en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吕大炜,男,1980年生。教授,博士生导师,主要从事从事沉积学、能源地质学等方面研究与教学工作。E-mail:lvdawei95@163.com。

参考文献
Baker S J. 2022. Fossil evidence that increased wildfire activity occurs in tandem with periods of global warming in Earth's past. Earth-Science Reviews, 224: 103871.
参考文献
Bek J. 2012. A review of the genus Lycospora. Review of Palaeobotany and Palynology, 174: 122~135.
参考文献
Berner R A. 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23): 5653~5664.
参考文献
Belcher C, McElwain J. 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science, 321(5893): 1197~1200.
参考文献
Belcher C M, Mander L, Rein G, Jervis F X, Haworth M, Hesselbo S P, Glasspool I J, McElwain J C. 2010a. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience, 3(6): 426~429.
参考文献
Belcher C M, Yearsley J M, Hadden R M, McElwain J C, Rein G. 2010b. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences, 107(52): 22448~22453.
参考文献
Belcher C M, Collinson M E, Scott A C. 2013. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science. New Jersey: Wiley-Blackwell.
参考文献
Boucot A J, Xu C, Scotese C R, Morley R J. 2013. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate. SEPM. 11.
参考文献
Bowman D M, Balch J K, Artaxo P, Bond W J, Carlson J M, Cochrane M A, D'Antonio C M, DeFries R S, Doyle J C, Harrison S P, Johnston F H, Keeley J E, Krawchuk M A, Kull C A, Marston J B, Moritz M A, Prentice I C, Roos C I, Scott A C, Swetnam T W, Van Der Werf G R, Pyne S J. 2009. Fire in the Earth system. Science, 324(5926): 481~484.
参考文献
Brown S A, Scott A C, Glasspool I J, Collinson M E. 2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous Research, 36: 162~190.
参考文献
Buggisch W, Joachimski M M, Sevastopulo G, Morrow J R. 2008. Mississippian δ13Ccarb and conodont apatite δ18O records—Their relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 273~292.
参考文献
Chaloner W. 1989. Fossil charcoal as an indicator of palaeoatmospheric oxygen level. Journal of the Geological Society, 146(1): 171~174.
参考文献
Chen Bo, Joachimski M M, Wang Xiangdong, Shen Shuzhong, Qi Yuoping, Qie Wenkun. 2016. Ice volume and paleoclimate history of the Late Paleozoic ice age from conodont apatite oxygen isotopes from Naqing (Guizhou, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 151~161.
参考文献
Chen Jitao, Montañez I P, Qi Yuping, Shen Shuzhong, Wang Xiangdong. 2018. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology, 46(5): 395~398.
参考文献
Cleal C J, Thomas B A. 2005. Palaeozoic tropical rainforests and their effect on global climates: Is the past the key to the present? Geobiology, 3(1): 13~31.
参考文献
Collinson M E, Steart D, Scott A, Glasspool I, Hooker J. 2007. Episodic fire, runoff and deposition at the Palaeocene-Eocene boundary. Journal of the Geological Society, 164(1): 87~97.
参考文献
Cope M, Chaloner W. 1980. Fossil charcoal as evidence of past atmospheric composition. Nature, 283(5748): 647~649.
参考文献
Denis E H, Pedentchouk N, Schouten S, Pagani M, Freeman K H. 2017. Fire and ecosystem change in the Arctic across the Paleocene-Eocene thermal maximum. Earth and Planetary Science Letters, 467: 149~156.
参考文献
Diessel C F. 2010. The stratigraphic distribution of inertinite. International Journal of Coal Geology, 81(4): 251~268.
参考文献
Falcon-Lang H J, DiMichele W A. 2010. What happened to the coal forests during Pennsylvanian glacial phases? Palaios, 25(9): 611~617.
参考文献
Finkelstein D B, Pratt L M, Curtin T M, Brassell S C. 2005. Wildfires and seasonal aridity recorded in Late Cretaceous strata from southeastern Arizona, USA. Sedimentology, 52(3): 587~599.
参考文献
For Coal I C. 2001. The new inertinite classification (ICCP System 1994). Fuel, 80(4): 459~471.
参考文献
Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature communications, 8(1): 1~8.
参考文献
Glasspool I J, Scott A C. 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3(9): 627~630.
参考文献
Glasspool I J, Scott A C, Waltham D, Pronina N, Shao Longyi. 2015. The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science, 6: 756.
参考文献
Glasspool I J, Gastaldo R A. 2022. Silurian wildfire proxies and atmospheric oxygen. Geology, 50(9): 1048~1052.
参考文献
Hamad A M A, Jasper A, Uhl D. 2012. The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? International Journal of Coal Geology, 96: 60~71.
参考文献
Han Dexin, Ren Deyi, Wang Yan. 1996. Coal Petrology of China. Beijing: China University of Mining & Technology Press (in Chinese with English abstract).
参考文献
Isbell J, Vesely F F, Rosa E L, Pauls K N, Fedorchuk N D, Ives L R, McNall N B, Litwin S A, Borucki M K, Malone J E. 2021. Evaluation of physical and chemical proxies used to interpret past glaciations with a focus on the late Paleozoic Ice Age. Earth-Science Reviews, 221: 103756.
参考文献
Jasper A, Uhl D, Guerra-Sommer M, Mosbrugger V. 2008. Palaeobotanical evidence of wildfires in the late palaeozoic of South America-Early Permian, Rio Bonito Formation, Paraná basin, Rio Grande do Sul, Brazil. Journal of South American Earth Sciences, 26(4): 435~444.
参考文献
Jasper A, Guerra-Sommer M, Hamad A M A, Bamford M, Bernardes-de-Oliveira M E C, Tewari R, Uhl D. 2013. The burning of Gondwana: Permian fires on the southern continent—A palaeobotanical approach. Gondwana Research, 24(1): 148~160.
参考文献
Joachimski M, Breisig S, Buggisch W, Talent J, Mawson R, Gereke M, Morrow J, Day J, Weddige K. 2009. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284(3-4): 599~609.
参考文献
Kauffmann M, Jasper A, Uhl D, Meneghini J, Osterkamp I C, Zvirtes G, Pires E F. 2016. Evidence for palaeo-wildfire in the Late Permian palaeotropics—Charcoal from the Motuca Formation in the Parnaíba basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 450: 122~128.
参考文献
Killops S, Massoud M. 1992. Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: Evidence for Jurassic vegetation fires. Organic Geochemistry, 18(1): 1~7.
参考文献
Kosanke R M, Cecil C B. 1996. Late Pennsylvanian climate changes and palynomorph extinctions. Review of Palaeobotany and Palynology, 90(1-2): 113~140.
参考文献
Krause A J, Mills B J, Zhang S, Planavsky N J, Lenton T M, Poulton S W. 2018. Stepwise oxygenation of the Paleozoic atmosphere. Nature Communications, 9(1): 1~10.
参考文献
Leary R L. 1981. Early Pennsylvanian geology and paleobotany of the Rock Island Country, Illinois, area: Part 1, Geology. Illinois State Museum Report Investment, 37: 1~88.
参考文献
Liu Hongye, Gu Yangsheng, Cheng Shenggao, Huang Ting, Xiao He. 2018. Research advancement on the paleofire occurrences and its significance of global change since the last deglaciation. Advances in Geosciences, 8(1): 106~119 (in Chinese with English abstract).
参考文献
Lu Man, Ikejiri T, Lu Yuehan. 2021. A synthesis of the Devonian wildfire record: Implications for paleogeography, fossil flora, and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 571: 110321.
参考文献
Nabbefeld B, Grice K, Twitchett R J, Summons R E, Hays L, Böttcher M E, Asif M. 2010. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 291(1-4): 84~96.
参考文献
Nelsen M P, DiMichele W A, Peters S E, Boyce C K. 2016. Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proceedings of the National Academy of Sciences, 113(9): 2442~2447.
