en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

徐进鸿,男,1989年生。博士,副教授,从事矿床地球化学专业研究。E-mail: jgyxjh@gztrc.edu.cn。

通讯作者:

吴承泉,男,1987年生。博士,副研究员,主要从事矿床地球化学研究。E-mail: wuchengquan@mail.gyig.ac.cn。

参考文献
Audétat A, Garbe-Schönberg D, Kronz A, Pettke T, Rusk B, Donovan J J, Lowers H A. 2015. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards and Geoanalytical Research, 39(2): 171~184.
参考文献
Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683~684.
参考文献
Cao Huawen, Zhang Shouting, Santosh M, Zheng Luo, Tang Li, Li Dong, Zhang Yunhui. 2015. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages. Journal of Asian Earth Sciences, 111: 751~780.
参考文献
Cao Mingping, Yao Junming, Deng Xiaohua, Yang Fengjie, Mao Guangzhou, Mathur R. 2017. Diverse and multistage Mo, Au, Ag-Pb-Zn and Cu deposits in the Xiong'er Terrane, East Qinling: From Triassic Cu mineralization. Ore Geology Reviews, 81: 565~574.
参考文献
Chen Yanjing, Fu Shigu. 1992. Gold Mineralization in West Henan, China. Beijing: China Seismological Press (in Chinese with English abstract).
参考文献
Chen Yanjing, Sui Yinghui, Pirajno F. 2003. Exclusive evidences for CMF model and a case of orogenic silver deposits: Isotope geochemistry of the Tieluping silver deposit, east Qinling orogen. Acta Petrologica Sinica, 19(3): 551~568 (in Chinese with English abstract).
参考文献
Chen Yanjing, Pirajno F, Sui Yinghui. 2004. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: A case study of orogenic silver-dominated deposits and related tectonic setting. Mineralium Deposita, 39(5): 560~575.
参考文献
Chen Yanjing, Zhai Mingguo, Jiang Shaoyong. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica, 25(11): 2695~2726 (in Chinese with English abstract).
参考文献
Cherniak D J. Watson E B, Wark D A. 2007. Ti diffusion in quartz. Chemical Geology, 236(1~2): 65~74.
参考文献
Collins P L. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology, 74(6): 1435~1444.
参考文献
Donovan J J, Lowers H A, Rusk B G. 2011. Improved electron probe microanalysis of trace elements in quartz. American Mineralogist, 96(2~3): 274~282.
参考文献
Fontes J C, Matray J M. 1993. Geochemistry and origin of formation brines from the Paris basin, France 1. Brines associated with Triassic salts. Chemical Geology, 109(1~4): 149~175.
参考文献
Gao Jianjing, Mao Jingwen, Chen Maohong, Ye Huishou, Zhang Jijun, Li Yongfeng. 2011. Vein structure analysis and 40Ar/39Ar dating of sericite from sub-ore altered rocks in the Tieluping large-size Ag-Pb deposit of western Henan Province. Acta Geologica Sinica, 85(7): 1172~1187 (in Chinese with English abstract).
参考文献
Gao Jianjing, Mao Jingwen, Ye Huishou, Chen Maohong, Zheng Rongfen. 2010. Geology and ore-forming fluid of silver-lead-zinc lode deposit of Shagou, western Henan Province. Acta Petrologica Sinica, 26(3): 740~756 (in Chinese with English abstract).
参考文献
Götze J, Plötze M, Graupner T, Hallbauer D K, Bray C J. 2004. Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochimica et Cosmochimica Acta, 68(18): 3741~3759.
参考文献
Guillong M L, Meier D, Allan M. 2008. SILLS: A MATLAB-based program for the reduction of Laserablation ICPMS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course, 40: 328~333.
参考文献
Han Jjinsheng, Chen Huayong, Yao Junming, Deng Xiaohua. 2015. 2. 24 Ga mafic dykes from Taihua Complex, southern Trans-North China Orogen, and their tectonic implications. Precambrian Research, 270: 124~138.
参考文献
Han Jinsheng, Yao Junming, Deng Xiaohua. 2013. Sr-isotope constraint on the source of the fluids forming the Shagou Ag-Pb-Zn deposit, eastern Qinling orogen. Acta Petrologica Sinica, 29: 18~26 (in Chinese with English abstracts).
参考文献
Han Jinsheng, Yao Junming, Chen Huayong, Deng Xiaohua, Ding Junying. 2014. Fluid inclusion and stable isotope study of the Shagou Ag-Pb-Zn deposit, Luoning, Henan Province, China: Implications for the genesis of an orogenic lode Ag-Pb-Zn system. Ore Geology Reviews, 62: 199~210.
参考文献
Han Yigui, Zhang Shihong, Pirajno F, Wang Yu, Zhang Yuanhou. 2009. New 40Ar-39Ar age constraints on the deformation along the Machaoying fault zone: Implications for Early Cambrian tectonism in the North China craton. Gondwana Research, 16: 255~263.
参考文献
Heinrich C A, Pettke T, Halter W E, Aigner-Torres M, Audétat A, Günther D, Horn I. 2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta, 67(18): 3473~3497.
参考文献
Hu Shouxi, Lin Qianlong, Chen Zeming, Li Shimei. 1988. Geology and Metallogeny of the Collision Belt between the North and the South China Plates. Nanjing: Nanjing University Press (in Chinese with English abstract).
参考文献
Jacamon F, Larsen R B. 2009. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos, 107(3~4): 281~291.
参考文献
Klemm L M, Pettke T, Heinrich C A. 2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43(5): 533~552.
参考文献
Kloppmann W, Négrel P, Casanova J, Klinge H, Schelkes K, Guerrot C. 2001. Halite dissolution derived brines in the vicinity of a Permian salt dome (N German basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochimica et Cosmochimica Acta, 65(22): 4087~4101.
参考文献
Korges M, Weis P, Lüders V, Laurent O. 2018. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology, 46(1): 75~78.
参考文献
Kouzmanov K, Pokrovski G S. 2012. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. Society of Economic Geologists Special Publication, 16: 573~618.
参考文献
Lai Shaocong, Qin Jiangfeng. 2010. Ophiolite and Volcanic Rocks in MianLue Suture Zone, South Qinling. Beijing: Science Press (in Chinese with English abstract).
参考文献
Lan Tingguang, Hu Ruizhong, Bi Xianwu, Mao Guangjian, Wen Bojie, Liu Liang, Chen Yinghua. 2018. Metasomatized asthenospheric mantle contributing to the generation of Cu-Mo deposits within an intracontinental setting: A case study of the ~128 Ma Wangjiazhuang Cu-Mo deposit, eastern North China Craton. Journal of Asian Earth Sciences, 160: 460~489.
参考文献
Landtwing M R, Pettke T, Halter W E, Heinrich C A, Redmond P B, Einaudi M T, Kunze K. 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry. Earth and Planetary Science Letters, 235(1~2): 229~243.
参考文献
Li Houmin, Wang Denghong, Wang Xiaoxia, Zhang Changqing, Li Lixing. 2012. The Early Mesozoic syenogranite in Xiong'er Mountain area, southern margin of North China Craton: SHRIMP zircon U-Pb dating, geochemistry and its significance. Acta Petrologica et Mineralogica, 31(6): 771~782 (in Chinese with English abstract).
参考文献
Li Nuo, Chen Yanjing, McNaughton N J, Ling Xiaoxiao, Deng Xiaohua, Yao Junming. 2015. Formation and tectonic evolution of the khondalite series at the southern margin of the North China Craton: Geochronological constraints from a 1. 85-Ga Mo deposit in the Xiong'ershan area. Precambrian Research, 269: 1~17.
参考文献
Li Nuo, Chen Yanjing, Santosh M, Pirajno F. 2018. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance. Earth-Science Reviews, 182: 141~173.
参考文献
Li Yongfeng. 2005. The temporal-spatial evolution of Mesozoic granitoids in the Xiong'ershan area and their relationships to molybdenum-gold mineralization. Doctoral dissertation of China University of Geosciences (in Chinese with English summary).
参考文献
Li Zhanke, Li Jianwei, Zhao Xinfu, Zhou Meifu, Selby D, Bi Shijian, Zhao Zhenjun. 2013. Crustal-extension Ag-Pb-Zn veins in the Xiong'ershan District, Southern North China craton: Constraints from the Shagou deposit. Economic Geology, 108(7): 1703~1729.
参考文献
Li Zhanke, Li Jianwei, Cooke D R, Danyushevsky L, Zhang L, O'Brien H, Lahaye Y, Zhang Wen, Xu Haijun. 2016. Textures, trace elements, and Pb isotopes of sulfides from the Haopinggou vein deposit, southern North China Craton: Implications for discrete Au and Ag-Pb-Zn mineralization. Contributions to Mineralogy and Petrology, 171(12): 171~199.
参考文献
Li Zhanke, Bi Shijian, Li Jianwei, Zhang Wen, Cooke D R, Selby D. 2017. Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit, southern North China craton. Ore Geology Reviews, 82: 232~251.
参考文献
Liang Tao, Lu Ren, Luo Zhaohua, BaiFengjun, Liu Xiao. 2015. LA-ICP-MS U-Pb age of zircons from Haopinggou biotite granite porphyry in Xiong'er Moutain, Western Henan Province, and its geologic implications. Geological Reviews, 61(4): 901~912 (in Chinese with English abstract).
参考文献
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.
参考文献
Mao Jingwen, Xie Guiqing, Pirajno F, Ye Huishou, Wang Yanbin, Li Yongfeng, Xiang Junfeng. 2010. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications. Australian Journal of Earth Sciences, 57(1): 51~78.
参考文献
Mao Jingwen, Zheng Rongfen, Ye Huishou, Gao Jianjing, Chen Wen. 2006. 40Ar/39Ar dating of fuchsite and sericite from altered rocks close to ore veins in Shagou large-size Ag-Pb-Zn deposit of Xiong'ershan area, western Henan Province, and its significance. Mineral Deposits, 25(4): 359~368 (in Chinese with English abstract).
参考文献
Marsala A, Wagner T, Wälle M. 2013. Late-metamorphic veins record deep ingression of meteoric water: A LA-ICP-MS fluid inclusion study from the fold-and-thrust belt of the Rhenish Massif, Germany. Chemical Geology, 351: 134~153.
参考文献
Martel A T, Gibling M R, Nguyen M. 2001. Brines in the Carboniferous Sydney Coalfield, Atlantic Canada. Applied Geochemistry, 16(1): 35~55.
参考文献
McCaig A M, Tritlla J, Banks D A. 2000. Fluid mixing and recycling during Pyrenean thrusting: Evidence from fluid inclusion halogen ratios. Geochimica et Cosmochimica Acta, 64(19): 3395~3412.
参考文献
Michael K, Machel H G, Bachu S. 2003. New insights into the origin and migration of brines in deep Devonian aquifers, Alberta, Canada. Journal of Geochemical Exploration, 80(2~3): 193~219.
参考文献
Müller A, Wiedenbeck M, Flem B, Schiellerup H. 2008. Refinement of phosphorus determination in quartz by LA-ICP-MS through defining new reference material values. Geostandards and Geoanalytical Research, 32(3): 361~376.
参考文献
Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin D J, Stenina N G, Kronz A. 2010. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Mineralium Deposita, 45(7): 707~727.
参考文献
Munz I A, Yardley B W D, Banks D A. 1995. Deep penetration of sedimentary fluids in basement rocks from southern Norway: Evidence from hydrocarbon and brine inclusions in quartz veins. Geochimica et Cosmochimica Acta, 59(2): 239~254.
参考文献
Pan Junyi, Ni Pei, Wang Rucheng. 2019. Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions. American Mineralogist: Journal of Earth and Planetary Materials, 104(8): 1092~1116.
参考文献
Rusk B G, Reed M H, Dilles J H, Klemm L M, Heinrich C A. 2004. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chemical Geology, 210(1~4): 173~199.
参考文献
Rusk B G, Reed M H, Dilles J H, Kent A J. 2006. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. American Mineralogist, 91(8~9): 1300~1312.
参考文献
Rusk B G, Lowers H A, Reed M H. 2008. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology, 36(7): 547~550.
参考文献
Shi Quanzeng, Wei Xiangdong, Li Mingli, Pang Jiqun. 2004. Nappe and Extensional Detachment Structures in North Side of East Qinling, Henan. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Shu Qihai, Chang Zhaoshan, Hammerli J, Lai Yong, Huizenga J M. 2017. Composition and evolution of fluids forming the Baiyinnuo'er Zn-Pb skarn deposit, northeastern China: Insights from laser ablation ICP-MS study of fluid inclusions. Economic Geology, 112(6): 1441~1460.
参考文献
Shu Qihai, Chang Zhaoshan, Mavrogenes J. 2021. Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: An example at the Haobugao Zn-Pb skarn, China. Geology, 49(4): 473~477.
参考文献
Smith H A, Ross A A, Robinson S, Webster R, Chesher R, Riles A. 2020. Technical Report: NI 43-101 Technical Report Update on the Ying Ag-Pb-Zn Property in Henan Province, People's Republic of China.
参考文献
Stephenson P R, Fowler A P, Smith H A. 2016. Ying NI 43-101 technical report, Henan Province. China AMC Mining Consultants (Canada) Ltd, Vancouver.
参考文献
Wark D A, Watson E B. 2006. TitaniQ: A titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152(6): 743~754.
参考文献
Williams-Jones A E, Samson I M, Ault K M, Gagnon J E, Fryer B J. 2010. The genesis of distal zinc skarns: Evidence from the Mochito deposit, Honduras. Economic Geology, 105(8): 1411~1440.
参考文献
Worden R H, Manning D A C, Bottrell S H. 2006. Multiple generations of high salinity formation water in the Triassic Sherwood Sandstone: Wytch Farm oilfield, onshore UK. Applied Geochemistry, 21(3): 455~475.
参考文献
Xu Jinhong, Jiang Yuping, Hu Shuli, Zhang Zhengwei, Wu Chengquan, Zheng Chaofei, Li Xiyao, Jin Ziru, Zhang Sensen, Zhou Yatao. 2024. Petrogenesis and post-collisional setting of the Paleoproterozoic A-type granites in the Xiong'ershan area along the southern margin of the North China Craton. Journal of Earth Science, 35(4): 416~429.
参考文献
Zhang Guowei, Bai Yubao, Sun Yong, Guo Anlin, Zhou Dingwu, Li Taohong. 1985. Composition and evolution of the Archaean crust in central Henan, China. Precambrian Research, 27: 7~35.
参考文献
Zhang Zhengwei, Zhu Bingquan, Chang Xiangyang. 2003. The geochemistry of the alkaline-rich intrusive rocks in east Qinling, central China. Earth Science Frontiers, 10:
参考文献
507~519 (in Chinese with English abstract).
参考文献
Zhao Taiping, Zhai Minggou, Xia Bin, Li Huimin, Zhang Yixing, Wan Yusheng. 2004. Study on the zircon SHRIMP ages of the Xiong'er Group volcanic rocks: Constraint on the starting time of covering strata in the North China Craton. Chinese Science Bulletin, 9: 2495~2502.
参考文献
Zhao Taiping, Zhou Meifu. 2009. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. Journal of Asian Earth Sciences, 36: 183~195.
参考文献
Zheng Rongfen, Mao Jingwen, Gao Jianjing. 2006. Characteristics of sulfide and silver minerals in Shagou silver-lead-zinc deposit of Xiong'er Shan, Henan Province, and their significance. Mineral Deposits, 25(6): 715~726 (in Chinese with English abstract).
参考文献
Zhu Rixiang, Yang Jinhui, Wu Fuyuan. 2012. Timing of destruction of the North China Craton. Lithos, 149: 51~60.
参考文献
陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报, 25(11): 2695~2726.
参考文献
陈衍景, 隋颖慧, Pirajno F. 2003. CMF模式的排他性依据和造山型银矿实例东秦岭铁炉坪银矿同位素地球化学. 岩石学报, 19(3): 551~568.
参考文献
高建京, 毛景文, 陈懋弘, 叶会寿, 张继军, 李永峰. 2011. 豫西铁炉坪银铅矿床矿脉构造解析及近矿蚀变岩绢云母40Ar-39Ar年龄测定. 地质学报, 85(7): 1172~1187.
参考文献
高建京, 毛景文, 叶会寿, 陈懋弘, 郑榕芬. 2010. 豫西沙沟脉状Ag-Pb-Zn矿床地质特征和成矿流体研究. 岩石学报, 26(3): 740~756.
参考文献
韩金生, 姚军明, 邓小华. 2013. 东秦岭沙沟银铅锌矿床成矿流体来源的锶同位素约束. 岩石学报, 29(1): 18~26.
参考文献
胡受奚, 林潜龙, 陈泽铭, 黎世美. 1988. 华北与华南古板块拼合带地质和成矿. 南京: 南京大学出版社.
参考文献
赖绍聪, 秦江锋. 2010. 南秦岭勉略缝合带蛇绿岩与火山岩. 北京: 科学出版社.
参考文献
李厚民, 王登红, 王晓霞, 张长青, 李立兴. 2012. 华北地块南缘熊耳山早中生代正长花岗岩—SHRIMP 锆石U-Pb年龄, 地球化学及意义. 岩石矿物学杂志, 31(6): 771~782.
参考文献
李永峰. 2005. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用. 中国地质大学(北京)博士学位论文.
参考文献
梁涛, 卢仁, 罗照华, 白凤军, 刘晓. 2015. 豫西熊耳山蒿坪沟黑云母花岗斑岩的锆石 LA-ICP-MS U-Pb 年龄及其地质意义. 地质论评, 61(4): 901~912.
参考文献
毛景文, 郑榕芬, 叶会寿, 高建京, 陈文. 2006. 豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义. 矿床地质, 25(4): 359~368.
参考文献
彭恩生. 1994. 蒿坪沟—铁炉坪地区银金多金属矿床成矿地质特征. 中南矿冶学院学报, 25(4): 427~430.
参考文献
石铨曾, 尉向东, 李明立, 庞继群. 2004. 河南省东秦岭山脉北缘的推覆构造及伸展拆离构造. 北京: 地质出版社.
参考文献
张正伟, 朱炳泉, 常向阳. 2003. 东秦岭北部富碱侵入岩带岩石地球化学特征及构造意义. 地学前缘, 10(4): 507~519.
参考文献
郑榕芬, 毛景文, 高建京. 2006. 河南熊耳山沙沟银铅锌矿床中硫化物和银矿物的矿物学特征及其意义. 矿床地质, 25(6): 715~726.
目录contents

