en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙美静,女,1986年生。高级工程师,主要从事沉积学及海洋地质方面的研究。E-mail:sunmeijing0411@163.com。

参考文献
Bernhardt A, Jobe Z R, Lowe D R. 2011. Stratigraphic evolution of a submarine channel-lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile. Marine and Petroleum Geology, 28: 785~806.
参考文献
Briais A, Patriat P, Tapponnier P. 1993. Updated in terpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299~6328.
参考文献
Chen Hongjun, Cai Guanqiang, Luo Weidong, Wu Jiaoqi, Huang Lei, Li Liqing. 2012. Features of canyon morphology and their origin in the Shenhu area, Northern Slope of the South China Sea. Marine Geology & Quaternary Geology, 32(5): 19~26 (in Chinese with English abstract).
参考文献
Davies R J, Thatcher K E, Mathias S A, Yang J. 2012. Deepwater canyons: An escape route for methane sealed by methane hydrate. Earth and Planetary Science Letters, 323-324: 72~78.
参考文献
Du Wenbo, Cai Guanqiang, Huang Weikai, Chen Jiale, Nie Xin, Wan Xiaoming. 2021. Seismic reflection characteristics of Neogene carbonate platforms in the Xisha sea area and their controlling factors. Marine Geology Frontiers, 37(1): 20~30 (in Chinese with English abstract).
参考文献
Gao Hongfang, Nie Xin, Luo Weidong. 2021. “Source to sink” analysis of a sea basin: The Quaternary deepwater turbidite fan system in Pearl River Valley-Northwest subbasin, northern South China Sea. Marine Geology & Quaternary Geology, 41(2): 1~12 (in Chinese with English abstract).
参考文献
Harris P T, Whiteway T. 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285: 69~85.
参考文献
Helland-Hansen W, Steel R J, Somme T O. 2012. Shelf genesis revisited. Journal of Sedimentary Research, 82: 133~148.
参考文献
Huang Yi, Cheng Jun, Wang Mingmin, Wang Shuhong, Yan Wen. 2022. Gas hydrate dissociation events during LGM and their potential trigger of submarine landslides: Foraminifera and geochemical records from two cores in the northern South China Sea. Frontiers of Earth Science, 10: 1~11.
参考文献
Li Chunfeng, Li Jiabiao, Ding Weiwei, Franke D. 2015. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research, 120(3): 1377~1399.
参考文献
Li Hua, Liang Jianshe, Qiu Chunguang, Zhao Hongyan, Hu Bin, Rao Su, Wang Beibei, Kong Lingwu, Cai Jun, Wu Dongsheng, He Youbin, Guo Xiao. 2022. The relationship between tectonic events and sedimentary systems in coastal key basins of the East Africa. Acta Geologica Sinica, 96(5): 1855~1867 (in Chinese with English abstract).
参考文献
Li Lin, Zhang Cheng, Yan Chun, Yang Taotao, Xie Xinong, Wang Shaokai, Chu Shengming. 2021. Characteristics and genetic mechanism of a large scale submarine gravity-driven system in Huaguang depression, Qiongdongnan basin. Earth Science, 46(10): 3707~3716 (in Chinese with English abstract).
参考文献
Li Xuejie, Wang Dawei, Wu Shiguo, Wang Weiwei, Liu Gang. 2017. Geomorphology of Sansha Canyon: Identification and implication. Marine Geology & Quaternary Geology, 37(3): 28~36 (in Chinese with English abstract).
参考文献
Li Xuejie, Wang Zhe, Yao Yongjian, Gao Hongfang, Zhu Song, Xu Ziying. 2020. The formation and evolution of the South China Sea. Geology in China, 47(5): 1310~1322 (in Chinese with English abstract).
参考文献
Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flatslab subduction model. Geology, 35(2): 179~182.
参考文献
Lin Changsong, Liu Jingyan, Cai Shixiang, Zhang Yanmei, Lü Ming, Li Jie. 2001. Sedimentary composition and development background of large incised valley and submarine gravity flow system in Yinggehai-Qiongdongnan basin. Chinese Science Bulletin, 46(1): 69~72 (in Chinese).
参考文献
Liu Jie, Su Ming, Qiao Shaohua, Sha Zhibin, Wu Nengyou, Yang Rui. 2016. Forming mechanism of the slope-confined submarine canyons in the Baiyun sag, Pearl River Mouth basin. Acta Sedimentologica Sinica, 34(5): 940~950 (in Chinese with English abstract).
参考文献
Ma Benjun, Qin Zhiliang, Wu Shiguo, Cai Guanqiang, Li Xiangbo, Wang Bin, Liu Xueqin, Qin Yongpeng, Huang Xiaoxia . 2021. High-resolution acoustic data revealing peri-platform sedimentary characteristics in the Xisha Archipelago, South China Sea. Interpretation, 9(2): 1~44.
参考文献
McDonnell A, Loucks R G, Galloway W E. 2008. Paleocene to Eocene deepwater slope canyons, western Gulf of Mexico: Further insishts for the provenance of deep-water offshore Wilcox Group plays. AAPG Bulletin, 92(9): 1169~1189.
参考文献
Pang Xiong, Chen Changmin, Zhu Ming, He Min, Liu Baojun, Shen Jun, Lian Shiyong. 2007. Baiyun Movement, a great tectonic event on the Oligocene—Miocene boundary in the northern South China Sea and its implications. Geological Review, 53(2): 145~151 (in Chinese with English abstract).
参考文献
Popescua I, Lericolais G, Paninc N, Normand A, Dinu C, Drezen E L. 2004. The Danube submarine canyon (Black Sea): Morphology and sedimentary processes. Marine Geology, 206: 249~265.
参考文献
Posamentier H W, Kolla V. 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73: 367~388.
