en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

潘应娣,女,1999年生。硕士,地质学专业。E-mail:383856837@qq.com。

通讯作者:

胡修棉,男,1974年生。教授,博士生导师,主要从事沉积大地构造研究工作。E-mail:huxm@nju.edu.cn。

参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59~79.
参考文献
Bao Peisheng, Xiao Xuchang, Su Li, Wang Jun. 2007. Petrological, geochemical and chronological constraints for the tectonic setting of the Dongcuo ophiolite in Tibet. Science in China Series D: Earth Sciences, 50(5): 660~671.
参考文献
BGMRXAR (Bureau of Geology and Mineral Resources of Xizang Autonomous Region). 1997. Rock Strata of Tibet Autonomous Region. Wuhan: China University of Geosciences Press (in Chinese with English abstract).
参考文献
Chen Daogong, Ni Tao. 2004. U, Th and Pb chemical composition of zircon microzones in high grade metamorphic rocks of Dabie-Sulu orogenic belt, China. Acta Petrologica Sinica, 20(5): 10~17(in Chinese with English abstract).
参考文献
Decelles P G, Kapp P, Gehrels G E, Ding Lin. 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics, 33(5-6): 824~849.
参考文献
Dickinson W R. 1982. Compositions of sandstones in circum-Pacific subduction complexes and fore-arc basins. AAPG Bulletin, 66(2): 121~137.
参考文献
Dickinson W R, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1-2): 115~125.
参考文献
Fan Jianjun, Li Cai, Xie Chaoming. 2014. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Banggongcuo-Nujiang oceanic arm of the Neo-Tethys. International Geology Review, 56(12): 1504~1520.
参考文献
Fan Jianjun, Li Cai, Liu Yiming, Xu Jianxin. 2015a. Age and nature of the late early cretaceous Zhaga Formation, northern Tibet: Constraints on when the Bangong-Nujiang Neo-Tethys Ocean closed. International Geology Review, 57(3): 342~353.
参考文献
Fan Jianjun, Li Cai, Xie Chaoming, Wang Ming, Chen Jinwen. 2015b. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean. Lithos, 227: 148~160.
参考文献
Fan Jianjun, Li Cai, Wu Hao, Zhang Tianyu, Wang Ming, Chen Jingwen, Xu Jianxin. 2016. Late Jurassic adakitic granodiorite in the Dong Co area, northern Tibet: Implications for subduction of the Bangong-Nujiang oceanic lithosphere and related accretion of the Southern Qiangtang terrane. Tectonophysics, 691: 345~361.
参考文献
Fan Jianjun, Li Cai, Wang Ming, Liu Yiming, Xie Chaoming. 2017. Remnants of a Late Triassic ocean island in the Gufeng area, northern Tibet: Implications for the opening and early evolution of the Bangong-Nujiang Tethyan Ocean. Journal of Asian Earth Sciences, 135: 35~50.
参考文献
Fan Jianjun, Li Cai, Wang Ming, Xie Chaoming. 2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences. 107: 231~249.
参考文献
Fan Jianjun, Niu Yaoling, Liu Yiming, Hao Yujie. 2021. Timing of closure of the Meso-Tethys Ocean: Constraints from remnants of a 141-135 Ma ocean island within the Bangong-Nujiang Suture Zone, Tibetan Plateau. Gas Bulletin, 133 (9-10): 1875~1889.
参考文献
Fan Shuaiquan, Shi Rendeng, Ding Lin, Zhang Guokai. 2011. Constraints of detrital zircons on the Late Jurassic-Early Cretaceous sediment source in Bangong Lake area, China. Chinese Journal of Geology, 46(3): 847~864 (in Chinese with English abstract).
参考文献
Garzanti E, Andò S, Vezzoli G. 2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth & Planetary Science Letters, 277(3-4): 422~432.
参考文献
Gehrels G, Valencia V, Pullen A. 2006. Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona Laser Chron Center. The Paleontological Society Papers, 12: 67~76.
参考文献
Gehrels G, Kapp P, Decelles P, Pullen A, Blakey R, Weislogel A, Ding Lin, Guynn J, Martin A, Mcquarrie N. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30: TC5016.
参考文献
Girardeau J, , Marcoux J, Allègre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Dongqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27~31.
参考文献
Guo Tieying. 1991. Nali Geology of Tibet. Wuhan: China University of Geosciences Press (in Chinese with English abstract).
参考文献
Guynn J H, Kapp P, Pullen A, Heizler M, Gehrels G, Ding Lin. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505~508.
参考文献
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27~62.
参考文献
Hu Xiumian, Wang Jiangang, Marcelle, Fadel B D, Eduardo G A, Garzanti E, An Wei. 2016. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Research, 32: 76~92.
参考文献
Hu Xiumian, Wang Jiangang, An Wei, Eduardo G A, Li Juan. 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Science China: Earth Sciences, 60(4): 603~625.
参考文献
Hu Xiumian, An Wei, Eduardo G A, Liu Qun. 2020. Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet. Science China (Earth Sciences), 63(12): 2017~2028.
参考文献
Hu Xiumian, Ma Anlin, Xue Weiwei, Garzanti E, Cao Yong, Li Shiming, Sun Gaoyuan, Lai Wen. 2022. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, 229: 104031.
参考文献
Huang Tongtong, Xu Jifeng, Chen Jianlin, Wu Jianbin, Zeng Yunchuan. 2017. Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean: Insights from detrital zircons. International Geology Review, 59(2): 166~184.
参考文献
Hubert J F. 1962. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Research, 32(3): 440~450.
参考文献
Ingersoll R V, Bullard T F, Ford R L. 1984. The effect of grain size ondetrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 54(1): 103~116
参考文献
Ineson J R. 1989. Coarse-grained submarine fan and slope apron deposits in a Cretaceous back-arc basin, Antarctica. Sedimentology, 36: 793~819.
参考文献
Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47~69.
参考文献
Kapp P, Murphy M A, Yin A, Harrison T M, Ding Lin, Guo Jinghu. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22: 1029.
参考文献
Lai Wen, Hu Xiumian, Garzanti E, Sun Gaoyuan, Ma Anlin. 2019. Initial growth of the northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). GSA Bulletin, 131(11-12): 1823~1836.
参考文献
Leier A L, Kapp P, Gehrels G E, Peter G, DeCelles P G. 2010. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, southern Tibet. Basin Research, 19(3): 361~378.
参考文献
Li Cai, Ceng Liren, Hu Ke. 1995. Study on the Paleo-Tethys Suture Zone of Longmu Co-Shuanghu, Tibet. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Li Chao, Wang Genhou, Zhao Zhongbao, Du Jinxue, Ma Xuxuan, Zheng Yanlong. 2020. Late Mesozoic tectonic evolution of the central Bangong-Nujiang suture zone, central Tibetan Plateau. International Geology Review, 62(18): 2300~2323.
参考文献
Li Jinxiang, Qin Kezhang, Li Guangming, Xiao Bo, Zhao Junxing, Chen Lei. 2011. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology. Journal of Asian Earth sciences, 41(6): 525~536.
参考文献
Li Shimin, Wang Qing, Zhu Dicheng, Peter A, Cawood P A, Stern R J, Weinberg R, Zhao Zhidan, Mo Xuanxue. 2020. Reconciling orogenic drivers for the evolution of the Bangong-Nujiang Tethys during Middle-Late Jurassic. Tectonics, 32(2): e2019TC005951.
参考文献
Li Shun, Guilmette C, Ding Lin, Xu Qiang, Fu Jiajun, Yue Yahui. 2017. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision. Journal of Asian Earth Sciences, 147: 469~484.
参考文献
Li Shun, Yin Changqing, Guilmette C, Ding Lin, Zhang Jian. 2019. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198: 102907.
参考文献
Liu Deliang, Shi Rendeng, Ding Lin, Huang Qishuai, Zhang Xiaoran, Yue Yahui, Zhang Liyun. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong-Nujiang Tethyan Ocean. Gondwana Research, 41: 157~172.
参考文献
Liu Weiliang, Huang Qiangtai, Gu Man, Zhong Yun, Zhou Renjie, Gu Xiaodong, Zheng Hao, Liu Jingnan, Lu Xingxin, Xia Bin. 2018. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet. Gondwana Research, 60: 1~14.
参考文献
Ludwig K R. 2011. Isoplot 4. 15: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 1~75.
参考文献
Luo Anbo, Fan Jianjun, Wang Ming, Zeng Xiaowen. 2019. Sedimentary age of the Bangong Hu-Nujiang flysite: Constraints of detritological zircons from Yaduo Village, Gaize County, China. Earth Science, 44(7): 2426~2444.
参考文献
Luo Anbo, Fan Jianjun, Hao Yujie, Li Hang, Zhang Bochuan. 2020. Aptian flysch in central Tibet: Constraints on the timing of closure of the Bangong-Nujiang Tethyan Ocean. Tectonics, 39: e2020TC006198.
参考文献
Ma Anlin, Hu Xiumian, Garzanti E, Eduardo G A. 2017. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing. Journal of Geophysical Research, 122(7): 4790~4813.
参考文献
Ma Anlin, Hu Xiumian, Kapp P, Han Zhong, Lai Wen, BouDagher-Fadel M. 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 506: 30~47.
参考文献
Ma Anlin, Hu Xiumian, Kapp P, BouDagher-Fadel M, Lai Wen. 2020a. Pre-Oxfordian (>163 Ma) ophiolite obduction in central Tibet. Geophysical Research Letters, 47(10): e2019GL086650.
参考文献
Ma Anlin, Hu Xiumian, Kapp P, Lai Wen, Han Zhong, Xue Weiwei. 2020b. Mesozoic subduction accretion history in central Tibet constrained from provenance analysis of the Mugagangri subduction complex in the Bangong-Nujiang suture zone. Tectonics, 39(9): e2020TC006144.
参考文献
Mange M A, Maurer H. 1992. Heavy Minerals in Colour. London: Chapman and Hall.
参考文献
Marsaglia K M, Ingersoll R V. 1992. Compositional trends in arc-related, deep-marine sand and sandstone: A reassessment of magmatic-arc provenance. Geological Society of America Bulletin, 104(12): 1637~1649.
参考文献
Matthews W, Guest B, Madronich L. 2018. Latest Neoproterozoic to Cambrian detrital zircon facies of western Laurentia. Geosphere, 14(1): 243~264.
参考文献
Otofuji Y I, Mu C L, Tanaka K, Miura D, Inokuchi H, Kamei R, Tamai M, Takemoto K, Zaman H, Yokoyama M. 2007. Spatial gap between Lhasa and Qiangtang blocks inferred from Middle Jurassic to Cretaceous paleomagnetic data. Earth & Planetary Science Letters, 262(3-4): 581~593.
参考文献
Pan Guitang. 1983. A preliminary study on Bangong Co-Nujiang suture. Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 12: 229~242.
参考文献
Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.
参考文献
Pullen A, Kapp P, Gehrels G E, Ding Lin, Zhang Qinghai. 2011. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. Geological Society of America Bulletin, 123(3-4): 585~600.
参考文献
Shi Rendeng, William L G, Suzanne Y O, Huang Qishuai, Zhang Xiaoran, Liu Deliang, Zhi Xiachen, Xia Qiongxia, Ding Lin. 2012. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet. Gondwana Research, 21: 194~206.
参考文献
Spencer C J, Kirkland C L, Taylor R J M. 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7(4): 581~589.
参考文献
Sun Gaoyun, Hu Xiumian, Xu Yiwei, Bou D F, Marcelle K. 2019. Discovery of Middle Jurassic trench deposits in the Bangong-Nujiang suture zone: Implications for the timing of Lhasa-Qiangtang initial collision. Tectonophysics, 750: 344~358.
参考文献
Van Achterbergh E, Ryan C, Griffin W. 2001. GLITTER On-Line Interactive Data Reduction for the LA-ICPMS Microprobe. Sydney: Macquarie Research Ltd.
参考文献
Vermeesch P. 2013. Multi-sample comparison of detrital age distributions. Chemical Geology, 341: 140~146.
参考文献
Wang Baodi, Wang Liquan, Chung Sunlin, Chen Jianlin, Yin Fuguang, Liu Han, Li Xiaobo, Chen Lingkang. 2016. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18~33.
参考文献
Xu Ronghua, Urs Schärer U, Allègre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. Journal of Geology, 93(1): 41~57.
参考文献
Xue Weiwei, Ma Anlin, Hu Xiumian. 2020. The redefinition of the Jurassic—Cretaceous lithostratigraphic framework in the Qiangtang basin, Xizang Plateau. Geological Review, 66(5): 1114~1129 (in Chinese with English abstract).
参考文献
Xue Weiwei, Hu Xiumian, Garzanti E, Ma Anlin, Lai Wen. 2023. Discriminating Qiangtang, Lhasa, and Himalayan sediment sources in the Tibetan Plateau by detrital-zircon U-Pb age facies. Earth-Science Reviews, 236: 104271.
参考文献
XZBGM. 1993. Regional Geology of Xizang Autonomous Region, China, with Geologic Map. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Yan Maodu, Zhang Dawen, Fang Xiaomin, Ren Haidong, Zhang Weilin, Zan Jinbo, Song Chunhui, Zhang Tao. 2016. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang block: Implications for the evolution of the Paleo- and Meso-Tethys. Gondwana Research, 39: 292~316.
参考文献
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
参考文献
Yu Guangming, Zhang Shaonan, Wang Chenshan. 1990. Interpretation of trace element cluster analysis results of Jurassic, Cretaceous and Tertiary argillaceous rocks in Xizang area. Lithofacies and Palaeogeography, (5): 1~7(in Chinesewith English abstract).
参考文献
Zeng Ming, Zhang Xiang, Cao Hui, Ettensohn F R, Cheng Wenbin. 2016. Lang Xinghai Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Research, 28(1): 147~157.
参考文献
Zeng Yunchuan, Chen Jianlin, Xu Jifeng, Wang Baodi, Huang Feng. 2016. Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite melange, central Tibet. Geochemistry, Geophysics, Geosystems, 17(12): 4859~4877.
参考文献
Zhai Qingguo, Jahn B, Wang Jun, Hu Peiyuan, Tang Yue. 2016. The oldest Paleo-Tethyan ophiolitic mélange in the Xizang(Tibetan) Plateau. Acta Geologica Sinica, 128: 355~373.
参考文献
Zhang Yuxiu, Li Zhiwu, Yang Wenguang, Zhu Lidong, Jin Xin, Zhou Xiaoyao, Tao Gang, Zhang Kaijun. 2017. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China. Journal of Asian Earth Sciences 13: 212~242.
参考文献
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Dilek Y, Hou Zengqian, Mo Xuanxuea. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429~1454.
参考文献
Zhu Dicheng, Li Shimin, Cawood P A, Wang Qing, Zhao Zhidan, Liu Shengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.
参考文献
陈道公, 倪涛. 2004. 大别-苏鲁造山带高级变质岩中锆石微区U, Th和Pb化学组成特征统计. 岩石学报, 20(5): 10~17.
参考文献
樊帅权, 史仁灯, 丁林, 张国凯. 2011. 碎屑锆石对班公湖地区晚侏罗世—早白垩世沉积物源的制约. 地质科学, 46(3): 847~864.
参考文献
郭铁鹰. 1991. 西藏阿里地质, 武汉: 中国地质大学出版社.
参考文献
李才, 曾立人, 胡可. 1995. 西藏龙木错-双湖古特提斯缝合带研究. 北京: 地质出版社.
参考文献
罗安波, 范建军, 王明, 曾孝文. 2019. 班公湖-怒江洋复理石沉积时代: 来自改则县亚多村碎屑锆石的制约. 地球科学, 44(7): 2426~2444.
参考文献
西藏自治区地质调查局. 1993. 西藏自治区区域地质志. 北京: 地质出版社.
参考文献
西藏自治区地质矿产局. 1997. 西藏自治区岩石地层. 武汉: 中国地质大学出版社.
参考文献
薛伟伟, 马安林, 胡修棉. 2020. 羌塘盆地侏罗系—白垩系岩石地层格架厘定. 地质论评, 66(5): 1114~1129.
参考文献
余光明, 张哨楠, 王成善. 1990. 西藏地区侏罗、白垩及第三系地层泥质岩的微量元素聚类分析成果解释. 岩相古地理, (5): 1~7.
目录contents