    摘要

    豫西洛宁县发育多个脉状银多金属矿床,其中沙沟大型Ag-Pb-Zn矿床普遍发育与硫化物共生的自形石英颗粒,记录不同成矿阶段的物理-化学条件,为揭示矿物沉淀机制和矿床成因提供良好契机。本文在矿床地质特征研究的基础上,通过阴极发光、流体包裹体显微测温和单个流体包裹体成分分析,对沙沟矿床中的石英开展精细的矿物学研究和单个流体包裹体成分分析。沙沟矿床成矿过程由石英-菱铁矿-黄铁矿阶段、石英-白云石-多金属硫化物阶段和石英-方解石阶段构成。在石英-白云石-多金属硫化物阶段识别出三个世代的石英:Q1位于石英颗粒核部,CL 图像发光强度均一,生长环带不发育,无共生硫化物; Q2位于石英颗粒幔部,与硫化物共生,CL 图像发光较暗,生长环带不规则;Q3位于石英颗粒边部,CL 图像发光强度均一,生长环带发育。通过对各世代石英的成分分析显示,Al 与Li具有明显的正相关关系(R2=0.97),并且和阴极发光亮度密切相关,指示Al3+ 与Li+替代Si4+进入石英中。Q1和Q2的Ti含量分别为0.722×10-6~3.62×10-6和0.387×10-6~1.12×10-6,Al含量分别为81.9×10-6~2436×10-6和3.67×10-6~132×10-6,表明成矿体系为中-低温热液环境,温度下降和pH升高是引发矿物沉淀的主要因素。单个流体包裹体LA-ICP-MS分析显示,成矿流体富集碱金属,具有较高的Rb/Na和Cs/Na比值,表明沙沟矿床与岩浆作用有关,属于岩浆-热液成矿。

    Abstract

    Several vein-like silver polymetallic deposits are developed in Luoning County, western Henan Province, China. Among these, the Shagou deposit, characterized by significant Ag-Pb-Zn mineralization, commonly contains authigenic quartz grains coeval with sulfides.These quartz grains provide valuable insights into the physicochemical conditions prevailing during different mineralization stages and the precipitation mechanisms of metal minerals from ore-forming fluids. This study presents a detailed mineralogical investigation of quartz in the Shagou deposit, utilizing cathodoluminescence (CL) imaging, fluid inclusion microcalorimetry, and individual fluid inclusion composition analysis. These techniques were applied in conjunction with detailed field geological investigations. The mineralization process of the Shagou deposit comprises three stages: a quartz-siderite-pyrite stage, a quartz-dolomite-polymetallic sulfide stage, and a quartz-calcite stage. In the quartz-dolomite-polymetallic sulfide stage, three generations of quartz were identified: ① Q1, located in the core of quartz grains, exhibits uniform bright CL intensity with undeveloped growth zonings; ② Q2, found in the mantle of quartz grains and coeval with sulfides, is characterized by dark CL intensity and chaotic growth zonings; ③ Q3, situated at the edge of quartz grains, displays bright CL intensity with well-defined growth rings. Compositional analysis of quartz from various generations revealed a strong positive correlation between Al and Li content (R2 = 0.97) across all stages. This correlation is closely linked to CL brightness, indicating that Al3+ and Li+ substitute for Si4+ within the quartz structure. Ti content in Q1 and Q2 ranges from 0.722×10-6 to 3.62×10-6 and 0.387×10-6 to 1.12×10-6, respectively, while Al content ranges from 81.9×10-6 to 2436×10-6 and 3.67×10-6 to 132×10-6, indicating a medium-low temperature hydrothermal environment for mineralization, with decreasing temperature and increasing pH as the primary factors triggering mineral precipitation. LA-ICP-MS analysis of single fluid inclusions showed enrichment in alkali metals with high Rb/Na and Cs/Na ratios. This strongly suggests a magmatic origin for the mineralizing fluid, classifying the Shagou deposit as a magmatic-hydrothermal mineralization system.