参考文献
Pubellier M, Aurelio M, Sautter B. 2018. The life of a marginal basin depicted in a structural map of the South China Sea. Episodes, 41(3): 139~142.
参考文献
Puga-Bernabeu A, Webster J M, Beaman R J, Guilbaud V. 2011. Morphology and controls on the evolution of a mixed carbonate-siliciclastic submarine canyon system, Great Barrier Reef margin, north-eastern Australia. Marine Geology, 289: 100~116.
参考文献
Pyrcz M J, Catuneanu O, Deutsch C V. 2005. Stochastic surface-based modeling of turbidite lobes. AAPG Bulletin, 89: 177~191.
参考文献
Qian Xing, Zhang Li, WuShiguo, Yi Hai, Lin Zhen, Yang Zhen. 2017. Sedimentary response to tectonic evolution of the Northwest Sub-basin, South China Sea. Geotectonica et Metallogenia, 41(2): 248~257 (in Chinese with English abstract).
参考文献
Su Ming, Zhang Cheng, Xie Xinong, Wang Zhengfeng, Jiang Tao, He Yunlong, Zhang Cuimei. 2014. Controlling factors on the submarine canyon system: A case study of the Central Canyon System in the Qiongdongnan basin, northern South China Sea. Science China: Earth Sciences, 44(8): 1807~1820 (in Chinese with English abstract).
参考文献
Sun Meijing, Gao Hongfang, Li Xuejie. 2018. Sedimentary characteristics and origin of Taitung Canyon in eastern waters of Taiwan Island. Earth Science, 43(10): 3709~3718 (in Chinese with English abstract).
参考文献
Sun Meijing, Yao Yongjian, Luo Weidong, Hu Xiaosan, Zhou Jiao, Xu Ziying, Ju Dong, Liu Jie. 2022. Sedimentary evolution characteristics and controlling factors of Zhongjiannan canyons in northwestern South China Sea. Earth Science, 47(11): 4005~4019 (in Chinese with English abstract).
参考文献
Wang Xingxing, Cai Feng, Sun Zhilei, Li Qing, Li Ang, Sun Yunbao, Wang Hongbin, Sun Qiliang. 2022. Tectonic and oceanographic controls on the slope-confined dendritic canyon system in the Dongsha slope, South China Sea. Geomorphology, 410.
参考文献
Wu Shiguo, Zhu Weilin, Ma Yongsheng. 2018. Vicissitude of Cenozoic carbonate platforms in the South China Sea: Sedimentation in semi-closed marginal seas. Marine Geology & Quaternary Geology, 38(6): 1~17 (in Chinese with English abstract).
参考文献
Xu Shang, Wang Yingmin, Peng Xuechao, Zhuo Haiteng, Qiu Yan, Zhou Wei. 2013. Depositional elements and settings of HD133 and HD77 cores in the Taiwan Canyon. Acta Sedimentologica Sinica, 31(2): 325~330 (in Chinese with English abstract).
参考文献
Yang Xi, Feng Xiuli, Li Mengshuai. 2022. Numerical simulation and analysis of the turbidity current deposit in Yingqiong continental slope in the northern South China Sea. Acta Geologica Sinica, 96(4): 1412~1420 (in Chinese with English abstract).
参考文献
Zhong Guangjian, Gao Hongfang. 2005. Sequence characteristics of Cenozoic stratigraphy in Zhongjiannan basin, South China Sea. Geotectonica et Metallogenia, 29(3): 403~409 (in Chinese with English abstract).
参考文献
Zhu Weilin, Wang Zhenfeng, Mi Lijun, Du Xuebin, Xie Xinong, Lu Yongchao, Zhang Daojun, Sun Zhipeng, Liu Xinyu, You Li. 2015. Sequence stratigraphic framework and reef growth unit of well Xike-1 from Xisha Islands, South China Sea. Earth Science—Journal of China University of Geosciences, 40(4): 677~687 (in Chinese with English abstract).
参考文献
陈泓君, 蔡观强, 罗伟东, 吴峧岐, 黄磊, 李丽青. 2012. 南海北部陆坡神狐海域峡谷地貌形态特征与成因. 海洋地质与第四纪地质, 32(5): 19~26.
参考文献
杜文波, 蔡观强, 黄文凯, 陈家乐, 聂鑫, 万晓明. 2021. 西沙海区新近纪碳酸盐岩台地地震响应特征和控制因素. 海洋地质前沿, 37(1): 20~30.
参考文献
高红芳, 聂鑫, 罗伟东. 2021. 海盆沉积“源-汇”系统分析: 南海北部珠江海谷-西北次海盆第四纪深水浊积扇. 海洋地质与第四纪地质, 41(2): 1~12.
参考文献
李华, 梁建设, 邱春光, 赵红岩, 胡滨, 饶溯, 王贝贝, 孔令武, 蔡俊, 吴东胜, 何幼斌, 郭笑. 2022. 东非海岸重点盆地渐新世构造事件-沉积体系耦合关系研究. 地质学报, 96(5): 1855~1867.
参考文献
李林, 张成, 闫春, 杨涛涛, 解习农, 王少凯, 储生明. 2021. 琼东南盆地华光凹陷大型海底重力滑动系统特征及其成因机制. 地球科学, 46(10): 3707~3716.
参考文献
李学杰, 王大伟, 吴时国, 王微微, 刘刚. 2017. 三沙海底峡谷识别与地貌特征分析. 海洋地质与第四纪地质, 37(3): 28~36.
参考文献
李学杰, 王哲, 姚永坚, 高红芳, 祝嵩, 徐子英. 2020. 南海成因及其演化模式探讨. 中国地质, 47(5): 1310~1322.
参考文献
林畅松, 刘景彦, 蔡世祥, 张艳梅, 吕明, 李杰. 2001. 莺-琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报, 46(1): 69~72.
参考文献
刘杰, 苏明, 乔少华, 沙志斌, 吴能友, 杨睿. 2016. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨. 沉积学报, 34(5): 940~950.
参考文献
庞雄, 陈长民, 朱明, 何敏, 柳保军, 申俊, 连世勇. 2007. 深水沉积研究前缘问题. 地质论评, 53(2): 145~151.
参考文献
钱星, 张莉, 吴时国, 易海, 林珍, 杨振. 2017. 南海西北次海盆构造演化的沉积响应. 大地构造与成矿学, 41(2): 248~257.
参考文献
苏明, 张成, 解习农, 王振峰, 姜涛, 何云龙, 张翠梅. 2014. 深水峡谷体系控制因素分析——以南海北部琼东南盆地中央峡谷体系为例. 中国科学: 地球科学, 44(8): 1807~1820.
参考文献
孙美静, 高红芳, 李学杰, 刘杰. 2018. 台湾东部海域台东峡谷沉积特征及其成因. 地球科学, 43(10): 3709~3718.
参考文献
孙美静, 姚永坚, 罗伟东, 胡小三, 周娇, 徐子英, 鞠东, 刘杰. 2022. 南海西北部中建南海底峡谷群的发现及演化特征. 地球科学, 47(11): 4005~4019.
参考文献
吴时国, 朱伟林, 马永生. 2018. 南海半封闭边缘海碳酸盐台地兴衰史. 海洋地质与第四纪地质, 38(6): 1~17.
参考文献
徐尚, 王英民, 彭学超, 卓海腾, 邱燕, 周伟. 2013. 台湾海峡HD133和HD77柱状样的沉积构成和发育背景. 沉积学报, 31(2): 325~330.
参考文献
杨茜, 冯秀丽, 李梦帅. 2022. 南海北部莺琼陆坡浊流沉积数值模拟分析. 地质学报, 96(4): 1412~1420.
参考文献
钟广见, 高红芳. 2005. 中建南盆地新生代层序地层特征. 大地构造与成矿学, 29(3): 403~409.
参考文献
朱伟林, 王振峰, 米立军, 杜学斌, 解习农, 陆永潮, 张道军, 孙志鹏, 刘新宇, 尤丽. 2015. 南海西沙西科1井层序地层格架与礁生长单元特征. 地球科学——中国地质大学学报, 40(4): 677~687.
目录contents