    摘要

    同碰撞海沟沉积可为重建板块缝合带大地构造演化、约束陆块初始碰撞时间提供重要信息。本文对班公湖-怒江缝合带西段的改则县亚多组和日土县多仁组进行了沉积学、岩相学、碎屑锆石年代学、重矿物研究。沉积学分析表明,多仁组、亚多组沉积于海底扇环境。最年轻的碎屑锆石年龄限制了最早沉积时代为晚侏罗世。多仁组、亚多组砂岩Q∶F∶L分别为52∶4∶44、32∶8∶60,均以丰富的沉积岩和酸性火成岩岩屑及少量的变质岩屑为特征;重矿物以磷灰石、锆石、电气石等稳定重矿物为主。多仁组和亚多组具有相似的碎屑锆石年龄分布模式,主峰分布在350~200 Ma、550~450 Ma、900~750 Ma、1900~1800 Ma、2550~2450 Ma范围内。这些数据表明,亚多组、多仁组碎屑物质来源于沉积区北侧的班公湖-怒江缝合带增生杂岩及南羌塘岩浆岩。多仁组、亚多组出现的大量沉积岩岩屑,表明物源区经历了广泛的构造缩短作用,导致沉积岩和同期岩浆岩被剥蚀,因此多仁组、亚多组是拉萨-羌塘同碰撞的产物。据此推断,沿班公湖-怒江缝合带改则-日土区域拉萨-羌塘初始碰撞发生在晚侏罗世多仁组、亚多组沉积之前。

    Abstract

    Syncollisional trench deposits can provide important information for reconstructing the tectonic evolution of the suture zone and constraining the time of initial collision of land masses. In this paper, sedimentological, petrographic, detrital zircon geochronological, and heavy mineral studies were carried out on the Yaduo Formation of Gaize area and the Duoren Formation of Ritu area in the western Bangong Lake-Nujiang suture zone. Sedimentological analysis shows that the Duoren and Yaduo formations were deposited in a submarine fan environment. The youngest detrital zircon age of the Duoren Formation constrains the depositional age to the Late Jurassic. The sandstone of the Duoren and Yaduo formations have Q∶F∶L ratio of 52∶4∶44 and 32∶8∶60, respectively, and are characterized by abundant sedimentary and acidic volcanic rock fragments. The heavy minerals of the sandstones of the Duoren and Yaduo formations are dominated by stable heavy minerals such as apatite, zircon and tourmaline. Both these formations have similar detrital zircon age distribution patterns, with the main peaks mainly distributed in the ranges of 350~200 Ma, 550~450 Ma, 900~750 Ma, 1900~1800 Ma, and 2550~2450 Ma. These data suggest that the detritus of the Yaduo and Duoren formations originated from the accretionary complex in the Bangong Lake-Nujiang suture zone and the magmatic rocks in South Qiangtang north of the depositional area. The large amount of sedimentary detritus occurring in the Duoren and Yaduo formations indicates that the source area experienced extensive structural deformation, leading to the denudation of sedimentary rocks and contemporaneous magmatic rocks, and which is considered as a product of the Lhasa-Qiangtang syncollision. On this basis, the timing of initial Lhasa-Qiangtang collision occurred prior to the deposition of the Duoren and Yaudo formations (Late Jurassic).

  • 班公湖-怒江缝合带位于西藏中部,东西延伸约2000 km(图1a;Pan Guitang et al.,2012)。它是分隔拉萨和羌塘地体的构造边界,记录了班公湖-怒江洋的演化历史(Yin An and Harrison,2000; Pan Guitang et al.,2012; Hu Xiumian et al.,2022)。针对该缝合带,前人多从岩浆岩(Guynn et al.,2006; Li Jinxiang et al.,2011; Liu Deliang et al.,2017)、蛇绿岩(Wang Baodi et al.,2016)、古地磁(Otofuji et al.,2007; Yan Maodu et al.,2016)、沉积岩(Li Shun et al.,2017)等方面对拉萨-羌塘初始碰撞时间进行研究,但对同碰撞沉积盆地的研究,仅Sun Gaoyuan et al.(2019)在洞错地区识别出了一套中侏罗世的海沟沉积。

  • 同碰撞沉积盆地,理论上是初始碰撞后形成于俯冲大陆板块的边缘盆地,物源主要由上板块在经历构造缩短作用之后产生,以沉积岩屑、火山岩屑为特征,它代表物源区构造活动正在进行(Hu Xiumian et al.,2020)。通过识别同碰撞沉积盆地,限定其时代,可以用来约束该次碰撞活动的时间(DeCelles et al.,2014; Hu Xiumian et al.,20172020)。根据这一原理,Hu Xiumian et al.(2017)用西藏南部雅鲁藏布江缝合带的“桑丹林剖面”精确地约束了印度-亚洲的初始碰撞时间。在本研究中,我们对多仁组和亚多组的岩石学、碎屑锆石U-Pb年代学和重矿物特征(表1,表2,附表1)进行研究,并将这些数据与俯冲增生楔木嘎岗日杂岩、海沟沉积噶木龙组进行对比,确定了其属于同碰撞海沟沉积,并进一步对拉萨-羌塘初始碰撞时间进行了约束。