参考文献
Pausas J G, Keeley J E. 2009. A burning story: The role of fire in the history of life. Bioscience, 59(7): 593~601.
参考文献
Peppers R A. 1997. Palynology of the Lost Branch Formation of Kansas—New insights on the major floral transition at the Middle-Upper Pennsylvanian boundary. Review of Palaeobotany and Palynology, 98(3-4): 223~246.
参考文献
Phillips T L, Peppers R A. 1984. Changing patterns of Pennsylvanian coal-swamp vegetation and implications of climatic control on coal occurrence. International Journal of Coal Geology, 3(3): 205~255.
参考文献
Phillips T L, Peppers R A, Dimichele W A. 1985. Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: Environmental inferences. International Journal of Coal Geology, 5(1-2): 43~109.
参考文献
Renkin R A, Despain D G. 1992. Fuel moisture, forest type, and lightning-caused fire in Yellowstone National Park. Canadian Journal of Forest Research, 22(1): 37~45.
参考文献
Scotese C R. 2016. Tutorial: PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. http: //www. earthbyte. org/paleomap-paleoatlas-for-gplates.
参考文献
Scott A C. 2000. The Pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1-4): 281~329.
参考文献
Scott A C. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2): 11~39.
参考文献
Scott A C. 2020. Fire: A Very Short Introduction. 198 Madison Avenue, New York: Oxford University Press.
参考文献
Scott A C, Glasspool I J. 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences, 103(29): 10861~10865.
参考文献
Scott A C, Glasspool I J. 2007. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology, 70(1-3): 53~66.
参考文献
Scott A C, Bowman D M, Bond W J, Pyne S J, Alexander M E. 2013. Fire on Earth: An Introduction. New Jersey: Wiley-Blackwell.
参考文献
Shen Wenjie, Sun Yongge, Lin Yangting, Liu Dehan, Chai Pingxia. 2011. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochimica et Cosmochimica Acta, 75(7): 1992~2006.
参考文献
Shen Wenjie, Zhang Hua, Sun Yongge, Lin Yangting, Liang Ting, Yang Zhijun. 2012. Evidences for the Permian-Triassic wildfire event: Review and appraisal. Advances in Earth Science, 27(6): 613~623(in Chinese with English abstract).
参考文献
Shivanna M, Murthy S, Gautam S, Souza P A, Kavali P S, Bernardes-de-Oliveira M E C, Félix C M. 2017. Macroscopic charcoal remains as evidence of wildfire from late Permian Gondwana sediments of India: Further contribution to global fossil charcoal database. Palaeoworld, 26(4): 638~649.
参考文献
Song Jianzhong, Hu Jianfang, Peng Pingan, Wan Xiaoqiao. 2015. Black carbon record in ancient geological samples and its responses to the paleoclimate and paleoenvironment. Chinese Journal of Nature, 37(2): 86~92(in Chinese with English abstract).
参考文献
Soreghan G S, Soreghan M J, Heavens N G. 2019. Explosive volcanism as a key driver of the late Paleozoic ice age. Geology, 47(7): 600~604.
参考文献
Veraverbeke S, Rogers B M, Goulden M L, Jandt R R, Miller C E, Wiggins, E B, Randerson J T. 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7(7): 529~534.
参考文献
Watson A J. 1978. Consequences for the biosphere of forest and grassland fires. Doctoral dissertation of University of Reading.
参考文献
Watson A J, Lovelock J E. 2013. The dependence of flame spread and probability of ignition on atmospheric oxygen: An experimental investigation. In: Clarie M. Belcher, eds. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science. New Jersey: Wiley-Black Well, 273~287.
参考文献
Winston R B. 1990. Implications ofpaleobotany of Pennsylvanian-age coal of the central Appalachian basin for climate and coal-bed development. Geological Society of America Bulletin, 102(12): 1720~1726.
参考文献
Xu Yun, Zhang Ning, Zhao Cunliang, Liang Handong, Sun Yuzhuang. 2022. Wildfires in Jurassic coal seams from Ordos basin and its impact on paleoclimate. Geology in China, 49(2): 643~654(in Chinese with English abstract).
参考文献
Xue Jinzhuang, Wang Jiashu, Li Bingxin, Huang Pu, Liu Le. 2022. Origin and early evolution of land plants and the effects on Earth's environments. Earth Science, 47(10): 3648~3664(in Chinese with English abstract).
参考文献
Yang Bo. 2021. Paleowildfire events and its climatic implications in Middle Jurassic coal seams in eastern Junggar basin, Xinjiang. Master's thesis of Xinjiang University (in Chinese with English abstract).
参考文献
Yang Bo, Tian Jijun, Feng Shuo, Yang Jinhui, Li Yongze. 2022. Wildfires recorded in Middle Jurassic coals in eastern of Junggar basin in Xinjiang, China. Coal Science & Technology, 50(7): 261~270(in Chinese with English abstract).
参考文献
Yun Xu, Uhl D, Zhang Ning, Zhao, Cunliang, Qin Shenjun, Liang Handong, Sun Yuzhuang. 2020. Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109819.
参考文献
Yunker M B, Macdonald R W, Vingarzan R, Mitchell R H, Goyette D, Sylvestre S. 2002. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4): 489~515.
参考文献
Zhan Changlin, Cao Junji, Han Yongming, An Zhisheng. 2011. Research progress on reconstruction of paleofire history. Advances in Earth Science, 26(12): 1248~1259(in Chinese with English abstract).
参考文献
Zhang Peixin, Lu Jing, Yang Minfang, Bond D P, Greene S E, Liu Le, Zhang Yuanfu, Wang Ye, Wang Ziwei, Li Shan, Shao Longyi, Hilton J. 2022. Volcanically-induced environmental and floral changes across the Triassic-Jurassic (T-J) transition. Frontiers in Ecology and Evolution, 10: 853404.
参考文献
Zhang Rui, Dai Shuang, Zhang Mingzhen, Zhao Jie, Wang Lubo, Zhang Lili, Zhang Xiang, Liu Haijiao. 2014. Early Cretaceous paleo-wildfire events recorded on the Wulan section in the Urat Back Banner of Inner Mongolia, China. Acta Geologica Sinica, 88(6): 1177~1186(in Chinese with English abstract).
参考文献
Zhang Xiaoqing, Zhang Guoquan, Xi Shuna, Li Liqin, Deng Chuntao, Wang Yan, Zhou Ning, Wang Yongdong, Song Yi. 2016. Wildfire event at the Triassic/Jurassic boundary: Approaches, progress, and perspective. Acta Palaeontologica Sinica, 55(3): 331~345(in Chinese with English abstract).
参考文献
Zhang Zhihui, Wang Chengshan, Lv Dawei, Hay W W, Wang Tiantian, Cao Shuo. 2020. Precession-scale climate forcing of peatland wildfires during the early Middle Jurassic greenhouse period. Global and Planetary Change, 184: 103051.
参考文献
韩德馨, 任德贻, 王延斌. 1996. 中国煤岩学. 北京: 中国矿业大学出版社.
参考文献
刘红叶, 顾延生, 程胜高, 黄庭, 肖河. 2018. 末次冰消期以来火灾发生及全球变化意义研究进展. 地球科学前沿, 8(1): 106~119.
参考文献
宋建中, 胡建芳, 彭平安, 万晓樵. 2015. 古老地质样品的黑碳记录及其对古气候、古环境的响应. 自然杂志, 37(2): 86~92.
参考文献
沈文杰, 张华, 孙永革, 林杨挺, 梁婷, 杨志军, 周永章. 2012. 二叠纪—三叠纪界线大火燃烧的地层记录: 研究进展回顾与评述. 地球科学进展, 27(6): 613~623.
参考文献
许云, 张宁, 赵存良, 梁汉东, 孙玉壮. 2022. 鄂尔多斯盆地侏罗纪煤中古野火事件及其对古气候的影响. 中国地质, 49(2): 643~654.
参考文献
杨博. 2021. 新疆准噶尔盆地东部中侏罗世煤中古野火事件及其气候指示意义. 新疆大学硕士学位论文.
参考文献
杨博, 田继军, 冯烁, 杨金辉, 李勇泽. 2022. 准噶尔盆地东部中侏罗世煤中记录的古野火事件. 煤炭科学技术, 50(7): 261~270.
参考文献
薛进庄, 王嘉树, 李炳鑫, 黄璞, 刘乐, 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648~3664.
参考文献
占长林, 曹军骥, 韩永明, 安芷生. 2011. 古火灾历史重建的研究进展. 地球科学进展, 26(12): 1248~1259.
参考文献
张瑞, 戴霜, 张明震, 赵杰, 汪禄波, 张莉莉, 张翔, 刘海娇. 2014. 内蒙古乌拉特后旗乌兰剖面记录的早白垩世火灾事件. 地质学报, 88(6): 1177~1186.
参考文献
张筱青, 张国权, 席书娜, 李丽琴, 邓春涛, 王岩, 周宁, 王永栋, 宋宜. 2016. 三叠系—侏罗系界线古火灾事件研究: 方法, 进展及展望. 古生物学报, 55(3): 331~345.
目录contents