    摘要

    海底峡谷是全球大陆边缘分布较广泛的地貌单元,是地形地貌、深水沉积和海洋地质灾害领域研究的重要内容。本研究基于高分辨率多波束测深和二维地震资料,以南海西沙东部海域为研究区,深入剖析了东岛北海底峡谷体系。东岛北海底峡谷分布在水深1000~3150 m范围,长度137 km,下切深度70~400 m,表现出西高东低的地形特征,总体由一条主峡谷和4条分支峡谷构成。峡谷上游有东岛西北部Ⅰ区和永兴海台东部Ⅱ区的沉积物供给,峡谷中游加入了东岛东北部Ⅲ区供给的沉积物。3个物源区的沉积物供应以线状的峡谷、水道和面状的块体流沉积类型为主。主峡谷北坡周缘分布有大量的海底麻坑,侧壁呈阶梯状不断后撤垮塌,因重力驱动作用和水流侵蚀,使峡谷壁外缘发育呈不规则小型“枝杈”状水道;主峡谷南岸因浊流作用,发育沉积物波。NE走向主断裂,控制着主干峡谷NE方向延伸,而峡谷南岸分布海山和海丘地形、岩浆底辟,影响主峡谷各分段的转向;同时峡谷和周缘下部地层发育的断层,控制峡谷侧壁向谷底呈阶梯状下降。

    Abstract

    Dendritic canyon system is the most widely distributed type of submarine canyon on the global continental margin. It is important in understanding the field of deep-water sedimentation and marine geological disasters. Based on high resolution multi-beam sounding and two-dimensional seismic profile data, taking the Xisha sea area of the South China Sea as the study area, the dendritic canyon system in the north of Dongdao is studied. The Dongdaobei submarine canyon is distributed in the range of 1000 ~ 3150 m water depth, which is generally composed of one main canyon and four branch canyons. The sediment supply at the upstream of the canyon comes from the northwest of Dongdao (area I) and the east of the Yongxing Plateau (area II). Sediments from zone III in the northeast of Dongdao are injected into the middle reaches of the canyon. Sediments are transported to deep water through canyon system and mass-transport deposits system. A large number of submarine pockmarks are distributed around the north slope of the main canyon. The side wall of the canyon collapsed backward in a ladder shape. Sediment waves are developed on the south slope of the main Canyon, which are affected and transformed by tides and waves. The main canyon with overall SW-NE strike is controlled by the strike of the main fault, while seamounts are distributed on the south bank of the canyon, controlling the turning of each section of the main canyon. At the same time, the faults developed in the lower stratum of the canyon and its periphery control the side wall of the canyon to descend in a ladder shape to the valley bottom.