  • 1 地质背景

  • 班公湖-怒江缝合带北部为羌塘地体,南部为拉萨地体(图1a)。

  • 1.1 羌塘地体

  • 羌塘地体北以金沙江缝合带为界,南以班公湖-怒江缝合带为界,三叠纪高压变质岩和古生代蛇绿岩组成的中央隆起带把羌塘分为南羌塘和北羌塘(李才等,1995; Kapp et al.,2003; Pullen et al.,2011; Zhai Qinguo et al.,2016)。班公湖-怒江洋壳在侏罗纪时期向北俯冲并在侏罗纪—白垩纪时期进入同碰撞阶段,导致185~100 Ma的岩浆弧的形成(图1b)(Guynn et al.,2006; Liu Deliang et al.,2017; Zhang Yuxiu et al.,2017)。改则地区沿南羌塘地块南缘出露的中生代地层包括中侏罗统色哇组、莎巧木组、捷布曲组(图1d)(Huang Tongtong et al.,2017; 薛伟伟等,2020)。日土地区沿南羌塘地块南缘出露的中生代地质单元包括日干配错组、木嘎岗日杂岩等。羌塘南缘三叠纪—侏罗纪地层沉积于滨浅海环境(薛伟伟等,2020),变形后被上白垩统阿布山组陆相红层不整合覆盖(西藏自治区地质矿产局,1997; Ma Anlin et al.,2017)。南羌塘的碎屑锆石年龄峰以2450 Ma、1850 Ma、950 Ma、800 Ma和550 Ma为特征(Xue Weiwei et al.,2023)。

  • 图1 西藏大地构造简图(a);班公湖-怒江缝合带及其两侧地体岩浆岩时空分布(b)(修改自Zhu Dicheng et al.,2016); 西藏西部日土地区班公湖-怒江缝合带地质简图(c) (据西藏自治区地质矿产局,2004修改); 西藏中部改则地区班公湖-怒江缝合带地质简图(d)(据西藏自治区地质矿产局,2006修改)

  • Fig.1 Schematic tectonic map of Tibet (a) ; spatial and temporal distribution of magmatic rocks in the Bangong Lake-Nujiang suture zone (b) (modified after Zhu Dicheng et al., 2016) ; geological map of Bangong Lake-Nujiang suture zone in Ritu region, western Tibet (c) (modified after BGMRXAR, 2004) ; geological map of Bangong Lake-Nujiang suture zone in Gaize area, central Tibet (d) (modified after BGMRXAR, 2006)

  • 1.2 拉萨地体

  • 根据基底和沉积盖层的差异,拉萨地块可分为南拉萨、中拉萨和北拉萨,分别以狮泉河-纳木错混杂岩带和Luobadui-Milashan断裂为界(Zhu Dicheng et al.,2013)。在北拉萨的火成岩方面,中西部地区出露确申拉组,岩性主要为玄武岩和安山岩(136~105 Ma; Li Chao et al.,2020),东部地区主要为班戈花岗岩岩基(139~105 Ma; Zhu Dicheng et al.,2016),出露面积相比羌塘和班公湖-怒江缝合带的都要广,也更为连续。拉萨地体特征的碎屑锆石U-Pb年龄谱包括600~500 Ma(峰值为~550 Ma)和1300~1000 Ma(峰值为~1170 Ma)(Leier et al.,2010; Gehrels et al.,2011; Xue Weiwei et al.,2023)。

  • 1.3 班公湖-怒江缝合带

  • 班公湖-怒江缝合带内广泛分布蛇绿岩,代表大洋岩石圈的岩石类型(Girardeau et al.,1984; Shi Rendeng et al.,2012)。在班公湖-怒江缝合带西段的中仓—改则地区蛇绿岩主要显示184~156 Ma侏罗纪的年龄。班公湖-怒江缝合带存在一些洋岛型的岩石组合,其中早白垩世洋岛型岩石的可靠年龄为141~135 Ma,指示可能存在早白垩世的蛇绿岩(Fan Jianjun et al.,2021)。然而,也有学者指出这些OIB型玄武岩可以形成于拉萨-南羌塘碰撞之后的浅水环境,形态上类似海山,但以陆壳为基底,并不能指示洋壳的存在(Zhu Dicheng et al.,2016; Li Shun et al.,2019; Hu Xiumian et al.,2022)。

  • 班公湖-怒江缝合带中晚侏罗世岩浆作用时间集中在166~160 Ma,主要发育在班公湖-怒江缝合带东段的东卡错微陆块(Zeng Yunchuan et al.,2016; Li Chao et al.,2020),以及班公湖-怒江缝合带中西段洞错地区、狮泉河地区(Fan Jianjun et al.,2016; Liu Weiliang et al.,2018)。出露的安山岩和流纹岩,被认为是大洋初始俯冲期间俯冲沉积物交代地幔楔部分熔融的产物(Zeng Yunchuan et al.,2016),或洋脊与海沟相互作用的产物(Li Shimin et al.,2020)。班公湖-怒江缝合带中已厘定的沉积地层单元包括三叠系确哈拉组、木嘎岗日杂岩、侏罗系深水沉积,这些地层被上侏罗统海-陆过渡相沙木罗组、侏罗纪火山岩不整合覆盖。改则—洞错附近广泛分布有噶木龙组和巫噶组以及本文所研究的多仁组;噶木龙组为海沟盆地,物源来自于南羌塘侏罗系的沉积地层以及木嘎岗日杂岩的沉积再循环,最年轻的碎屑锆石的YC1σ(2+)年龄为165±1.7 Ma(n=3),推测其沉积时代为晚侏罗世(Sun Gaoyuan et al.,2019)。巫嘎组沉积环境为周缘前陆盆地(Li Shun et al.,2017),最早其时代被认为是晚三叠世(西藏自治区地质矿产局,2006)。但砂岩中最年轻碎屑锆石YC1σ(2+)年龄为147.7±0.6 Ma(n=4)(Li Shun et al.,2017),指示其时代为侏罗纪末期甚至更晚。物源分析表明该套地层的源区来自羌塘地体(Li Shun et al.,2017)。班公湖-怒江缝合带地区的木嘎岗日杂岩被分成三类砂岩(Ma Anlin et al.,2020b),在改则—洞错地区第三类为木嘎岗日杂岩Group 3,具有中拉萨地块前侏罗系沉积物亲缘性;第二类为巫嘎组、木嘎岗日杂岩Group 2、色哇组、日干配错组;第一类为沙木罗组、亚多组、噶木龙组、木嘎岗日杂岩Group 1、多尼组和多巴组。木嘎岗日杂岩Group 1和Group 2具有丰富的火山岩岩屑,含量分别为43%和52%,木嘎岗日杂岩Group 3则以沉积岩岩屑为主(77%)。Hu Xiumian et al.(2022)通过MDS聚类分析表明木嘎岗日杂岩Group 1、Group 2物源来自羌塘。

  • 1.4 地层

  • 研究区大地构造位置在班公湖-怒江缝合带的中段以及西段,中段主要集中于藏北改则县一带(图1d)。改则地区缝合带内中生代地层包括上三叠统(?)巫嘎组,上三叠统—下侏罗统木嘎岗日杂岩、亚多组,上侏罗统—下白垩统沙木罗组,上白垩统竟柱山组。本文研究的地层为亚多组。亚多组是在改则地区巫嘎组出露点以西,木嘎岗日杂岩南侧,出现的一套厚度超过1000 m的砂泥岩互层的沉积地层。原1∶25万填图将其归于“木嘎岗日杂岩”,但由于地层相对有序而区分于北侧木嘎岗日杂岩(Hu Xiumian et al.,2022)。该套地层以在改则南侧亚多村附近出露的最为典型,是一套深海浊积扇沉积(余光明等,1990)。罗安波等(2019)在亚多村附近研究了一套晚侏罗世的深水沉积,结合其物源及岩相学分析,我们认为应该同属于亚多组。

  • 西段主要集中在班公湖一带。班公湖地区缝合带内中生代地层包括下侏罗统木嗄岗日杂岩(TJM),上侏罗统日松组(J3r)、多仁组(J3d),上侏罗统—下白垩统沙木罗组(J3—K1s)(樊帅权等,2011)。本文研究的地层为上侏罗统多仁组(J3d),其下部岩性为中厚层的细粒岩屑砂岩与页岩互层,中部主要由中层的细粒岩屑砂岩与页岩互层组成,上部为中薄层的中粒岩屑砂岩与页岩互层。

  • 2 样品与分析方法

  • 2.1 样品

  • 多仁组剖面位于西藏日土县西部,剖面起点为33°23′33.02″N,79°40′15.66″E。地层层序正常,采12个样品。亚多组剖面位于改则以南,地层的产状为215°∠68°。该剖面的起点为32°15′20.51″N,84°03′21.27″E,在该剖面中共采3个样品(图2)。

  • 2.2 砂岩岩相学

  • 按照Gazzi-Dickinson方法(Ingersoll et al.,1984),每个砂岩我们至少选取了400个左右的颗粒进行点计数,统计结果见表1。需要说明的是,严重蚀变矿物、重矿物、杂基(胶结物)、孔隙等点不计入投图端元,因此在表1中未列出。

  • 2.3 重矿物分析方法

  • 本文选取7件样品进行粉碎后,取约15 g用标准的钢制筛网进行湿筛(32~500 μm)(Garzanti et al.,2009)烘干后,加入多钨酸钠重液(密度~2.90 g/cm3)后置于离心机中,加速使其轻、重矿物分离,并通过液氮冷冻收集重矿物,最后使用加拿大树脂将重矿物粘至载玻片上,转移至显微镜下统计计数。7件样品通过面积法统计约200颗透明重矿物(Mange and Maurer,1992)。蚀变颗粒、氧化物、岩屑、页硅酸盐或碳酸盐等均不纳入计数范围。重矿物分析物源中,ZTR指数(锆石、电气石和金红石之和相对于总透明重矿物的比例)(Hubert et al.,1962)通常被用来评估重矿物组合的稳定性(即再旋回或成岩作用对重矿物的影响)。