    摘要

    自志留纪以来,野火开始在陆地范围内广泛出现并对陆地生态系统造成了重大影响。石炭纪是植物开始繁盛时期,但其野火发生的分布规律及其主控因素仍然不清楚。为此,基于木炭、惰质组(煤中木炭)和热解多环芳烃3种类型野火证据,本文系统收集和整理了石炭纪全球159个野火事件记录。研究发现石炭纪野火事件主要集中在低纬度热带地区,杜内期高纬度地区无野火记录,其余时间段高纬度地区均出现零星的野火记录。石炭纪晚期野火事件发生频率明显高于石炭纪早期,并在晚石炭世巴什基尔期和莫斯科期野火事件发生频率达到最高值。早杜内期至早维宪期野火事件增多与大气氧气浓度升高和热带沼泽开始发育有关。随后大气氧气浓度降低导致晚维宪期—谢尔普霍夫期野火事件发生频率下降。而巴什基尔期至莫斯科纪期野火事件高频率发生与当时充足植物燃料有关。卡西莫夫期—格舍尔期低纬度森林面积以及植物属种数量的降低导致野火事件数量大幅度下降。该研究成果为进一步理解石炭纪陆地生态系统和古气候演化具有重要意义。

    Abstract

    Since the Silurian, wildfires have been widespread in Earth's history and significantly impacted terrestrial ecosystems. The plant began to flourish during the Carboniferous, however, the distribution pattern of its wildfires and main controlling factors are still unclear. We compiled 159 global wildfire occurrences of the Carboniferous based on three types of wildfire evidence, i.e., charcoal,inertinite (fossil charcoal in coal), and polycyclic aromatic hydrocarbons (PAHs). The results show that the Carboniferous wildfires were mainly concentrated in low-latitude tropical areas. Except for the Tournaisian Stage, all other time bins show sporadic wildfires in the high-latitude areas. The frequency of wildfires in the Late Carboniferous was significantly higher than in the Early Carboniferous, and the highest frequency of wildfires occurred during the Bashkirian and Moscovian stages. The increase in the frequency of wildfires from the Early Tournaisian to Early Visean may be associated with the high atmospheric oxygen concentration and the beginning of tropical swamp development. The low atmospheric oxygen concentrations may lead to a decrease in wildfire frequency during the Early Visean-Serpukhovian stage. The high frequency of wildfires from the Bashkirian to the Moscovian was related to the abundance of plant fuels at that time. The wildfire occurrences declined significantly during the Kasimovian-Gzelian due to the decrease in the area of low-latitude forest and the number of plant species. This study would be significant for better understanding the evolution of terrestrial ecosystems and paleoclimate in the Carboniferous period.

    关键词

    石炭纪植物野火事件古气候

    Keywords

    Carboniferousplantwildfirepaleoclimate

  • 野火是当今地球生态系统的一个关键组成部分(Finkelstein et al.,2005; Bowman et al.,2009; 占长林等,2011; Glasspool et al.,2015; 宋建中等,2015; 刘红叶等,2018; 许云等,2022),在全球气候演化和全球碳循环中扮演着重要角色。而古野火研究可以深入理解深时地球系统演化过程(Scott,20002010; Pausas et al.,2009; Belcher et al.,2013; Scott et al.,2013)。

  • 野火燃烧会产生许多副产物并被保存在沉积物中(Finklestein et al.,2005; Scott,20002010)。作为典型的野火燃烧产物,在研究深时野火事件时木炭是最常用的标志物(Scott,2000; Scott et al.,2007; Glasspool et al.,2010; 张筱青等,2016; 杨博等,2022)。木炭碎片具有黑色、高反射率、丝绢光泽、边缘锋利、易碎及保存有原始解剖结构等特征(Scott,2000)。同时,煤或泥炭中保存的惰质组同样具有明显的解剖结构和高反射率(ICCP,2001),也被认为是野火燃烧的产物(Glasspool et al.,2010; Zhang Zhihui et al.,2020; Yun Xu et al.,2020; 杨博,2021)。此外,野火记录的另一个主要证据为热解多环芳烃(Killops et al.,1992; Yunker et al.,2002; 张瑞等,2014)。如芘、苯并荧蒽、苯并芘、苯并苝和晕苯等多环芳烃都被认为是燃烧事件存在的标志(Nabbefeld et al.,2010; Shen Wenjie et al.,2011)。

  • 近年来,越来越多的学者关注地质历史时期的野火事件。最近,Glasspool et al .(2022)在英国志留纪侯墨期地层中发现了木炭化石,该研究将地球上最早的野火记录约束到约430 Ma前,并认为志留纪野火已经成为陆地生态系统中一个重要组成部分。Luman et al .(2021)通过系统总结泥盆纪全球野火事件记录,发现该时期野火事件主要集中在干旱气候区,并提出这一规律是与木本植物为主的早期森林的演化有关。Scott et al.(2006)Glasspool et al .(2015)提出晚古生代全球广泛存在的野火事件与大气氧气浓度有关,并对当时陆地植物演化具有重要影响。Hamad et al .(2012)Jasper et al .(2013)基于二叠纪—三叠纪全球野火数据,认为三叠纪早期野火记录缺乏可能与大气氧气浓度较低、缺乏木炭保存的沉积环境以及燃料稀少有关,而二叠纪冈瓦纳大陆存在广泛且频繁的野火事件。Brown et al .(2012)综述了白垩纪全球木炭数据分布,也发现当时野火事件广泛分布,并与该时期被子植物演化相关。此外,许多学者针对地质历史时期极端气候事件与野火事件的联系进行了大量研究,如二叠纪末生物大灭绝事件,白垩纪大洋缺氧事件以及古近纪—新近纪极端热事件等(Jasper et al.,2008; Shen Wenjie et al.,2011; Brown et al.,2012; Kauffmann et al.,2016; Shivanna et al.,2017)。但目前对于石炭纪全球野火事件发生规律及控制因素还尚未得到详细研究。

  • 因此,本研究系统收集了已发表文献中石炭纪野火记录证据,详细分析了该时期野火事件时空分布规律及控制因素。

  • 1 材料与方法

  • 本文通过系统收集石炭纪时期全球野火资料来构建数据库,并基于数据库进行统计和分析该时期野火事件时空特征。本次数据源主要包括两个方面:① 对前人已有的相关数据库进行收集整理,如Glasspool et al .(2010)Glasspool et al .(2015)的惰质组数据库;② 增加前人数据库未包含的且公开发表的数据,重点为2015年之后的野火事件数据。数据搜集主要通过谷歌学术和Web of Science两个网络平台开展,所选关键词包括“石炭纪野火”、“木炭”、“惰质组”和“多环芳烃”等。该数据库检索收集时间截至2022年9月底。

  • 为了细化石炭纪野火事件的分布情况,依据国际年代地层划分方案,将石炭纪划分成8个时间段(表1)。我们将持续时间较长的杜内期(持续12.2 Ma)和维宪期(持续15.8 Ma)划分为早杜内期(持续6.1 Ma)、晚杜内期(持续6.1 Ma)、早维宪期(持续7.9 Ma)、晚维宪期(持续7.9 Ma)。而对于持续时间较短卡西莫夫期(持续3.3 Ma)和格舍尔期(持续4.8 Ma),我们将其合并为一个时间段,即卡西莫夫期—格舍尔期。8个时间段的平均持续时间为7.5 Ma,时间段持续范围从早杜内期(6.1 Ma)至莫斯科期(8.2 Ma)。每一个野火数据点包括地质年代、古今地理位置、地层单元(如地层、组)、岩石类型(如砂岩、泥岩、煤)、参考文献。在数据处理上,对于年代约束跨时间段的数据,将其划分到所跨的全部时间段中。虽然,因一些文章年代较为久远会存在某些信息缺失,但不影响该数据库的整体准确性。

  • 此外,为了展示石炭纪不同时间段野火事件的空间分布情况,运用Gplates软件进行古经纬度转化,并投点到Scotese(2016)编制的古地理图上。

  • 表1 本研究中使用的8个时间段

  • Table1 Eight time-bins of the Carboniferous in this study

  • 2 结果

  • 2.1 石炭纪野火记录

  • 本研究所收集整理的石炭纪全球野火事件数据库共包含159条数据。依据不同野火事件证据,这些野火记录可以分为3种类型,分别为150条惰质组数据(占94.3%),7条木炭数据(占4.4%)以及2条热解多环芳烃数据(占1.3%)。8个时间段中,惰质组证据均为主要数据源,占全部数据的33.3%~100%,平均为83.15%。木炭证据数量次之,占全部数据的0~66.6%,平均为21.4%。而热解多环芳烃数据最少,占全部数据的0~33.3%,平均为4.4%。

  • 该数据库中野火事件数据共记录在全球91个地层单元(或地层)中。同时,158条野火记录来自于碎屑岩为主的岩石中,包括砂岩、粉砂岩、泥岩、页岩和煤,而1条野火证据记录在灰岩中(附表1)。

  • 2.2 石炭纪野火时间分布

  • 本研究石炭纪159条野火事件数据库,包括44条早石炭世野火记录和115条晚石炭世野火记录(图1a)。其中,早杜内期3条,晚杜内期3条,维宪期—谢尔普霍夫期野火记录明显增加,表现为早、晚维宪期分别为14条、12条以及谢尔普霍夫期8条。晚石炭世巴什基尔期—莫斯科期野火记录最多,具体为巴什基尔期47条和莫斯科期47条。而晚石炭世卡西莫夫期—格舍尔期的野火记录有所下降,共计21条。

  • 图1 石炭纪8个时间段全球野火事件数据变化

  • Fig.1 Variations of global wildfires in eight time-bins during Carboniferous

  • 石炭纪野火纪录8个时间段的变化速率与野火数量变化总体趋势相似(图1d)。早石炭世野火数据变化速率变化较小,表现为晚杜内期至早维宪期增加157%,而早维宪期—晚维宪期呈现除率为降低趋势(-25%)。晚石炭世的野火记录变化速率呈现出大幅度波动,其中晚石炭世早期谢尔普霍夫期至巴什基尔期出现大幅度增加,达445%。晚石炭世末期的野火记录变化速率同样表现出大幅度变化,其中莫斯科期至卡西莫夫期—格舍尔期为-319%。