  • 海底峡谷常常是陆源碎屑沉积物由陆地向深海平原输送的重要通道(Popescua et al.,2004Harris and Whiteway,2011),构架了陆—海连接的桥梁,也可成为碳酸盐台地的碎屑物由台地斜坡向深海搬运渠道,构成碳酸盐碎屑的“源-汇”系统研究的重要内容(苏明等,2014徐尚等,2013刘杰等,2016);峡谷体系的水道充填、堤岸沉积以及峡谷口外沉积朵体,成为有利储集层发育场所,与油气成藏密切相关(Posamentier and Kolla,2003; Pyrcz et al.,2005Bernhardt et al.,2011),是深水油气勘探研究的热点对象(McDonnell et al.,2008Davies et al.,2012);另外峡谷属于活动性地质灾害(陈泓君等,2012),对海洋电缆铺设、油气输送管道和钻井平台搭建等工程的稳定性等产生极大的威胁,所以在海洋开发与利用的同时,保障海洋工程建设的安全性为当前重要的研究课题(孙美静等,2022)。构造活动控制着峡谷沉积体系发育机制及沉积过程(Helland-Hansen et al.,2012Wang Xingxing et al.,2022李华等,2022)。断层活动导致沉积地层内部差异性沉降,从而改变台缘斜坡至深海区的地形地貌,进而影响重力流沉积发育和分布(林畅松等,2001杨茜等,2022)。

  • 西沙海域的东岛北海底峡谷是以搬运碳酸盐沉积物为主的大型海底峡谷,其沉积物来源与输送通道直接影响碳酸盐台地向深海盆的物质传递,关系到西沙群岛生态环境变化,同时峡谷体系的活动性与岛礁及斜坡区的稳定性密切相关。Puga-Bernabeu et al.(2011)研究了澳大利亚大堡礁北部硅质碎屑与碳酸盐碎屑混合型海底峡谷,其与陆架边缘障壁礁相连,珊瑚礁会堵塞峡谷头部,制约峡谷沉积,而其他特征与硅质碎屑型海底峡谷无大差别。Ma Benjun et al.(2021)主要利用声学数据,论述了西沙群岛孤立碳酸盐台地的地貌形态,以及在台地周缘识别出多种沉积类型;李学杰等(2017)定量阐述了东岛北峡谷的地形形态参数;从前人认识基础上看,缺少对东岛北峡谷体系沉积结构特征、演化过程及构造活动控制方面的深入认识。因此本文利用多波束测深数据和高分辨率二维地震剖面资料,对西沙东部海域的东岛北海底峡谷详细剖析,阐明峡谷沉积结构特征,论述峡谷体系的活动性与构造对其的控制,揭示岛礁与海盆之间的碳酸盐沉积物输送与汇聚过程。研究结果丰富了碳酸盐沉积的“源-汇”系统研究理论,并对西沙群岛地质灾害预测具有重要的指导意义。

  • 1 区域概况

  • 1.1 地质背景

  • 南海新生代北缘以伸展为主(Li Zhengxiang and Li Xianhua,2007Li Chunfeng et al.,2015Pubellier et al.,2018李学杰等,2020),伴随伸展作用和岩浆作用破坏了早期的结晶基底结构,奠定了现今西沙海域的整体构造特征(李学杰等,2020李林等,2021)。西沙群岛座落于西沙隆起之上,碳酸盐台地大多分布在大陆边缘拉张断块的构造高地上(吴时国等,2018)。西沙隆起自新生代早期裂谷时期,断层活动强烈,两侧高角度的断层活动形成了大范围的地垒,以及前新生代的基底构造,形成早期的隆起高地势,处于暴露状态;到晚渐新世—早中新世期间,西沙隆起发生沉降,逐渐被海水淹没,随后基本处于相对稳定的热沉降期,中中新世以来发育大量碳酸盐台地与生物礁。

  • 研究区的构造活动较发育(图1),西北次海盆古近纪一系列NE向和W—E向边界断层控制的地堑与地垒相间,形成了裂陷早期的宽裂谷构造格局(庞雄等,2007Li Chunfeng et al.,2015钱星等,2017李学杰等,2020)。西沙隆起东南缘与洋盆(东部的西北次海盆和南部的西南次海盆)接触,至早中新世岩浆活动较活跃,火山底辟构造影响新近纪以来地层,有的岩浆构造已出露为海底海山、海丘(李林等,2021);中中新世开始,西沙海域基底断层停止活动,局部还有火山活跃,仅有浅部重力滑动等构造,大型的海底峡谷、等深流以及海底滑坡较为发育。

  • 1.2 地层构架

  • 本文的地震资料解释主要根据地震反射波阻变化(地震的振幅、频率和连续性等)及接触关系(削截、上超和下超等),结合区域钻井资料和前人认识(杜文波等,2021李林等,2021),划分研究区的地震地层。西科1井和西永1井均钻穿下中新统(碳酸盐岩地层超1200 m),揭示了前寒武纪变质基岩或中生代火成岩基底(朱伟林等,2015)。研究区连续追踪新近纪—第四纪5个地震反射界面(图2),其中界面T6对应中新统的底界面,界面T5是中、下中新统的分界面,界面T3为上、中中新统的分界面,界面T2对应上新统底界面,界面T1为第四系的底界面。

  • 2 数据与方法

  • 本文利用广州海洋地质调查局在研究区获取的多波束测深数据、高分辨率单道地震、多道地震剖面。使用SeaBeam2112多波束采集系统,测量水深误差小于0.5%;采用Caris HIPS水深数据处理软件,经全深度声速剖面水深测量校正、系统参数校正、船姿校正等后处理流程并形成网格化数据,最后利用Global Mapper17软件绘制水深图和三维地貌图。