  • 2.4 碎屑锆石U-Pb年代学

  • 本文在多仁组、亚多组各选取了一个砂岩样品进行了碎屑锆石U-Pb测年。通过碎样、淘洗、磁选后在双目显微镜下手工挑选锆石颗粒,并固定在环氧树脂中,利用透射光和阴极发光(CL)图像观察抛光锆石的内部结构,选择合适的位置进行U-Pb定年。锆石U-Pb年龄测试工作于南京大学内生金属矿床成矿机制研究国家重点实验室完成,所用仪器为连接NewWaveUP213固体激光剥蚀系统(LA)的Agilent7500a型等离子体质谱仪(ICP-MS),测试方法见Gehrels et al.(2006)Jackson et al.(2004)。质量分馏校正采用标样STDGJ(609 Ma)。获得的分析数据通过即时分析软件GLITTER计算获得同位素比值、年龄和误差(van Achterbergh et al.,2001),并通过普通铅校正(Andersen,2002)。不谐和度小于20%的锆石年龄数据被视作有效数据,当颗粒年龄<1000 Ma时,锆石年龄采用206Pb/238U年龄;当颗粒年龄为> 1000 Ma时,锆石年龄采用207Pb/206Pb年龄。为了比较年龄谱,我们收集了已发表的数据。

  • 2.5 非度量多维尺度(MDS)分析

  • 非度量多维尺度(MDS)被广泛用于可视化样本之间的统计差异并且展示样本之间的相似性(Vermeesch,2013; Spencer and Kirkland,2016)。本研究采用每个样本累积概率密度函数的最大差值来量化样本差异。测量每对样本的Kolmogorov-Smirnov检验的D统计量,创建一个不相似矩阵(Vermeesch,2013)。然后,根据不相似矩阵的内容在欧氏平面上绘制MDS图。MDS图中样品之间的距离与基于D统计量的样品不相似度成正比,具有相似碎屑锆石年龄谱特征的样品将在同一区域作图(Matthews et al.,2018; Xue Weiwei et al.,2023)。

  • 3 结果

  • 3.1 沉积相

  • 多仁组剖面整体砂泥岩高频互层,单层厚度几米到几十米不等,延伸达百米以远(图2b)。剖面下部样品属于极细粒砂岩,向上砂岩粒度增加,但均属于细粒砂岩的范围(图2)。砂岩普遍发育平行层理,可见清晰的平行于层面的细管状遗迹化石和工具底模(图2a)。根据这些特征,我们认为多仁组应属深海—半深海浊流沉积,和前人结论一致(西藏自治区地质矿产局,2004)。

  • 亚多组整体呈现出砂泥岩的高频互层现象,砂岩厚度几米到几十米不等,延伸远,部分砂岩层出现微弱尖灭(图2d)。局部砂岩内部有较为清晰的鲍马层序(图2e),21AS13样品底部可见泥砾(图2c)。总体上,亚多组属于深海—半深海浊流沉积。

  • 3.2 岩相学

  • 亚多组砂岩3个样品粒度约0.1~0.25 mm,分选中等,颗粒磨圆为次棱角—次圆状,平均组成Q∶F∶L=32∶8∶60(表1);石英含量变化为29%~36.5%,长石含量变化为3%~16.5%,斜长石常见绢云母化,钾长石表面呈特征性褐色污点。岩屑含量约为54%~67%,主要是沉积岩屑(58%~62%)和火成岩屑(33%~38%),变质岩屑少量(3%~4%)(图3a~d)。沉积岩屑以微晶灰岩岩屑为主(82%~88%),粉砂岩与泥岩岩屑含量较少(12%~18%);火成岩屑主要为酸性火成岩岩屑,变质岩岩屑主要以变质程度较低的板岩及片岩为主。

  • 图2 西藏改则—日土地区多仁组和亚多组综合地层柱状图及野外照片

  • Fig.2 Histogram of Duoren Formation and Yaduo Formation integrated stratigraphic units and field photos in the Gaize-Ritu area of Tibet

  • (a)—多仁组平行于层面的细管状遗迹化石;(b)—多仁组砂泥岩高频互层;(c)—亚多组含泥砾岩屑砂岩;(d)—亚多组砂泥岩高频互层;(e)—亚多组鲍马层序

  • (a) —fossilized fine-tubular remains of the Doren Formation parallel to the bedded plane; (b) —high frequency interbedded sand-mudstone of Duoren Formation; (c) —Yaduo Formation sand-mudstone bearing mudstone; (d) —high frequency interbedded sand-mudstone of Yaduo Formation; (e) —Bouma sequence of Yaduo Formation

  • 多仁组共统计10个样品,分选中等,颗粒磨圆为次棱角—次圆状,粒度约为0.05~0.3 mm,平均Q∶F∶L=52∶4∶44(表1)。石英含量约为47%~62%,长石含量约为1.8%~4.6%,岩屑约占33%~50%,胶结物主要为钙质。岩屑组成主要为火成岩屑(37%~58%)、沉积岩屑(28%~50%)、变质岩屑(8%~22.5%)(图3e~h)。

  • 相比于亚多组,多仁组长石含量减少,石英含量增加。变质岩屑以及酸性火成岩岩屑含量偏高,沉积岩岩屑中粉砂岩和泥岩的含量偏高,灰岩岩屑的含量偏低。

  • 将亚多组、多仁组样品与前人研究的临近地区的样品进行Q-F-L以及Lm-Lv-Ls投图对比分析(图4),可以看出亚多组、多仁组样品与Sun Gaoyuan et al.(2019)研究的噶木龙组相比,沉积岩屑的含量大幅度减少;与Li Shun et al.(2017)研究的巫嘎组相比,石英的含量减少;与Zeng Ming et al.(2016)木嘎岗日杂岩里的TJM岩石组分相比,长石的含量减少。

  • 图3 西藏改则—日土地区亚多组和多仁组显微镜下照片

  • Fig.3 Microscopic photos of Yaduo Formation and Duoren Formation in the Gaize-Ritu area of Tibet

  • (a),(b)—21AS13(亚多组,岩屑砂岩,改则南);(c),(d)—21AS14(亚多组,岩屑砂岩,改则南);(e),(f)—21AS46(多仁组,岩屑砂岩,日土县西);(g),(h)—21AS47(多仁组,岩屑砂岩,日土县西); 字母代号见表1

  • (a) , (b) —21AS13 (Yaduo Formation, lithic sandstone, South Gaize County) ; (c) , (d) —21AS14 (Yaduo Formation, lithic sandstone, South Gaize County) ; (e) , (f) —21AS46 (Duoren Formation, lithic sandstone, West Ritu County) ; (g) , (h) —21AS47 (Duoren Formation, lithic sandstone, West Ritu County) ; the letter codes are shown in Table 1

  • 表1 西藏改则—日土地区多仁组和亚多组砂岩样品碎屑组分统计表

  • Table1 Statistical table of detrital composition in Yaduo Formation and Duoren Formation in the Gaize-Ritu area of Tibet

  • 注:表中的单位为颗粒数;Q—石英;F—长石;L—岩屑;Qm—单晶石英;Qp—多晶石英;Pl—斜长石;Kf—钾长石;Lv—火山岩岩屑;Ls—沉积岩岩屑;Lm—变质岩岩屑。

  • 图4 西藏改则—日土地区亚多组和多仁组碎屑组分三角图(据Dickinson,1982; Marsaglia et al.,1992修改)

  • Fig.4 Triangulation of detrital components in Yaduo Formation and Duoren Formation in the Gaize-Ritu area of Tibet (after Dickinson, 1982; Marsaglia et al., 1992)

  • 3.3 重矿物

  • 亚多组中样品21AS13与21AS15重矿物的浓度含量较低,分别为0.27%和0.36%,样品21AS13透明重矿物主要为磷灰石、锆石、电气石,三者的含量差别不大,此外还有少量的金红石、石榴子石、绿帘石、角闪石(图5;表2)。样品21AS15透明重矿物主要成分与样品21AS13相似,但其电气石的含量明显增高,锆石的含量相对减少。两个样品的ZTR指数也较为近似,分别为66%和68%。样品21AS14总重矿物的浓度相对于前两个样品含量明显升高,为1.5%,主要透明重矿物种类相同,含有少量的金红石,但是相对于前两个样品,磷灰石的含量明显增多,ZTR相比偏低,为53%。

  • 多仁组四个样品总重矿物的浓度普遍较低(0.18%~0.44%),样品21AS36中透明重矿物主要为电气石(83%),还含有相对较少的磷灰石、锆石以及金红石(ZTR指数为91.7%)(图5;表2)。样品21AS39中磷灰石的含量出现明显的增多,约占总透明重矿物的49%,锆石的含量相对于样品21AS36高,电气石的含量出现了明显的降低(ZTR=51%)。样品21AS44中主要的透明重矿物为磷灰石、锆石、电气石,其中,磷灰石与电气石的含量相近,锆石的含量约为磷灰石的一倍,此外,还包括少量的金红石(ZTR=73%)。样品21AS47中电气石为主要的透明重矿物(65.4%),锆石与磷灰石的含量相近,约占总透明重矿物的16%,ZTR=82%(表2)。

  • 3.4 锆石年龄

  • 亚多组(样品21AS15)和多仁组(样品21AS47)碎屑锆石U-Pb定年有效数据298个。锆石主要为岩浆锆石(Hoskinet al.,2003; 陈道公和倪涛,2004),其中29个测点Th/U小于0.1(附表1),可能是变质锆石。锆石年龄数据见附表1。

  • 表2 西藏改则—日土地区亚多组和多仁组重矿物组合特征

  • Table2 Characteristics of heavy mineral assemblages in Yaduo Formation and Duoren Formation in the Gaize-Ritu area of Tibet

  • 注:表中数据为统计的矿物颗粒数。

  • 图5 西藏改则—日土地区亚多组和多仁组样品重矿物单偏光镜下照片及重矿物三元图

  • Fig.5 Photo of heavy minerals under monopolarizer and ternary diagram of heavy minerals in Yaduo Formation and Duoren Formation in the Gaize-Ritu area of Tibet

  • (a)—金红石;(b)—磷灰石;(c)—电气石;(d)—锆石;(e)—重矿物三元图;Ep—绿帘石;ZTR—锆石+电气石+金红石;Ap+Gr-Sp—磷灰石+石榴子石-铬尖晶石

  • (a) —rutile; (b) —apatite; (c) —tourmaline; (d) —zircon; (e) —heavy mineral ternary map; Ep—epidote; ZTR—zircon+tourmaline+rutile; Ap+Gr-Sp—apatite+garnet-chrome spinel

  • 多仁组样品锆石年龄组主峰主要有1950~1800 Ma(36颗),主峰值为1853 Ma;950~650 Ma(31颗),主峰值为819 Ma;650~500 Ma(17颗),主峰值为544 Ma;2550~2400 Ma(12颗),主峰值为2480 Ma;1150~950 Ma(11颗),主峰值为1010 Ma;2100~1950 Ma(10颗),主峰值为2012 Ma;300~200 Ma(6颗),主峰值为248 Ma;450~400 Ma(6颗),主峰值为428 Ma。此外,次峰还包括2380~2234 Ma(5颗),1403~1287 Ma(4颗),1735~1576 Ma(4颗),350~300 Ma(3颗),200~150 Ma(2颗)。最年轻的锆石年龄分别为156.5±2.8 Ma、158.9±0.85 Ma。

