Anshan-Benxi area, China: evidence from geology, geochemistry, and stable isotopic characteristics. Journal of Asian Earth Sciences, 113: 998~1016.

    • Li Junping, Li Yongfeng, Xie Kejia. 2012. Geological characteristics of Taihua Group in Wuyang area, Henan Province and its significance in controlling minerals. Mineral Resources and Geology, 26(1): 30~34 (in Chinese with English abstract).

    • Li Lixing, Li Houmin, Xu Yingxia, Chen Jing, Yao Tong, Zhang Longfei, Yang Xiuqing, Liu Mingjun. 2015. Zircon growth and ages of migmatites in the Algoma-type BIF-hosted iron deposits in Qianxi Group from eastern Hebei Province, China: timing of BIF deposition and anatexis. Journal of Asian Earth Sciences, 113: 1017~1034.

    • Li Lixing, Li Houmin, Liu Mingjun, Yang Xiuqing, Meng Jie. 2016. Timing of deposition and tectonothermal events of banded iron formations in the Anshan-Benxi area, Liaoning Province, China: evidence from SHRIMP U-Pb zircon geochronology of the wall rocks Journal of Asian Earth Sciences, 129: 276~293.

    • Li Lixing, Zi Jianwei, Li Houmin, Rasmussen Birger, Wilde Simon A, Sheppard Stephen, Ma Yubo, Meng Jie, Song Zhe. 2019. High-grade magnetite mineralization at 1. 86 Ga in Neoarchean banded iron formations, Gongchangling, China: in situ U-Pb geochronology of metamorphic-hydrothermal zircon and monazite. Economic Geology, 114(6): 1159~1175.

    • Li Lixing, Zi Jianwei, Meng Jie, Li Houmin, Rasmussen B, Sheppard S, Wilde S A, Li Yanhe. 2020. Using in situ monazite and xenotime U-Pb geochronology to resolve the fate of the “missing” banded iron formation-hosted high-grade hematite ores of the North China Craton. Economic Geology, 115(1): 189~204.

    • Li Shuguang. 1982. Geochemical model for the genesis of Gongchangling rich magnetite deposit in China. Geochimica, (2): 113~121 (in Chinese with English abstract).

    • Li Shuguang, Zhi Xiachen, Chen Jiangfeng, Wang Junxin, Deng Yanyao. 1983. Origin of graphites in Early Precambrian banded iron formation in Anshan, China. Geochimica, (2): 162~169 (in Chinese with English abstract).

    • Li Yanhe, Hou Kejun, Wan Defang, Zhang Zengjie. 2010. The formation mechanism of Precambrian banded ferrosilicon construction and the atmosphere and oceans of the early Earth. Acta Geologica Sinica, 84(9): 1359~1373 (in Chinese with English abstract).

    • Li Yanhe, Hou Kejun, Wan Defang, Zhang Zengjie. 2012. Geochemistry of Algoma type and Superior type ferrosilicon construction. Acta Petrologica Sinica, 28(11): 3513~3519 (in Chinese with English abstract).

    • Li Yanhe, Hou Kejun, Wan Defang, Zhang Zengjie, Yue Guoliang. 2014. Precambrian banded iron formations in the North China Craton: silicon and oxygen isotopes and genetic implications. Ore Geology Reviews, 57: 299~307.

    • Li Yanhe, Duan Chao, Han Dan, Chen Xinwang, Wang Conglin, Yang Bingyang, Zhang Cheng, Liu Feng. 2014a. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the Middle-Lower Yangtze River area. Acta Petrologica Sinica, 30(5): 1355~1368 (in Chinese with English abstract).

    • Li Yanhe, Zhang Zengjie, Hou Kejun, Duan Chao, Wan Defang, Hu Guyue. 2014b. Genesis of sedimentary metamorphic iron-rich ore in Anben region of Liaoning Province: isotope evidence of Fe, Si, O and S. Acta Geologica Sinica, 88(12): 2351~2372 (in Chinese with English abstract).

    • Liu Chaohui, Zhao Guochun, Liu Fulai, Shi Jianrong. 2014. Geochronological and geochemical constraints on the Lüliang Group in the Lüliang Complex: implications for the tectonic evolution of the Trans-North China Orogen. Lithos, 198-199: 298~315.

    • Liu Lixin, Li Huaiqian, Jia Xingjie, Wang Weizhong, Wang Xia. 2014. Geological characteristics and genesis analysis of iron ore in Zhaoanzhuang Formation, Wuyang iron ore field, Henan Province. Mineral Resources and Geology, 28(4): 431~434 (in Chinese with English abstract).

    • Liu Lushan, Fu Haitao, Liu Zhongyuan, Leng Wenfang, Wu Yue. 2015. Distribution and genesis of high-grade iron ore in Anshan-Benxi region. Geology and Resources, 24(4): 341~346 (in Chinese with English abstract).

    • Liu Mingjun, Li Houmin, Li Lixing, Yang Xiuqing, Yao Liangde, Hong Xuekuan, Chen Jing. 2012. Petrological characteristics of silicate-like rocks in the second ore area of the Gongchangling iron ore deposit in Liaoning Province. Rock or Mineral Analysis, 31(6): 1067~1076 (in Chinese with English abstract).

    • Liu Mingjun, Li Houmin, Li Lixing, Yang Xiuqing, Yao Liangde, Hong Xuekuan, Chen Jing, Yao Tong, Bai Yun. 2013. Fluid inclusions in the second ore area of the Gongchangling iron ore deposit in Liaoning. Mineral Deposits, 32(5): 989~1002 (in Chinese with English abstract).

    • Liu Mingjun, Li Houmin, Xue Chunji, Yao Liangde, Wen Yi, Xu Zongxian. 2014. Geochemical characteristics of ores and silica-like rocks in the second ore area of Gongchangling iron ore deposit in Liaoning Province and their prospecting significance. Acta Geologica Sinica, 88(10): 1917~1931 (in Chinese with English abstract).

    • Liu Mingjun, Zeng Qingdong, Li Houmin, Li Lixing, Wen Yi, Yao Liangde, Gao Yeshun. 2017. The metallogenic age of iron activation and re-enrichment in Anben area of Liaoning Province: evidence of the age of Re-Os of molybdenum ore in Qidashan iron ore deposits. Mineral Deposits, 36(1): 237~249 (in Chinese with English abstract).

    • Liu Shuwen, Zhang Jian, Li Qiuli, Zhang Lifei, Wang Wei, Yang Pengtao. 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173~190.

    • Luo Mingqiang. 2009. Structural ore control study of Wuyang iron ore field in Henan Province. Journal of Henan Polytechnic University: Natural Science Edition, 28(5): 577~582 (in Chinese with English abstract).

    • Maliva R G, Knoll A H, Simonson B M. 2005. Secular change in the Precambrian silica cycle: insights from chert petrology. Geological Society of America Bulletin, 117(7-8): 835~845.

    • Men Yekai, Wang Ende, Fu Jianfei, Jia Sanshi, You Xinwei, He Qiangwen. 2019. Geology and geochemistry of the Yuanjiacun banded iron formation in Shanxi Province, China: constraints on the genesis. Geological Magazine, 156(11): 1839~1862.

    • Meng Jie, Li Houmin, Li Lixing, Li Jieru. 2018. Constraints of sedimentary age of iron ore deposits in Taihua Group Tieshan Temple, south margin of Craton, North China—zircon U-Pb dating and Hf isotopic evidence. Acta Geologica Sinica, 92(1): 125~141 (in Chinese with English abstract).

    • Meng Jie, Li Houmin, Li Lixing, Santosh M, Song Zhe, Yang Xiuqing. 2018. Petrological and geochemical constraints on the protoliths of serpentine-magnetite ores in the Zhaoanzhuang iron deposit, southern North China Craton. Acta Geologica Sinica (English Edition), 2(92): 627~665.

    • Meng Jie, Li Houmin, Li Yanhe, Zhang Zhaochong, Li Lixing, Song Zhe. 2019. Stable isotope (S, Mg, B) constraints on the origin of the early Precambrian Zhaoanzhuang serpentine-magnetite deposit, southern North China Craton. Minerals, 9(6): 377.

    • Morris R C, Wolff K H. 1985. Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes; a conceptual model. Handbook of Strata-bound and Stratiform Ore Deposits, 13: 73~235.

    • Ohmoto H, Rye R D. 1979. Isotopes of sulfur and carbon. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley, 509~567.

    • Qian Xianglin. 1985. Geology of Precambrian Iron Ores in Eastern Hebei Province, China. Shijiazhuang: Hebei Science and Technology Press, 1~31 (in Chinese with English abstract).