  • 图1 西沙海域位置图(a)及西沙群岛东部基底断裂分布(b)

  • Fig.1 Location of Xisha sea area (a) and distribution of basement faults in the east of the Xisha Islands (b)

  • 图2 东岛北海底峡谷区地震地层划分(剖面位置见图1b)

  • Fig.2 Seismic stratigraphic division of Dongdaobei submarine canyon area (see Fig.1b for location of the seismic profile)

  • (a)—原始地震剖面;(b)—解释后地震剖面

  • (a) —characteristics of seismic interface in the seismic profile; (b) —sequence boundary interpretation based on seismic profile

  • 单道地震采集时一般为4~6节,使用电火花震源系统,最大能量为10 kJ,垂向分辨率可达5~10 m;该数据运用CGG geocluster 3100软件处理,经振幅恢复、涌浪静校正、多次波压制等处理流程。多道地震采集的震源容量是3810 cu.in.(1 cu.in.=16.387037 cm3),道间距12.5 m,接收480道,采样率2 ms,记录长度为12 s;对该资料经前期处理、速度分析及多次波压制等处理过程,有效地压制了多次波、提高信噪比。运用Geoframe软件进行单道和多道地震资料的解释工作。

  • 3 结果

  • 3.1 海底峡谷形貌

  • 西沙海域的东岛北海底峡谷分布在西沙东部陆坡区,始于西沙海域东岛的北侧并向东北部延伸,最终汇入西北次海盆(图3a、b和图4),全长超137 km,水深分布范围为988~3146 m(图3a—a′),表现出西高东低的地形特征。该峡谷呈树枝状峡谷系统,总体是由1条主干峡谷和4条分支峡谷构成。

  • 峡谷头部处于东岛海台西北侧斜坡位置,由上斜坡区向下坡区侵蚀冲刷而成的4条鸟足状分支峡谷,整体命名为Ⅰ区分支峡谷群,分布面积约为250 km2。自西向东分支峡谷C1、C2呈NE走向,分支峡谷C3、C4呈NW走向(图3b),而后汇聚到一条主干峡谷上,向NNE方向延伸。4条分支峡谷的下切谷横截面呈V型形态,各分支峡谷自西向东的下切最大深度分别为236 m、263 m、286 m和272 m(图3b—b′和表1)。

  • 利用多波束测深数据,从峡谷整体形貌上看,峡谷头部的Ⅰ区分支峡谷汇聚后,向NE方向汇入主干峡谷的首端。其主干峡谷整体上经多次方向转折,由西部首端的W—E方向再向东转为NE方向,后转为短距离的W—E方向,而再转为NE方向,最终汇入到东侧的西北次海盆内,因此主要根据峡谷主干的走向,将主干峡谷分为A、B、C、D 4段。其中A段峡谷总体为峡谷上游的向东方向延伸段,中间有一短暂的向ES方向的急转,后又快速向NEE、E方向延长,长度为27.4 km,下切深度430 m;B段属于峡谷中游上段,为向NE方向延伸段,长度为32 km,整体较平直,B段侵蚀海底最大深度为403 m;C段属于峡谷中游下段,是向SEE方向延伸,距离较短,约为12 km,下切谷深度为349 m;D段为峡谷下游段,总体为NE方向延伸,中部有一相对小段距离向NEE方向转折,后又转到NE方向,因为转折段距离短,所以把这段总体归为D段,它直到峡谷口长度为39.5 km,最大侵蚀海底深度为291 m,在峡谷出口嘴部下切深度为70 m(表1和图3b—b′~g—g′)。

  • 峡谷头部及上游的A~B段所处斜坡坡度为0.6°,到下游的C~D段所处斜坡坡度为1.6°,从陆坡向海盆过渡其坡度急剧增大。峡谷从上游、中游到下游,以A段、B段较曲折,向下游的C段、D段开始变得较平直顺滑,其蜿蜒程度逐渐缓和;峡谷底中泓线上,在峡谷方向转折位置下切海底为最深(图3a—a′),A段谷底坡度为1.2°(图3c—c′),B~C段谷底坡度为0.8°(图3d—d′、e—e′),D段谷底坡度为0.6°(图3f—f′),由上游到中游向下游谷底坡度逐渐变缓和;从峡谷A段到D段均呈V型横剖面形态,但V型谷侧壁的坡度呈变缓趋势,其坡度从17°到10°左右的变化,直到峡谷出口嘴部,峡谷横截面显示为U型形态,侧壁坡度继续降低(图3g—g′)。

  • 表1 东岛北海底峡谷形态参数统计

  • Table1 Statistics of morphological parameters of Dongdaobei submarine canyon

  • 图3 东岛北海底峡谷周缘坡度分布(a)(据李学杰等,2017;位置见图1b)、峡谷分段(b)及地形剖面(a—a′~I—I′)(剖面位置见图3b)

  • Fig.3 Gradient distribution based on multi-beam around Dongdaobei submarine canyon (a) (after Li Xuejie et al., 2017; see Fig.1b for location) , canyon segmentation (b) and topographic profile (a—a′~I—I′) (c) (see Fig.3b for the profile location)

  • 永兴海台东部斜坡区冲刷而下形成一片水道群(图5a),水深分布在564~1436 m范围(图3h—h′),它向SE方向汇聚到主干峡谷首端NNE走向段,该区命名为Ⅱ区水道群,面积大致为160 km2,下切最大深度约为188 m,相对头部Ⅰ区的分支峡谷侵蚀深度要浅。Ⅱ区水道群的单支水道形态不明显,最大特点是该区域海底整片被冲刷,而形成整体性的负地形。总体属于西沙东岛北海底峡谷的Ⅱ区分支汇聚水道体系。如图5b,Ⅱ区水道群北坡地势高于南坡,其北坡呈现向下切水道深度中心的阶梯状坡降过程。