  • 石英是热液矿床中最常见的脉石矿物,含有Ti、Al等微量元素和丰富的流体包裹体。利用阴极发光结合石英微量元素和单个流体包裹体成分可以精细划分流体形成的期次、探讨成矿流体的物理化学条件、揭示成矿元素富集机制和矿床成因(Rusk et al.,200420062008; Donovan et al.,2011)。例如Pan Junyi et al.(2019) 通过阴极发光图像在瑶岗仙白钨矿床单颗石英中识别出四个世代,单个流体包裹体LA-ICP-MS成分分析表明相分离和流体混合是导致黑钨矿沉淀的重要因素。

  • 沙沟矿床是华北陆块南缘豫西成矿带规模最大、品位最高的银多金属矿床,已发现43条银铅锌矿脉,探明银、铅和锌金属量分别达到1754 t、38万t和19 万t(图1、2; Zheng Rongfen et al.,2006; Stephenson et al.,2016; Smith et al.,2020)。前人针对该矿床在年代学、成矿流体、成矿物质来源等方面开展了大量研究工作(毛景文等,2006; 高建京等,2011; Li Zhanke et al.,2013; 韩金生等,2013; Han Jinsheng et al.,2014),但其矿物沉淀机制和矿床成因仍存在很大争议。

  • 沙沟矿床经历多期硅化,发育大量贯穿成矿过程、具有完整晶形的石英晶体(郑榕芬等,2006; 高建京等,2011),是精细刻画银多金属矿床成矿过程,揭示矿物沉淀机制和矿床成因的理想研究对象。虽然,前人对矿石中的石英开展大量流体包裹体研究(高建京等,2011; Li Zhanke et al.,2013; Han Jinsheng et al.,2014),但对包裹体所属的具体期次缺乏精细划分。本文在详细的矿床地质特征研究基础之上,通过阴极发光对自形石英进行精细的成矿期次划分,进而开展石英微量元素和单个流体包裹体LA-ICP-MS原位微区成分分析,探讨沙沟矿床矿物沉淀机理、矿床成因及其对矿产勘查的指示意义。

  • 1 区域地质背景

  • 豫西熊耳山矿集区位于华北陆块南缘,北以三宝断裂为界,南抵栾川断裂(图1; 胡受奚等,1988; 陈衍景等,20032009)。区内出露地层主要为新太古代太华超群变质基底、古元古代熊耳群火山岩、中元古代官道口群碳酸盐岩等组成的盖层和中生代—新生代陆相红色碎屑沉积岩(图1; 胡受奚等,1988; 张正伟等,2003; Zhao Taiping et al.,20042009)。区内断裂构造发育,中部的拆离断层沿太华超群和熊耳群之间的不整合面展布,在熊耳山变质核杂岩的北坡发生显著拆离,而南坡拆离效应不明显(图1、2; 石铨曾等,2004);南部的马超营区域性断裂呈东西向展布,具有长期活动的历史(胡受奚等,1988; Han Yigui et al.,2009);区内广泛发育的NE-NEE向次级高角度断裂带控制大多数矿脉的形成和分布(毛景文等,2006; 高建京等,2011)。区内晚侏罗世—早白垩世岩浆活动强烈(图1、2),以五丈山(156.8±1.2 Ma; 李永峰,2005)和蒿坪(130.7±1.4 Ma; 李永峰,2005)岩体为主,与区内成矿作用具有密切联系的斑岩体(如雷门沟)、岩株(如祁雨沟)和岩脉主要形成于157~131 Ma(李永峰,2005; Mao Jingwen et al.,2010; Zhu Rixiang et al.,2012; Li Nuo et al.,2018)。

  • 2 矿床地质

  • 下峪矿田发育多个中-大型Ag-Pb-Zn 矿床,是豫西最大的银矿产地(图1、2)。矿田位于熊耳山变质核杂岩体西缘,出露地层以太华超群和熊耳群为主(图1、2; 石铨曾等,2004; 毛景文等,2006; 高建京等,2011)。高角度北东—北北东向断裂在矿田内广泛分布,控制着区内银矿脉的分布(图2)。绝大多数含矿断裂倾向北西,少数倾向南东,倾角50°~85°。矿田内出露大量基性岩脉,锆石U-Pb定年表明它们主要形成于古元古代(Han Jinsheng et al.,2015)。矿田南部和东部出露的花岗岩岩脉分别形成于1805±12 Ma和1792±14 Ma(Xu Jinhong et al.,2024)。寨凹正长花岗岩形成于217.7±3.6 Ma(李厚民等,2012)。蒿坪沟花岗斑岩出露于矿田北部,侵位时代为早白垩纪(135~130 Ma; Mao Jingwen et al.,2010; 梁涛等,2015)。此外,重力地球物理资料显示在矿田的东部和南部存在隐伏岩体(图2; Cao Mingping et al.,2017)。

  • 图1 华北陆块南缘地质简图及主要成矿区(据胡受奚等,1988; 张正伟等,2003

  • Fig.1 Simplified geological map showing major mining districts in the southern North China craton (modified from Hu Shouxi et al., 1988; Zhang Zhengwei et al., 2003)

  • 图2 下峪矿田沙沟矿床Ag-Pb-Zn矿脉分布图(据Mao Jingwen et al.,2006; Stephenson et al.,2016; Smith et al.,2020

  • Fig.2 Geological map showing distribution of Ag-Pb-Zn ore veins for the Shagou deposit in the Xiayu ore field (after Mao Jingwen et al., 2006; Stephenson et al., 2016; Smith et al., 2020)

  • 沙沟矿床位于下峪矿田西南部(图2、3),截止2019年,已发现超过43条热液蚀变矿脉,已探明银金属量超过1754 t(平均品位为284 g/t,局部可达1%)、铅金属量超过38 万t(平均品位为5.60%)、锌金属量超过19 万t(平均品位为2.82%)(图2、3; Stephenson et al.,2016; Smith et al.,2020)。矿脉赋存于新太古界太华超群中,走向多为北东—北北东向,倾角60°~95°,宽度0.7~10 m,长度370~3000 m(图2、3; Stephenson et al.,2016)。单个矿脉通常含有2~8个矿体,矿体长度为25~215 m、宽度为0.34~1.66 m。主要矿脉的地质特征见表1。S7-1、S19和S2W2号脉是沙沟矿床重要的蚀变矿化破碎带(表1; Smith et al.,2020),其中S7-1号脉走向290°~310°,倾角67°~85°,长度2337 m,宽度0.30~5.06 m;含有8个矿体,单个矿体长度45~210 m,宽度0.91~1.42 m,Ag、Pb和Zn品位分别为236~743 g/t、4.67%~11.42%和2.11%~8.82%。

  • 图3 沙沟矿床12号勘探线剖面图(据Stephenson et al.,2016; Smith et al.,2020

  • Fig.3 Cross section of the No.12 prospecting line of the Shagou deposit (after Stephenson et al., 2016; Smith et al., 2020)

  • 表1 沙沟矿床典型Ag-Pb-Zn矿脉的几何特征

  • Table1 A summary of the geometrical features and metal contents of major Ag-Pb-Zn veins in the Shagou deposit

  • 与成矿有关的热液蚀变主要为绢云母化、硅化和碳酸盐化等,通常在矿脉两侧对称发育,从外向内依次为绢云母-绿泥石化(图4a、b)、菱铁矿化(图4a、b)、硅化(图4a~f)和方解石化(图4f)。硅化在矿脉内非常普遍,往往具有多阶段特征(图5a、d),通常在张性蚀变带中形成晶型完整的六方柱状自形石英,颗粒最大可达2 cm(图5)。自形石英通常垂直脉壁生长,形成梳状构造(图5a、b)。它们与闪锌矿、方铅矿等硫化物共生形成脉状矿石,或与粗粒方铅矿形成致密块状矿石(图5a、b),其内部亦可见方铅矿包裹体(图5c、d)。

  • 沙沟矿床矿石类型主要为多金属硫化物石英脉状矿石、浸染状矿石和致密块状矿石(图4、5),矿石构造主要有(网)脉状构造、块状构造、晶洞构造、梳状构造、团块状构造、(细脉)浸染状构造(图4、5),矿石结构包括自形—半自形晶粒状结构、胶状结构、填隙结构、固溶体分离结构和交代残余结构等(图5、6)。矿石矿物以闪锌矿和方铅矿为主,其次为黄铁矿和黄铜矿(图6a~e)。黄铁矿多为碎斑状,被闪锌矿、方铅矿等硫化物胶结(图6a)。闪锌矿通常为黑色(图4a~c),内部含有乳滴状黄铜矿,被黄铜矿-方铅矿-(银)黝铜矿构成的多金属细脉穿插(图6b)。黄铜矿以乳滴状出现在闪锌矿中,或与方铅矿、(银)黝铜矿等构成不规则银矿细脉(图6c、d)。方铅矿通常呈中细粒,与闪锌矿构成主成矿阶段的硫化物矿脉(图4);或在张性断裂中与自形石英构成脉状矿石(图5a、b),并被自形石英包裹(图5c、d);其内部常见(银)黝铜矿、辉银矿等银矿物构成的细脉或集合体(图6d、f)。沙沟矿床发育多种银矿物,以(银)黝铜矿和硫锑铜银矿为主,其次为辉铜银矿、辉银矿、金银矿和自然银等(图6a~f)。(银)黝铜矿通常与黄铜矿、方铅矿等构成细脉或者集合体(图6b~d)。硫锑铜银矿常出现在方铅矿边部(图6e)。辉银矿通常与(银)黝铜矿构成细脉出现在方铅矿内部(图6f)。金银矿非常少见,与闪锌矿、方铅矿等胶结碎斑状黄铁矿(图6a)。

  • 图4 沙沟矿床野外与手标本照片

  • Fig.4 Photographs of outcrop and hand samples showing textural relations of the Shagou deposit

  • (a、b)—典型的Ag-Pb-Zn矿脉及围岩蚀变;(c)—Ag-Pb-Zn矿脉捕获石英-黄铁矿角砾;(d)—致密块状Ag-Pb-Zn穿插切割早期英-黄铁矿并含有其角砾;(e)—开放空间充填的晚期梳状石英脉;(f)—穿插切割Ag-Pb-Zn矿脉的晚期方解石脉;AWR—蚀变围岩;Cal—方解石;Gn—方铅矿;Py—黄铁矿;Qz—石英;Sd—菱铁矿;Ser—绢云母;Sp—闪锌矿

  • (a, b) —Ag-Pb-Zn vein consist of quartz, siderite, sphalerite, and galena; sericite is well developed on both sides of the vein; (c) —Ag-Pb-Zn vein contain fragments or breccias of quartz-pyrite; (d) —massive Ag-Pb-Zn vein cut and host pyrite-sericite-quartz veins; (e) —quartz vein with vuggy structure cut earlier sulfide assemblages; (f) —calcite cut earlier sulfide assemblages; AWR—altered wall rock; Cal—calcite; Gn—galena; Py—pyrite; Qz—quartz; Sd—siderite; Ser—sericite; Sp—sphalerite

  • 图5 沙沟矿床石英晶体的典型照片(a、b)和单颗粒照片(c、d)

  • Fig.5 Photographs showing typical quartz crystal (a, b) and single grain quartz (c, d) of the Shagou deposit

  • Gn—方铅矿;Qz—石英;Sp—闪锌矿

  • Gn—galena; Qz—quartz; Sp—sphalerite

  • 基于野外矿脉的穿插关系及室内显微镜观察,沙沟矿床的成矿过程可划分为3个阶段(图7):①石英-菱铁矿-黄铁矿阶段,以出现粗粒聚集状黄铁矿、烟灰状石英和菱铁矿为特征(图4c、d),其他硫化物发育较少。早期形成的石英-黄铁矿脉通常被后期的主成矿脉充填、切割,或作为角砾被包裹在矿脉之中(图4c、d,图6a)。②石英-白云石-多金属硫化物阶段(主成矿阶段),方铅矿、闪锌矿等金属硫化物开始大量沉淀,共同构成多金属矿脉,常见于蚀变带中部,切穿两侧的绢云母-绿泥石蚀变(图4a、b)。闪锌矿多为暗棕色,常见乳滴状黄铜矿,后期方铅矿和黝铜矿等沿其裂隙充填(图6b)。方铅矿以致密块状产出,切割早期沉淀的石英-黄铁矿矿脉,并包含黄铁矿角砾(图4c、d)。银矿物多呈不规则状,交代、穿插方铅矿、闪锌矿和黄铜矿等硫化物(图6b~f)。③石英-方解石阶段,为硫化物沉淀结晶后阶段,硫化物少见,石英呈晶簇状沉淀在各种开放空间内,形成梳状石英(图4e);方解石大量沉淀,矿物颗粒常呈数厘米宽,切割主成矿矿脉(图4f)。沙沟矿床各成矿阶段矿物生成顺序见图7。