    • Rasmussen B, Fletcher I R, Muhling J R, Thorne W S, Broadbent G C. 2007. Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth Planetary Science Letters, 258: 249~259.

    • Shen Qihan, Song Huixia. 2015. Progress, prospecting and key scientific problems in origin researches of high-grade iron ore of the banded iron formation (BIF) in the North China Craton. Acta Petrologica Sinica, 31(10): 2795~2815 (in Chinese with English abstract).

    • Steinhoefel G, Horn I, Blanckenburg F. 2009. Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation. Geochimica et Cosmochimica Acta, 73(18): 5343~5360.

    • Sumner D Y. 1997. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa. American Journal of Science, 297(5): 455~487.

    • Taylor D, Dalstra H J, Harding A E, Broadbent G C, Barley M E. 2001. Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia. Economic Geology, 96: 837~873.

    • Wan Yusheng, Dong Chunyan, Xie Hangqiang, Wang Shijin, Song Mingchun, Xu Zhongyuan, Wang Shiyan, Zhou Hongying, Ma Mingzhu, Liu Ddunyi. 2012. Formation ages of Early Precambrian BIFs in the North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9): 1447~1478 (in Chinese with English abstract).

    • Wan Yusheng, Dong Chunyan, Xie Hangqiang, Xie Shiwen, Liu Shoujie, Bai Wenqian, Ma Mingzhu, Liu Dunyi. 2018. Formation age of BIF-bearing Anshan Group supra-crustal rocks in Anshan-Benxi area: new evidence from SHRIMP U-Pb zircon dating. Earth Science—Journal of China University of Geosciences, 43(1): 57~81 (in Chinese with English abstract).

    • Wan Yusheng, Ma Mingzhu, Dong Chunyan, Xie Hangqiang, Xie Sshiwen, Ren P, Liu Dunyi. 2015. Widespread late Neoarchean reworking of Meso- to Paleoarchean continental crust in the Anshan-Benxi area, North China Craton, as documented by U-Pb-Nd-Hf-O isotopes. American Journal of Science, 315: 620~670.

    • Wang Changle, Zhang Lianchang, Dai Yanpei, Lan Caiyun. 2015. Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang Complex, North China. Lithos, 212-215: 231~246.

    • Wang Changle, Peng Zidong, Tong Xiaoxue, Huang Hua, Zheng Mengtian, Zhang Lianchang, Zhai Mingguo. 2017. Late Neoarchean supracrustal rocks from the Anshan-Benxi terrane, North China Craton: new geodynamic implications from the geochemical record. American Journal of Science, 317: 1095~1148.

    • Wang Ende, Xia Jianming, Zhao Chunfu, Fu Jianfei. Hou Genqun. 2012. Discussion on the formation mechanism of magnetite enrichment in Gongchangling iron ore deposits. Acta Geologica Sinica, 86(11): 1761~1772 (in Chinese with English abstract).

    • Wang Ende, Xia Jianming, Zhao Chunfu, Fu Jianfei, Hou Genqun. 2013. Study on the material source and sedimentary paleogeographic environment of iron ore deposits in Gongchangling. Mineral Deposits, 32(2): 380~396 (in Chinese with English abstract).

    • Wang Ende, Xia Jianming, Fu Jianfei, Jia Sanshi, Men Yekai. 2014. Formation mechanism of Gongchangling high-grade magnetite deposit hosted in Archean BIF, Anshan-Benxi area, northeastern China. Ore Geology Reviews, 57: 308~321.

    • Wang Ende, Han Changik, Xia Jianming, Fu Jianfei, Li Guangshu, Jia Sanshi, Men Yekai. 2015a. Geochemical characterization of Archaean amphibolites from the eastern part of Anshan-Benxi iron producing area, northeastern China: implication for tectonic setting of BIFs. Geological Journal, 51: 480~498.

    • Wang Ende, Han Changik, Xia Jianming, Yun Sunggi. 2015b. Geochemistry and tectonic significance of chlorite amphibolite in Nanfen BIF, Benxi area, northeastern China. Journal of Geoscience and Environment Protection, 3: 54~61.

    • Wang Huichu, Miao Peisen, Kang Jianli, Ren Yunwei, Zhang Jiahui, Li Jianrong, Xiang Zhenqun, Xiao Zhibin. 2020. Newevidence for the formation age of the Lüliang Group. Acta Petrologica Sinica, 36(8): 2313~2330 (in Chinese with English abstract).

    • Wang Shoulun. 1986. The genetic types of rich iron deposits of Anshan Group in Anshan-Benxi area. Mineral Deposits, 5(4): 14~23 (in Chinese with English abstract).

    • Wang Weizhong, Li Huaiqian, Jia Xingjie, Wang Xia. 2015. Restoration of ore-bearing rocks and paleoenvironment in Wuyangiron ore field, Henan. Mineral Exploration, 6(4): 413~419 (in Chinese with English abstract).

    • Xia Jianming, Wang Ende, Zhao Chunfu, Mne Yekai. 2011. The formation mechanism of the redox environment in the rich iron deposits of Gongchangling. Journal of Northeastern University (Natural Science), 32(11): 1643~1646 (in Chinese with English abstract).

    • Xu Deru, Wu Chuanjun, Lv Guxian, Zhou Yueqiang, Yu Liangliang, Zhang Jianling, Hu Guocheng, Hou Maozhou. 2015. Application of lithospheric rheology in structural metallogenesis: taking BIF-type iron-rich ore deposits as an example. Geotectonica et Metallogenia, 39(1): 93~109 (in Chinese with English abstract).

    • Yang Xiaoyong, Wang Bohua, Du Zhenbao, Wang Qicai, Wang Yuxian, Tu Zhengbiao, Zhang Wenli, Sun Weidong. 2012. On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of North China Carton. Acta Petrologica Sinica, 28(11): 3476~3496 (in Chinese with English abstract).

    • Yang Xiuqing, Li Houmin, Xue Chunji, Li Lixing, Liu Mingjun, Chen Jing. 2013. Geochemical characteristics of two types of ore in the iron ore deposit of Waitoushan in Liaoning Province and their restrictions on mineralization. Acta Geologica Sinica, 87(10): 1580~1592 (in Chinese with English abstract).

    • Yang Xiuqing, Li Houmin, Li Lixing, Yao Tong, Chen Jing, Liu Mingjun. 2014a. Geochemical characteristics of banded iron construction in Liaoning-Hebei region: Ⅱ. characteristics of principal elements. Acta Petrologica Sinica, 30(5): 1218~1238 (in Chinese with English abstract).

    • Yang Xiuqing, Li Houmin, Li Lixing, Ma Yubo, Chen Jing, Liu Mingjun, Yao Tong, Chen Weishi, Yao Liangde. 2014b. Study on fluid inclusions and isotopic characteristics of sulfur, hydrogen and oxygen in iron ore deposits in the Anshan-Benxi area of Liaoning Province. Acta Geologica Sinica, 88(10): 1917~1931 (in Chinese with English abstract).

    • Yao Tong, Li Houmin, Yang Xiuqing, Li Lixing, Chen Jing, Zhang Jinyou, Liu Mingjun. 2014. Geochemical characteristics of striped iron construction in Liaoning-Hebei region: II. characteristics of rare earth elements. Acta Petrologica Sinica, 30(5): 1239~1252 (in Chinese with English abstract).

    • Yao Tong, Li Houmin, Li Wenjun, Li Lixing, Zhao Chuang. 2015. Origin of the disseminated magnetite pyroxenite in the Tieshanmiao-type iron deposits in the Wuyang region of Henan Province. China. Journal of Asian Earth Sciences, 113: 1235~1252.

    • Yu Shouyun, Liang Yuehan, Du Shaohua, Li Shanze, Liu Kangjuan. 1981. Discussion on the geological characteristics of late Tieshanmiao-type iron ore in the western Anhui region of central Henan and Western Anhui. Journal of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, (3): 68~83 (in Chinese with English abstract).

    • Zhang Lianchang, Zhai Mingguo, Wan Yusheng, Guo Jinghui, Dai Yanjing, Wang Changle, Liu Li. 2012. Research on Precambrian BIF iron ore in North China: progress and problems. Acta Petrologica Sinica, 28(11): 3431~3445 (in Chinese with English abstract).

    • Zhang Lianchang, Dai Yanpei, Wang Changle, Liu Li, Zhu Mingtian. 2014. Age, material sources and formation setting of Precambrian BIFs iron deposits in Anshan-Benxi area. Journal of Earth Sciences and Environment, 36(4): 1~15 (in Chinese with English abstract).