  • 亚多组样品锆石年龄组主峰主要有1150~700 Ma(36颗),主峰值为875 Ma;1900~1750 Ma(23颗),主峰值为1853 Ma;345~220 Ma(16颗),主峰值为273 Ma; 606~420 Ma(14颗),主峰值为493 Ma;1750~1570 Ma(9颗),主峰值为1636 Ma;2550~2450 Ma(9颗),主峰值为2490 Ma。此外,次峰还包括2921~2607 Ma(8颗),1286~1221 Ma(5颗),1250~1150 Ma (3颗)。最年轻的锆石年龄为220.2±1.4 Ma。

  • 4 讨论

  • 4.1 地层的年龄

  • 日土地区的多仁组由于化石稀少,前人对其时代归属尚有异议。西藏自治区地质矿产局(1993,1997)将其笼统归为侏罗纪;郭铁鹰(1991)根据采获的双壳和放射虫,将其时代大致归为中侏罗世。成都地质矿产研究所(2004)在多仁组采获腹足类(Prygmatis cf. FerruginseCossmann),将其大致归于晚侏罗世Kimmeridgian晚期—Tithonian早期。在本研究中,我们采用了多种方法计算该地层的最大沉积年龄(表3),最终选取1σ不确定度内重叠的两个或多个最小颗粒年龄的加权平均年龄作为最大沉积年龄(YC1σ(2+))(Dickinson and Gehrels,2009)。计算结果表明,多仁组的最大沉积年龄是158.7 Ma。因此,我们认为多仁组的沉积时代为晚侏罗世。

  • 改则地区亚多组样品YC1σ(2+)年龄为220.2±1.4 Ma(n=3),但由于锆石可以在多次的旋回之中稳定存在,并且罗安波等(2019)在改则村南部(与本研究采样点临近)木嘎岗日杂岩获得最年轻的碎屑锆石年龄149±2 Ma。结合野外观察以及岩相学的分析,我们认为其与本研究中亚多组应属于同一套地层单元。另外,考虑到亚多组与日土地区的多仁组、改则地区的噶木龙组在碎屑组分、沉积环境、碎屑锆石等方面的相似性,尤其是两者都出现丰富而特征的沉积岩岩屑,我们推测,亚多组与多仁组、噶木龙组可能是同时期同一构造背景下的沉积,并且都是同碰撞海沟沉积。由于噶木龙组和多仁组都是晚侏罗世的沉积,因此本文暂把亚多组时代也置于晚侏罗世。

  • 表3 西藏改则—日土地区样品年轻的碎屑锆石计算

  • Table3 Calculation of the youngest detrital zircons in the studied samples in the Gaize-Ritu area of Tibet

  • 注:YDZ—根据“最年轻碎屑锆石”算法计算得到的年龄(Isoplot,Ludwig,2011);YSG—最年轻的单个碎屑锆石年龄(1σ);YPP—年龄谱图上的最年轻峰值;YC1σ(2+)—1σ内相互重叠的2~13个最年轻年龄的加权平均值;YC2σ(3+)—2σ内相互重叠的3~24个最年轻年龄的加权平均值(Dickinson and Gehrels,2009)。

  • 4.2 物源特征

  • 在考虑到班公湖-怒江缝合带的大地构造位置和古地理位置后,笔者将改则地区亚多组砂岩和日土地区多仁组样品的碎屑锆石年龄与潜在源区(南羌塘和拉萨地体)碎屑锆石的年龄进行了对比。结果表明,亚多组、多仁组砂岩均出现相似的前寒武纪的年龄峰,与南羌塘物源2450 Ma、1850 Ma、950 Ma、800 Ma和550 Ma的前寒武纪年龄峰可以对比(Gehrels et al.,2011; Xue Weiwei et al.,2023)。另外,多维尺度统计分析图(MDS)中,亚多组、多仁组明显与羌塘具有亲缘性(图6a、b),这些都指示其物源主要来自羌塘块体。沉积学分析表明,水下扇环境中沉积物被快速地搬运且都具有本地的物源(Ineson,1989),结合岩相学及重矿物分析,两套地层中均出现丰富的沉积岩岩屑,这可能说明物源来自于研究区附近已经存在的地层。结合研究区地质背景,认为其北侧的木嘎岗日杂岩可能是主要的源区。此外,碎屑锆石的数据也支持我们初步得到的结论。多仁组、亚多组200~150 Ma之前的碎屑锆石年龄谱与木嘎岗日杂岩TJM(Zeng Yunchuan et al.,2016)具有较高的相似性(图6a)。值得注意的是,多仁组中出现了两颗小于200 Ma的锆石颗粒(168.7±7.63 Ma、161.1±2.25 Ma),这与南羌塘广泛发育的180~150 Ma弧岩浆活动正好一致(Guynn et al.,2006; Liu Deliang et al.,2017)。相比于多仁组,亚多组火成岩岩屑较少,这可能正是由于缺少了180~150 Ma的南羌塘岩浆岩物源。结合以上的分析,我们认为亚多组、多仁组物质来源主要包括羌塘南部晚侏罗世火山岩以及临近的班怒带木嘎岗日杂岩。

  • 4.3 拉萨-羌塘初始碰撞时间的上限约束

  • 不同学者将拉萨-羌塘地体的初始碰撞时间约束至中侏罗世(Pan Guitang et al.,1983; Xu Ronghua et al.,1985)至晚白垩世范围(Li Jinxiang et al.,2011; Fan Jianjun et al.,2015a2015b)。这些年龄的确定主要基于以下证据:① 晚侏罗世、早白垩世沙木罗组、东巧组与下伏蛇绿岩的不整合(Girardeau et al.,1984; 陈道公等,2004; Zhu Dicheng et al.,2016; Ma Anlin et al.,20182020a2020b)。但Fan Jianjun et al.(2017)Li Shun et al.(2017)认为沙木罗组和东巧组的分布局限于班公湖-怒江缝合带北缘,这可能代表晚侏罗世—早白垩世班公湖-怒江特提斯洋北缘的弧-弧与弧-陆碰撞。② 班公湖-怒江缝合带内132~108 Ma OIB型基性岩(Bao Peisheng et al.,2007; Fan Jianjun et al.,2014)以及羌塘地块南部125~105 Ma弧特征岩浆岩表明班公湖-怒江洋直到晚白垩世还未关闭。但Zhu Dicheng et al.(2016)Li Shun et al.(2019)认为OIB型基性岩可能是由于班公湖-怒江洋板片断裂后,软流圈上涌而形成的。在此背景下沉积的同时期灰岩与OIB型玄武岩的组合很像洋岛,并不能表明洋壳的存在。③ 拉萨地体北部早白垩世地层中含有羌塘地体南部碎屑物质(Lai Wen et al.,2019)。Luo Anbo et al.(2020)认为这些拉萨早白垩世的地层中存在的南羌塘的碎屑物质是由于东部较早的碰撞使得其成为物源向西部提供碎屑物质。

  • 图6 多仁组、亚多组与可能物源地体的碎屑锆石累积分布曲线图和年龄分布直方图(a)及多维尺度统计分析图(MDS)(b)

  • Fig.6 Cumulative distribution curves and histogram of ages of detrital zircons from Yaduo Formation, Duoren Formation and potential source terranes (a) , and multidimensional scale statistical analysis (MDS) (b)

  • 拉萨、南羌塘数据来源于Xue Weiwei et al.,2023; 噶木龙组数据来源于Sun Gaoyuan et al.,2019; TJM数据来源于Zeng Ming et al.,2016; N=(14,1610)—N=(样品数量,颗粒数量)

  • Lhasa, South Qiangtang data from Xue Weiwei et al., 2023; Gamulong Formation data from Sun Gaoyuan et al., 2019; TJM data from Zeng Ming et al., 2006; N= (14, 1610) —N= (sample numbers, grain numbers)

  • 我们的研究表明,多仁组与亚多组构造环境为同碰撞海沟沉积,主要基于以下证据:① 多仁组与亚多组沉积环境为海底扇;② 含有特征的沉积岩屑及火成岩屑;③ 物源分析表明来自于木嘎岗日杂岩的再循环;④ 地质图上,亚多组、多仁组与木嘎岗日杂岩均位于班怒带的南端。如前所述,碰撞海沟沉积记录了大陆碰撞初期从大陆隆升到海沟沉积的过渡(Hu Xiumian et al.,20162017)。在这种构造模式下,初始碰撞的开始导致增生杂岩抬升、侵蚀。大量沉积碎屑被海底峡谷侵蚀搬运到海沟中,很好地解释了亚多组和多仁组中出现的沉积物再循环现象(图7)。据此推断,沿班公湖-怒江缝合带改则—日土区域拉萨-羌塘初始碰撞发生在亚多组、多仁组沉积之前(晚侏罗世)。

  • 有学者提出南羌塘南侧增生楔抬升和剥蚀的事件是由于洋内弧和羌塘碰撞形成的(Fan Jianjun et al.,2018; Luo Anbo et al.,2020)。近年来班公湖-怒江缝合带自东向西均发现了晚侏罗世的弧岩浆岩,指示洋内弧可能存在(Zeng Ming et al.,2016; Liu Weiliang et al.,2018)。然而,多仁组和亚多组并非弧-陆碰撞的产物。一方面,多仁组和亚多组中并不含有大量的弧岩浆岩碎屑,这和被解释为弧-陆碰撞沉积记录的沙木罗组完全不同(Luo Anbo et al.,2021),因此从碎屑物源的角度缺乏洋内弧的记录。另外,班公湖-怒江缝合带目前发现的侏罗纪弧岩浆记录都是零星分布的,在地质历史时期是否存在连续的洋内弧地貌并不清楚,这些岩石到达海沟是否会引起弧-陆碰撞从而造成上板块抬升和剥蚀还需进一步研究。

  • 图7 班公湖-怒江缝合带晚侏罗世同碰撞海沟沉积亚多组和多仁组物质来源示意图

  • Fig.7 Material source diagram of Yaduo Formation and Duoren Formation in Late Jurassic syn-collision trench deposition in Bangong Lake-Nujiang suture zone

  • 5 结论

  • 通过以上分析,本文获得以下结论:

  • (1)亚多组、多仁组碎屑锆石(YC1σ(2+))年龄分别为 220.4±1.4 Ma(n=3)、158.70±0.81 Ma(n=2),结合沉积学与岩相学分析,将其沉积时代限制在了晚侏罗世。

  • (2)多仁组、亚多组砂岩Q∶F∶L分别为52∶4∶44、32∶8∶60,重矿物以锆石、电气石及磷灰石为主,均显示出沉积再循环的特征,结合碎屑锆石年龄分布模式,认为其物源主要来自于南羌塘火山岩以及木嘎岗日杂岩。

  • (3)多仁组、亚多组均为深海—半深海浊流沉积,结合其地理位置位于蛇绿岩的南侧,认为二者构造背景为同碰撞海沟盆地。

  • (4)同碰撞海沟盆地中沉积的多仁组、亚多组沉积将拉萨-羌塘的初始碰撞时间的上限限定在多仁组—亚多组沉积时期。

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202309092?st=article_issue

  • 注释

  • ❶ 西藏自治区地质矿产局.2004. 狮泉河地区1∶250000地质调查报告.