  • 2.3 石炭纪野火空间分布

  • 本研究石炭纪野火记录数据库159条野火数据中,分布在北半球64条,而南半球95条(图1b)。8个时间段中,野火记录主要集中在南半球,其中巴什基尔期和莫斯科纪期分别占68%和74.4%。从古地理位置上来看,石炭纪野火记录主要集中低纬度的欧美地区。

  • 石炭纪划分为热带、暖温带、寒温带、干旱和寒带5种古气候带(Boucot et al.,2013)。石炭纪野火事件记录主要集中在热带(78%),少量分布在干旱带(9.4%),暖温带(8.8%)和寒温带(3.8%)(图1c)。8个时间段中,野火记录同样主要分布在热带,其中谢尔普霍夫期占83.3%,巴什基尔期占80%,莫斯科期占85.1%,卡西莫期—格舍尔期占86%。

  • 图2 石炭纪全球野火记录空间分布特征

  • Fig.2 Spatial distribution characteristics of global wildfires during Carboniferous

  • 石炭纪野火记录主要分布在低纬度地区(30°N~30°S),并在八个时间段中相对稳定(图2a、c)。除杜内期外,其余时间段在高纬度地区均零星有野火事件分布。同时,石炭纪野火记录主要分布在60°W—60°E范围内(图2d)。此外,早石炭世野火记录主要集中在东半球(72%),而晚石炭世野火记录相对均匀分布在东半球(53%)和西半球(47%)(图2b)。

  • 3 讨论

  • 3.1 野火发生的控制因素

  • 古野火事件发生主要受3个基本因素决定,包括大气氧气浓度、点火源和燃料(Scott,2000; Glasspool et al.,2015)(图5)。相对于现今大气氧气浓度(约21%),显生宙大气氧气浓度具有明显变化(韩德馨等,1996; Berner,2006; Belcher et al.,2008; Diessel,2010; Xu Yun et al.,2020)。不同氧气浓度下燃烧实验证明,燃烧所需氧气浓度范围为16%~30%(Cope et al.,1980; Chaloner,1989; Belcher et al.,2010b2013; Watson et al.,2013)。在氧气浓度低于16%时,无论燃料水分含量多低,持续性燃烧很难发生。而氧气浓度高于21%时,野火较为容易发生,同时当氧气水平高于23%时,野火事件会变得非常普遍(Belcher et al.,2010b2013)。此外,大气氧气浓度增加可以使更湿润的燃料易燃,并延长火灾持续时间(Watson,19782013)。

  • 点火源是野火事件发生的关键性因素。一般说来,岩石滚动、火山活动、陨石撞击以及闪电活动等都是常见的自然点火源(Bowman et al.,2009; Scott,2000),其中闪电是地质历史时期最主要的点火源(Glasspool et al.,2010)。值得注意的是大气二氧化碳浓度升高时,对流层上层水汽会增强并导致雷击发生概率增加,从而产生大量闪电引发野火发生(Belche et al.,2010a; Denis et al.,2017)。例如,Belcher et al .(2010a)认为格陵兰岛三叠纪—侏罗纪界限(T-J)附近野火事件大幅度增加与当时大气二氧化碳浓度升高所引发的闪电数量增加有关。同时,Zhang Peixin et al .(2022)指出中国北方济源盆地三叠纪—侏罗纪界限(T-J)野火数量上升可能与大西洋中部大火成岩省喷发所导致的二氧化碳浓度升高,闪电发生频率上升有关。

  • 图3 早杜内期—晚维宪期全球野火事件古地理分布(古气候带划分据Boucot et al.,2013

  • Fig.3 Geographic distribution of global wildfires in the Early Tournaisian to Late Visean (palaeoclimatic zones according to Boucot et al., 2013)

  • 植被变化(数量与类型)是影响野火发生的另一重要因素(Baker,2022)。在地质历史时期,野火燃料主要为植被(如成煤森林)以及先前形成的化石燃料(煤、石油、天然气等)(Shen Wenjie et al.,2011)。除海洋和湖泊中有机质外,几乎所有有机质都可以燃烧(沈文杰等,2012)。例如,Denis(2017)研究发现,在古新世—始新世极热时期(PETM)野火证据热解多环芳烃增加的主要原因是气候变化驱动的燃料类型转换,即从裸子植物和蕨类植物向被子植物转换。同时,Collinson et al .(2007)认为,PETM极端气候事件野火发生频率的上升也可能与大气降水减少有关,导致燃料更加干燥从而引起野火活动更频繁发生。

  • 3.2 不同阶段石炭纪野火特征及控制因素

  • 本研究石炭纪全球野火事件数据库中159条野火记录表明该时期野火事件在全球范围内普遍存在,这与当时相对较高的大气氧气浓度以及植物燃料的繁盛有关(Scott,2000)。此外,结合前人气候带划分(Boucot et al.,2013)可以发现石炭纪8个时间段野火事件均主要分布在热带地区(图3、4),这与泥盆纪野火事件分布特征一致 (Luman et al.,2021)。早石炭世野火记录主要集中在东半球(72%),而晚石炭世野火记录相对均匀分布在东半球(53%)和西半球(47%),造成这种差异的主要原因可能是早石炭世热带气候带在东半球分布范围更广泛,同时热带沼泽也主要发育在东半球(Boucot et al.,2013)。尽管干旱气候可以提高燃料的可燃性,能导致野火事件频繁发生,但更温暖湿润的气候条件有利于植被生长,从而产生更多燃料以维持持续燃烧(Denis et al.,2017; Baker,2022)。同时,潮湿气候下较多降雨伴随着闪电也会导致野火频率进一步增加(Renkin et al.,1992; Veraverbeke et al.,2017)。

  • 图4 谢尔普霍夫期—格舍尔期全球野火事件古地理分布(古气候带划分据Boucot et al.,2013

  • Fig.4 Geographic distribution of global wildfire in Serpukhovian-Gzhelian (palaeoclimatic zones according to Boucot et al., 2013)

  • 图5 野火控制因素三角图(据Scott,2020修改)

  • Fig.5 Wildfire control factors triangle diagram (modified after Scott, 2020)

  • 值得注意的是,石炭纪8个时间段野火事件发生频率表现出显著变化,但大气二氧化碳浓度变化相对稳定(图6g),表明闪电作为主要点火源可能不是该时期野火事件变化的主要控制因素。同时,Soreghan et al .(2019)研究指出,早中密西西比纪(约359~330 Ma)火山活动发生频率非常低。随后火山活动频率的逐渐上升与冈瓦纳大规模冰川(约330 Ma)的发生相对应。石炭纪最强烈的火山作用集中在300~290 Ma,主要发生在赤道地区以及南半球中纬度地区。综上所述,该时期火山活动相对稳定且没有明显变化(图6f)。此外,其他潜在点火源包括岩石滚动、陨石撞击并不是地质历史时期主要点火源,而且缺少定量数据。另一方面,石炭纪也是晚古生代大冰期逐渐繁盛的时期(图6e),冰期温度相对较低,温度变化可以改变燃料性质从而对野火事件产生一定影响,但该因素远不如燃料数量和类型重要(Baker,2022)。值得注意的是植物大量繁盛造成的野火事件频发,所产生的大量木炭化石促使陆地有机碳埋藏量显著提高,该过程有利于大冰期的繁盛(Nelsen et al.,2016)。因此,我们下面仅考虑大气氧气浓度变化和植物演化(燃料)两个控制因素对石炭纪不同阶段野火事件控制过程进行讨论。

  • 图6 石炭纪8个时间段野火事件记录及相关控制因素

  • Fig.6 Records of wildfire events and related controlling factors in eight time-bins during the Carboniferous

  • (a)—低纬度地区成煤森林面积变化(据Cleal et al.,2005);(b)—华南及世界其他地区维管植物多样性(据薛进庄等,2022);(c)—牙形刺氧18同位素(据Buggisch et al.,2008; Joachimski et al.,2009; Chen Bo et al.,2016);(d)—北美地区陆地有机碳埋藏量(据Nelsen et al.,2016);(e)—冰川记录(据Chen Jitao et al.,2018; Isbell et al.,2021);(f)—火山活动变化(据Soreghan et al.,2019);(g)—大气二氧化碳浓度(据Foster et al.,2017);(h)—野火事件记录;(i)—大气氧气浓度(据Krause et al.,2019)

  • (a) —change of coal-forming forest area in low latitudes(after Cleal et al., 2005); (b) —vascular plant diversity in South China and other parts of the world (after Xue Jinzhuang et al., 2022); (c) —conodont δ18O record(after Buggisch et al., 2008; Joachimski et al., 2009; Chen Bo et al., 2016); (d) —terrestrial organic matter burial flux in North American(after Nelsen et al., 2016 et al., 2016); (e) —glacial records (after Chen Jitao et al., 2018; Isbell et al., 2021); (f) —variation of volcanic activity (after Soreghan et al., 2019); (g) —atmospheric CO2 concentrations (after Foster et al., 2017); (h) —wildfire event record; (i) —atmospheric O2 concentrations (after Krause et al., 2019)