    • Zhang Xiaojing, Zhang Lianchang, Xiang Peng, Wan Bo, Pirajno F. 2011. Zircon U-Pb age, Hf isotopes, and geochemistry of Shuichang Algoma-type banded iron formation, North China Craton: constraints on the ore-forming age and tectonic setting. Gondwana Research, 20(1): 137~148.

    • Zhang Zhaochong, Hou Tong, Santosh M, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan, Wang Meng. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: an overview. Ore Geology Reviews, 57: 247~263.

    • Zhang Zhaochong, Li Houmin, Li Jianwei, Song Xieyan, Hu Hao, Li Lixing, Chai Fengmei, Hou Tong, Xu Deru. 2021. Geological settings and metallogenesis of high-grade iron deposits in China. Science China Earth Sciences, 64(5): 691~715.

    • Zhao Yiming. 2013. Main genetic types and geological characteristics of iron-rich ore deposits in China. Mineral Deposits, 32(4): 685~704 (in Chinese with English abstract).

    • Zhao Yiming, Lin Wenwei, Bi Chengsi, Li Daxin, Jiang Chongjun. 2012. Skarn Deposits in China. Beijing: Geological Publishing House, 1~410 (in Chinese with English abstract).

    • Zhou Shitai. 1994. Geology of Banded Iron Deposits in Anshan-Benxi Area. Beijing: Geological Publishing House, 1~276 (in Chinese with English abstract).

    • Zhu Jinchu, Zhang Fusheng, Xu Keqin. 1988. Depositional environment and metamorphism of Early Proterozoic iron formation in the Lüliangshan region, Shanxi Province, China. Precambrian Research, 39: 39~50.

    • 陈靖, 李厚民, 李立兴, 杨秀清, 刘明军, 姚通, 胡彬, 张进友. 2014. 冀东司家营BIF铁矿流体包裹体及氧同位素研究. 岩石学报, 30(5): 1253~1268.

    • 陈靖, 李厚民, 罗迪柯, 李立兴, 杨秀清, 刘明军, 姚通, 胡彬. 2015. 冀东柞栏杖子BIF地球化学特征、形成时代及其地质意义. 地质通报, 34(5): 919~929.

    • 程裕淇. 1953. 对于勘探中国铁矿问题的初步意见. 地质学报, 33(2): 120~134.

    • 程裕淇. 1957. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 37(2): 153~180.

    • 程裕淇, 赵一鸣, 陆松年. 1978. 中国几组主要铁矿类型. 地质学报, 52(4): 253~268.

    • 程裕淇, 闻广. 1982. 区域成矿分析若干问题. 中国区域地质, 2: 93~101.

    • 程裕淇, 陈毓川, 赵一鸣, 宋天锐. 1983. 再论矿床的成矿系列问题. 中国地质科学院院报, 6: 1~66.

    • 储雪蕾, 陈锦石, 王守信. 1986. 罗河铁矿的硫同位素分馏机制和矿床形成的物理化学条件的研究. 地质科学, 26(3): 189~195.

    • 杜利林, 杨崇辉, 任留东, 宋会侠, 耿元生, 万渝生. 2012. 吕梁地区2. 2~2. 1 Ga岩浆事件及其构造意义. 岩石学报, 28(9): 2751~2769.

    • 付建飞, 王恩德, 夏建明, 门业凯, 陈慧钧, 尤欣慰, 成林. 2014. 辽宁眼前山铁矿元素地球化学特征与沉积古环境研究. 中国地质, 41(6): 1929~1943.

    • 侯可军, 万德芳, 张增杰. 2012. Algoma型和Superior型硅铁建造地球化学对比研究. 岩石学报, 28(11): 3513~3519.

    • 胡古月, 李延河, 范昌福, 赵悦, 侯可军, 王天慧. 2015. 辽东古元古代菱镁矿矿床与硼酸盐矿床: 同期异相沉积成矿探讨. 矿床地质, 34(3): 547~564.

    • 贾兴杰, 李怀乾, 郑洪举. 2012. 河南舞钢铁矿地质特征及深部找矿研究. 黄金科学技术, 20(2): 25~31.

    • 蒋少涌, 丁悌平, 万德芳, 李延河. 1992. 辽宁弓长岭太古代条带状硅铁建造(BIF)的硅同位素组成特征. 中国科学, 22(6): 626~631.

    • 蒋永年. 1990. 河南舞阳赵案庄铁矿中利蛇纹石的研究. 地质找矿论丛, 5(2): 40~49.

    • 蒋永年. 1991. 河南舞阳赵案庄铁矿中氟磷灰石的研究. 地质找矿论丛, 6(1): 58~66.

    • 蒋永年, 陈勇华. 1986. 河南舞阳赵案庄铁矿的成因探讨. 中国地质科学院天津地质矿产研究所所刊, 16: 1~64.

    • 兰彩云, 张连昌, 赵太平, 王长乐, 李红中, 周艳艳. 2013. 河南舞阳铁山庙式BIF铁矿的矿物学与地球化学特征及对矿床成因的指示. 岩石学报, 29(7): 2567~2582.

    • 李厚民, 刘明军, 李立兴, 杨秀清, 陈靖, 姚良德, 洪学宽, 姚通. 2012. 辽宁弓长岭铁矿区大理岩地质地球化学特征及其成矿意义. 岩石学报, 28(11): 3497~3512.

    • 李厚民, 刘明军, 李立兴, 杨秀清, 姚良德, 陈靖, 姚通. 2014. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义. 岩石学报, 30(5): 1205~1217.

    • 李俊平, 李永峰, 谢克家. 2012. 河南舞阳地区太华群地质特征及其控矿意义. 矿产与地质, 26(1): 30~34.

    • 李曙光. 1982. 弓长岭富磁铁矿床成因的地球化学模型. 地球化学, (2): 113~121.

    • 李曙光, 支霞臣, 陈江峰, 王俊新, 邓衍尧. 1983. 鞍山前寒武纪条带状含铁建造中石墨的成因. 地球化学, (2): 162~169.

    • 李延河, 侯可军, 万德芳, 张增杰. 2010. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋. 地质学报, 84(9): 1359~1373.

    • 李延河, 侯可军, 万德芳, 张增杰. 2012. Algoma型和Superior型硅铁建造地球化学对比研究. 岩石学报, 28(11): 3513~3519.

    • 李延河, 段超, 韩丹, 陈新旺, 王丛林, 杨秉阳, 张成, 刘锋. 2014a. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用. 岩石学报, 30(5): 1355~1368.

    • 李延河, 张增杰, 侯可军, 段超, 万德芳, 胡古月. 2014b. 辽宁鞍本地区沉积变质型富铁矿的成因: Fe、 Si、O、S同位素证据. 地质学报, 88(12): 2351~2372.

    • 刘立新, 李怀乾, 贾兴杰, 王伟中, 王夏. 2014. 河南省舞阳铁矿田赵案庄组铁矿地质特征及成因分析. 矿产与地质, 28(4): 431~434.

    • 刘陆山, 付海涛, 刘忠元, 冷文芳, 武悦. 2015. 鞍山-本溪地区富铁矿分布规律及成因探讨. 地质与资源, 24(4): 341~346.

    • 刘明军, 李厚民, 李立兴, 杨秀清, 姚良德, 洪学宽, 陈靖. 2012. 辽宁弓长岭铁矿床二矿区类矽卡岩的岩石矿物学特征. 岩矿测试, 31(6): 1067~1076.

    • 刘明军, 李厚民, 李立兴, 杨秀清, 姚良德, 洪学宽, 陈靖, 姚通, 白云. 2013. 辽宁弓长岭铁矿床二矿区流体包裹体研究. 矿床地质, 32(5): 989~1002.

    • 刘明军, 李厚民, 薛春纪, 姚良德, 文屹, 许宗宪. 2014. 辽宁弓长岭铁矿床二矿区矿石及类矽卡岩的地球化学特征及其找矿意义. 地质学报, 88(10): 1917~1931.

    • 刘明军, 曾庆栋, 李厚民, 李立兴, 文屹, 姚良德, 高业舜. 2017. 辽宁鞍本地区铁质活化再富集成因富铁矿的成矿时代——齐大山铁矿床辉钼矿Re-Os年龄证据. 矿床地质, 36(1): 237~249.

    • 罗明强. 2009. 河南省舞阳铁矿田构造控矿研究. 河南理工大学学报: 自然科学版, 28(5): 577~582.

    • 孟洁, 李厚民, 李立兴, 李洁茹. 2018. 华北克拉通南缘太华群铁山庙铁矿床沉积时代的约束——锆石U-Pb定年及Hf同位素证据. 地质学报, 92(1), 125~141.

    • 钱祥麟. 1985. 冀东前寒武纪地质. 石家庄: 河北科学技术出版社. 1~31.