  • 3 样品及分析方法

  • 本次研究样品采自沙沟矿床S7-1、S19和S2W2矿脉的不同标高部位,属于主成矿阶段(图3,表2)。从中挑选出石英晶体完整的部位磨制成包裹体片,用于阴极发光、流体包裹体显微测温、石英和单个流体包裹体LA-ICP-MS 原位成分分析,以上实验均在中国科学院地球化学研究所矿床地球化学国家重点实验室完成。

  • 图6 沙沟矿床的硫化物矿石的显微镜与背散色图像

  • Fig.6 Reflected-light and back-scattered electron images of the sulfide ores from the Shagou deposit

  • (a)—碎斑状黄铁矿含有丰富的方铅矿包裹体,且被闪锌矿和金银矿胶结;(b)—不规则的黝铜矿-方铅矿-黄铜矿细脉切割含有黄铜矿乳滴的闪锌矿;(c)—含有闪锌矿-方铅矿-黄铜矿-银黝铜矿的细脉;(d)—方铅矿和闪锌矿之间的黝铜矿-银黝铜矿集合体;(e)—硫锑铜银矿-方铅矿-黄铜矿切割闪锌矿;(f)—方铅矿中含有银黝铜矿-辉银矿的银矿脉;Ag-Ttr—银黝铜矿; Arg—辉银矿; Ccp—黄铜矿; Gn—方铅矿; Pol—硫锑铜银矿; Sp—闪锌矿; Ttr—黝铜矿

  • (a) —pyrite contains abundant galena inclusions and was cemented by sphalerite and kustelite; (b) —tetrahedrite, galena and chalcopyrite cut sphalerite; (c) —irregular vein contain sphalerite, galena, chalcopyrite and argentiferous tetrahedrite; (d) —tetrahedrite and coexisting argentiferous tetrahedrite are interstitial between sphalerite and galena; (e) —polybasite, galena and chalcopyrite cutting sphalerite; (f) —a silver-mineral vein consisting of argentiferous tetrahedrite and argentite within galena; Ag-Ttr—argentiferous tetrahedrite; Arg—argentite; Ccp—chalcopyrite; Gn—galena; Pol—polybasite; Sp—sphalerite; Ttr—tetrahedrite

  • 表2 沙沟矿床石英阴极发光、微量和流体包裹体成分研究样品简要描述

  • Table2 Brief description of the samples for CL, trace element and single fluid inclusion from the Shagou deposit

  • 图7 沙沟矿床矿物生成顺序图

  • Fig.7 Paragenetic sequence of the Shagou deposit

  • 阴极发光测试在JSM-7800F 型场发射扫描电子显微镜上进行,该扫描电镜配备有Mono CL4 型阴极发光仪。对包裹体片进行喷碳后,在10 kV 的加速电压和10 nA/mm 的束流密度下获取石英CL 图像。石英微量元素测试实验在LA-ICP-MS上完成。激光剥蚀系统为GeoLasPro,质谱为Agilent 7900,He作为载气和增敏气体,速率分别为450 mL/min和3 mL/min。实验条件为:激光能量 10 J/cm2,频率为10 Hz,束斑为44 μm。采用NIST610 作为分析外标,NIST612和天然石英标样作为质控。单个点位测试过程由20 s前背景信号收集、40 s剥蚀过程和30 s后背景组成。原始测试数据使用ICPMSDataCal软件进行离线处理(Liu Yongsheng et al.,2008),采用多外标、无内标法进行数据校正,采用Si 作为归一化元素消除激光剥蚀量变化对灵敏度漂移的影响(Lan Tingguang et al.,2018)。

  • 流体包裹体显微测温在Linkam THMS-600型冷热台上进行,该冷热台连接莱卡DM 2500型显微镜进行相变观察。使用美国流体公司的人工合成包裹体进行仪器校正。测温误差在小于-70℃时,为±0.2℃,-70℃到100℃为±1℃,100℃到400℃为±2℃。在冷冻或者加热开始的时候,温度下降或上升的速率为10~20℃/min,之后在靠近相转变的时候减为0.2℃/min。气液两相包裹体和CO2包裹体分别使用冰点和CO2络合物熔点通过Bodnar(1993)Collins(1979)方程进行计算。

  • 石英单个流体包裹体成分分析在LA-ICP-MS完成。激光剥蚀系统为GeoLasPro,质谱为Agilent 7900,He作为载气,Ar作为增敏气体,速率分别为450 mL/min和3 mL/min。激光束斑稍大于包裹体直径,从而能获得整个包裹体的完整成分。实验条件:频率10 Hz,能量10 J/cm2。数据校正使用NIST610做外标、显微测温盐度(%NaCleq)做内标(Heinrich et al.,2003)。每组分析由10个包裹体和两次NIST610(NIST610+10 流体包裹体+NIST610)构成。数据分析采用软件SILLS进行离线处理(Guillong et al.,2008)。

  • 4 分析结果

  • 4.1 阴极发光图像

  • 通过阴极发光图像和穿插切割关系,在沙沟矿床主成矿阶段的单颗石英中鉴别出三个世代的石英(图8a、b),呈核-幔-边结构分布:第一世代的石英(Q1)位于核部,阴极发光图像均匀较亮,生长环带不明显,部分被第二世代的石英(Q2)和第三世代的石英(Q3)切割;Q2 位于位于幔部,和Q1相比,Q2与硫化物共生,阴极发光图像较暗,生长环带杂乱; Q3 位于边部,未发现硫化物共生,阴极发光图像较较亮,生长环带明显。

  • 4.2 石英微量元素

  • 石英中含有较多的微量元素,但是能进入石英晶格的主要是Li、Al、Ti和Ge,其余元素主要以矿物包裹体和流体包裹体赋存在石英中(Müller et al.,2008; Audétat et al.,2015),因此本次研究主要对Li、Al、Ti和Ge元素进行测试(表3及附表1)。

  • 图8 沙沟矿床石英典型的阴极发光图像特征和生成顺序(a、b)

  • Fig.8 CL images (a, b) showing characteristics and paragenetic relationships of typical quartz in the Shagou deposits

  • 表3 沙沟矿床各阶段石英微量元素组成特征汇总

  • Table3 A summary of compositional characteristics of trace elements for quartz of different mineralization stages from the Shagou deposit

  • 分析结果显示沙沟矿床各世代的石英中,Q1石英中的Li、Al、Ti和Ge含量最高,Q3石英次之,而Q2石英中的Li、Al、Ti和Ge含量最低。Q1石英中的Li含量为6.71×10-6~167×10-6,平均值为83.7×10-6;Al含量为81.9×10-6~2436×10-6,平均值为1315×10-6;Ti含量0.722×10-6~3.62×10-6,平均值为2.30×10-6;Ge含量为1.68×10-6~13.2×10-6;平均值为6.54×10-6。Q2石英中的Li含量为0.145×10-6~9.45×10-6,平均值为5.18×10-6;Al含量为3.67×10-6~132×10-6,平均值为78.1×10-6;Ti含量0.387×10-6~1.12×10-6,平均值为0.629×10-6;Ge含量为1.55×10-6~7.64×10-6;平均值为3.95×10-6。Q3石英中的Li含量为11.6×10-6~89.8×10-6,平均值为40.8×10-6;Al含量为177×10-6~1428×10-6,平均值为654×10-6;Ti含量0.456×10-6~2.51×10-6,平均值为1.26×10-6;Ge含量为0.855×10-6~16.3×10-6;平均值为7.93×10-6

  • 4.3 流体包裹体显微测温

  • 观察显示沙沟矿床主成矿阶段单颗粒存在于Q2中的石英流体包裹体,以含CO2三相包裹体(LH2O-LCO2-VCO2)为主,富H2O的气液两相包裹体(LH2O-VH2O)较少(图9a~d)。显微测温显示40个富含CO2三相包裹体(LH2O-LCO2-VCO2)的均一温度为203~282℃,而CO2均一温度为29.3~31.2℃;CO2络合物熔点为3.9~8.5℃,对应盐度为2.90%~10.62%NaCleq。20个富H2O的气液两相包裹体(LH2O-VH2O)的均一温度为185~247℃,冰点为-1.4~-8.0℃,对应盐度为2.41%~11.70%NaCleq(表4及附表2)。

  • 4.4 单个流体包裹体成分

  • 激光剥蚀信号曲线显示当出现Na和K的峰时,表明已剥蚀到包裹体;此时成矿元素Pb、Zn、Ag、Mn、Fe、Rb、Sr、Sb、Cs和Ba等金属元素的峰也会出现,表明这些元素主要赋存于包裹体中(图10)。

  • 对沙沟矿床主成矿阶段Q2中40个三相包裹体开展LA-ICP-MS分析,成功获取19个包裹体成分数据,其中Na含量为11200×10-6~35200×10-6,平均值为22095×10-6; 16个包裹体的K含量高于检测线,为835×10-6~8270×10-6,平均值为3631×10-6;成矿元素Ag全部低于检测线,Pb和Zn高于检测线的包裹体分别为18和7个,含量分别为3.87×10-6~283×10-6和15.6×10-6~775×10-6,平均值分别为67.2×10-6和257×10-6;碱金属Rb和Cs高于检测线的个数分别为18和19个,含量5.03×10-6~120×10-6和4.54×10-6~81.4×10-6,平均值分别为65.5×10-6和28.9×10-6;碱土金属Sr和Ba高于检测线的个数分别为18和13个,含量分别为6.61×10-6~301× 10-6和11.4×10-6~97.1×10-6,平均值分别为112×10-6和37.8×10-6;半金属元素As、Sb和Te高于检测线的个数分别为3、8和2个,含量分别为27.8×10-6~71.6×10-6、10.6×10-6~437×10-6和18.7×10-6~59.4×10-6,平均值分别为53.0×10-6、190×10-6和39.1×10-6;其他金属中,Cu元素分析结果高于检测线的有7个数据,含量为22.7×10-6~275×10-6,平均值为139×10-6; W元素分析结果高于检测线的仅有1个数据,含量为10.8×10-6,Au和Mo元素的分析结果均低于检测线,故不讨论(表4及附表2)。

  • 表4 沙沟矿床石英中流体包裹体的微量元素(×10-6)组成特征汇总

  • Table4 A summary of compositional characteristics of trace elements (×10-6) of fluid inclusions from the Shagou deposit

  • 续表4

  • 注:-代表未分析或者低于检测线。

  • 图9 沙沟矿床流体包裹体(a~c)以及对应石英透色光和阴极发光(d)照片

  • Fig.9 Photomicrographs of fluid inclusions (a~c) and corresponding transcoloration and CL images of quartz (d) from the Shagou deposit

  • 在Q2石英中挑选20个气液两相包裹体开展LA-ICP-MS分析,成功获得10个包裹体成分。其中,Na含量为11000×10-6~45600×10-6,平均值为29350×10-6; 6个包裹体中的K含量高于检测线,为531×10-6~49500×10-6,平均值为18063×10-6;成矿元素Ag、Pb和Zn高于检测线的包裹体分别为3、9和4个,含量分别为2.22×10-6~18.4×10-6、2.15×10-6~487×10-6和6.96×10-6~160×10-6,平均值分别为10.2×10-6、168×10-6和94.0×10-6;碱金属Rb和Cs高于检测线的数据分别为7和10个,含量分别为2.28×10-6~64.3×10-6和3.54×10-6~300×10-6,平均值分别为30.0×10-6和99.0×10-6;碱土金属Sr和Ba高于检测线的数据分别为10和7个,含量分别为13.9×10-6~488×10-6和4.32×10-6~45.3×10-6,平均值分别为222×10-6和23.1×10-6;半金属元素As和Sb高于检测线的个数分别为2和6个,含量分别为45.3×10-6~70.1×10-6和30.5×10-6~266×10-6,平均值分别为57.7×10-6和137×10-6,Te全部低于检测线;其他金属中,Mo检测线的个数为1个,含量为4.10×10-6,W高于检测线的个数为2个,含量为2.02×10-6~6.88×10-6,平均值为4.45×10-6, Au和Cu元素的检测结果均低于检测线(表4及附表2)。