  • 石炭纪早期野火记录主要分布在赤道附近,并在早杜内期至早维宪期呈现上升趋势,而在早维宪期至谢尔普霍夫期略有下降(图6h)。早杜内期至早维宪期野火记录的上升趋势可能与当时逐渐升高的大气氧气浓度以及热带沼泽开始发育所产生的充足燃料有关(Scott et al.,2006)。随后晚维宪期至谢尔普霍夫期野火事件数量小幅度下降,该时期点火源(闪电和火山活动)相对稳定(图6f~g),植物物种数目呈现上升趋势(图6b),大气氧气浓度出现明显下降(图6i)。因此,该时期野火记录减少可能与大气氧气浓度显著下降有关,但由于植物燃料在逐渐增多,总体上野火事件数量仅表现出小幅度降低。

  • 石炭纪晚期巴什基尔期—莫斯科期,野火事件记录较早石炭世显著增多(图6h)并集中分布在低纬度欧美地区。虽然这一时期大气氧气浓度在逐渐升高,但整体浓度并不高。然而,该时期华南及世界其他地区维管植物多样性呈现出明显上升趋势(图6a; 薛进庄等,2022),且低纬度地区成煤森林广泛发育(Cleal et al.,2005)。同时低纬度地区也形成了广泛的热带沼泽(Glasspool et al.,2015)以及出现了第一个高地植物区系(Leary,1981)。繁盛的植被为野火事件的发生提供了充足了燃料,所产生的大量木炭化石促使该时期陆地有机碳埋藏量在该时期显著提高(图6d; Nelsen et al.,2016)。

  • 晚石炭世晚期卡西莫夫期—格舍尔期大气氧气浓度保持在相对较高水平(图6i),但该时期野火事件数据却出现明显下降(图6h)。在卡西莫夫期早期出现了一次短暂的气候变热事件(Phillips et al.,1984; Winston,1990; Kosanke et al.,1996; Falcon-Lang et al.,2010),导致整个欧亚大陆和阿巴拉契亚山脉以西的鳞木类植物突然灭绝(Phillips et al.,1985; Peppers,1997),同时阿巴拉契亚山脉以东的石松类植物数量也出现了显著的减少(Bek,2012)。该时期维管植物多样性显著下降(图6b; 薛进庄等,2022),同时低纬度地区成煤森林面积出现了大幅度的减少(图6a; Cleal et al.,2005),作为野火燃料的植物数量显著下降,野火活动相应减少。值得注意的是,石炭纪晚期冰期繁盛引起海平面下降,从而很可能导致部分野火沉积记录不易被保存,造成数据统计上的相应减少。

  • 4 结论

  • (1)在全球石炭系中共收集到159条野火记录数据,包括木炭、惰质组以及热解多环芳烃。该数据结果表明石炭纪全球野火事件普遍存在。

  • (2)石炭纪野火事件主要集中在低纬度热带地区,除杜内期外,其余时间段高纬度地区仅零星出现野火记录。石炭纪晚期野火事件发生频率明显高于石炭纪早期,并在晚石炭世巴什基尔期和莫斯科期野火事件发生频率达到最高值。

  • (3)早杜内期至早维宪期野火事件增多与大气氧气浓度升高和热带沼泽开始发育有关。随后大气氧气浓度降低导致早维宪期—谢尔普霍夫期野火事件发生频率下降。而巴什基尔期至莫斯科纪期野火事件高频率发生与当时充足植物燃料有关。卡西莫夫期—格舍尔期低纬度成煤森林面积减少以及维管植物多样性的下降导致野火事件数量大幅度下降。

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202406093?st=article_issue

  • 参考文献

    • Baker S J. 2022. Fossil evidence that increased wildfire activity occurs in tandem with periods of global warming in Earth's past. Earth-Science Reviews, 224: 103871.

    • Bek J. 2012. A review of the genus Lycospora. Review of Palaeobotany and Palynology, 174: 122~135.

    • Berner R A. 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23): 5653~5664.

    • Belcher C, McElwain J. 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science, 321(5893): 1197~1200.

    • Belcher C M, Mander L, Rein G, Jervis F X, Haworth M, Hesselbo S P, Glasspool I J, McElwain J C. 2010a. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience, 3(6): 426~429.

    • Belcher C M, Yearsley J M, Hadden R M, McElwain J C, Rein G. 2010b. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences, 107(52): 22448~22453.

    • Belcher C M, Collinson M E, Scott A C. 2013. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science. New Jersey: Wiley-Blackwell.

    • Boucot A J, Xu C, Scotese C R, Morley R J. 2013. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate. SEPM. 11.

    • Bowman D M, Balch J K, Artaxo P, Bond W J, Carlson J M, Cochrane M A, D'Antonio C M, DeFries R S, Doyle J C, Harrison S P, Johnston F H, Keeley J E, Krawchuk M A, Kull C A, Marston J B, Moritz M A, Prentice I C, Roos C I, Scott A C, Swetnam T W, Van Der Werf G R, Pyne S J. 2009. Fire in the Earth system. Science, 324(5926): 481~484.

    • Brown S A, Scott A C, Glasspool I J, Collinson M E. 2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous Research, 36: 162~190.

    • Buggisch W, Joachimski M M, Sevastopulo G, Morrow J R. 2008. Mississippian δ13Ccarb and conodont apatite δ18O records—Their relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 273~292.

    • Chaloner W. 1989. Fossil charcoal as an indicator of palaeoatmospheric oxygen level. Journal of the Geological Society, 146(1): 171~174.

    • Chen Bo, Joachimski M M, Wang Xiangdong, Shen Shuzhong, Qi Yuoping, Qie Wenkun. 2016. Ice volume and paleoclimate history of the Late Paleozoic ice age from conodont apatite oxygen isotopes from Naqing (Guizhou, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 151~161.

    • Chen Jitao, Montañez I P, Qi Yuping, Shen Shuzhong, Wang Xiangdong. 2018. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology, 46(5): 395~398.

    • Cleal C J, Thomas B A. 2005. Palaeozoic tropical rainforests and their effect on global climates: Is the past the key to the present? Geobiology, 3(1): 13~31.

    • Collinson M E, Steart D, Scott A, Glasspool I, Hooker J. 2007. Episodic fire, runoff and deposition at the Palaeocene-Eocene boundary. Journal of the Geological Society, 164(1): 87~97.

    • Cope M, Chaloner W. 1980. Fossil charcoal as evidence of past atmospheric composition. Nature, 283(5748): 647~649.

    • Denis E H, Pedentchouk N, Schouten S, Pagani M, Freeman K H. 2017. Fire and ecosystem change in the Arctic across the Paleocene-Eocene thermal maximum. Earth and Planetary Science Letters, 467: 149~156.

    • Diessel C F. 2010. The stratigraphic distribution of inertinite. International Journal of Coal Geology, 81(4): 251~268.

    • Falcon-Lang H J, DiMichele W A. 2010. What happened to the coal forests during Pennsylvanian glacial phases? Palaios, 25(9): 611~617.

    • Finkelstein D B, Pratt L M, Curtin T M, Brassell S C. 2005. Wildfires and seasonal aridity recorded in Late Cretaceous strata from southeastern Arizona, USA. Sedimentology, 52(3): 587~599.

    • For Coal I C. 2001. The new inertinite classification (ICCP System 1994). Fuel, 80(4): 459~471.

    • Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature communications, 8(1): 1~8.

    • Glasspool I J, Scott A C. 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3(9): 627~630.

    • Glasspool I J, Scott A C, Waltham D, Pronina N, Shao Longyi. 2015. The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science, 6: 756.

    • Glasspool I J, Gastaldo R A. 2022. Silurian wildfire proxies and atmospheric oxygen. Geology, 50(9): 1048~1052.

    • Hamad A M A, Jasper A, Uhl D. 2012. The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? International Journal of Coal Geology, 96: 60~71.

    • Han Dexin, Ren Deyi, Wang Yan. 1996. Coal Petrology of China. Beijing: China University of Mining & Technology Press (in Chinese with English abstract).

    • Isbell J, Vesely F F, Rosa E L, Pauls K N, Fedorchuk N D, Ives L R, McNall N B, Litwin S A, Borucki M K, Malone J E. 2021. Evaluation of physical and chemical proxies used to interpret past glaciations with a focus on the late Paleozoic Ice Age. Earth-Science Reviews, 221: 103756.

    • Jasper A, Uhl D, Guerra-Sommer M, Mosbrugger V. 2008. Palaeobotanical evidence of wildfires in the late palaeozoic of South America-Early Permian, Rio Bonito Formation, Paraná basin, Rio Grande do Sul, Brazil. Journal of South American Earth Sciences, 26(4): 435~444.

    • Jasper A, Guerra-Sommer M, Hamad A M A, Bamford M, Bernardes-de-Oliveira M E C, Tewari R, Uhl D. 2013. The burning of Gondwana: Permian fires on the southern continent—A palaeobotanical approach. Gondwana Research, 24(1): 148~160.