    • 沈其韩, 宋会侠. 2015. 华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题. 岩石学报, 31(10): 2795~2815.

    • 万渝生, 董春艳, 颉颃强, 王世进, 宋明春, 徐仲元, 王世炎, 周红英, 马铭株, 刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年. 地质学报, 86(9) : 1447~1478.

    • 万渝生, 董春艳, 颉颃强, 谢士稳, 刘守偈, 白文倩, 马铭株, 刘敦一. 2018. 鞍山-本溪地区鞍山群含BIF表壳岩形成时代新证据: 锆石SHRIMP U-Pb定年. 地球科学, 43(1): 57~81.

    • 王恩德, 夏建明, 赵纯福, 付建飞, 侯根群. 2012. 弓长岭铁矿床磁铁富矿形成机制探讨. 地质学报, 86(11): 1761~1772.

    • 王恩德, 夏建明, 赵纯福, 付建飞, 侯根群. 2013. 弓长岭铁矿床物质来源及沉积古地理环境研究. 矿床地质, 32(2): 380~396.

    • 王惠初, 苗培森, 康健丽, 任云伟, 张家辉, 李建荣, 相振群, 肖志斌. 2020. 吕梁群时代归属新证据. 岩石学报, 36(8): 2313~2330.

    • 王守伦. 1986. 鞍本地区鞍山群富铁矿成因类型的讨论. 矿床地质, 5(4): 14~23.

    • 王伟中, 李怀乾, 贾兴杰, 王夏. 2015. 河南舞阳铁矿田含矿岩系原岩及古环境恢复. 矿产勘查, 6(4): 413~419.

    • 夏建明, 王恩德, 赵纯福, 门业凯. 2011. 弓长岭富铁矿氧化还原环境的形成机制. 东北大学学报(自然科学版), 32(11): 1643~1646.

    • 许德如, 吴传军, 吕古贤, 周岳强, 于亮亮, 张建岭, 胡国成, 侯茂洲. 2015. 岩石流变学原理在构造成矿研究中的应用——以BIF型富铁矿床为例. 大地构造与成矿学, 39(1): 93~109.

    • 杨晓勇, 王波华, 杜贞保, 王启才, 王玉贤, 涂政标, 张文利, 孙卫东. 2012. 论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制. 岩石学报, 28(11): 3476~3496.

    • 杨秀清, 李厚民, 薛春纪, 李立兴, 刘明军, 陈靖. 2013. 辽宁歪头山铁矿床两类矿石地球化学特征及其对成矿作用的制约. 地质学报, 87(10): 1580~1592.

    • 杨秀清, 李厚民, 李立兴, 姚通, 陈靖, 刘明军. 2014a. 辽冀地区条带状铁建造地球化学特征: Ⅱ. 主量元素特征. 岩石学报, 30(5): 1218~1238.

    • 杨秀清, 李厚民, 李立兴, 马玉波, 陈靖, 刘明军, 姚通, 陈伟十, 姚良德. 2014b. 辽宁鞍山-本溪地区铁矿床流体包裹体和硫、氢、氧同位素特征研究. 地质学报, 88(10): 1917~1931.

    • 姚通, 李厚民, 杨秀清, 李立兴, 陈靖, 张进友, 刘明军. 2014. 辽冀地区条带状铁建造地球化学特征: Ⅱ. 稀土元素特征. 岩石学报, 30(5): 1239~1252.

    • 俞受鋆, 梁约翰, 杜绍华, 李善择, 刘抗娟. 1981. 豫中皖西地区晚太古代铁山庙型铁矿成矿地质特征和含铁盆地轮廓的探讨. 中国地质科学院宜昌地质矿产研究所所刊, (3): 68~83.

    • 张连昌, 翟明国, 万渝生, 郭敬辉, 代堰锫, 王长乐, 刘利. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431~3445.

    • 张连昌, 代堰锫, 王长乐, 刘利, 朱明田. 2014. 鞍山-本溪地区前寒武纪条带状铁建造铁矿时代、物质来源与形成环境. 地球科学与环境学报, 36(4): 1~15.

    • 张招崇, 李厚民, 李建威, 宋谢炎, 胡浩, 李立兴, 柴凤梅, 侯通, 许德如. 2021. 我国铁矿成矿背景与富铁矿成矿机制. 中国科学: 地球科学, 51(6): 827~852.

    • 赵一鸣. 2013. 中国主要富铁矿床类型及地质特征. 矿床地质, 32(4): 685~704.

    • 赵一鸣, 林文蔚, 毕成思, 李大新, 蒋崇俊. 2012. 中国矽卡岩矿床. 北京: 地质出版社, 1~410.

    • 周世泰. 1994. 鞍山-本溪地区条带状铁矿地质. 北京: 地质出版社, 1~276.

  • 参考文献

    • Bekker A, Slack J F, Planavsky N, Krapez B, Hofmann A, Konhauser K O, Rouxel O J. 2010. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105: 467~508.

    • Beukes N J, Gutzmer J, Mukhopadhyay J. 2003. The geology and genesis of high-grade hematite iron ore deposits. Applied Earth Science, 112: 18~25.

    • Canfield D E. 2005. The early history of atmospheric oxygen. Homage to Robert M. Garrels. Annual Review of Earth Planetary Sciences, 33: 1~36.

    • Chakrabarti R, Knoll A H, Jacobsen S B, Fischer W W. 2012. Si isotope variability in Proterozoic cherts. Geochimica et Cosmochimica Acta, 91: 187~201.

    • Chen Jing, Li Houmin, Li Lixing, Yang Xiuqing, Liu Mingjun, Yao Tong, Hu Bin, Zhang Jinyou. 2014. Fluid inclusions and oxygen isotope study of the Sijiaying BIF in the eastern Hebei Province. Acta Petrologica Sinica, 30(5): 1253~1268 (in Chinese with English abstract).

    • Chen Jing, Li Houmin, Luo Dike, Li Lixing, Yang Xiuqing, Liu Mingjun, Yao Tong, Hu Bin. 2015. Formation age, geochemical characteristics and geological significance of the Zhalanzhangzi BIF in eastern Hebei Province. Geological Bulletin of China, 34(5): 919~929 (in Chinese with English abstract).

    • Cheng Yuqi. 1953. Preliminary comments on the exploration of iron deposits in China. Acta Geologica Sinica, 33(2): 120~134 (in Chinese).

    • Cheng Yuqi. 1957. The problem of high-grade iron ore genesis in Precambrian Anshan-type banded iron deposits in the Liaoning and Shandong provinces, in the northeast of China. Acta Geologica Sinica, 37(2): 153~180 (in Chinese with English abstract).

    • Cheng Yuqi, Zhao Yiming, Lu Songnian. 1978. Main types-groups of iron deposits of China. Acta Geologica Sinica, 52(4): 253~268 (in Chinese with English abstract).

    • Cheng Yuqi, Wen Guang. 1982. On certain problems of regional minerogenetic analysis. Regional Geology of China, 2: 93~101 (in Chinese with English abstract).

    • Cheng Yuqi, Chen Yuchuan, Zhao Yiming, Song Tianrui. 1983. Further discussion on the problems of minerogenetic series of mineral deposits. Bulletin Chinese Academy of Geological Sciences, 6: 1~66 (in Chinese with English abstract).

    • Chu Xuelei, Chen Jinshi, Wang Shouxin. 1986. Study on the sulfur isotope fractionation mechanism and physicochemical conditions for deposit formation in Luohe iron ore. Chinese Journal of Geology, 26(3): 189~195 (in Chinese with English abstract).

    • Cloud P. 1973. Paleoecological significance of the banded iron formation. Economic Geology, 68: 1135~1143.

    • Du Lilin, Yang Chonghui, Ren Liudong, Song Huixia, Geng Yuansheng, Wan Yusheng. 2012. 2. 2~2. 1 Ga magma event in Lüliang area and its tectonic significance. Acta Petrologica Sinica, 28(9): 2751~2769 (in Chinese with English abstract).

    • Fu Jianfei, Wang Ende, Xia Jianming, Men Yekai, Chen Huijun, You Xinxing, Cheng Lin. 2014. Geochemical characteristics and sedimentary paleoenvironment of iron ore in the mountains of Liaoning Province. Geology in China, 41(6): 1929~1943 (in Chinese with English abstract).

    • Gross G A. 1965. Geology of iron deposits in Canada, Vol. 1. general geology and evaluation of iron deposits. Canadian Geological Survey. Economic Geology Report.

    • Hagemann S G, Angerer T, Duuring P, Rosière C A, Figueiredoe Silva R C, Lobato L, Hensler A S, Walde D H G. 2016. BIF-hosted iron mineral system: a review. Ore Geology Reviews, 76: 317~359.

    • Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2017. Chronology, geochemical, Si and Fe isotopic constraints on the origin of Huoqiu banded iron formation (BIF), southeastern margin of the North China Craton. Precambrian Research, 298: 351~364.

    • Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2019. Genesis of Huoqiu banded iron formation (BIF), southeastern North China Craton, constraints from geochemical and Hf-O-S isotopic characteristics. Journal of Geochemical Exploration, 197: 60~69.

    • Hu Guyue, Li Yanhe, Fan Changfu, Zhao Yue, Hou Kejun, Wang Tianhui. 2015. Paleoproterozoic magnesite and borate deposits from eastern Liaoning Province: with a discussion about synchrono-heteropic facies of sedimentary mineralization. Mineral Deposits, 34(3): 547~564 (in Chinese with English abstract).

    • Jia Xingjie, Li Huaiqian, Zheng Hongju. 2012. Geological characteristics and deep prospecting of Henan Wu iron and steel mine. Gold Science and Technology, 20(2): 25~31 (in Chinese with English abstract).

    • Jiang Shaoyong, Ding Tiping, Wan Defang, Li Yanhe. 1992. Characteristics of silicon isotopic composition of ancient striped ferrosilicon construction (BIF) in Gongchangling, Liaoning. Science in China, 22(6): 626~631(in Chinese).

    • Jiang Yongnian. 1990. A study on serpentin in the iron ore of Zhaoanzhuang in Wuyang, Henan. Geological Prospecting Series, 5(2): 40~49 (in Chinese with English abstract).

    • Jiang Yongnian. 1991. Study on fluoroapatite in iron ore in Zhaoanzhuang, Wuyang, Henan. Geology and Mineral Prospecting Series, 6(1): 58~66 (in Chinese with English abstract).

    • Jiang Yongnian, Chen Yonghua. 1986. Discussion on the genesis of iron ore in Zhaoanzhuang, Wuyang, Henan. Journal of Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 16: 1~64 (in Chinese with English abstract).

    • Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90(10): 1473~1499.

    • Lan Caiyun, Zhang Lianchang, Zhao Taiping, Wang Changle, Li Hongzhong, Zhou Yanyan. 2013. Mineralogical and geochemical characteristics of BIF iron ore in Wuyang, Henan Province, and indications of the genesis of deposits. Acta Petrologica Sinica, 29(7): 2567~2582 (in Chinese with English abstract).

    • Li Houmin, Liu Mingjun, Li Lixing, Yang Xiuqing, Chen Jing, Yao Liangde, Hong Xuekuan, Yao Tong. 2012. Geology and geochemistry of the marble in the Gongchangling iron ore deposit in Liaoning Province and their metallogenic significance. Acta Petrologica Sinica, 28(11): 3497~3512 (in Chinese with English abstract).

    • Li Houmin, Liu Mingjun, Li Lixing, Yang Xiuqing, Chen Jing, Yao Tong. 2014. SHRIMP U-Pb geochronology of zircon from the garnet-rich altered rocks in the mining area II of the Gongchangling iron deposit: constraints on the age of the high-grade iron deposit. Acta Petrologica Sinica, 30(5): 1205~1217 (in Chinese with English abstract).

    • Li Houmin, Zhang Zengjie, Li Lixing, Zhang Zhaochong, Chen Jing, Yao Tong. 2014. Types and general characteristics of the BIF-related iron deposits in China. Ore Geology Reviews, 57: 264~287.

    • Li Houmin, Yang Xiuqing, Li Lixing, Zhang Zhaochong, Liu Mingjun, Chen Jing. 2015. Desilicification and iron activation-reprecipitation in the high-grade magnetite ores in BIFs of the Anshan-Benxi area, China: evidence from geology, geochemistry, and stable isotopic characteristics. Journal of Asian Earth Sciences, 113: 998~1016.

    • Li Junping, Li Yongfeng, Xie Kejia. 2012. Geological characteristics of Taihua Group in Wuyang area, Henan Province and its significance in controlling minerals. Mineral Resources and Geology, 26(1): 30~34 (in Chinese with English abstract).

    • Li Lixing, Li Houmin, Xu Yingxia, Chen Jing, Yao Tong, Zhang Longfei, Yang Xiuqing, Liu Mingjun. 2015. Zircon growth and ages of migmatites in the Algoma-type BIF-hosted iron deposits in Qianxi Group from eastern Hebei Province, China: timing of BIF deposition and anatexis. Journal of Asian Earth Sciences, 113: 1017~1034.

    • Li Lixing, Li Houmin, Liu Mingjun, Yang Xiuqing, Meng Jie. 2016. Timing of deposition and tectonothermal events of banded iron formations in the Anshan-Benxi area, Liaoning Province, China: evidence from SHRIMP U-Pb zircon geochronology of the wall rocks Journal of Asian Earth Sciences, 129: 276~293.

    • Li Lixing, Zi Jianwei, Li Houmin, Rasmussen Birger, Wilde Simon A, Sheppard Stephen, Ma Yubo, Meng Jie, Song Zhe. 2019. High-grade magnetite mineralization at 1. 86 Ga in Neoarchean banded iron formations, Gongchangling, China: in situ U-Pb geochronology of metamorphic-hydrothermal zircon and monazite. Economic Geology, 114(6): 1159~1175.

    • Li Lixing, Zi Jianwei, Meng Jie, Li Houmin, Rasmussen B, Sheppard S, Wilde S A, Li Yanhe. 2020. Using in situ monazite and xenotime U-Pb geochronology to resolve the fate of the “missing” banded iron formation-hosted high-grade hematite ores of the North China Craton. Economic Geology, 115(1): 189~204.

    • Li Shuguang. 1982. Geochemical model for the genesis of Gongchangling rich magnetite deposit in China. Geochimica, (2): 113~121 (in Chinese with English abstract).

    • Li Shuguang, Zhi Xiachen, Chen Jiangfeng, Wang Junxin, Deng Yanyao. 1983. Origin of graphites in Early Precambrian banded iron formation in Anshan, China. Geochimica, (2): 162~169 (in Chinese with English abstract).

    • Li Yanhe, Hou Kejun, Wan Defang, Zhang Zengjie. 2010. The formation mechanism of Precambrian banded ferrosilicon construction and the atmosphere and oceans of the early Earth. Acta Geologica Sinica, 84(9): 1359~1373 (in Chinese with English abstract).

    • Li Yanhe, Hou Kejun, Wan Defang, Zhang Zengjie. 2012. Geochemistry of Algoma type and Superior type ferrosilicon construction. Acta Petrologica Sinica, 28(11): 3513~3519 (in Chinese with English abstract).

    • Li Yanhe, Hou Kejun, Wan Defang, Zhang Zengjie, Yue Guoliang. 2014. Precambrian banded iron formations in the North China Craton: silicon and oxygen isotopes and genetic implications. Ore Geology Reviews, 57: 299~307.

    • Li Yanhe, Duan Chao, Han Dan, Chen Xinwang, Wang Conglin, Yang Bingyang, Zhang Cheng, Liu Feng. 2014a. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the Middle-Lower Yangtze River area. Acta Petrologica Sinica, 30(5): 1355~1368 (in Chinese with English abstract).

    • Li Yanhe, Zhang Zengjie, Hou Kejun, Duan Chao, Wan Defang, Hu Guyue. 2014b. Genesis of sedimentary metamorphic iron-rich ore in Anben region of Liaoning Province: isotope evidence of Fe, Si, O and S. Acta Geologica Sinica, 88(12): 2351~2372 (in Chinese with English abstract).

    • Liu Chaohui, Zhao Guochun, Liu Fulai, Shi Jianrong. 2014. Geochronological and geochemical constraints on the Lüliang Group in the Lüliang Complex: implications for the tectonic evolution of the Trans-North China Orogen. Lithos, 198-199: 298~315.

    • Liu Lixin, Li Huaiqian, Jia Xingjie, Wang Weizhong, Wang Xia. 2014. Geological characteristics and genesis analysis of iron ore in Zhaoanzhuang Formation, Wuyang iron ore field, Henan Province. Mineral Resources and Geology, 28(4): 431~434 (in Chinese with English abstract).

    • Liu Lushan, Fu Haitao, Liu Zhongyuan, Leng Wenfang, Wu Yue. 2015. Distribution and genesis of high-grade iron ore in Anshan-Benxi region. Geology and Resources, 24(4): 341~346 (in Chinese with English abstract).