  • 图10 沙沟矿床包裹体激光剥蚀信号

  • Fig.10 Transient signal responses for selected elements obtained from LA-ICP-MS analysis of the Shagou deposit

  • 5 讨论

  • 5.1 石英世代

  • 沙沟矿床硅化与成矿具有密切关系,不同阶段均发育石英(图4、5)。由于流体活动的复杂性,早期形成的石英往往被后期热液交代,发生碎裂、溶解和再沉淀,因此通过石英的阴极发光特征精确识别不同世代石英的形成顺序至关重要(Rusk et al.,20062008)。

  • 沙沟矿床主成矿阶段块状和脉状矿石中的自形石英颗粒常与方铅矿等共生(图5a、b),岩相学显示石英内部包含有方铅矿,因此可以判定为主成矿阶段的石英(图5c、d)。SEM-CL 图像显示这些主成矿阶段的石英颗粒中存在三个世代的石英,呈核-幔-边结构分布。第一世代的石英(Q1)位于石英颗粒核部,阴极发光图像均匀较亮,生长环带不明显,明显不同于第二世代的石英(Q2),未见到共生硫化物,部分被第二世代的石英(Q2)和第三世代的石英(Q3)切割(图8),表明Q1形成早于Q2,为主成矿阶段硫化物沉淀前的石英。Q2位于幔部,阴极发光图像较暗,生长环带不规则,常与方铅矿共生(图8),为主成矿阶段与硫化物同时沉淀的石英。Q3位于石英颗粒边部,阴极发光图像较亮,生长环带明显,未发现与硫化物共生,部分穿插切割Q1和Q2(图8b),表明Q3形成晚于Q2,为主成矿阶段硫化物发生沉淀后的石英。

  • 石英阴极发光特征与其微量元素具有密切关系,温度大于400℃时,石英的CL亮度主要受Ti含量控制;而在温度低于300℃时,主要受到Al含量控制(Landtwing et al.,2005; Rusk et al.,20062008; Müller et al.,2010; Donovan et al.,2011)。在微量元素分析剖面中,沙沟矿床Q1和Q3(图像较亮)的Ti和Al含量比Q2(CL图像较暗)富集超过一个数量级(图11),指示Ti和Al含量可能共同控制沙沟矿床石英CL发光强度。

  • 此外,石英中的Li和Ge在微量元素分析剖面中表现出与Al相似的变化特征,与这些微量元素进入到石英晶格的方式有关(Götze et al.,2004; Jacamon and Larsen,2009)。Ge4+与Si4+具有相同的电子结构和相近离子半径,可以直接替代Si4+进入石英晶格之中。而Li可能晶体需要Al3+和Li+一起呈类质同象替代Si4+进入石英晶体,这一点从不同阶段石英的Al和Li之间都具有良好线性关系得到证实(图12)。此外各世代具有相似的Li/Al比值(图12),指示它们可能由同一流体结果析出。

  • 5.2 矿物沉淀机制

  • 研究表明石英中的Ti含量与温度具有正相关性,并据此提出了石英的Ti温度计,用于校正流体包裹体均一温度与捕获温度之间的差值(Wark and Watson,2006; Cherniak et al.,2007; Rusk et al.,2008)。沙沟矿床主成矿阶段石英中的Ti含量极低0.388×10-6~3.62×10-6,未发现共生金红石,指示成矿发生在中低温环境中,这与本次对Q2石英中流体包裹体的显微测温结果(185~282℃; 表4)和前人研究的结果一致(157~267℃; Li Zhanke et al.,2013; Han Jinsheng et al.,2014)。此外,Q1中的Ti含量(0.722×10-6~3.62×10-6)明显高于Q2(0.387×10-6~1.12×10-6; 图11),表明流体温度降低引发主成矿阶段硫化物沉淀,这与前人通过流体包裹体测试获得的结论一致(Li Zhanke et al.,2013; Han Jinsheng et al.,2014)。

  • 图11 沙沟矿床典型石英激光分析微量元素剖面图

  • Fig.11 Analytical profile of trace elements in quartz from the Shagou deposit

  • 前人研究表明,石英中的Al 含量与流体的pH值密切相关,通常流体pH值越低,Al 含量越高(Rusk et al.,2008; Kouzmanov and Pokrovski,2012)。沙沟矿床围岩热液蚀变主要为绢云母-绿泥石化(图4a、b),指示成矿流体偏酸性;成矿早阶段含有大量菱铁矿,主成矿阶段以白云石为主,晚阶段为方解石(图4~6),反映流体pH值逐渐升高。分析结果显示主成矿阶段Q1中Al含量介于81.9×10-6~2436×10-6之间,平均值为1315×10-6;Q2中Al含量介于3.67×10-6~132×10-6之间,平均值为78.1×10-6(表3);从Q1到Q2,石英中的Al元素含量发生显著下降(图11),说明沙沟矿床主成矿阶段硫化物沉淀时流体的pH值明显升高。因此,成矿流体pH值升高可能也是导致沙沟矿床矿物沉淀的主要因素之一。

  • 图12 沙沟矿床石英的Al-Li二元图解

  • Fig.12 Binary diagram of Al and Li for quartz from the Shagou deposit

  • 石英微量元素特征表明,Q3石英中的Ti和Al含量介于Q1和Q2之间。Q3和Q1具有相似的Al/Li比值,指示它们形成于同一流体体系(图12)。石英中的Ti含量很低,说明成矿流体温度较低,已经达到Al 溶解度发生明显变化的物理化学条件(Rusk et al.,2008)。实验岩石学研究表明,在200℃下,随着水岩反应比例逐渐下降,pH值逐渐升高,流体中的Al含量会先快速降低;当水岩反应比例达到约1.1时,随着pH值升高,流体中的Al含量也会升高(Rusk et al.,2008)。因此,Q3中的Al 含量可能不是反映原始流体的pH值,而是记录了经过水岩反应之后的流体化学信息。

  • 5.3 矿床成因

  • 前人对沙沟矿床开展了详细的同位素和流体包裹体研究(高建京等,2010; Li Zhanke et al.,2013; Han Jinsheng et al.,2014),但是在成矿流体性质、物质来源和成矿流体演化等方面还存在争议,因此对矿床成因也存在不同的认识。包裹体作为成矿流体最直接的证据,通过LA-ICP-MS分析可以获得单个流体包裹体的原位成分特征,进而约束矿床成因。

  • 流体包裹体岩相学、显微测温和LA-ICP-MS分析结果表明,沙沟矿床包裹体以含CO2三相包裹体和气液两相包裹体为主,成矿流体为中低温中低盐度流体,主要阳离子以Na+和K+为主,微量元素以碱金属(Li、Rb和Cs)、碱土金属(Sr和Ba)和半金属元素(As和Sb)为主,表明成矿流体应属NaCl-KCl-CO2-H2O体系。

  • 碱金属Rb和Cs具有较大原子质量,不受成矿过程中水岩反应的影响,因此Rb/Na和Cs/Na的比值通常用于示踪流体来源(Klemm et al.,2008; Korges et al.,2018; Pan Junyi et al.,2019)。沙沟矿床石英包裹体中的Rb/Na和Cs/Na比值变化较大(图13),介于岩浆流体(Rusk et al.,2004; Landtwing et al.,2005; Williams-Jones et al.,2010; Shu Qihai et al.,20172021)和变质流体(Munz et al.,1995; McCaig et al.,2000; Marsala et al.,2013)之间,明显不同于盆地卤水(Fontes et al.,1993; Kloppmann et al.,2001; Martel et al.,2001; Michael et al.,2003; Worden et al.,2006),表明成矿流体中含有岩浆流体。赋矿围岩太华超群经历了多期变质作用(Zhang Guowei et al.,1985; Li Nuo et al.,2015),成矿流体在上升过程中,与太华超群发生水岩反应,形成绢云母化、硅化和碳酸盐化等,表明它们之间发生了大量物质交换,可能导致成矿流体具有变质流体特征。

  • 图13 沙沟矿床流体包裹体K/Na比值对Rb/Na(a)和Cs/Na(b)图解

  • Fig.13 Plots of K/Na ratio versus Rb/Na (a) and Cs/Na (b) ratios for fluid inclusions in the Shagou deposit

  • 豫西脉状银铅锌多金属矿床普遍与斑岩矿床存在密切联系(Li Zhanke et al.,20162017)。沙沟矿床成矿流体中存在岩浆流体,表明该矿床属于岩浆-热液成矿体系。该结论也得到流体包裹体和年代学研究的支持(毛景文等,2006; 高建京等,2010; Li Zhanke et al.,2013)。前人研究表明沙沟矿床石英-黄铁矿阶段存在含子晶的包裹体,并认为成矿流体早期以岩浆流体为主(高建京等,2010)。成矿早期绢云母Ar-Ar年代学结果显示,沙沟矿床形成于147~140 Ma(毛景文等,2006; Li Zhanke et al.,2013),明显晚于东秦岭造山带陆陆碰撞峰期的变质时代(220 Ma; 赖绍聪和秦江锋,2010),与南泥湖矿区斑岩Mo-W矿床、脉状Ag-Pb-Zn矿床成矿时代非常一致(145~137 Ma; Cao Huawen et al.,2015),与区域大规模岩浆活动也高度重合(158~136 Ma; Mao Jingwen et al.,2010; Li Nuo et al.,2018)。

  • 6 结论

  • (1)阴极发光研究表明,沙沟矿床主成矿阶段存在3个世代石英。

  • (2)石英中的流体包裹体和石英微量元素研究表明,成矿发生在中低温、中低盐度环境中,温度降低和pH值升高共同引发矿物沉淀。

  • (3)单个流体包裹体分析表明,沙沟矿床属于岩浆-热液成因。

  • 致谢:感谢河南发恩德矿业有限公司沙沟矿区温彦忠工程师在野外采样工作中的大力支持,感谢中国科学院地球化学研究所董少花和蔡佳丽高级工程师在实验过程中的帮助。本文是中国科学院地球化学研究所和河南省有色金属地质矿产局合作项目(项目名称:熊耳山银多金属矿地球化学模型及深部找矿预测)的部分研究成果。

  • 附件:本文附件(附表1、2)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202502093?st=article_issue

  • 参考文献

    • Audétat A, Garbe-Schönberg D, Kronz A, Pettke T, Rusk B, Donovan J J, Lowers H A. 2015. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards and Geoanalytical Research, 39(2): 171~184.

    • Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683~684.

    • Cao Huawen, Zhang Shouting, Santosh M, Zheng Luo, Tang Li, Li Dong, Zhang Yunhui. 2015. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages. Journal of Asian Earth Sciences, 111: 751~780.

    • Cao Mingping, Yao Junming, Deng Xiaohua, Yang Fengjie, Mao Guangzhou, Mathur R. 2017. Diverse and multistage Mo, Au, Ag-Pb-Zn and Cu deposits in the Xiong'er Terrane, East Qinling: From Triassic Cu mineralization. Ore Geology Reviews, 81: 565~574.

    • Chen Yanjing, Fu Shigu. 1992. Gold Mineralization in West Henan, China. Beijing: China Seismological Press (in Chinese with English abstract).