    • Joachimski M, Breisig S, Buggisch W, Talent J, Mawson R, Gereke M, Morrow J, Day J, Weddige K. 2009. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284(3-4): 599~609.

    • Kauffmann M, Jasper A, Uhl D, Meneghini J, Osterkamp I C, Zvirtes G, Pires E F. 2016. Evidence for palaeo-wildfire in the Late Permian palaeotropics—Charcoal from the Motuca Formation in the Parnaíba basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 450: 122~128.

    • Killops S, Massoud M. 1992. Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: Evidence for Jurassic vegetation fires. Organic Geochemistry, 18(1): 1~7.

    • Kosanke R M, Cecil C B. 1996. Late Pennsylvanian climate changes and palynomorph extinctions. Review of Palaeobotany and Palynology, 90(1-2): 113~140.

    • Krause A J, Mills B J, Zhang S, Planavsky N J, Lenton T M, Poulton S W. 2018. Stepwise oxygenation of the Paleozoic atmosphere. Nature Communications, 9(1): 1~10.

    • Leary R L. 1981. Early Pennsylvanian geology and paleobotany of the Rock Island Country, Illinois, area: Part 1, Geology. Illinois State Museum Report Investment, 37: 1~88.

    • Liu Hongye, Gu Yangsheng, Cheng Shenggao, Huang Ting, Xiao He. 2018. Research advancement on the paleofire occurrences and its significance of global change since the last deglaciation. Advances in Geosciences, 8(1): 106~119 (in Chinese with English abstract).

    • Lu Man, Ikejiri T, Lu Yuehan. 2021. A synthesis of the Devonian wildfire record: Implications for paleogeography, fossil flora, and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 571: 110321.

    • Nabbefeld B, Grice K, Twitchett R J, Summons R E, Hays L, Böttcher M E, Asif M. 2010. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 291(1-4): 84~96.

    • Nelsen M P, DiMichele W A, Peters S E, Boyce C K. 2016. Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proceedings of the National Academy of Sciences, 113(9): 2442~2447.

    • Pausas J G, Keeley J E. 2009. A burning story: The role of fire in the history of life. Bioscience, 59(7): 593~601.

    • Peppers R A. 1997. Palynology of the Lost Branch Formation of Kansas—New insights on the major floral transition at the Middle-Upper Pennsylvanian boundary. Review of Palaeobotany and Palynology, 98(3-4): 223~246.

    • Phillips T L, Peppers R A. 1984. Changing patterns of Pennsylvanian coal-swamp vegetation and implications of climatic control on coal occurrence. International Journal of Coal Geology, 3(3): 205~255.

    • Phillips T L, Peppers R A, Dimichele W A. 1985. Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: Environmental inferences. International Journal of Coal Geology, 5(1-2): 43~109.

    • Renkin R A, Despain D G. 1992. Fuel moisture, forest type, and lightning-caused fire in Yellowstone National Park. Canadian Journal of Forest Research, 22(1): 37~45.

    • Scotese C R. 2016. Tutorial: PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. http: //www. earthbyte. org/paleomap-paleoatlas-for-gplates.

    • Scott A C. 2000. The Pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1-4): 281~329.

    • Scott A C. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2): 11~39.

    • Scott A C. 2020. Fire: A Very Short Introduction. 198 Madison Avenue, New York: Oxford University Press.

    • Scott A C, Glasspool I J. 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences, 103(29): 10861~10865.

    • Scott A C, Glasspool I J. 2007. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology, 70(1-3): 53~66.

    • Scott A C, Bowman D M, Bond W J, Pyne S J, Alexander M E. 2013. Fire on Earth: An Introduction. New Jersey: Wiley-Blackwell.

    • Shen Wenjie, Sun Yongge, Lin Yangting, Liu Dehan, Chai Pingxia. 2011. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochimica et Cosmochimica Acta, 75(7): 1992~2006.

    • Shen Wenjie, Zhang Hua, Sun Yongge, Lin Yangting, Liang Ting, Yang Zhijun. 2012. Evidences for the Permian-Triassic wildfire event: Review and appraisal. Advances in Earth Science, 27(6): 613~623(in Chinese with English abstract).

    • Shivanna M, Murthy S, Gautam S, Souza P A, Kavali P S, Bernardes-de-Oliveira M E C, Félix C M. 2017. Macroscopic charcoal remains as evidence of wildfire from late Permian Gondwana sediments of India: Further contribution to global fossil charcoal database. Palaeoworld, 26(4): 638~649.

    • Song Jianzhong, Hu Jianfang, Peng Pingan, Wan Xiaoqiao. 2015. Black carbon record in ancient geological samples and its responses to the paleoclimate and paleoenvironment. Chinese Journal of Nature, 37(2): 86~92(in Chinese with English abstract).

    • Soreghan G S, Soreghan M J, Heavens N G. 2019. Explosive volcanism as a key driver of the late Paleozoic ice age. Geology, 47(7): 600~604.

    • Veraverbeke S, Rogers B M, Goulden M L, Jandt R R, Miller C E, Wiggins, E B, Randerson J T. 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7(7): 529~534.

    • Watson A J. 1978. Consequences for the biosphere of forest and grassland fires. Doctoral dissertation of University of Reading.

    • Watson A J, Lovelock J E. 2013. The dependence of flame spread and probability of ignition on atmospheric oxygen: An experimental investigation. In: Clarie M. Belcher, eds. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science. New Jersey: Wiley-Black Well, 273~287.

    • Winston R B. 1990. Implications ofpaleobotany of Pennsylvanian-age coal of the central Appalachian basin for climate and coal-bed development. Geological Society of America Bulletin, 102(12): 1720~1726.

    • Xu Yun, Zhang Ning, Zhao Cunliang, Liang Handong, Sun Yuzhuang. 2022. Wildfires in Jurassic coal seams from Ordos basin and its impact on paleoclimate. Geology in China, 49(2): 643~654(in Chinese with English abstract).

    • Xue Jinzhuang, Wang Jiashu, Li Bingxin, Huang Pu, Liu Le. 2022. Origin and early evolution of land plants and the effects on Earth's environments. Earth Science, 47(10): 3648~3664(in Chinese with English abstract).

    • Yang Bo. 2021. Paleowildfire events and its climatic implications in Middle Jurassic coal seams in eastern Junggar basin, Xinjiang. Master's thesis of Xinjiang University (in Chinese with English abstract).

    • Yang Bo, Tian Jijun, Feng Shuo, Yang Jinhui, Li Yongze. 2022. Wildfires recorded in Middle Jurassic coals in eastern of Junggar basin in Xinjiang, China. Coal Science & Technology, 50(7): 261~270(in Chinese with English abstract).

    • Yun Xu, Uhl D, Zhang Ning, Zhao, Cunliang, Qin Shenjun, Liang Handong, Sun Yuzhuang. 2020. Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109819.

    • Yunker M B, Macdonald R W, Vingarzan R, Mitchell R H, Goyette D, Sylvestre S. 2002. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4): 489~515.

    • Zhan Changlin, Cao Junji, Han Yongming, An Zhisheng. 2011. Research progress on reconstruction of paleofire history. Advances in Earth Science, 26(12): 1248~1259(in Chinese with English abstract).

    • Zhang Peixin, Lu Jing, Yang Minfang, Bond D P, Greene S E, Liu Le, Zhang Yuanfu, Wang Ye, Wang Ziwei, Li Shan, Shao Longyi, Hilton J. 2022. Volcanically-induced environmental and floral changes across the Triassic-Jurassic (T-J) transition. Frontiers in Ecology and Evolution, 10: 853404.

    • Zhang Rui, Dai Shuang, Zhang Mingzhen, Zhao Jie, Wang Lubo, Zhang Lili, Zhang Xiang, Liu Haijiao. 2014. Early Cretaceous paleo-wildfire events recorded on the Wulan section in the Urat Back Banner of Inner Mongolia, China. Acta Geologica Sinica, 88(6): 1177~1186(in Chinese with English abstract).

    • Zhang Xiaoqing, Zhang Guoquan, Xi Shuna, Li Liqin, Deng Chuntao, Wang Yan, Zhou Ning, Wang Yongdong, Song Yi. 2016. Wildfire event at the Triassic/Jurassic boundary: Approaches, progress, and perspective. Acta Palaeontologica Sinica, 55(3): 331~345(in Chinese with English abstract).

    • Zhang Zhihui, Wang Chengshan, Lv Dawei, Hay W W, Wang Tiantian, Cao Shuo. 2020. Precession-scale climate forcing of peatland wildfires during the early Middle Jurassic greenhouse period. Global and Planetary Change, 184: 103051.

    • 韩德馨, 任德贻, 王延斌. 1996. 中国煤岩学. 北京: 中国矿业大学出版社.

    • 刘红叶, 顾延生, 程胜高, 黄庭, 肖河. 2018. 末次冰消期以来火灾发生及全球变化意义研究进展. 地球科学前沿, 8(1): 106~119.

    • 宋建中, 胡建芳, 彭平安, 万晓樵. 2015. 古老地质样品的黑碳记录及其对古气候、古环境的响应. 自然杂志, 37(2): 86~92.