    • Liu Mingjun, Li Houmin, Li Lixing, Yang Xiuqing, Yao Liangde, Hong Xuekuan, Chen Jing. 2012. Petrological characteristics of silicate-like rocks in the second ore area of the Gongchangling iron ore deposit in Liaoning Province. Rock or Mineral Analysis, 31(6): 1067~1076 (in Chinese with English abstract).

    • Liu Mingjun, Li Houmin, Li Lixing, Yang Xiuqing, Yao Liangde, Hong Xuekuan, Chen Jing, Yao Tong, Bai Yun. 2013. Fluid inclusions in the second ore area of the Gongchangling iron ore deposit in Liaoning. Mineral Deposits, 32(5): 989~1002 (in Chinese with English abstract).

    • Liu Mingjun, Li Houmin, Xue Chunji, Yao Liangde, Wen Yi, Xu Zongxian. 2014. Geochemical characteristics of ores and silica-like rocks in the second ore area of Gongchangling iron ore deposit in Liaoning Province and their prospecting significance. Acta Geologica Sinica, 88(10): 1917~1931 (in Chinese with English abstract).

    • Liu Mingjun, Zeng Qingdong, Li Houmin, Li Lixing, Wen Yi, Yao Liangde, Gao Yeshun. 2017. The metallogenic age of iron activation and re-enrichment in Anben area of Liaoning Province: evidence of the age of Re-Os of molybdenum ore in Qidashan iron ore deposits. Mineral Deposits, 36(1): 237~249 (in Chinese with English abstract).

    • Liu Shuwen, Zhang Jian, Li Qiuli, Zhang Lifei, Wang Wei, Yang Pengtao. 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 222-223: 173~190.

    • Luo Mingqiang. 2009. Structural ore control study of Wuyang iron ore field in Henan Province. Journal of Henan Polytechnic University: Natural Science Edition, 28(5): 577~582 (in Chinese with English abstract).

    • Maliva R G, Knoll A H, Simonson B M. 2005. Secular change in the Precambrian silica cycle: insights from chert petrology. Geological Society of America Bulletin, 117(7-8): 835~845.

    • Men Yekai, Wang Ende, Fu Jianfei, Jia Sanshi, You Xinwei, He Qiangwen. 2019. Geology and geochemistry of the Yuanjiacun banded iron formation in Shanxi Province, China: constraints on the genesis. Geological Magazine, 156(11): 1839~1862.

    • Meng Jie, Li Houmin, Li Lixing, Li Jieru. 2018. Constraints of sedimentary age of iron ore deposits in Taihua Group Tieshan Temple, south margin of Craton, North China—zircon U-Pb dating and Hf isotopic evidence. Acta Geologica Sinica, 92(1): 125~141 (in Chinese with English abstract).

    • Meng Jie, Li Houmin, Li Lixing, Santosh M, Song Zhe, Yang Xiuqing. 2018. Petrological and geochemical constraints on the protoliths of serpentine-magnetite ores in the Zhaoanzhuang iron deposit, southern North China Craton. Acta Geologica Sinica (English Edition), 2(92): 627~665.

    • Meng Jie, Li Houmin, Li Yanhe, Zhang Zhaochong, Li Lixing, Song Zhe. 2019. Stable isotope (S, Mg, B) constraints on the origin of the early Precambrian Zhaoanzhuang serpentine-magnetite deposit, southern North China Craton. Minerals, 9(6): 377.

    • Morris R C, Wolff K H. 1985. Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes; a conceptual model. Handbook of Strata-bound and Stratiform Ore Deposits, 13: 73~235.

    • Ohmoto H, Rye R D. 1979. Isotopes of sulfur and carbon. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley, 509~567.

    • Qian Xianglin. 1985. Geology of Precambrian Iron Ores in Eastern Hebei Province, China. Shijiazhuang: Hebei Science and Technology Press, 1~31 (in Chinese with English abstract).

    • Rasmussen B, Fletcher I R, Muhling J R, Thorne W S, Broadbent G C. 2007. Prolonged history of episodic fluid flow in giant hematite ore bodies: evidence from in situ U-Pb geochronology of hydrothermal xenotime. Earth Planetary Science Letters, 258: 249~259.

    • Shen Qihan, Song Huixia. 2015. Progress, prospecting and key scientific problems in origin researches of high-grade iron ore of the banded iron formation (BIF) in the North China Craton. Acta Petrologica Sinica, 31(10): 2795~2815 (in Chinese with English abstract).

    • Steinhoefel G, Horn I, Blanckenburg F. 2009. Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation. Geochimica et Cosmochimica Acta, 73(18): 5343~5360.

    • Sumner D Y. 1997. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa. American Journal of Science, 297(5): 455~487.

    • Taylor D, Dalstra H J, Harding A E, Broadbent G C, Barley M E. 2001. Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia. Economic Geology, 96: 837~873.

    • Wan Yusheng, Dong Chunyan, Xie Hangqiang, Wang Shijin, Song Mingchun, Xu Zhongyuan, Wang Shiyan, Zhou Hongying, Ma Mingzhu, Liu Ddunyi. 2012. Formation ages of Early Precambrian BIFs in the North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9): 1447~1478 (in Chinese with English abstract).

    • Wan Yusheng, Dong Chunyan, Xie Hangqiang, Xie Shiwen, Liu Shoujie, Bai Wenqian, Ma Mingzhu, Liu Dunyi. 2018. Formation age of BIF-bearing Anshan Group supra-crustal rocks in Anshan-Benxi area: new evidence from SHRIMP U-Pb zircon dating. Earth Science—Journal of China University of Geosciences, 43(1): 57~81 (in Chinese with English abstract).

    • Wan Yusheng, Ma Mingzhu, Dong Chunyan, Xie Hangqiang, Xie Sshiwen, Ren P, Liu Dunyi. 2015. Widespread late Neoarchean reworking of Meso- to Paleoarchean continental crust in the Anshan-Benxi area, North China Craton, as documented by U-Pb-Nd-Hf-O isotopes. American Journal of Science, 315: 620~670.

    • Wang Changle, Zhang Lianchang, Dai Yanpei, Lan Caiyun. 2015. Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang Complex, North China. Lithos, 212-215: 231~246.

    • Wang Changle, Peng Zidong, Tong Xiaoxue, Huang Hua, Zheng Mengtian, Zhang Lianchang, Zhai Mingguo. 2017. Late Neoarchean supracrustal rocks from the Anshan-Benxi terrane, North China Craton: new geodynamic implications from the geochemical record. American Journal of Science, 317: 1095~1148.

    • Wang Ende, Xia Jianming, Zhao Chunfu, Fu Jianfei. Hou Genqun. 2012. Discussion on the formation mechanism of magnetite enrichment in Gongchangling iron ore deposits. Acta Geologica Sinica, 86(11): 1761~1772 (in Chinese with English abstract).

    • Wang Ende, Xia Jianming, Zhao Chunfu, Fu Jianfei, Hou Genqun. 2013. Study on the material source and sedimentary paleogeographic environment of iron ore deposits in Gongchangling. Mineral Deposits, 32(2): 380~396 (in Chinese with English abstract).

    • Wang Ende, Xia Jianming, Fu Jianfei, Jia Sanshi, Men Yekai. 2014. Formation mechanism of Gongchangling high-grade magnetite deposit hosted in Archean BIF, Anshan-Benxi area, northeastern China. Ore Geology Reviews, 57: 308~321.

    • Wang Ende, Han Changik, Xia Jianming, Fu Jianfei, Li Guangshu, Jia Sanshi, Men Yekai. 2015a. Geochemical characterization of Archaean amphibolites from the eastern part of Anshan-Benxi iron producing area, northeastern China: implication for tectonic setting of BIFs. Geological Journal, 51: 480~498.

    • Wang Ende, Han Changik, Xia Jianming, Yun Sunggi. 2015b. Geochemistry and tectonic significance of chlorite amphibolite in Nanfen BIF, Benxi area, northeastern China. Journal of Geoscience and Environment Protection, 3: 54~61.

    • Wang Huichu, Miao Peisen, Kang Jianli, Ren Yunwei, Zhang Jiahui, Li Jianrong, Xiang Zhenqun, Xiao Zhibin. 2020. Newevidence for the formation age of the Lüliang Group. Acta Petrologica Sinica, 36(8): 2313~2330 (in Chinese with English abstract).

    • Wang Shoulun. 1986. The genetic types of rich iron deposits of Anshan Group in Anshan-Benxi area. Mineral Deposits, 5(4): 14~23 (in Chinese with English abstract).

    • Wang Weizhong, Li Huaiqian, Jia Xingjie, Wang Xia. 2015. Restoration of ore-bearing rocks and paleoenvironment in Wuyangiron ore field, Henan. Mineral Exploration, 6(4): 413~419 (in Chinese with English abstract).