    • Chen Yanjing, Sui Yinghui, Pirajno F. 2003. Exclusive evidences for CMF model and a case of orogenic silver deposits: Isotope geochemistry of the Tieluping silver deposit, east Qinling orogen. Acta Petrologica Sinica, 19(3): 551~568 (in Chinese with English abstract).

    • Chen Yanjing, Pirajno F, Sui Yinghui. 2004. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: A case study of orogenic silver-dominated deposits and related tectonic setting. Mineralium Deposita, 39(5): 560~575.

    • Chen Yanjing, Zhai Mingguo, Jiang Shaoyong. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica, 25(11): 2695~2726 (in Chinese with English abstract).

    • Cherniak D J. Watson E B, Wark D A. 2007. Ti diffusion in quartz. Chemical Geology, 236(1~2): 65~74.

    • Collins P L. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology, 74(6): 1435~1444.

    • Donovan J J, Lowers H A, Rusk B G. 2011. Improved electron probe microanalysis of trace elements in quartz. American Mineralogist, 96(2~3): 274~282.

    • Fontes J C, Matray J M. 1993. Geochemistry and origin of formation brines from the Paris basin, France 1. Brines associated with Triassic salts. Chemical Geology, 109(1~4): 149~175.

    • Gao Jianjing, Mao Jingwen, Chen Maohong, Ye Huishou, Zhang Jijun, Li Yongfeng. 2011. Vein structure analysis and 40Ar/39Ar dating of sericite from sub-ore altered rocks in the Tieluping large-size Ag-Pb deposit of western Henan Province. Acta Geologica Sinica, 85(7): 1172~1187 (in Chinese with English abstract).

    • Gao Jianjing, Mao Jingwen, Ye Huishou, Chen Maohong, Zheng Rongfen. 2010. Geology and ore-forming fluid of silver-lead-zinc lode deposit of Shagou, western Henan Province. Acta Petrologica Sinica, 26(3): 740~756 (in Chinese with English abstract).

    • Götze J, Plötze M, Graupner T, Hallbauer D K, Bray C J. 2004. Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochimica et Cosmochimica Acta, 68(18): 3741~3759.

    • Guillong M L, Meier D, Allan M. 2008. SILLS: A MATLAB-based program for the reduction of Laserablation ICPMS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course, 40: 328~333.

    • Han Jjinsheng, Chen Huayong, Yao Junming, Deng Xiaohua. 2015. 2. 24 Ga mafic dykes from Taihua Complex, southern Trans-North China Orogen, and their tectonic implications. Precambrian Research, 270: 124~138.

    • Han Jinsheng, Yao Junming, Deng Xiaohua. 2013. Sr-isotope constraint on the source of the fluids forming the Shagou Ag-Pb-Zn deposit, eastern Qinling orogen. Acta Petrologica Sinica, 29: 18~26 (in Chinese with English abstracts).

    • Han Jinsheng, Yao Junming, Chen Huayong, Deng Xiaohua, Ding Junying. 2014. Fluid inclusion and stable isotope study of the Shagou Ag-Pb-Zn deposit, Luoning, Henan Province, China: Implications for the genesis of an orogenic lode Ag-Pb-Zn system. Ore Geology Reviews, 62: 199~210.

    • Han Yigui, Zhang Shihong, Pirajno F, Wang Yu, Zhang Yuanhou. 2009. New 40Ar-39Ar age constraints on the deformation along the Machaoying fault zone: Implications for Early Cambrian tectonism in the North China craton. Gondwana Research, 16: 255~263.

    • Heinrich C A, Pettke T, Halter W E, Aigner-Torres M, Audétat A, Günther D, Horn I. 2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta, 67(18): 3473~3497.

    • Hu Shouxi, Lin Qianlong, Chen Zeming, Li Shimei. 1988. Geology and Metallogeny of the Collision Belt between the North and the South China Plates. Nanjing: Nanjing University Press (in Chinese with English abstract).

    • Jacamon F, Larsen R B. 2009. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos, 107(3~4): 281~291.

    • Klemm L M, Pettke T, Heinrich C A. 2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43(5): 533~552.

    • Kloppmann W, Négrel P, Casanova J, Klinge H, Schelkes K, Guerrot C. 2001. Halite dissolution derived brines in the vicinity of a Permian salt dome (N German basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochimica et Cosmochimica Acta, 65(22): 4087~4101.

    • Korges M, Weis P, Lüders V, Laurent O. 2018. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology, 46(1): 75~78.

    • Kouzmanov K, Pokrovski G S. 2012. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. Society of Economic Geologists Special Publication, 16: 573~618.

    • Lai Shaocong, Qin Jiangfeng. 2010. Ophiolite and Volcanic Rocks in MianLue Suture Zone, South Qinling. Beijing: Science Press (in Chinese with English abstract).

    • Lan Tingguang, Hu Ruizhong, Bi Xianwu, Mao Guangjian, Wen Bojie, Liu Liang, Chen Yinghua. 2018. Metasomatized asthenospheric mantle contributing to the generation of Cu-Mo deposits within an intracontinental setting: A case study of the ~128 Ma Wangjiazhuang Cu-Mo deposit, eastern North China Craton. Journal of Asian Earth Sciences, 160: 460~489.

    • Landtwing M R, Pettke T, Halter W E, Heinrich C A, Redmond P B, Einaudi M T, Kunze K. 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry. Earth and Planetary Science Letters, 235(1~2): 229~243.

    • Li Houmin, Wang Denghong, Wang Xiaoxia, Zhang Changqing, Li Lixing. 2012. The Early Mesozoic syenogranite in Xiong'er Mountain area, southern margin of North China Craton: SHRIMP zircon U-Pb dating, geochemistry and its significance. Acta Petrologica et Mineralogica, 31(6): 771~782 (in Chinese with English abstract).

    • Li Nuo, Chen Yanjing, McNaughton N J, Ling Xiaoxiao, Deng Xiaohua, Yao Junming. 2015. Formation and tectonic evolution of the khondalite series at the southern margin of the North China Craton: Geochronological constraints from a 1. 85-Ga Mo deposit in the Xiong'ershan area. Precambrian Research, 269: 1~17.

    • Li Nuo, Chen Yanjing, Santosh M, Pirajno F. 2018. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance. Earth-Science Reviews, 182: 141~173.

    • Li Yongfeng. 2005. The temporal-spatial evolution of Mesozoic granitoids in the Xiong'ershan area and their relationships to molybdenum-gold mineralization. Doctoral dissertation of China University of Geosciences (in Chinese with English summary).

    • Li Zhanke, Li Jianwei, Zhao Xinfu, Zhou Meifu, Selby D, Bi Shijian, Zhao Zhenjun. 2013. Crustal-extension Ag-Pb-Zn veins in the Xiong'ershan District, Southern North China craton: Constraints from the Shagou deposit. Economic Geology, 108(7): 1703~1729.

    • Li Zhanke, Li Jianwei, Cooke D R, Danyushevsky L, Zhang L, O'Brien H, Lahaye Y, Zhang Wen, Xu Haijun. 2016. Textures, trace elements, and Pb isotopes of sulfides from the Haopinggou vein deposit, southern North China Craton: Implications for discrete Au and Ag-Pb-Zn mineralization. Contributions to Mineralogy and Petrology, 171(12): 171~199.

    • Li Zhanke, Bi Shijian, Li Jianwei, Zhang Wen, Cooke D R, Selby D. 2017. Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit, southern North China craton. Ore Geology Reviews, 82: 232~251.

    • Liang Tao, Lu Ren, Luo Zhaohua, BaiFengjun, Liu Xiao. 2015. LA-ICP-MS U-Pb age of zircons from Haopinggou biotite granite porphyry in Xiong'er Moutain, Western Henan Province, and its geologic implications. Geological Reviews, 61(4): 901~912 (in Chinese with English abstract).

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.

    • Mao Jingwen, Xie Guiqing, Pirajno F, Ye Huishou, Wang Yanbin, Li Yongfeng, Xiang Junfeng. 2010. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications. Australian Journal of Earth Sciences, 57(1): 51~78.

    • Mao Jingwen, Zheng Rongfen, Ye Huishou, Gao Jianjing, Chen Wen. 2006. 40Ar/39Ar dating of fuchsite and sericite from altered rocks close to ore veins in Shagou large-size Ag-Pb-Zn deposit of Xiong'ershan area, western Henan Province, and its significance. Mineral Deposits, 25(4): 359~368 (in Chinese with English abstract).

    • Marsala A, Wagner T, Wälle M. 2013. Late-metamorphic veins record deep ingression of meteoric water: A LA-ICP-MS fluid inclusion study from the fold-and-thrust belt of the Rhenish Massif, Germany. Chemical Geology, 351: 134~153.

    • Martel A T, Gibling M R, Nguyen M. 2001. Brines in the Carboniferous Sydney Coalfield, Atlantic Canada. Applied Geochemistry, 16(1): 35~55.

    • McCaig A M, Tritlla J, Banks D A. 2000. Fluid mixing and recycling during Pyrenean thrusting: Evidence from fluid inclusion halogen ratios. Geochimica et Cosmochimica Acta, 64(19): 3395~3412.

    • Michael K, Machel H G, Bachu S. 2003. New insights into the origin and migration of brines in deep Devonian aquifers, Alberta, Canada. Journal of Geochemical Exploration, 80(2~3): 193~219.

    • Müller A, Wiedenbeck M, Flem B, Schiellerup H. 2008. Refinement of phosphorus determination in quartz by LA-ICP-MS through defining new reference material values. Geostandards and Geoanalytical Research, 32(3): 361~376.

    • Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin D J, Stenina N G, Kronz A. 2010. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Mineralium Deposita, 45(7): 707~727.

    • Munz I A, Yardley B W D, Banks D A. 1995. Deep penetration of sedimentary fluids in basement rocks from southern Norway: Evidence from hydrocarbon and brine inclusions in quartz veins. Geochimica et Cosmochimica Acta, 59(2): 239~254.

    • Pan Junyi, Ni Pei, Wang Rucheng. 2019. Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions. American Mineralogist: Journal of Earth and Planetary Materials, 104(8): 1092~1116.

    • Rusk B G, Reed M H, Dilles J H, Klemm L M, Heinrich C A. 2004. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chemical Geology, 210(1~4): 173~199.

    • Rusk B G, Reed M H, Dilles J H, Kent A J. 2006. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. American Mineralogist, 91(8~9): 1300~1312.

    • Rusk B G, Lowers H A, Reed M H. 2008. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology, 36(7): 547~550.

    • Shi Quanzeng, Wei Xiangdong, Li Mingli, Pang Jiqun. 2004. Nappe and Extensional Detachment Structures in North Side of East Qinling, Henan. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Shu Qihai, Chang Zhaoshan, Hammerli J, Lai Yong, Huizenga J M. 2017. Composition and evolution of fluids forming the Baiyinnuo'er Zn-Pb skarn deposit, northeastern China: Insights from laser ablation ICP-MS study of fluid inclusions. Economic Geology, 112(6): 1441~1460.

    • Shu Qihai, Chang Zhaoshan, Mavrogenes J. 2021. Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: An example at the Haobugao Zn-Pb skarn, China. Geology, 49(4): 473~477.

    • Smith H A, Ross A A, Robinson S, Webster R, Chesher R, Riles A. 2020. Technical Report: NI 43-101 Technical Report Update on the Ying Ag-Pb-Zn Property in Henan Province, People's Republic of China.

    • Stephenson P R, Fowler A P, Smith H A. 2016. Ying NI 43-101 technical report, Henan Province. China AMC Mining Consultants (Canada) Ltd, Vancouver.