    • 沈文杰, 张华, 孙永革, 林杨挺, 梁婷, 杨志军, 周永章. 2012. 二叠纪—三叠纪界线大火燃烧的地层记录: 研究进展回顾与评述. 地球科学进展, 27(6): 613~623.

    • 许云, 张宁, 赵存良, 梁汉东, 孙玉壮. 2022. 鄂尔多斯盆地侏罗纪煤中古野火事件及其对古气候的影响. 中国地质, 49(2): 643~654.

    • 杨博. 2021. 新疆准噶尔盆地东部中侏罗世煤中古野火事件及其气候指示意义. 新疆大学硕士学位论文.

    • 杨博, 田继军, 冯烁, 杨金辉, 李勇泽. 2022. 准噶尔盆地东部中侏罗世煤中记录的古野火事件. 煤炭科学技术, 50(7): 261~270.

    • 薛进庄, 王嘉树, 李炳鑫, 黄璞, 刘乐, 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648~3664.

    • 占长林, 曹军骥, 韩永明, 安芷生. 2011. 古火灾历史重建的研究进展. 地球科学进展, 26(12): 1248~1259.

    • 张瑞, 戴霜, 张明震, 赵杰, 汪禄波, 张莉莉, 张翔, 刘海娇. 2014. 内蒙古乌拉特后旗乌兰剖面记录的早白垩世火灾事件. 地质学报, 88(6): 1177~1186.

    • 张筱青, 张国权, 席书娜, 李丽琴, 邓春涛, 王岩, 周宁, 王永栋, 宋宜. 2016. 三叠系—侏罗系界线古火灾事件研究: 方法, 进展及展望. 古生物学报, 55(3): 331~345.

  • 参考文献

    • Baker S J. 2022. Fossil evidence that increased wildfire activity occurs in tandem with periods of global warming in Earth's past. Earth-Science Reviews, 224: 103871.

    • Bek J. 2012. A review of the genus Lycospora. Review of Palaeobotany and Palynology, 174: 122~135.

    • Berner R A. 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23): 5653~5664.

    • Belcher C, McElwain J. 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science, 321(5893): 1197~1200.

    • Belcher C M, Mander L, Rein G, Jervis F X, Haworth M, Hesselbo S P, Glasspool I J, McElwain J C. 2010a. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience, 3(6): 426~429.

    • Belcher C M, Yearsley J M, Hadden R M, McElwain J C, Rein G. 2010b. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences, 107(52): 22448~22453.

    • Belcher C M, Collinson M E, Scott A C. 2013. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science. New Jersey: Wiley-Blackwell.

    • Boucot A J, Xu C, Scotese C R, Morley R J. 2013. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate. SEPM. 11.

    • Bowman D M, Balch J K, Artaxo P, Bond W J, Carlson J M, Cochrane M A, D'Antonio C M, DeFries R S, Doyle J C, Harrison S P, Johnston F H, Keeley J E, Krawchuk M A, Kull C A, Marston J B, Moritz M A, Prentice I C, Roos C I, Scott A C, Swetnam T W, Van Der Werf G R, Pyne S J. 2009. Fire in the Earth system. Science, 324(5926): 481~484.

    • Brown S A, Scott A C, Glasspool I J, Collinson M E. 2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous Research, 36: 162~190.

    • Buggisch W, Joachimski M M, Sevastopulo G, Morrow J R. 2008. Mississippian δ13Ccarb and conodont apatite δ18O records—Their relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 273~292.

    • Chaloner W. 1989. Fossil charcoal as an indicator of palaeoatmospheric oxygen level. Journal of the Geological Society, 146(1): 171~174.

    • Chen Bo, Joachimski M M, Wang Xiangdong, Shen Shuzhong, Qi Yuoping, Qie Wenkun. 2016. Ice volume and paleoclimate history of the Late Paleozoic ice age from conodont apatite oxygen isotopes from Naqing (Guizhou, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 151~161.

    • Chen Jitao, Montañez I P, Qi Yuping, Shen Shuzhong, Wang Xiangdong. 2018. Strontium and carbon isotopic evidence for decoupling of pCO2 from continental weathering at the apex of the late Paleozoic glaciation. Geology, 46(5): 395~398.

    • Cleal C J, Thomas B A. 2005. Palaeozoic tropical rainforests and their effect on global climates: Is the past the key to the present? Geobiology, 3(1): 13~31.

    • Collinson M E, Steart D, Scott A, Glasspool I, Hooker J. 2007. Episodic fire, runoff and deposition at the Palaeocene-Eocene boundary. Journal of the Geological Society, 164(1): 87~97.

    • Cope M, Chaloner W. 1980. Fossil charcoal as evidence of past atmospheric composition. Nature, 283(5748): 647~649.

    • Denis E H, Pedentchouk N, Schouten S, Pagani M, Freeman K H. 2017. Fire and ecosystem change in the Arctic across the Paleocene-Eocene thermal maximum. Earth and Planetary Science Letters, 467: 149~156.

    • Diessel C F. 2010. The stratigraphic distribution of inertinite. International Journal of Coal Geology, 81(4): 251~268.

    • Falcon-Lang H J, DiMichele W A. 2010. What happened to the coal forests during Pennsylvanian glacial phases? Palaios, 25(9): 611~617.

    • Finkelstein D B, Pratt L M, Curtin T M, Brassell S C. 2005. Wildfires and seasonal aridity recorded in Late Cretaceous strata from southeastern Arizona, USA. Sedimentology, 52(3): 587~599.

    • For Coal I C. 2001. The new inertinite classification (ICCP System 1994). Fuel, 80(4): 459~471.

    • Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature communications, 8(1): 1~8.

    • Glasspool I J, Scott A C. 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3(9): 627~630.

    • Glasspool I J, Scott A C, Waltham D, Pronina N, Shao Longyi. 2015. The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science, 6: 756.

    • Glasspool I J, Gastaldo R A. 2022. Silurian wildfire proxies and atmospheric oxygen. Geology, 50(9): 1048~1052.

    • Hamad A M A, Jasper A, Uhl D. 2012. The record of Triassic charcoal and other evidence for palaeo-wildfires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? International Journal of Coal Geology, 96: 60~71.

    • Han Dexin, Ren Deyi, Wang Yan. 1996. Coal Petrology of China. Beijing: China University of Mining & Technology Press (in Chinese with English abstract).

    • Isbell J, Vesely F F, Rosa E L, Pauls K N, Fedorchuk N D, Ives L R, McNall N B, Litwin S A, Borucki M K, Malone J E. 2021. Evaluation of physical and chemical proxies used to interpret past glaciations with a focus on the late Paleozoic Ice Age. Earth-Science Reviews, 221: 103756.

    • Jasper A, Uhl D, Guerra-Sommer M, Mosbrugger V. 2008. Palaeobotanical evidence of wildfires in the late palaeozoic of South America-Early Permian, Rio Bonito Formation, Paraná basin, Rio Grande do Sul, Brazil. Journal of South American Earth Sciences, 26(4): 435~444.

    • Jasper A, Guerra-Sommer M, Hamad A M A, Bamford M, Bernardes-de-Oliveira M E C, Tewari R, Uhl D. 2013. The burning of Gondwana: Permian fires on the southern continent—A palaeobotanical approach. Gondwana Research, 24(1): 148~160.

    • Joachimski M, Breisig S, Buggisch W, Talent J, Mawson R, Gereke M, Morrow J, Day J, Weddige K. 2009. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284(3-4): 599~609.

    • Kauffmann M, Jasper A, Uhl D, Meneghini J, Osterkamp I C, Zvirtes G, Pires E F. 2016. Evidence for palaeo-wildfire in the Late Permian palaeotropics—Charcoal from the Motuca Formation in the Parnaíba basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 450: 122~128.

    • Killops S, Massoud M. 1992. Polycyclic aromatic hydrocarbons of pyrolytic origin in ancient sediments: Evidence for Jurassic vegetation fires. Organic Geochemistry, 18(1): 1~7.

    • Kosanke R M, Cecil C B. 1996. Late Pennsylvanian climate changes and palynomorph extinctions. Review of Palaeobotany and Palynology, 90(1-2): 113~140.

    • Krause A J, Mills B J, Zhang S, Planavsky N J, Lenton T M, Poulton S W. 2018. Stepwise oxygenation of the Paleozoic atmosphere. Nature Communications, 9(1): 1~10.

    • Leary R L. 1981. Early Pennsylvanian geology and paleobotany of the Rock Island Country, Illinois, area: Part 1, Geology. Illinois State Museum Report Investment, 37: 1~88.

    • Liu Hongye, Gu Yangsheng, Cheng Shenggao, Huang Ting, Xiao He. 2018. Research advancement on the paleofire occurrences and its significance of global change since the last deglaciation. Advances in Geosciences, 8(1): 106~119 (in Chinese with English abstract).

    • Lu Man, Ikejiri T, Lu Yuehan. 2021. A synthesis of the Devonian wildfire record: Implications for paleogeography, fossil flora, and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 571: 110321.