    • Xia Jianming, Wang Ende, Zhao Chunfu, Mne Yekai. 2011. The formation mechanism of the redox environment in the rich iron deposits of Gongchangling. Journal of Northeastern University (Natural Science), 32(11): 1643~1646 (in Chinese with English abstract).

    • Xu Deru, Wu Chuanjun, Lv Guxian, Zhou Yueqiang, Yu Liangliang, Zhang Jianling, Hu Guocheng, Hou Maozhou. 2015. Application of lithospheric rheology in structural metallogenesis: taking BIF-type iron-rich ore deposits as an example. Geotectonica et Metallogenia, 39(1): 93~109 (in Chinese with English abstract).

    • Yang Xiaoyong, Wang Bohua, Du Zhenbao, Wang Qicai, Wang Yuxian, Tu Zhengbiao, Zhang Wenli, Sun Weidong. 2012. On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of North China Carton. Acta Petrologica Sinica, 28(11): 3476~3496 (in Chinese with English abstract).

    • Yang Xiuqing, Li Houmin, Xue Chunji, Li Lixing, Liu Mingjun, Chen Jing. 2013. Geochemical characteristics of two types of ore in the iron ore deposit of Waitoushan in Liaoning Province and their restrictions on mineralization. Acta Geologica Sinica, 87(10): 1580~1592 (in Chinese with English abstract).

    • Yang Xiuqing, Li Houmin, Li Lixing, Yao Tong, Chen Jing, Liu Mingjun. 2014a. Geochemical characteristics of banded iron construction in Liaoning-Hebei region: Ⅱ. characteristics of principal elements. Acta Petrologica Sinica, 30(5): 1218~1238 (in Chinese with English abstract).

    • Yang Xiuqing, Li Houmin, Li Lixing, Ma Yubo, Chen Jing, Liu Mingjun, Yao Tong, Chen Weishi, Yao Liangde. 2014b. Study on fluid inclusions and isotopic characteristics of sulfur, hydrogen and oxygen in iron ore deposits in the Anshan-Benxi area of Liaoning Province. Acta Geologica Sinica, 88(10): 1917~1931 (in Chinese with English abstract).

    • Yao Tong, Li Houmin, Yang Xiuqing, Li Lixing, Chen Jing, Zhang Jinyou, Liu Mingjun. 2014. Geochemical characteristics of striped iron construction in Liaoning-Hebei region: II. characteristics of rare earth elements. Acta Petrologica Sinica, 30(5): 1239~1252 (in Chinese with English abstract).

    • Yao Tong, Li Houmin, Li Wenjun, Li Lixing, Zhao Chuang. 2015. Origin of the disseminated magnetite pyroxenite in the Tieshanmiao-type iron deposits in the Wuyang region of Henan Province. China. Journal of Asian Earth Sciences, 113: 1235~1252.

    • Yu Shouyun, Liang Yuehan, Du Shaohua, Li Shanze, Liu Kangjuan. 1981. Discussion on the geological characteristics of late Tieshanmiao-type iron ore in the western Anhui region of central Henan and Western Anhui. Journal of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, (3): 68~83 (in Chinese with English abstract).

    • Zhang Lianchang, Zhai Mingguo, Wan Yusheng, Guo Jinghui, Dai Yanjing, Wang Changle, Liu Li. 2012. Research on Precambrian BIF iron ore in North China: progress and problems. Acta Petrologica Sinica, 28(11): 3431~3445 (in Chinese with English abstract).

    • Zhang Lianchang, Dai Yanpei, Wang Changle, Liu Li, Zhu Mingtian. 2014. Age, material sources and formation setting of Precambrian BIFs iron deposits in Anshan-Benxi area. Journal of Earth Sciences and Environment, 36(4): 1~15 (in Chinese with English abstract).

    • Zhang Xiaojing, Zhang Lianchang, Xiang Peng, Wan Bo, Pirajno F. 2011. Zircon U-Pb age, Hf isotopes, and geochemistry of Shuichang Algoma-type banded iron formation, North China Craton: constraints on the ore-forming age and tectonic setting. Gondwana Research, 20(1): 137~148.

    • Zhang Zhaochong, Hou Tong, Santosh M, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan, Wang Meng. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: an overview. Ore Geology Reviews, 57: 247~263.

    • Zhang Zhaochong, Li Houmin, Li Jianwei, Song Xieyan, Hu Hao, Li Lixing, Chai Fengmei, Hou Tong, Xu Deru. 2021. Geological settings and metallogenesis of high-grade iron deposits in China. Science China Earth Sciences, 64(5): 691~715.

    • Zhao Yiming. 2013. Main genetic types and geological characteristics of iron-rich ore deposits in China. Mineral Deposits, 32(4): 685~704 (in Chinese with English abstract).

    • Zhao Yiming, Lin Wenwei, Bi Chengsi, Li Daxin, Jiang Chongjun. 2012. Skarn Deposits in China. Beijing: Geological Publishing House, 1~410 (in Chinese with English abstract).

    • Zhou Shitai. 1994. Geology of Banded Iron Deposits in Anshan-Benxi Area. Beijing: Geological Publishing House, 1~276 (in Chinese with English abstract).

    • Zhu Jinchu, Zhang Fusheng, Xu Keqin. 1988. Depositional environment and metamorphism of Early Proterozoic iron formation in the Lüliangshan region, Shanxi Province, China. Precambrian Research, 39: 39~50.

    • 陈靖, 李厚民, 李立兴, 杨秀清, 刘明军, 姚通, 胡彬, 张进友. 2014. 冀东司家营BIF铁矿流体包裹体及氧同位素研究. 岩石学报, 30(5): 1253~1268.

    • 陈靖, 李厚民, 罗迪柯, 李立兴, 杨秀清, 刘明军, 姚通, 胡彬. 2015. 冀东柞栏杖子BIF地球化学特征、形成时代及其地质意义. 地质通报, 34(5): 919~929.

    • 程裕淇. 1953. 对于勘探中国铁矿问题的初步意见. 地质学报, 33(2): 120~134.

    • 程裕淇. 1957. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 37(2): 153~180.

    • 程裕淇, 赵一鸣, 陆松年. 1978. 中国几组主要铁矿类型. 地质学报, 52(4): 253~268.

    • 程裕淇, 闻广. 1982. 区域成矿分析若干问题. 中国区域地质, 2: 93~101.

    • 程裕淇, 陈毓川, 赵一鸣, 宋天锐. 1983. 再论矿床的成矿系列问题. 中国地质科学院院报, 6: 1~66.

    • 储雪蕾, 陈锦石, 王守信. 1986. 罗河铁矿的硫同位素分馏机制和矿床形成的物理化学条件的研究. 地质科学, 26(3): 189~195.

    • 杜利林, 杨崇辉, 任留东, 宋会侠, 耿元生, 万渝生. 2012. 吕梁地区2. 2~2. 1 Ga岩浆事件及其构造意义. 岩石学报, 28(9): 2751~2769.

    • 付建飞, 王恩德, 夏建明, 门业凯, 陈慧钧, 尤欣慰, 成林. 2014. 辽宁眼前山铁矿元素地球化学特征与沉积古环境研究. 中国地质, 41(6): 1929~1943.

    • 侯可军, 万德芳, 张增杰. 2012. Algoma型和Superior型硅铁建造地球化学对比研究. 岩石学报, 28(11): 3513~3519.

    • 胡古月, 李延河, 范昌福, 赵悦, 侯可军, 王天慧. 2015. 辽东古元古代菱镁矿矿床与硼酸盐矿床: 同期异相沉积成矿探讨. 矿床地质, 34(3): 547~564.

    • 贾兴杰, 李怀乾, 郑洪举. 2012. 河南舞钢铁矿地质特征及深部找矿研究. 黄金科学技术, 20(2): 25~31.

    • 蒋少涌, 丁悌平, 万德芳, 李延河. 1992. 辽宁弓长岭太古代条带状硅铁建造(BIF)的硅同位素组成特征. 中国科学, 22(6): 626~631.

    • 蒋永年. 1990. 河南舞阳赵案庄铁矿中利蛇纹石的研究. 地质找矿论丛, 5(2): 40~49.

    • 蒋永年. 1991. 河南舞阳赵案庄铁矿中氟磷灰石的研究. 地质找矿论丛, 6(1): 58~66.

    • 蒋永年, 陈勇华. 1986. 河南舞阳赵案庄铁矿的成因探讨. 中国地质科学院天津地质矿产研究所所刊, 16: 1~64.