  • ❷ 西藏自治区地质矿产局.2006.1∶250000改则地区地质图附报告.

  • ❸ 成都地质矿产研究所.2004.1∶250000喀纳地区地质图附报告.

  • 参考文献

    • Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59~79.

    • Bao Peisheng, Xiao Xuchang, Su Li, Wang Jun. 2007. Petrological, geochemical and chronological constraints for the tectonic setting of the Dongcuo ophiolite in Tibet. Science in China Series D: Earth Sciences, 50(5): 660~671.

    • BGMRXAR (Bureau of Geology and Mineral Resources of Xizang Autonomous Region). 1997. Rock Strata of Tibet Autonomous Region. Wuhan: China University of Geosciences Press (in Chinese with English abstract).

    • Chen Daogong, Ni Tao. 2004. U, Th and Pb chemical composition of zircon microzones in high grade metamorphic rocks of Dabie-Sulu orogenic belt, China. Acta Petrologica Sinica, 20(5): 10~17(in Chinese with English abstract).

    • Decelles P G, Kapp P, Gehrels G E, Ding Lin. 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics, 33(5-6): 824~849.

    • Dickinson W R. 1982. Compositions of sandstones in circum-Pacific subduction complexes and fore-arc basins. AAPG Bulletin, 66(2): 121~137.

    • Dickinson W R, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1-2): 115~125.

    • Fan Jianjun, Li Cai, Xie Chaoming. 2014. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Banggongcuo-Nujiang oceanic arm of the Neo-Tethys. International Geology Review, 56(12): 1504~1520.

    • Fan Jianjun, Li Cai, Liu Yiming, Xu Jianxin. 2015a. Age and nature of the late early cretaceous Zhaga Formation, northern Tibet: Constraints on when the Bangong-Nujiang Neo-Tethys Ocean closed. International Geology Review, 57(3): 342~353.

    • Fan Jianjun, Li Cai, Xie Chaoming, Wang Ming, Chen Jinwen. 2015b. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean. Lithos, 227: 148~160.

    • Fan Jianjun, Li Cai, Wu Hao, Zhang Tianyu, Wang Ming, Chen Jingwen, Xu Jianxin. 2016. Late Jurassic adakitic granodiorite in the Dong Co area, northern Tibet: Implications for subduction of the Bangong-Nujiang oceanic lithosphere and related accretion of the Southern Qiangtang terrane. Tectonophysics, 691: 345~361.

    • Fan Jianjun, Li Cai, Wang Ming, Liu Yiming, Xie Chaoming. 2017. Remnants of a Late Triassic ocean island in the Gufeng area, northern Tibet: Implications for the opening and early evolution of the Bangong-Nujiang Tethyan Ocean. Journal of Asian Earth Sciences, 135: 35~50.

    • Fan Jianjun, Li Cai, Wang Ming, Xie Chaoming. 2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences. 107: 231~249.

    • Fan Jianjun, Niu Yaoling, Liu Yiming, Hao Yujie. 2021. Timing of closure of the Meso-Tethys Ocean: Constraints from remnants of a 141-135 Ma ocean island within the Bangong-Nujiang Suture Zone, Tibetan Plateau. Gas Bulletin, 133 (9-10): 1875~1889.

    • Fan Shuaiquan, Shi Rendeng, Ding Lin, Zhang Guokai. 2011. Constraints of detrital zircons on the Late Jurassic-Early Cretaceous sediment source in Bangong Lake area, China. Chinese Journal of Geology, 46(3): 847~864 (in Chinese with English abstract).

    • Garzanti E, Andò S, Vezzoli G. 2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth & Planetary Science Letters, 277(3-4): 422~432.

    • Gehrels G, Valencia V, Pullen A. 2006. Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona Laser Chron Center. The Paleontological Society Papers, 12: 67~76.

    • Gehrels G, Kapp P, Decelles P, Pullen A, Blakey R, Weislogel A, Ding Lin, Guynn J, Martin A, Mcquarrie N. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30: TC5016.

    • Girardeau J, , Marcoux J, Allègre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Dongqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27~31.

    • Guo Tieying. 1991. Nali Geology of Tibet. Wuhan: China University of Geosciences Press (in Chinese with English abstract).

    • Guynn J H, Kapp P, Pullen A, Heizler M, Gehrels G, Ding Lin. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505~508.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27~62.

    • Hu Xiumian, Wang Jiangang, Marcelle, Fadel B D, Eduardo G A, Garzanti E, An Wei. 2016. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Research, 32: 76~92.

    • Hu Xiumian, Wang Jiangang, An Wei, Eduardo G A, Li Juan. 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Science China: Earth Sciences, 60(4): 603~625.

    • Hu Xiumian, An Wei, Eduardo G A, Liu Qun. 2020. Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet. Science China (Earth Sciences), 63(12): 2017~2028.

    • Hu Xiumian, Ma Anlin, Xue Weiwei, Garzanti E, Cao Yong, Li Shiming, Sun Gaoyuan, Lai Wen. 2022. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, 229: 104031.

    • Huang Tongtong, Xu Jifeng, Chen Jianlin, Wu Jianbin, Zeng Yunchuan. 2017. Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean: Insights from detrital zircons. International Geology Review, 59(2): 166~184.

    • Hubert J F. 1962. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Research, 32(3): 440~450.

    • Ingersoll R V, Bullard T F, Ford R L. 1984. The effect of grain size ondetrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 54(1): 103~116

    • Ineson J R. 1989. Coarse-grained submarine fan and slope apron deposits in a Cretaceous back-arc basin, Antarctica. Sedimentology, 36: 793~819.

    • Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47~69.

    • Kapp P, Murphy M A, Yin A, Harrison T M, Ding Lin, Guo Jinghu. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22: 1029.

    • Lai Wen, Hu Xiumian, Garzanti E, Sun Gaoyuan, Ma Anlin. 2019. Initial growth of the northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). GSA Bulletin, 131(11-12): 1823~1836.

    • Leier A L, Kapp P, Gehrels G E, Peter G, DeCelles P G. 2010. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, southern Tibet. Basin Research, 19(3): 361~378.

    • Li Cai, Ceng Liren, Hu Ke. 1995. Study on the Paleo-Tethys Suture Zone of Longmu Co-Shuanghu, Tibet. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Li Chao, Wang Genhou, Zhao Zhongbao, Du Jinxue, Ma Xuxuan, Zheng Yanlong. 2020. Late Mesozoic tectonic evolution of the central Bangong-Nujiang suture zone, central Tibetan Plateau. International Geology Review, 62(18): 2300~2323.

    • Li Jinxiang, Qin Kezhang, Li Guangming, Xiao Bo, Zhao Junxing, Chen Lei. 2011. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology. Journal of Asian Earth sciences, 41(6): 525~536.

    • Li Shimin, Wang Qing, Zhu Dicheng, Peter A, Cawood P A, Stern R J, Weinberg R, Zhao Zhidan, Mo Xuanxue. 2020. Reconciling orogenic drivers for the evolution of the Bangong-Nujiang Tethys during Middle-Late Jurassic. Tectonics, 32(2): e2019TC005951.

    • Li Shun, Guilmette C, Ding Lin, Xu Qiang, Fu Jiajun, Yue Yahui. 2017. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision. Journal of Asian Earth Sciences, 147: 469~484.

    • Li Shun, Yin Changqing, Guilmette C, Ding Lin, Zhang Jian. 2019. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198: 102907.

    • Liu Deliang, Shi Rendeng, Ding Lin, Huang Qishuai, Zhang Xiaoran, Yue Yahui, Zhang Liyun. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong-Nujiang Tethyan Ocean. Gondwana Research, 41: 157~172.

    • Liu Weiliang, Huang Qiangtai, Gu Man, Zhong Yun, Zhou Renjie, Gu Xiaodong, Zheng Hao, Liu Jingnan, Lu Xingxin, Xia Bin. 2018. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet. Gondwana Research, 60: 1~14.

    • Ludwig K R. 2011. Isoplot 4. 15: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 1~75.

    • Luo Anbo, Fan Jianjun, Wang Ming, Zeng Xiaowen. 2019. Sedimentary age of the Bangong Hu-Nujiang flysite: Constraints of detritological zircons from Yaduo Village, Gaize County, China. Earth Science, 44(7): 2426~2444.

    • Luo Anbo, Fan Jianjun, Hao Yujie, Li Hang, Zhang Bochuan. 2020. Aptian flysch in central Tibet: Constraints on the timing of closure of the Bangong-Nujiang Tethyan Ocean. Tectonics, 39: e2020TC006198.

    • Ma Anlin, Hu Xiumian, Garzanti E, Eduardo G A. 2017. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing. Journal of Geophysical Research, 122(7): 4790~4813.

    • Ma Anlin, Hu Xiumian, Kapp P, Han Zhong, Lai Wen, BouDagher-Fadel M. 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 506: 30~47.

    • Ma Anlin, Hu Xiumian, Kapp P, BouDagher-Fadel M, Lai Wen. 2020a. Pre-Oxfordian (>163 Ma) ophiolite obduction in central Tibet. Geophysical Research Letters, 47(10): e2019GL086650.

    • Ma Anlin, Hu Xiumian, Kapp P, Lai Wen, Han Zhong, Xue Weiwei. 2020b. Mesozoic subduction accretion history in central Tibet constrained from provenance analysis of the Mugagangri subduction complex in the Bangong-Nujiang suture zone. Tectonics, 39(9): e2020TC006144.

    • Mange M A, Maurer H. 1992. Heavy Minerals in Colour. London: Chapman and Hall.

    • Marsaglia K M, Ingersoll R V. 1992. Compositional trends in arc-related, deep-marine sand and sandstone: A reassessment of magmatic-arc provenance. Geological Society of America Bulletin, 104(12): 1637~1649.

    • Matthews W, Guest B, Madronich L. 2018. Latest Neoproterozoic to Cambrian detrital zircon facies of western Laurentia. Geosphere, 14(1): 243~264.