  • 另外于东岛海台东北侧发育有一片侵蚀水道群(图5a),水深在1163~1662 m范围(图3I—I′),由多条NE方向分支水道构成,再聚集到一条NNE方向的较大型主干水道上,该水道下切谷由南部上游向北部下游逐渐变宽,其宽度分布在1.8~6.0 km,主要呈V型形态,下切深度67~256 m,最后该主干水道汇入到主干峡谷B段的始端位置,这个整体水道群命名为Ⅲ区水道群,分布面积约为225 km2

  • 图4 东岛北海底峡谷地形

  • Fig.4 Topographic of Dongdaobei submarine canyon

  • 东岛北海底峡谷的主干延伸所经区域,整体上为北高南低的地形特征。北岸坡度约为0.6°,水深范围为1060~3000 m;南岸坡度约为0.4°,水深范围为1140~3120 m;南北两岸均是向峡谷中轴坡降。峡谷主干A~C段(长度超过65 km),其北岸约15 km宽的条带上发育众多海底麻坑、水道等负地形,分布面积达1000 km2以上,该范围是麻坑、小型水道等分布最密集的区域(图4),多数情况它们叠置或交互分布,不能单独识别一个独立体的完整形态,再向北侧依然有麻坑负地形的发育,该处的麻坑可以完整识别出其初始形态,麻坑呈现月牙形、近似椭圆形等,它们的长轴主要以NW—SE方向延伸,指向主干峡谷中轴。

  • 3.2 峡谷沉积特征

  • 3.2.1 峡谷起源

  • 东岛北海底峡谷与台地周缘区域,发育水道体系成为连接碳酸盐台地与海底峡谷之间的重力流输送通道,将3处主要碳酸盐沉积物搬运至主干峡谷(图5a)。一是Ⅰ区头部分支峡谷,从东岛海台西北侧输送碳酸盐碎屑物,而直接与主干峡谷连通,成为东岛北海底峡谷完整的头部物源通道;Ⅰ区头部分支峡谷各个分支结构形态清晰,下切谷深而窄,通过分支峡谷通道输送海台上的沉积物,统一汇聚到一条NNE走向分支上,进而它与峡谷主干A段起始处相接。

  • Ⅱ区水道群为永兴海台东部碳酸盐碎屑物搬运通道,输送到东岛北峡谷A段开始位置;该区水道群被多期次冲刷、侵蚀,已连成片状的大型下切谷,该水道群宽度近10 km,水道之间堤岸冲刷殆尽,在地震剖面上显示,仅残余少量海底锥形块体(图5b),下切谷内未见沉积充填。该水道群整体汇入峡谷上游与A段相接位置。

  • Ⅲ区水道群搬运东岛海台东北侧碳酸盐碎屑沉积物,输送到东岛北峡谷;Ⅲ区内发育海山、海丘,受海山、海丘阻隔影响,该区域水道未全部连成一片,水道之间有海山、海丘或堤岸分隔(图5a、c和图6a);另外该处水道是从东岛海台东北侧斜坡上发育,沿着坡降方向延伸约6~14 km,后汇聚到一条NNE走向主干水道上,后由该主干水道携带的碳酸盐碎屑物汇入到峡谷B段,这是Ⅲ区水道体系与Ⅱ区水道群作为运输通道方式上的主要差异。Ⅲ区下切谷内存在沉积充填,厚约10 m,呈中振幅、中等—低连续、双向上超反射特征,本区域既有独立下切水道、未发生充填,又有先存水道被后期块体搬运复合沉积体系(MTDs)部分充填(图5c)。

  • 3.2.2 峡谷主干充填

  • 东岛北峡谷主干在地震剖面上显示,下切海底深度一般为50~80 m,A段、B段及C段峡谷横截面形态为V型(图6a~c),向下游到峡谷D段下切谷逐渐过渡为U型形态(图2b)。该峡谷从中中新世开始发育(图2b),主干峡谷A段海底之下充填厚度约16 m(图6a),发育6期次的沉积充填,每个期次峡谷底界显示出向深部凸出、强振幅、连续反射,谷内为中等连续或是杂乱反射充填,下切谷表现出多次摆动迁移的特征。D段峡谷海底之下充填厚度约45 m(图2b),峡谷侧壁均发生滑坡;中中新世以来海底之下发育2期次的沉积充填,谷底与周围沉积反射界线清晰,易识别,谷内下部的一期充填为强振幅中等连续、亚平行结构反射,上部的第二期充填靠近海底,呈杂乱结构、不规则外形的反射特征,分析为峡谷侧壁沉积物发生滑坡,在谷底堆积而成谷内充填沉积体。

  • 图5 东岛北海底峡谷物源区地形及沉积特征

  • Fig.5 Topography and sedimentary characteristics of Dongdaobei submarine canyon provenance area

  • (a)—物源区地形(位置见图4);(b)—Ⅱ区水道体系地震剖面;(c)—Ⅲ区水道体系地震剖面(剖面位置见图5a)

  • (a) —topography of provenance area (see Fig.4b for the profile location) ; (b) —seismic profile of channel system in zone II; (c) —seismic profile of channel system in zone III (see Fig.5a for the profile location)