    • 兰彩云, 张连昌, 赵太平, 王长乐, 李红中, 周艳艳. 2013. 河南舞阳铁山庙式BIF铁矿的矿物学与地球化学特征及对矿床成因的指示. 岩石学报, 29(7): 2567~2582.

    • 李厚民, 刘明军, 李立兴, 杨秀清, 陈靖, 姚良德, 洪学宽, 姚通. 2012. 辽宁弓长岭铁矿区大理岩地质地球化学特征及其成矿意义. 岩石学报, 28(11): 3497~3512.

    • 李厚民, 刘明军, 李立兴, 杨秀清, 姚良德, 陈靖, 姚通. 2014. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义. 岩石学报, 30(5): 1205~1217.

    • 李俊平, 李永峰, 谢克家. 2012. 河南舞阳地区太华群地质特征及其控矿意义. 矿产与地质, 26(1): 30~34.

    • 李曙光. 1982. 弓长岭富磁铁矿床成因的地球化学模型. 地球化学, (2): 113~121.

    • 李曙光, 支霞臣, 陈江峰, 王俊新, 邓衍尧. 1983. 鞍山前寒武纪条带状含铁建造中石墨的成因. 地球化学, (2): 162~169.

    • 李延河, 侯可军, 万德芳, 张增杰. 2010. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋. 地质学报, 84(9): 1359~1373.

    • 李延河, 侯可军, 万德芳, 张增杰. 2012. Algoma型和Superior型硅铁建造地球化学对比研究. 岩石学报, 28(11): 3513~3519.

    • 李延河, 段超, 韩丹, 陈新旺, 王丛林, 杨秉阳, 张成, 刘锋. 2014a. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用. 岩石学报, 30(5): 1355~1368.

    • 李延河, 张增杰, 侯可军, 段超, 万德芳, 胡古月. 2014b. 辽宁鞍本地区沉积变质型富铁矿的成因: Fe、 Si、O、S同位素证据. 地质学报, 88(12): 2351~2372.

    • 刘立新, 李怀乾, 贾兴杰, 王伟中, 王夏. 2014. 河南省舞阳铁矿田赵案庄组铁矿地质特征及成因分析. 矿产与地质, 28(4): 431~434.

    • 刘陆山, 付海涛, 刘忠元, 冷文芳, 武悦. 2015. 鞍山-本溪地区富铁矿分布规律及成因探讨. 地质与资源, 24(4): 341~346.

    • 刘明军, 李厚民, 李立兴, 杨秀清, 姚良德, 洪学宽, 陈靖. 2012. 辽宁弓长岭铁矿床二矿区类矽卡岩的岩石矿物学特征. 岩矿测试, 31(6): 1067~1076.

    • 刘明军, 李厚民, 李立兴, 杨秀清, 姚良德, 洪学宽, 陈靖, 姚通, 白云. 2013. 辽宁弓长岭铁矿床二矿区流体包裹体研究. 矿床地质, 32(5): 989~1002.

    • 刘明军, 李厚民, 薛春纪, 姚良德, 文屹, 许宗宪. 2014. 辽宁弓长岭铁矿床二矿区矿石及类矽卡岩的地球化学特征及其找矿意义. 地质学报, 88(10): 1917~1931.

    • 刘明军, 曾庆栋, 李厚民, 李立兴, 文屹, 姚良德, 高业舜. 2017. 辽宁鞍本地区铁质活化再富集成因富铁矿的成矿时代——齐大山铁矿床辉钼矿Re-Os年龄证据. 矿床地质, 36(1): 237~249.

    • 罗明强. 2009. 河南省舞阳铁矿田构造控矿研究. 河南理工大学学报: 自然科学版, 28(5): 577~582.

    • 孟洁, 李厚民, 李立兴, 李洁茹. 2018. 华北克拉通南缘太华群铁山庙铁矿床沉积时代的约束——锆石U-Pb定年及Hf同位素证据. 地质学报, 92(1), 125~141.

    • 钱祥麟. 1985. 冀东前寒武纪地质. 石家庄: 河北科学技术出版社. 1~31.

    • 沈其韩, 宋会侠. 2015. 华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题. 岩石学报, 31(10): 2795~2815.

    • 万渝生, 董春艳, 颉颃强, 王世进, 宋明春, 徐仲元, 王世炎, 周红英, 马铭株, 刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代——SHRIMP锆石U-Pb定年. 地质学报, 86(9) : 1447~1478.

    • 万渝生, 董春艳, 颉颃强, 谢士稳, 刘守偈, 白文倩, 马铭株, 刘敦一. 2018. 鞍山-本溪地区鞍山群含BIF表壳岩形成时代新证据: 锆石SHRIMP U-Pb定年. 地球科学, 43(1): 57~81.

    • 王恩德, 夏建明, 赵纯福, 付建飞, 侯根群. 2012. 弓长岭铁矿床磁铁富矿形成机制探讨. 地质学报, 86(11): 1761~1772.

    • 王恩德, 夏建明, 赵纯福, 付建飞, 侯根群. 2013. 弓长岭铁矿床物质来源及沉积古地理环境研究. 矿床地质, 32(2): 380~396.

    • 王惠初, 苗培森, 康健丽, 任云伟, 张家辉, 李建荣, 相振群, 肖志斌. 2020. 吕梁群时代归属新证据. 岩石学报, 36(8): 2313~2330.

    • 王守伦. 1986. 鞍本地区鞍山群富铁矿成因类型的讨论. 矿床地质, 5(4): 14~23.

    • 王伟中, 李怀乾, 贾兴杰, 王夏. 2015. 河南舞阳铁矿田含矿岩系原岩及古环境恢复. 矿产勘查, 6(4): 413~419.

    • 夏建明, 王恩德, 赵纯福, 门业凯. 2011. 弓长岭富铁矿氧化还原环境的形成机制. 东北大学学报(自然科学版), 32(11): 1643~1646.

    • 许德如, 吴传军, 吕古贤, 周岳强, 于亮亮, 张建岭, 胡国成, 侯茂洲. 2015. 岩石流变学原理在构造成矿研究中的应用——以BIF型富铁矿床为例. 大地构造与成矿学, 39(1): 93~109.

    • 杨晓勇, 王波华, 杜贞保, 王启才, 王玉贤, 涂政标, 张文利, 孙卫东. 2012. 论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制. 岩石学报, 28(11): 3476~3496.

    • 杨秀清, 李厚民, 薛春纪, 李立兴, 刘明军, 陈靖. 2013. 辽宁歪头山铁矿床两类矿石地球化学特征及其对成矿作用的制约. 地质学报, 87(10): 1580~1592.

    • 杨秀清, 李厚民, 李立兴, 姚通, 陈靖, 刘明军. 2014a. 辽冀地区条带状铁建造地球化学特征: Ⅱ. 主量元素特征. 岩石学报, 30(5): 1218~1238.

    • 杨秀清, 李厚民, 李立兴, 马玉波, 陈靖, 刘明军, 姚通, 陈伟十, 姚良德. 2014b. 辽宁鞍山-本溪地区铁矿床流体包裹体和硫、氢、氧同位素特征研究. 地质学报, 88(10): 1917~1931.

    • 姚通, 李厚民, 杨秀清, 李立兴, 陈靖, 张进友, 刘明军. 2014. 辽冀地区条带状铁建造地球化学特征: Ⅱ. 稀土元素特征. 岩石学报, 30(5): 1239~1252.

    • 俞受鋆, 梁约翰, 杜绍华, 李善择, 刘抗娟. 1981. 豫中皖西地区晚太古代铁山庙型铁矿成矿地质特征和含铁盆地轮廓的探讨. 中国地质科学院宜昌地质矿产研究所所刊, (3): 68~83.

    • 张连昌, 翟明国, 万渝生, 郭敬辉, 代堰锫, 王长乐, 刘利. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431~3445.

    • 张连昌, 代堰锫, 王长乐, 刘利, 朱明田. 2014. 鞍山-本溪地区前寒武纪条带状铁建造铁矿时代、物质来源与形成环境. 地球科学与环境学报, 36(4): 1~15.

    • 张招崇, 李厚民, 李建威, 宋谢炎, 胡浩, 李立兴, 柴凤梅, 侯通, 许德如. 2021. 我国铁矿成矿背景与富铁矿成矿机制. 中国科学: 地球科学, 51(6): 827~852.

    • 赵一鸣. 2013. 中国主要富铁矿床类型及地质特征. 矿床地质, 32(4): 685~704.

    • 赵一鸣, 林文蔚, 毕成思, 李大新, 蒋崇俊. 2012. 中国矽卡岩矿床. 北京: 地质出版社, 1~410.

    • 周世泰. 1994. 鞍山-本溪地区条带状铁矿地质. 北京: 地质出版社, 1~276.