    • Otofuji Y I, Mu C L, Tanaka K, Miura D, Inokuchi H, Kamei R, Tamai M, Takemoto K, Zaman H, Yokoyama M. 2007. Spatial gap between Lhasa and Qiangtang blocks inferred from Middle Jurassic to Cretaceous paleomagnetic data. Earth & Planetary Science Letters, 262(3-4): 581~593.

    • Pan Guitang. 1983. A preliminary study on Bangong Co-Nujiang suture. Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 12: 229~242.

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Pullen A, Kapp P, Gehrels G E, Ding Lin, Zhang Qinghai. 2011. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. Geological Society of America Bulletin, 123(3-4): 585~600.

    • Shi Rendeng, William L G, Suzanne Y O, Huang Qishuai, Zhang Xiaoran, Liu Deliang, Zhi Xiachen, Xia Qiongxia, Ding Lin. 2012. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet. Gondwana Research, 21: 194~206.

    • Spencer C J, Kirkland C L, Taylor R J M. 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7(4): 581~589.

    • Sun Gaoyun, Hu Xiumian, Xu Yiwei, Bou D F, Marcelle K. 2019. Discovery of Middle Jurassic trench deposits in the Bangong-Nujiang suture zone: Implications for the timing of Lhasa-Qiangtang initial collision. Tectonophysics, 750: 344~358.

    • Van Achterbergh E, Ryan C, Griffin W. 2001. GLITTER On-Line Interactive Data Reduction for the LA-ICPMS Microprobe. Sydney: Macquarie Research Ltd.

    • Vermeesch P. 2013. Multi-sample comparison of detrital age distributions. Chemical Geology, 341: 140~146.

    • Wang Baodi, Wang Liquan, Chung Sunlin, Chen Jianlin, Yin Fuguang, Liu Han, Li Xiaobo, Chen Lingkang. 2016. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18~33.

    • Xu Ronghua, Urs Schärer U, Allègre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. Journal of Geology, 93(1): 41~57.

    • Xue Weiwei, Ma Anlin, Hu Xiumian. 2020. The redefinition of the Jurassic—Cretaceous lithostratigraphic framework in the Qiangtang basin, Xizang Plateau. Geological Review, 66(5): 1114~1129 (in Chinese with English abstract).

    • Xue Weiwei, Hu Xiumian, Garzanti E, Ma Anlin, Lai Wen. 2023. Discriminating Qiangtang, Lhasa, and Himalayan sediment sources in the Tibetan Plateau by detrital-zircon U-Pb age facies. Earth-Science Reviews, 236: 104271.

    • XZBGM. 1993. Regional Geology of Xizang Autonomous Region, China, with Geologic Map. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Yan Maodu, Zhang Dawen, Fang Xiaomin, Ren Haidong, Zhang Weilin, Zan Jinbo, Song Chunhui, Zhang Tao. 2016. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang block: Implications for the evolution of the Paleo- and Meso-Tethys. Gondwana Research, 39: 292~316.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Yu Guangming, Zhang Shaonan, Wang Chenshan. 1990. Interpretation of trace element cluster analysis results of Jurassic, Cretaceous and Tertiary argillaceous rocks in Xizang area. Lithofacies and Palaeogeography, (5): 1~7(in Chinesewith English abstract).

    • Zeng Ming, Zhang Xiang, Cao Hui, Ettensohn F R, Cheng Wenbin. 2016. Lang Xinghai Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Research, 28(1): 147~157.

    • Zeng Yunchuan, Chen Jianlin, Xu Jifeng, Wang Baodi, Huang Feng. 2016. Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite melange, central Tibet. Geochemistry, Geophysics, Geosystems, 17(12): 4859~4877.

    • Zhai Qingguo, Jahn B, Wang Jun, Hu Peiyuan, Tang Yue. 2016. The oldest Paleo-Tethyan ophiolitic mélange in the Xizang(Tibetan) Plateau. Acta Geologica Sinica, 128: 355~373.

    • Zhang Yuxiu, Li Zhiwu, Yang Wenguang, Zhu Lidong, Jin Xin, Zhou Xiaoyao, Tao Gang, Zhang Kaijun. 2017. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China. Journal of Asian Earth Sciences 13: 212~242.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Dilek Y, Hou Zengqian, Mo Xuanxuea. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429~1454.

    • Zhu Dicheng, Li Shimin, Cawood P A, Wang Qing, Zhao Zhidan, Liu Shengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.

    • 陈道公, 倪涛. 2004. 大别-苏鲁造山带高级变质岩中锆石微区U, Th和Pb化学组成特征统计. 岩石学报, 20(5): 10~17.

    • 樊帅权, 史仁灯, 丁林, 张国凯. 2011. 碎屑锆石对班公湖地区晚侏罗世—早白垩世沉积物源的制约. 地质科学, 46(3): 847~864.

    • 郭铁鹰. 1991. 西藏阿里地质, 武汉: 中国地质大学出版社.

    • 李才, 曾立人, 胡可. 1995. 西藏龙木错-双湖古特提斯缝合带研究. 北京: 地质出版社.

    • 罗安波, 范建军, 王明, 曾孝文. 2019. 班公湖-怒江洋复理石沉积时代: 来自改则县亚多村碎屑锆石的制约. 地球科学, 44(7): 2426~2444.

    • 西藏自治区地质调查局. 1993. 西藏自治区区域地质志. 北京: 地质出版社.

    • 西藏自治区地质矿产局. 1997. 西藏自治区岩石地层. 武汉: 中国地质大学出版社.

    • 薛伟伟, 马安林, 胡修棉. 2020. 羌塘盆地侏罗系—白垩系岩石地层格架厘定. 地质论评, 66(5): 1114~1129.

    • 余光明, 张哨楠, 王成善. 1990. 西藏地区侏罗、白垩及第三系地层泥质岩的微量元素聚类分析成果解释. 岩相古地理, (5): 1~7.

  • 参考文献

    • Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59~79.

    • Bao Peisheng, Xiao Xuchang, Su Li, Wang Jun. 2007. Petrological, geochemical and chronological constraints for the tectonic setting of the Dongcuo ophiolite in Tibet. Science in China Series D: Earth Sciences, 50(5): 660~671.

    • BGMRXAR (Bureau of Geology and Mineral Resources of Xizang Autonomous Region). 1997. Rock Strata of Tibet Autonomous Region. Wuhan: China University of Geosciences Press (in Chinese with English abstract).

    • Chen Daogong, Ni Tao. 2004. U, Th and Pb chemical composition of zircon microzones in high grade metamorphic rocks of Dabie-Sulu orogenic belt, China. Acta Petrologica Sinica, 20(5): 10~17(in Chinese with English abstract).

    • Decelles P G, Kapp P, Gehrels G E, Ding Lin. 2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics, 33(5-6): 824~849.

    • Dickinson W R. 1982. Compositions of sandstones in circum-Pacific subduction complexes and fore-arc basins. AAPG Bulletin, 66(2): 121~137.

    • Dickinson W R, Gehrels G E. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1-2): 115~125.

    • Fan Jianjun, Li Cai, Xie Chaoming. 2014. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Banggongcuo-Nujiang oceanic arm of the Neo-Tethys. International Geology Review, 56(12): 1504~1520.

    • Fan Jianjun, Li Cai, Liu Yiming, Xu Jianxin. 2015a. Age and nature of the late early cretaceous Zhaga Formation, northern Tibet: Constraints on when the Bangong-Nujiang Neo-Tethys Ocean closed. International Geology Review, 57(3): 342~353.

    • Fan Jianjun, Li Cai, Xie Chaoming, Wang Ming, Chen Jinwen. 2015b. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean. Lithos, 227: 148~160.

    • Fan Jianjun, Li Cai, Wu Hao, Zhang Tianyu, Wang Ming, Chen Jingwen, Xu Jianxin. 2016. Late Jurassic adakitic granodiorite in the Dong Co area, northern Tibet: Implications for subduction of the Bangong-Nujiang oceanic lithosphere and related accretion of the Southern Qiangtang terrane. Tectonophysics, 691: 345~361.

    • Fan Jianjun, Li Cai, Wang Ming, Liu Yiming, Xie Chaoming. 2017. Remnants of a Late Triassic ocean island in the Gufeng area, northern Tibet: Implications for the opening and early evolution of the Bangong-Nujiang Tethyan Ocean. Journal of Asian Earth Sciences, 135: 35~50.

    • Fan Jianjun, Li Cai, Wang Ming, Xie Chaoming. 2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences. 107: 231~249.

    • Fan Jianjun, Niu Yaoling, Liu Yiming, Hao Yujie. 2021. Timing of closure of the Meso-Tethys Ocean: Constraints from remnants of a 141-135 Ma ocean island within the Bangong-Nujiang Suture Zone, Tibetan Plateau. Gas Bulletin, 133 (9-10): 1875~1889.

    • Fan Shuaiquan, Shi Rendeng, Ding Lin, Zhang Guokai. 2011. Constraints of detrital zircons on the Late Jurassic-Early Cretaceous sediment source in Bangong Lake area, China. Chinese Journal of Geology, 46(3): 847~864 (in Chinese with English abstract).

    • Garzanti E, Andò S, Vezzoli G. 2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth & Planetary Science Letters, 277(3-4): 422~432.

    • Gehrels G, Valencia V, Pullen A. 2006. Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona Laser Chron Center. The Paleontological Society Papers, 12: 67~76.

    • Gehrels G, Kapp P, Decelles P, Pullen A, Blakey R, Weislogel A, Ding Lin, Guynn J, Martin A, Mcquarrie N. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30: TC5016.

    • Girardeau J, , Marcoux J, Allègre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Dongqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27~31.

    • Guo Tieying. 1991. Nali Geology of Tibet. Wuhan: China University of Geosciences Press (in Chinese with English abstract).

    • Guynn J H, Kapp P, Pullen A, Heizler M, Gehrels G, Ding Lin. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505~508.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27~62.

    • Hu Xiumian, Wang Jiangang, Marcelle, Fadel B D, Eduardo G A, Garzanti E, An Wei. 2016. New insights into the timing of the India-Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Research, 32: 76~92.

    • Hu Xiumian, Wang Jiangang, An Wei, Eduardo G A, Li Juan. 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Science China: Earth Sciences, 60(4): 603~625.

    • Hu Xiumian, An Wei, Eduardo G A, Liu Qun. 2020. Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet. Science China (Earth Sciences), 63(12): 2017~2028.

    • Hu Xiumian, Ma Anlin, Xue Weiwei, Garzanti E, Cao Yong, Li Shiming, Sun Gaoyuan, Lai Wen. 2022. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang Ocean. Earth-Science Reviews, 229: 104031.

    • Huang Tongtong, Xu Jifeng, Chen Jianlin, Wu Jianbin, Zeng Yunchuan. 2017. Sedimentary record of Jurassic northward subduction of the Bangong-Nujiang Ocean: Insights from detrital zircons. International Geology Review, 59(2): 166~184.