  • 3.2.3 峡谷口外

  • 东岛北峡谷主干向东北方向延伸,至敞口的“喇叭状”地形区,海底未见下切凹状谷(图7),该区域属于峡谷通道输送沉积物最终释放与堆积场所,即峡谷口外。上新世早期,该区域为侵蚀谷的负地形(深度约65 m),属于东岛北峡谷主干上的一部分;上新世到第四纪早期,该处峡谷逐渐发生沉积充填,以中等连续、中—强振幅、亚平行结构反射为主,到第四纪早期呈中—高连续、强振幅反射充填;第四纪中晚期,该区域主干峡谷被沉积填平,不再承担沉积搬运通道的作用,而成为沉积物卸载区,到峡谷口外,沉积物失去峡谷侧壁有限范围的约束,短时间呈扇形撒开,在峡谷口外发育了低连续或断续反射的浊积扇(图7)。

  • 3.2.4 峡谷堤岸沉积

  • 峡谷内侧壁多发育多级阶梯状陡坎、呈断崖式峭壁,出现滑塌现象。如A段峡谷南侧壁靠近Ⅲ区冲刷水道群,呈现向Ⅲ区水道群后撤,使得峡谷顶截面变宽,该段南部内侧壁斜坡显示有4级阶梯与5段陡坎(图6a);B段峡谷北侧内壁斜坡显示有1级阶梯与2段陡坎(图6b);C段峡谷北侧内壁斜坡显示有2级阶梯与3段陡坎(图6c);D段上游峡谷北侧内壁斜坡显示有6级阶梯与7段陡坎(图6d)。受重力作用,峡谷侧壁陡坎发生滑坡,沉积不稳,由上部斜坡不断向谷底堆积,有的在峡谷侧壁暂时停留,伴随地震、断裂等突发形成杂乱结构反射的滑塌体。

  • 图6 东岛北海底峡谷主干A~D段沉积特征

  • Fig.6 Sedimentary characteristics of A~D section of the main Dongdaobei submarine canyon

  • (a)—穿过峡谷A段的地震剖面;(b)—穿过峡谷B段的地震剖面;(b′)—峡谷北坡局部地形图;(c)—穿过峡谷C段的地震剖面;(d)—穿过峡谷D段的地震剖面(地震剖面和地形位置见图4)

  • (a) —seismic profile across the section A of maincanyon; (b) —seismic profile acrossthe section B of main canyon; (b′) —local topographic map of the north slope of the canyon; (c) —seismic profile obliquely passing through section C of the main canyon; (d) —seismic profile through the section D of main canyon (see Fig.4 for the location of seismic profile and topography)

  • 图7 东岛北海底峡谷口外沉积特征(剖面位置见图4)

  • Fig.7 Sedimentary characteristics outside Dongdaobei submarine canyon mouth (see Fig.4 for the location of seismic profile)

  • 峡谷A~C段区域的北岸上,广泛发育海底麻坑和小型水道(图6a、c、d)。靠近主干峡谷北侧壁发育不同规模麻坑,有的麻坑呈NE向拉长为线型,延伸进入到峡谷主干内,成为输送沉积物的小型通道,有的水道内已经发生沉积物充填(图6a),形成向主干峡谷中心阶梯状坡降的冲刷斜坡(图6b、d);同时随着更多海底麻坑的连通,呈现出北岸峡谷侧壁逐渐向北、东北方向垮塌、后撤,从而使得主干峡谷顶面变宽。因此主干峡谷北岸与峡谷侧壁相接位置,可见多个小型分支水道汇入主干峡谷中,成为东岛北峡谷沉积物搬运新通道。

  • 峡谷南侧堤岸近岸边有少量麻坑发育(图6c),与北岸广泛发育的麻坑群相比,南岸的麻坑是零星分布。另外在峡谷B段紧邻南侧壁的堤岸上,海底之下厚约250 m沉积中,有同相轴呈长波状外形、平行—亚平行结构、连续性较好、中—强振幅的波状反射层组(图6a、c),并且波脊向远离主干峡谷的SE方向迁移,该波状沉积区规模不大,波形不对称,在下坡一侧缓和、上坡一侧波形较陡,呈现向上坡方向迁移的特征。峡谷A段尾部从东西方向转为北东方向的B段,转向较大,浊流沉积物溢出峡谷侧壁约束,越过南侧壁,在南侧堤岸上堆积形成沉积物波,但规模不大。

  • 3.3 构造地形特征

  • 研究区东岛海台长轴为NE走向,同时区域大断裂和小断裂均是NE走向。据地震剖面显示,峡谷堤岸从海底向下直到下中新统,有大量正断层控制地层,呈地堑结构(图2),断层下降盘厚度增大;峡谷侧壁多出现断层陡崖,使得侧壁呈现阶梯状陡坎,向峡谷中心下降,峡谷侧壁在断层作用下,沉积不稳,沉积物向峡谷中心发生滑坡(图6)。

  • 东岛北峡谷南岸有多处海山、海丘分布,一是靠近东岛海台东北侧的Ⅲ区内有一条与海台走向一致的NE向海脊(图4),延伸长度近10 km,最高点高出海底559 m,再是靠近东岛海台西北侧的Ⅰ区内有多个小型海丘分布(图5a),一般高出海底360 m,另外沿着主干峡谷D段直到峡谷入盆前的南岸区域,有NE走向的海山、海丘链发育,其与峡谷走向一致,高出海底约965 m,延伸长度为13 km;同时海山、海丘和岩浆侵入体的边界均是断层发育位置(图2b,图5c)。