    • Nabbefeld B, Grice K, Twitchett R J, Summons R E, Hays L, Böttcher M E, Asif M. 2010. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 291(1-4): 84~96.

    • Nelsen M P, DiMichele W A, Peters S E, Boyce C K. 2016. Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proceedings of the National Academy of Sciences, 113(9): 2442~2447.

    • Pausas J G, Keeley J E. 2009. A burning story: The role of fire in the history of life. Bioscience, 59(7): 593~601.

    • Peppers R A. 1997. Palynology of the Lost Branch Formation of Kansas—New insights on the major floral transition at the Middle-Upper Pennsylvanian boundary. Review of Palaeobotany and Palynology, 98(3-4): 223~246.

    • Phillips T L, Peppers R A. 1984. Changing patterns of Pennsylvanian coal-swamp vegetation and implications of climatic control on coal occurrence. International Journal of Coal Geology, 3(3): 205~255.

    • Phillips T L, Peppers R A, Dimichele W A. 1985. Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: Environmental inferences. International Journal of Coal Geology, 5(1-2): 43~109.

    • Renkin R A, Despain D G. 1992. Fuel moisture, forest type, and lightning-caused fire in Yellowstone National Park. Canadian Journal of Forest Research, 22(1): 37~45.

    • Scotese C R. 2016. Tutorial: PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. http: //www. earthbyte. org/paleomap-paleoatlas-for-gplates.

    • Scott A C. 2000. The Pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1-4): 281~329.

    • Scott A C. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2): 11~39.

    • Scott A C. 2020. Fire: A Very Short Introduction. 198 Madison Avenue, New York: Oxford University Press.

    • Scott A C, Glasspool I J. 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences, 103(29): 10861~10865.

    • Scott A C, Glasspool I J. 2007. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology, 70(1-3): 53~66.

    • Scott A C, Bowman D M, Bond W J, Pyne S J, Alexander M E. 2013. Fire on Earth: An Introduction. New Jersey: Wiley-Blackwell.

    • Shen Wenjie, Sun Yongge, Lin Yangting, Liu Dehan, Chai Pingxia. 2011. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events. Geochimica et Cosmochimica Acta, 75(7): 1992~2006.

    • Shen Wenjie, Zhang Hua, Sun Yongge, Lin Yangting, Liang Ting, Yang Zhijun. 2012. Evidences for the Permian-Triassic wildfire event: Review and appraisal. Advances in Earth Science, 27(6): 613~623(in Chinese with English abstract).

    • Shivanna M, Murthy S, Gautam S, Souza P A, Kavali P S, Bernardes-de-Oliveira M E C, Félix C M. 2017. Macroscopic charcoal remains as evidence of wildfire from late Permian Gondwana sediments of India: Further contribution to global fossil charcoal database. Palaeoworld, 26(4): 638~649.

    • Song Jianzhong, Hu Jianfang, Peng Pingan, Wan Xiaoqiao. 2015. Black carbon record in ancient geological samples and its responses to the paleoclimate and paleoenvironment. Chinese Journal of Nature, 37(2): 86~92(in Chinese with English abstract).

    • Soreghan G S, Soreghan M J, Heavens N G. 2019. Explosive volcanism as a key driver of the late Paleozoic ice age. Geology, 47(7): 600~604.

    • Veraverbeke S, Rogers B M, Goulden M L, Jandt R R, Miller C E, Wiggins, E B, Randerson J T. 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7(7): 529~534.

    • Watson A J. 1978. Consequences for the biosphere of forest and grassland fires. Doctoral dissertation of University of Reading.

    • Watson A J, Lovelock J E. 2013. The dependence of flame spread and probability of ignition on atmospheric oxygen: An experimental investigation. In: Clarie M. Belcher, eds. Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science. New Jersey: Wiley-Black Well, 273~287.

    • Winston R B. 1990. Implications ofpaleobotany of Pennsylvanian-age coal of the central Appalachian basin for climate and coal-bed development. Geological Society of America Bulletin, 102(12): 1720~1726.

    • Xu Yun, Zhang Ning, Zhao Cunliang, Liang Handong, Sun Yuzhuang. 2022. Wildfires in Jurassic coal seams from Ordos basin and its impact on paleoclimate. Geology in China, 49(2): 643~654(in Chinese with English abstract).

    • Xue Jinzhuang, Wang Jiashu, Li Bingxin, Huang Pu, Liu Le. 2022. Origin and early evolution of land plants and the effects on Earth's environments. Earth Science, 47(10): 3648~3664(in Chinese with English abstract).

    • Yang Bo. 2021. Paleowildfire events and its climatic implications in Middle Jurassic coal seams in eastern Junggar basin, Xinjiang. Master's thesis of Xinjiang University (in Chinese with English abstract).

    • Yang Bo, Tian Jijun, Feng Shuo, Yang Jinhui, Li Yongze. 2022. Wildfires recorded in Middle Jurassic coals in eastern of Junggar basin in Xinjiang, China. Coal Science & Technology, 50(7): 261~270(in Chinese with English abstract).

    • Yun Xu, Uhl D, Zhang Ning, Zhao, Cunliang, Qin Shenjun, Liang Handong, Sun Yuzhuang. 2020. Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109819.

    • Yunker M B, Macdonald R W, Vingarzan R, Mitchell R H, Goyette D, Sylvestre S. 2002. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4): 489~515.

    • Zhan Changlin, Cao Junji, Han Yongming, An Zhisheng. 2011. Research progress on reconstruction of paleofire history. Advances in Earth Science, 26(12): 1248~1259(in Chinese with English abstract).

    • Zhang Peixin, Lu Jing, Yang Minfang, Bond D P, Greene S E, Liu Le, Zhang Yuanfu, Wang Ye, Wang Ziwei, Li Shan, Shao Longyi, Hilton J. 2022. Volcanically-induced environmental and floral changes across the Triassic-Jurassic (T-J) transition. Frontiers in Ecology and Evolution, 10: 853404.

    • Zhang Rui, Dai Shuang, Zhang Mingzhen, Zhao Jie, Wang Lubo, Zhang Lili, Zhang Xiang, Liu Haijiao. 2014. Early Cretaceous paleo-wildfire events recorded on the Wulan section in the Urat Back Banner of Inner Mongolia, China. Acta Geologica Sinica, 88(6): 1177~1186(in Chinese with English abstract).

    • Zhang Xiaoqing, Zhang Guoquan, Xi Shuna, Li Liqin, Deng Chuntao, Wang Yan, Zhou Ning, Wang Yongdong, Song Yi. 2016. Wildfire event at the Triassic/Jurassic boundary: Approaches, progress, and perspective. Acta Palaeontologica Sinica, 55(3): 331~345(in Chinese with English abstract).

    • Zhang Zhihui, Wang Chengshan, Lv Dawei, Hay W W, Wang Tiantian, Cao Shuo. 2020. Precession-scale climate forcing of peatland wildfires during the early Middle Jurassic greenhouse period. Global and Planetary Change, 184: 103051.

    • 韩德馨, 任德贻, 王延斌. 1996. 中国煤岩学. 北京: 中国矿业大学出版社.

    • 刘红叶, 顾延生, 程胜高, 黄庭, 肖河. 2018. 末次冰消期以来火灾发生及全球变化意义研究进展. 地球科学前沿, 8(1): 106~119.

    • 宋建中, 胡建芳, 彭平安, 万晓樵. 2015. 古老地质样品的黑碳记录及其对古气候、古环境的响应. 自然杂志, 37(2): 86~92.

    • 沈文杰, 张华, 孙永革, 林杨挺, 梁婷, 杨志军, 周永章. 2012. 二叠纪—三叠纪界线大火燃烧的地层记录: 研究进展回顾与评述. 地球科学进展, 27(6): 613~623.

    • 许云, 张宁, 赵存良, 梁汉东, 孙玉壮. 2022. 鄂尔多斯盆地侏罗纪煤中古野火事件及其对古气候的影响. 中国地质, 49(2): 643~654.

    • 杨博. 2021. 新疆准噶尔盆地东部中侏罗世煤中古野火事件及其气候指示意义. 新疆大学硕士学位论文.

    • 杨博, 田继军, 冯烁, 杨金辉, 李勇泽. 2022. 准噶尔盆地东部中侏罗世煤中记录的古野火事件. 煤炭科学技术, 50(7): 261~270.

    • 薛进庄, 王嘉树, 李炳鑫, 黄璞, 刘乐, 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648~3664.

    • 占长林, 曹军骥, 韩永明, 安芷生. 2011. 古火灾历史重建的研究进展. 地球科学进展, 26(12): 1248~1259.

    • 张瑞, 戴霜, 张明震, 赵杰, 汪禄波, 张莉莉, 张翔, 刘海娇. 2014. 内蒙古乌拉特后旗乌兰剖面记录的早白垩世火灾事件. 地质学报, 88(6): 1177~1186.

    • 张筱青, 张国权, 席书娜, 李丽琴, 邓春涛, 王岩, 周宁, 王永栋, 宋宜. 2016. 三叠系—侏罗系界线古火灾事件研究: 方法, 进展及展望. 古生物学报, 55(3): 331~345.