    • Wark D A, Watson E B. 2006. TitaniQ: A titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152(6): 743~754.

    • Williams-Jones A E, Samson I M, Ault K M, Gagnon J E, Fryer B J. 2010. The genesis of distal zinc skarns: Evidence from the Mochito deposit, Honduras. Economic Geology, 105(8): 1411~1440.

    • Worden R H, Manning D A C, Bottrell S H. 2006. Multiple generations of high salinity formation water in the Triassic Sherwood Sandstone: Wytch Farm oilfield, onshore UK. Applied Geochemistry, 21(3): 455~475.

    • Xu Jinhong, Jiang Yuping, Hu Shuli, Zhang Zhengwei, Wu Chengquan, Zheng Chaofei, Li Xiyao, Jin Ziru, Zhang Sensen, Zhou Yatao. 2024. Petrogenesis and post-collisional setting of the Paleoproterozoic A-type granites in the Xiong'ershan area along the southern margin of the North China Craton. Journal of Earth Science, 35(4): 416~429.

    • Zhang Guowei, Bai Yubao, Sun Yong, Guo Anlin, Zhou Dingwu, Li Taohong. 1985. Composition and evolution of the Archaean crust in central Henan, China. Precambrian Research, 27: 7~35.

    • Zhang Zhengwei, Zhu Bingquan, Chang Xiangyang. 2003. The geochemistry of the alkaline-rich intrusive rocks in east Qinling, central China. Earth Science Frontiers, 10:

    • 507~519 (in Chinese with English abstract).

    • Zhao Taiping, Zhai Minggou, Xia Bin, Li Huimin, Zhang Yixing, Wan Yusheng. 2004. Study on the zircon SHRIMP ages of the Xiong'er Group volcanic rocks: Constraint on the starting time of covering strata in the North China Craton. Chinese Science Bulletin, 9: 2495~2502.

    • Zhao Taiping, Zhou Meifu. 2009. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. Journal of Asian Earth Sciences, 36: 183~195.

    • Zheng Rongfen, Mao Jingwen, Gao Jianjing. 2006. Characteristics of sulfide and silver minerals in Shagou silver-lead-zinc deposit of Xiong'er Shan, Henan Province, and their significance. Mineral Deposits, 25(6): 715~726 (in Chinese with English abstract).

    • Zhu Rixiang, Yang Jinhui, Wu Fuyuan. 2012. Timing of destruction of the North China Craton. Lithos, 149: 51~60.

    • 陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报, 25(11): 2695~2726.

    • 陈衍景, 隋颖慧, Pirajno F. 2003. CMF模式的排他性依据和造山型银矿实例东秦岭铁炉坪银矿同位素地球化学. 岩石学报, 19(3): 551~568.

    • 高建京, 毛景文, 陈懋弘, 叶会寿, 张继军, 李永峰. 2011. 豫西铁炉坪银铅矿床矿脉构造解析及近矿蚀变岩绢云母40Ar-39Ar年龄测定. 地质学报, 85(7): 1172~1187.

    • 高建京, 毛景文, 叶会寿, 陈懋弘, 郑榕芬. 2010. 豫西沙沟脉状Ag-Pb-Zn矿床地质特征和成矿流体研究. 岩石学报, 26(3): 740~756.

    • 韩金生, 姚军明, 邓小华. 2013. 东秦岭沙沟银铅锌矿床成矿流体来源的锶同位素约束. 岩石学报, 29(1): 18~26.

    • 胡受奚, 林潜龙, 陈泽铭, 黎世美. 1988. 华北与华南古板块拼合带地质和成矿. 南京: 南京大学出版社.

    • 赖绍聪, 秦江锋. 2010. 南秦岭勉略缝合带蛇绿岩与火山岩. 北京: 科学出版社.

    • 李厚民, 王登红, 王晓霞, 张长青, 李立兴. 2012. 华北地块南缘熊耳山早中生代正长花岗岩—SHRIMP 锆石U-Pb年龄, 地球化学及意义. 岩石矿物学杂志, 31(6): 771~782.

    • 李永峰. 2005. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用. 中国地质大学(北京)博士学位论文.

    • 梁涛, 卢仁, 罗照华, 白凤军, 刘晓. 2015. 豫西熊耳山蒿坪沟黑云母花岗斑岩的锆石 LA-ICP-MS U-Pb 年龄及其地质意义. 地质论评, 61(4): 901~912.

    • 毛景文, 郑榕芬, 叶会寿, 高建京, 陈文. 2006. 豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义. 矿床地质, 25(4): 359~368.

    • 彭恩生. 1994. 蒿坪沟—铁炉坪地区银金多金属矿床成矿地质特征. 中南矿冶学院学报, 25(4): 427~430.

    • 石铨曾, 尉向东, 李明立, 庞继群. 2004. 河南省东秦岭山脉北缘的推覆构造及伸展拆离构造. 北京: 地质出版社.

    • 张正伟, 朱炳泉, 常向阳. 2003. 东秦岭北部富碱侵入岩带岩石地球化学特征及构造意义. 地学前缘, 10(4): 507~519.

    • 郑榕芬, 毛景文, 高建京. 2006. 河南熊耳山沙沟银铅锌矿床中硫化物和银矿物的矿物学特征及其意义. 矿床地质, 25(6): 715~726.

  • 参考文献

    • Audétat A, Garbe-Schönberg D, Kronz A, Pettke T, Rusk B, Donovan J J, Lowers H A. 2015. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards and Geoanalytical Research, 39(2): 171~184.

    • Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683~684.

    • Cao Huawen, Zhang Shouting, Santosh M, Zheng Luo, Tang Li, Li Dong, Zhang Yunhui. 2015. The Luanchuan Mo-W-Pb-Zn-Ag magmatic-hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C-H-O-S-Pb isotope compositions and Rb-Sr isochron ages. Journal of Asian Earth Sciences, 111: 751~780.

    • Cao Mingping, Yao Junming, Deng Xiaohua, Yang Fengjie, Mao Guangzhou, Mathur R. 2017. Diverse and multistage Mo, Au, Ag-Pb-Zn and Cu deposits in the Xiong'er Terrane, East Qinling: From Triassic Cu mineralization. Ore Geology Reviews, 81: 565~574.

    • Chen Yanjing, Fu Shigu. 1992. Gold Mineralization in West Henan, China. Beijing: China Seismological Press (in Chinese with English abstract).

    • Chen Yanjing, Sui Yinghui, Pirajno F. 2003. Exclusive evidences for CMF model and a case of orogenic silver deposits: Isotope geochemistry of the Tieluping silver deposit, east Qinling orogen. Acta Petrologica Sinica, 19(3): 551~568 (in Chinese with English abstract).

    • Chen Yanjing, Pirajno F, Sui Yinghui. 2004. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China: A case study of orogenic silver-dominated deposits and related tectonic setting. Mineralium Deposita, 39(5): 560~575.

    • Chen Yanjing, Zhai Mingguo, Jiang Shaoyong. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica, 25(11): 2695~2726 (in Chinese with English abstract).

    • Cherniak D J. Watson E B, Wark D A. 2007. Ti diffusion in quartz. Chemical Geology, 236(1~2): 65~74.

    • Collins P L. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology, 74(6): 1435~1444.

    • Donovan J J, Lowers H A, Rusk B G. 2011. Improved electron probe microanalysis of trace elements in quartz. American Mineralogist, 96(2~3): 274~282.

    • Fontes J C, Matray J M. 1993. Geochemistry and origin of formation brines from the Paris basin, France 1. Brines associated with Triassic salts. Chemical Geology, 109(1~4): 149~175.

    • Gao Jianjing, Mao Jingwen, Chen Maohong, Ye Huishou, Zhang Jijun, Li Yongfeng. 2011. Vein structure analysis and 40Ar/39Ar dating of sericite from sub-ore altered rocks in the Tieluping large-size Ag-Pb deposit of western Henan Province. Acta Geologica Sinica, 85(7): 1172~1187 (in Chinese with English abstract).

    • Gao Jianjing, Mao Jingwen, Ye Huishou, Chen Maohong, Zheng Rongfen. 2010. Geology and ore-forming fluid of silver-lead-zinc lode deposit of Shagou, western Henan Province. Acta Petrologica Sinica, 26(3): 740~756 (in Chinese with English abstract).

    • Götze J, Plötze M, Graupner T, Hallbauer D K, Bray C J. 2004. Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochimica et Cosmochimica Acta, 68(18): 3741~3759.

    • Guillong M L, Meier D, Allan M. 2008. SILLS: A MATLAB-based program for the reduction of Laserablation ICPMS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course, 40: 328~333.

    • Han Jjinsheng, Chen Huayong, Yao Junming, Deng Xiaohua. 2015. 2. 24 Ga mafic dykes from Taihua Complex, southern Trans-North China Orogen, and their tectonic implications. Precambrian Research, 270: 124~138.

    • Han Jinsheng, Yao Junming, Deng Xiaohua. 2013. Sr-isotope constraint on the source of the fluids forming the Shagou Ag-Pb-Zn deposit, eastern Qinling orogen. Acta Petrologica Sinica, 29: 18~26 (in Chinese with English abstracts).

    • Han Jinsheng, Yao Junming, Chen Huayong, Deng Xiaohua, Ding Junying. 2014. Fluid inclusion and stable isotope study of the Shagou Ag-Pb-Zn deposit, Luoning, Henan Province, China: Implications for the genesis of an orogenic lode Ag-Pb-Zn system. Ore Geology Reviews, 62: 199~210.

    • Han Yigui, Zhang Shihong, Pirajno F, Wang Yu, Zhang Yuanhou. 2009. New 40Ar-39Ar age constraints on the deformation along the Machaoying fault zone: Implications for Early Cambrian tectonism in the North China craton. Gondwana Research, 16: 255~263.

    • Heinrich C A, Pettke T, Halter W E, Aigner-Torres M, Audétat A, Günther D, Horn I. 2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochimica et Cosmochimica Acta, 67(18): 3473~3497.

    • Hu Shouxi, Lin Qianlong, Chen Zeming, Li Shimei. 1988. Geology and Metallogeny of the Collision Belt between the North and the South China Plates. Nanjing: Nanjing University Press (in Chinese with English abstract).

    • Jacamon F, Larsen R B. 2009. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos, 107(3~4): 281~291.

    • Klemm L M, Pettke T, Heinrich C A. 2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43(5): 533~552.

    • Kloppmann W, Négrel P, Casanova J, Klinge H, Schelkes K, Guerrot C. 2001. Halite dissolution derived brines in the vicinity of a Permian salt dome (N German basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochimica et Cosmochimica Acta, 65(22): 4087~4101.

    • Korges M, Weis P, Lüders V, Laurent O. 2018. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology, 46(1): 75~78.

    • Kouzmanov K, Pokrovski G S. 2012. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. Society of Economic Geologists Special Publication, 16: 573~618.

    • Lai Shaocong, Qin Jiangfeng. 2010. Ophiolite and Volcanic Rocks in MianLue Suture Zone, South Qinling. Beijing: Science Press (in Chinese with English abstract).

    • Lan Tingguang, Hu Ruizhong, Bi Xianwu, Mao Guangjian, Wen Bojie, Liu Liang, Chen Yinghua. 2018. Metasomatized asthenospheric mantle contributing to the generation of Cu-Mo deposits within an intracontinental setting: A case study of the ~128 Ma Wangjiazhuang Cu-Mo deposit, eastern North China Craton. Journal of Asian Earth Sciences, 160: 460~489.

    • Landtwing M R, Pettke T, Halter W E, Heinrich C A, Redmond P B, Einaudi M T, Kunze K. 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry. Earth and Planetary Science Letters, 235(1~2): 229~243.