    • Hubert J F. 1962. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Research, 32(3): 440~450.

    • Ingersoll R V, Bullard T F, Ford R L. 1984. The effect of grain size ondetrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 54(1): 103~116

    • Ineson J R. 1989. Coarse-grained submarine fan and slope apron deposits in a Cretaceous back-arc basin, Antarctica. Sedimentology, 36: 793~819.

    • Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47~69.

    • Kapp P, Murphy M A, Yin A, Harrison T M, Ding Lin, Guo Jinghu. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22: 1029.

    • Lai Wen, Hu Xiumian, Garzanti E, Sun Gaoyuan, Ma Anlin. 2019. Initial growth of the northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma). GSA Bulletin, 131(11-12): 1823~1836.

    • Leier A L, Kapp P, Gehrels G E, Peter G, DeCelles P G. 2010. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, southern Tibet. Basin Research, 19(3): 361~378.

    • Li Cai, Ceng Liren, Hu Ke. 1995. Study on the Paleo-Tethys Suture Zone of Longmu Co-Shuanghu, Tibet. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Li Chao, Wang Genhou, Zhao Zhongbao, Du Jinxue, Ma Xuxuan, Zheng Yanlong. 2020. Late Mesozoic tectonic evolution of the central Bangong-Nujiang suture zone, central Tibetan Plateau. International Geology Review, 62(18): 2300~2323.

    • Li Jinxiang, Qin Kezhang, Li Guangming, Xiao Bo, Zhao Junxing, Chen Lei. 2011. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology. Journal of Asian Earth sciences, 41(6): 525~536.

    • Li Shimin, Wang Qing, Zhu Dicheng, Peter A, Cawood P A, Stern R J, Weinberg R, Zhao Zhidan, Mo Xuanxue. 2020. Reconciling orogenic drivers for the evolution of the Bangong-Nujiang Tethys during Middle-Late Jurassic. Tectonics, 32(2): e2019TC005951.

    • Li Shun, Guilmette C, Ding Lin, Xu Qiang, Fu Jiajun, Yue Yahui. 2017. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision. Journal of Asian Earth Sciences, 147: 469~484.

    • Li Shun, Yin Changqing, Guilmette C, Ding Lin, Zhang Jian. 2019. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198: 102907.

    • Liu Deliang, Shi Rendeng, Ding Lin, Huang Qishuai, Zhang Xiaoran, Yue Yahui, Zhang Liyun. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong-Nujiang Tethyan Ocean. Gondwana Research, 41: 157~172.

    • Liu Weiliang, Huang Qiangtai, Gu Man, Zhong Yun, Zhou Renjie, Gu Xiaodong, Zheng Hao, Liu Jingnan, Lu Xingxin, Xia Bin. 2018. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet. Gondwana Research, 60: 1~14.

    • Ludwig K R. 2011. Isoplot 4. 15: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 1~75.

    • Luo Anbo, Fan Jianjun, Wang Ming, Zeng Xiaowen. 2019. Sedimentary age of the Bangong Hu-Nujiang flysite: Constraints of detritological zircons from Yaduo Village, Gaize County, China. Earth Science, 44(7): 2426~2444.

    • Luo Anbo, Fan Jianjun, Hao Yujie, Li Hang, Zhang Bochuan. 2020. Aptian flysch in central Tibet: Constraints on the timing of closure of the Bangong-Nujiang Tethyan Ocean. Tectonics, 39: e2020TC006198.

    • Ma Anlin, Hu Xiumian, Garzanti E, Eduardo G A. 2017. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing. Journal of Geophysical Research, 122(7): 4790~4813.

    • Ma Anlin, Hu Xiumian, Kapp P, Han Zhong, Lai Wen, BouDagher-Fadel M. 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 506: 30~47.

    • Ma Anlin, Hu Xiumian, Kapp P, BouDagher-Fadel M, Lai Wen. 2020a. Pre-Oxfordian (>163 Ma) ophiolite obduction in central Tibet. Geophysical Research Letters, 47(10): e2019GL086650.

    • Ma Anlin, Hu Xiumian, Kapp P, Lai Wen, Han Zhong, Xue Weiwei. 2020b. Mesozoic subduction accretion history in central Tibet constrained from provenance analysis of the Mugagangri subduction complex in the Bangong-Nujiang suture zone. Tectonics, 39(9): e2020TC006144.

    • Mange M A, Maurer H. 1992. Heavy Minerals in Colour. London: Chapman and Hall.

    • Marsaglia K M, Ingersoll R V. 1992. Compositional trends in arc-related, deep-marine sand and sandstone: A reassessment of magmatic-arc provenance. Geological Society of America Bulletin, 104(12): 1637~1649.

    • Matthews W, Guest B, Madronich L. 2018. Latest Neoproterozoic to Cambrian detrital zircon facies of western Laurentia. Geosphere, 14(1): 243~264.

    • Otofuji Y I, Mu C L, Tanaka K, Miura D, Inokuchi H, Kamei R, Tamai M, Takemoto K, Zaman H, Yokoyama M. 2007. Spatial gap between Lhasa and Qiangtang blocks inferred from Middle Jurassic to Cretaceous paleomagnetic data. Earth & Planetary Science Letters, 262(3-4): 581~593.

    • Pan Guitang. 1983. A preliminary study on Bangong Co-Nujiang suture. Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 12: 229~242.

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Pullen A, Kapp P, Gehrels G E, Ding Lin, Zhang Qinghai. 2011. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. Geological Society of America Bulletin, 123(3-4): 585~600.

    • Shi Rendeng, William L G, Suzanne Y O, Huang Qishuai, Zhang Xiaoran, Liu Deliang, Zhi Xiachen, Xia Qiongxia, Ding Lin. 2012. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet. Gondwana Research, 21: 194~206.

    • Spencer C J, Kirkland C L, Taylor R J M. 2016. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology. Geoscience Frontiers, 7(4): 581~589.

    • Sun Gaoyun, Hu Xiumian, Xu Yiwei, Bou D F, Marcelle K. 2019. Discovery of Middle Jurassic trench deposits in the Bangong-Nujiang suture zone: Implications for the timing of Lhasa-Qiangtang initial collision. Tectonophysics, 750: 344~358.

    • Van Achterbergh E, Ryan C, Griffin W. 2001. GLITTER On-Line Interactive Data Reduction for the LA-ICPMS Microprobe. Sydney: Macquarie Research Ltd.

    • Vermeesch P. 2013. Multi-sample comparison of detrital age distributions. Chemical Geology, 341: 140~146.

    • Wang Baodi, Wang Liquan, Chung Sunlin, Chen Jianlin, Yin Fuguang, Liu Han, Li Xiaobo, Chen Lingkang. 2016. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18~33.

    • Xu Ronghua, Urs Schärer U, Allègre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. Journal of Geology, 93(1): 41~57.

    • Xue Weiwei, Ma Anlin, Hu Xiumian. 2020. The redefinition of the Jurassic—Cretaceous lithostratigraphic framework in the Qiangtang basin, Xizang Plateau. Geological Review, 66(5): 1114~1129 (in Chinese with English abstract).

    • Xue Weiwei, Hu Xiumian, Garzanti E, Ma Anlin, Lai Wen. 2023. Discriminating Qiangtang, Lhasa, and Himalayan sediment sources in the Tibetan Plateau by detrital-zircon U-Pb age facies. Earth-Science Reviews, 236: 104271.

    • XZBGM. 1993. Regional Geology of Xizang Autonomous Region, China, with Geologic Map. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Yan Maodu, Zhang Dawen, Fang Xiaomin, Ren Haidong, Zhang Weilin, Zan Jinbo, Song Chunhui, Zhang Tao. 2016. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang block: Implications for the evolution of the Paleo- and Meso-Tethys. Gondwana Research, 39: 292~316.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Yu Guangming, Zhang Shaonan, Wang Chenshan. 1990. Interpretation of trace element cluster analysis results of Jurassic, Cretaceous and Tertiary argillaceous rocks in Xizang area. Lithofacies and Palaeogeography, (5): 1~7(in Chinesewith English abstract).

    • Zeng Ming, Zhang Xiang, Cao Hui, Ettensohn F R, Cheng Wenbin. 2016. Lang Xinghai Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Research, 28(1): 147~157.

    • Zeng Yunchuan, Chen Jianlin, Xu Jifeng, Wang Baodi, Huang Feng. 2016. Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite melange, central Tibet. Geochemistry, Geophysics, Geosystems, 17(12): 4859~4877.

    • Zhai Qingguo, Jahn B, Wang Jun, Hu Peiyuan, Tang Yue. 2016. The oldest Paleo-Tethyan ophiolitic mélange in the Xizang(Tibetan) Plateau. Acta Geologica Sinica, 128: 355~373.

    • Zhang Yuxiu, Li Zhiwu, Yang Wenguang, Zhu Lidong, Jin Xin, Zhou Xiaoyao, Tao Gang, Zhang Kaijun. 2017. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China. Journal of Asian Earth Sciences 13: 212~242.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Dilek Y, Hou Zengqian, Mo Xuanxuea. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429~1454.

    • Zhu Dicheng, Li Shimin, Cawood P A, Wang Qing, Zhao Zhidan, Liu Shengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.

    • 陈道公, 倪涛. 2004. 大别-苏鲁造山带高级变质岩中锆石微区U, Th和Pb化学组成特征统计. 岩石学报, 20(5): 10~17.

    • 樊帅权, 史仁灯, 丁林, 张国凯. 2011. 碎屑锆石对班公湖地区晚侏罗世—早白垩世沉积物源的制约. 地质科学, 46(3): 847~864.

    • 郭铁鹰. 1991. 西藏阿里地质, 武汉: 中国地质大学出版社.

    • 李才, 曾立人, 胡可. 1995. 西藏龙木错-双湖古特提斯缝合带研究. 北京: 地质出版社.

    • 罗安波, 范建军, 王明, 曾孝文. 2019. 班公湖-怒江洋复理石沉积时代: 来自改则县亚多村碎屑锆石的制约. 地球科学, 44(7): 2426~2444.

    • 西藏自治区地质调查局. 1993. 西藏自治区区域地质志. 北京: 地质出版社.

    • 西藏自治区地质矿产局. 1997. 西藏自治区岩石地层. 武汉: 中国地质大学出版社.

    • 薛伟伟, 马安林, 胡修棉. 2020. 羌塘盆地侏罗系—白垩系岩石地层格架厘定. 地质论评, 66(5): 1114~1129.

    • 余光明, 张哨楠, 王成善. 1990. 西藏地区侏罗、白垩及第三系地层泥质岩的微量元素聚类分析成果解释. 岩相古地理, (5): 1~7.