    • Li Houmin, Wang Denghong, Wang Xiaoxia, Zhang Changqing, Li Lixing. 2012. The Early Mesozoic syenogranite in Xiong'er Mountain area, southern margin of North China Craton: SHRIMP zircon U-Pb dating, geochemistry and its significance. Acta Petrologica et Mineralogica, 31(6): 771~782 (in Chinese with English abstract).

    • Li Nuo, Chen Yanjing, McNaughton N J, Ling Xiaoxiao, Deng Xiaohua, Yao Junming. 2015. Formation and tectonic evolution of the khondalite series at the southern margin of the North China Craton: Geochronological constraints from a 1. 85-Ga Mo deposit in the Xiong'ershan area. Precambrian Research, 269: 1~17.

    • Li Nuo, Chen Yanjing, Santosh M, Pirajno F. 2018. Late Mesozoic granitoids in the Qinling Orogen, Central China, and tectonic significance. Earth-Science Reviews, 182: 141~173.

    • Li Yongfeng. 2005. The temporal-spatial evolution of Mesozoic granitoids in the Xiong'ershan area and their relationships to molybdenum-gold mineralization. Doctoral dissertation of China University of Geosciences (in Chinese with English summary).

    • Li Zhanke, Li Jianwei, Zhao Xinfu, Zhou Meifu, Selby D, Bi Shijian, Zhao Zhenjun. 2013. Crustal-extension Ag-Pb-Zn veins in the Xiong'ershan District, Southern North China craton: Constraints from the Shagou deposit. Economic Geology, 108(7): 1703~1729.

    • Li Zhanke, Li Jianwei, Cooke D R, Danyushevsky L, Zhang L, O'Brien H, Lahaye Y, Zhang Wen, Xu Haijun. 2016. Textures, trace elements, and Pb isotopes of sulfides from the Haopinggou vein deposit, southern North China Craton: Implications for discrete Au and Ag-Pb-Zn mineralization. Contributions to Mineralogy and Petrology, 171(12): 171~199.

    • Li Zhanke, Bi Shijian, Li Jianwei, Zhang Wen, Cooke D R, Selby D. 2017. Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit, southern North China craton. Ore Geology Reviews, 82: 232~251.

    • Liang Tao, Lu Ren, Luo Zhaohua, BaiFengjun, Liu Xiao. 2015. LA-ICP-MS U-Pb age of zircons from Haopinggou biotite granite porphyry in Xiong'er Moutain, Western Henan Province, and its geologic implications. Geological Reviews, 61(4): 901~912 (in Chinese with English abstract).

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1~2): 34~43.

    • Mao Jingwen, Xie Guiqing, Pirajno F, Ye Huishou, Wang Yanbin, Li Yongfeng, Xiang Junfeng. 2010. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications. Australian Journal of Earth Sciences, 57(1): 51~78.

    • Mao Jingwen, Zheng Rongfen, Ye Huishou, Gao Jianjing, Chen Wen. 2006. 40Ar/39Ar dating of fuchsite and sericite from altered rocks close to ore veins in Shagou large-size Ag-Pb-Zn deposit of Xiong'ershan area, western Henan Province, and its significance. Mineral Deposits, 25(4): 359~368 (in Chinese with English abstract).

    • Marsala A, Wagner T, Wälle M. 2013. Late-metamorphic veins record deep ingression of meteoric water: A LA-ICP-MS fluid inclusion study from the fold-and-thrust belt of the Rhenish Massif, Germany. Chemical Geology, 351: 134~153.

    • Martel A T, Gibling M R, Nguyen M. 2001. Brines in the Carboniferous Sydney Coalfield, Atlantic Canada. Applied Geochemistry, 16(1): 35~55.

    • McCaig A M, Tritlla J, Banks D A. 2000. Fluid mixing and recycling during Pyrenean thrusting: Evidence from fluid inclusion halogen ratios. Geochimica et Cosmochimica Acta, 64(19): 3395~3412.

    • Michael K, Machel H G, Bachu S. 2003. New insights into the origin and migration of brines in deep Devonian aquifers, Alberta, Canada. Journal of Geochemical Exploration, 80(2~3): 193~219.

    • Müller A, Wiedenbeck M, Flem B, Schiellerup H. 2008. Refinement of phosphorus determination in quartz by LA-ICP-MS through defining new reference material values. Geostandards and Geoanalytical Research, 32(3): 361~376.

    • Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin D J, Stenina N G, Kronz A. 2010. Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Mineralium Deposita, 45(7): 707~727.

    • Munz I A, Yardley B W D, Banks D A. 1995. Deep penetration of sedimentary fluids in basement rocks from southern Norway: Evidence from hydrocarbon and brine inclusions in quartz veins. Geochimica et Cosmochimica Acta, 59(2): 239~254.

    • Pan Junyi, Ni Pei, Wang Rucheng. 2019. Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions. American Mineralogist: Journal of Earth and Planetary Materials, 104(8): 1092~1116.

    • Rusk B G, Reed M H, Dilles J H, Klemm L M, Heinrich C A. 2004. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chemical Geology, 210(1~4): 173~199.

    • Rusk B G, Reed M H, Dilles J H, Kent A J. 2006. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. American Mineralogist, 91(8~9): 1300~1312.

    • Rusk B G, Lowers H A, Reed M H. 2008. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology, 36(7): 547~550.

    • Shi Quanzeng, Wei Xiangdong, Li Mingli, Pang Jiqun. 2004. Nappe and Extensional Detachment Structures in North Side of East Qinling, Henan. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Shu Qihai, Chang Zhaoshan, Hammerli J, Lai Yong, Huizenga J M. 2017. Composition and evolution of fluids forming the Baiyinnuo'er Zn-Pb skarn deposit, northeastern China: Insights from laser ablation ICP-MS study of fluid inclusions. Economic Geology, 112(6): 1441~1460.

    • Shu Qihai, Chang Zhaoshan, Mavrogenes J. 2021. Fluid compositions reveal fluid nature, metal deposition mechanisms, and mineralization potential: An example at the Haobugao Zn-Pb skarn, China. Geology, 49(4): 473~477.

    • Smith H A, Ross A A, Robinson S, Webster R, Chesher R, Riles A. 2020. Technical Report: NI 43-101 Technical Report Update on the Ying Ag-Pb-Zn Property in Henan Province, People's Republic of China.

    • Stephenson P R, Fowler A P, Smith H A. 2016. Ying NI 43-101 technical report, Henan Province. China AMC Mining Consultants (Canada) Ltd, Vancouver.

    • Wark D A, Watson E B. 2006. TitaniQ: A titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152(6): 743~754.

    • Williams-Jones A E, Samson I M, Ault K M, Gagnon J E, Fryer B J. 2010. The genesis of distal zinc skarns: Evidence from the Mochito deposit, Honduras. Economic Geology, 105(8): 1411~1440.

    • Worden R H, Manning D A C, Bottrell S H. 2006. Multiple generations of high salinity formation water in the Triassic Sherwood Sandstone: Wytch Farm oilfield, onshore UK. Applied Geochemistry, 21(3): 455~475.

    • Xu Jinhong, Jiang Yuping, Hu Shuli, Zhang Zhengwei, Wu Chengquan, Zheng Chaofei, Li Xiyao, Jin Ziru, Zhang Sensen, Zhou Yatao. 2024. Petrogenesis and post-collisional setting of the Paleoproterozoic A-type granites in the Xiong'ershan area along the southern margin of the North China Craton. Journal of Earth Science, 35(4): 416~429.

    • Zhang Guowei, Bai Yubao, Sun Yong, Guo Anlin, Zhou Dingwu, Li Taohong. 1985. Composition and evolution of the Archaean crust in central Henan, China. Precambrian Research, 27: 7~35.

    • Zhang Zhengwei, Zhu Bingquan, Chang Xiangyang. 2003. The geochemistry of the alkaline-rich intrusive rocks in east Qinling, central China. Earth Science Frontiers, 10:

    • 507~519 (in Chinese with English abstract).

    • Zhao Taiping, Zhai Minggou, Xia Bin, Li Huimin, Zhang Yixing, Wan Yusheng. 2004. Study on the zircon SHRIMP ages of the Xiong'er Group volcanic rocks: Constraint on the starting time of covering strata in the North China Craton. Chinese Science Bulletin, 9: 2495~2502.

    • Zhao Taiping, Zhou Meifu. 2009. Geochemical constraints on the tectonic setting of Paleoproterozoic A-type granites in the southern margin of the North China Craton. Journal of Asian Earth Sciences, 36: 183~195.

    • Zheng Rongfen, Mao Jingwen, Gao Jianjing. 2006. Characteristics of sulfide and silver minerals in Shagou silver-lead-zinc deposit of Xiong'er Shan, Henan Province, and their significance. Mineral Deposits, 25(6): 715~726 (in Chinese with English abstract).

    • Zhu Rixiang, Yang Jinhui, Wu Fuyuan. 2012. Timing of destruction of the North China Craton. Lithos, 149: 51~60.

    • 陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报, 25(11): 2695~2726.

    • 陈衍景, 隋颖慧, Pirajno F. 2003. CMF模式的排他性依据和造山型银矿实例东秦岭铁炉坪银矿同位素地球化学. 岩石学报, 19(3): 551~568.

    • 高建京, 毛景文, 陈懋弘, 叶会寿, 张继军, 李永峰. 2011. 豫西铁炉坪银铅矿床矿脉构造解析及近矿蚀变岩绢云母40Ar-39Ar年龄测定. 地质学报, 85(7): 1172~1187.

    • 高建京, 毛景文, 叶会寿, 陈懋弘, 郑榕芬. 2010. 豫西沙沟脉状Ag-Pb-Zn矿床地质特征和成矿流体研究. 岩石学报, 26(3): 740~756.

    • 韩金生, 姚军明, 邓小华. 2013. 东秦岭沙沟银铅锌矿床成矿流体来源的锶同位素约束. 岩石学报, 29(1): 18~26.

    • 胡受奚, 林潜龙, 陈泽铭, 黎世美. 1988. 华北与华南古板块拼合带地质和成矿. 南京: 南京大学出版社.

    • 赖绍聪, 秦江锋. 2010. 南秦岭勉略缝合带蛇绿岩与火山岩. 北京: 科学出版社.

    • 李厚民, 王登红, 王晓霞, 张长青, 李立兴. 2012. 华北地块南缘熊耳山早中生代正长花岗岩—SHRIMP 锆石U-Pb年龄, 地球化学及意义. 岩石矿物学杂志, 31(6): 771~782.

    • 李永峰. 2005. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用. 中国地质大学(北京)博士学位论文.

    • 梁涛, 卢仁, 罗照华, 白凤军, 刘晓. 2015. 豫西熊耳山蒿坪沟黑云母花岗斑岩的锆石 LA-ICP-MS U-Pb 年龄及其地质意义. 地质论评, 61(4): 901~912.

    • 毛景文, 郑榕芬, 叶会寿, 高建京, 陈文. 2006. 豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义. 矿床地质, 25(4): 359~368.

    • 彭恩生. 1994. 蒿坪沟—铁炉坪地区银金多金属矿床成矿地质特征. 中南矿冶学院学报, 25(4): 427~430.

    • 石铨曾, 尉向东, 李明立, 庞继群. 2004. 河南省东秦岭山脉北缘的推覆构造及伸展拆离构造. 北京: 地质出版社.

    • 张正伟, 朱炳泉, 常向阳. 2003. 东秦岭北部富碱侵入岩带岩石地球化学特征及构造意义. 地学前缘, 10(4): 507~519.

    • 郑榕芬, 毛景文, 高建京. 2006. 河南熊耳山沙沟银铅锌矿床中硫化物和银矿物的矿物学特征及其意义. 矿床地质, 25(6): 715~726.