  • 据地震剖面显示,如图6c,局部有柱状区域呈现低连续—断续、中振幅反射,与周围的高连续、强振幅反射组有清晰的分界线,并且内部反射层有向下拉的特征,从底部向上到达海底,有400 m厚,地层发生明显沉积变形,是向深处地层塌陷,海底该变形最清晰,形成海底麻坑负地形,推测该柱状体为流体通道的气烟囱,到达海底发生逸散,而使得该处地层发生塌陷、下凹的形变。

  • 4 讨论

  • 4.1 峡谷不稳定性

  • 利用海底地形地貌和地震剖面的海洋声学技术,能够清晰、完整地展示峡谷体系的空间结构,可以识别出峡谷体系的不稳定性(Wang Xingxing et al.,2022)。东岛北海底峡谷头部(图3b—b′)和A段(图3c—c′)下切谷横截面呈现V型形态,北侧壁坡度较大,为15°~16°,南侧壁8°~10°,高低起伏最大高差500 m,推测是遭受强劲的重力流侵蚀;从峡谷B段(图3d—d′)、C段(图3e—e′)、D段(图3f—f′)至峡谷嘴部(图3g—g′),主要为U型形态,同时该峡谷底部可见45 m厚的沉积充填,表明峡谷从中中新世发育至今,以侵蚀过程为主,中下游有部分充填过程(图2b),到峡谷口外发育了受浊流影响的浊积扇沉积;伴随长期的侵蚀作用,峡谷侧壁不断发生垮塌,并向远岸后撤,显示在峡谷侧壁的多级阶梯状陡坎现象及谷底堆积的滑塌沉积。因此东岛北峡谷体系从中中新世开始发育,至现今处于活跃的壮年阶段,发育过程中受重力流(有滑塌、浊流等)作用,留下特征性的沉积记录。

  • 当海台区的碳酸盐岩遭受剥蚀,经海台向台缘斜坡搬运,在靠近东岛海台北部坡脚下Ⅰ区、Ⅲ区以重力流作用为主(图5c,图3b—b′和图6a、c)、永兴海台东部坡脚下Ⅱ区受块体流控制(图5b),不断将碳酸盐沉积物搬运至东岛北海底峡谷内,这样该峡谷成为以输送碳酸盐碎屑物为主的通道,最终搬运进入西北次海盆(钱星等,2017);另外峡谷北岸麻坑遭受冲刷呈线型(图6b′),及侧壁陡峭,呈阶梯状坡降,沉积不稳,而形成小型侧壁破碎水道(图4和图6a、c),峡谷北部区域主要堆积陆源碎屑沉积(林畅松等,2001苏明等,2014),也有少量从西侧的西沙群岛上搬运而来的碳酸盐碎屑物(李学杰等,2017),推测北侧壁破碎水道向东岛北峡谷内搬运陆源碎屑为主及少量碳酸盐碎屑物。因此Ⅰ区、Ⅱ区、Ⅲ区和北侧堤岸仍为东岛北海底峡谷的物源区,其中以Ⅰ区、Ⅱ区、Ⅲ区供源为主,提供大量碳酸盐沉积物,北侧壁破碎水道供源规模有限,是运移碳酸盐和硅质混合型碎屑沉积物,这些峡谷体系的沉积物输送通道功能继续活跃中。

  • 流体的释放减压,对沉积地层造成负压,发生地层塌陷、失稳(Huang Yi et al.,2022)。主干峡谷两侧堤岸上存在流体运移通道,流体到达海底发生逸散,显示海底出现塌陷负地形,它属于海底沉积薄弱地带,易遭受水流侵蚀、冲刷,部分连接成为水道,逐渐延伸破坏峡谷侧壁,成为多麻坑、水道分布的不稳定沉积,随着水流的不断冲蚀,可能扩宽主干峡谷,将堤岸发展成为主干峡谷的一部分,表明峡谷体系的堤岸处于活动状态中。

  • 4.2 峡谷成因机制

  • 一般构造活动对海底峡谷的形成、发育和演化起到重要控制作用(苏明等,2014孙美静等,2018高红芳等,2021)。如珠江口外海底峡谷由于NWW方向的断裂作用,形成NWW方向的阶梯状坡降地形,直接控制重力沉积流向NWW方向运动,为峡谷的发育奠定基础(高红芳等,2021);台湾东部海域的台东峡谷基底断裂和周缘海山、海丘控制着峡谷走向、突然转向及典型沉积相发育(孙美静等,2018)。澳大利亚大堡礁北部带状礁地区,陆架边缘障壁礁与海底峡谷相连,输送硅质碎屑与碳酸盐碎屑混合型沉积物,周缘复杂构造在生物礁地区对峡谷沉积演化影响很大(Puga-Bernabeu et al.,2011)。西沙东部的东岛北海底峡谷演化主要是由构造活动控制,与断裂活动、岩浆作用等密切相关,断裂活动为峡谷发育创造有利空间,并进一步促进峡谷体系的演化,岩浆底辟与海山、海丘地形对峡谷起到遮挡、约束作用。

  • 峡谷下方存在隐伏断裂,对海底峡谷的形成及路径产生重要影响(孙美静等,2018)。研究区北部西沙海槽盆地主断裂走向是NE、NEE方向(钟广见等,2005),东北侧的西北次海盆扩张轴及洋中脊向南跃迁轴均是SW—NE方向(Briais et al.,1993Li Chunfeng et al.,2015),同时该盆地的主断裂走向是NE方向(庞雄等,2007),所以在东岛北峡谷周缘存在NE向深大断裂(图1b),峡谷主干延伸走向与其总体一致。东岛北峡谷的A段受到下伏断裂的控制,先存断裂的活动使得峡谷A段地层形成薄弱带,容易被冲刷、剥蚀而形成水道或负地形,为峡谷的形成提供了有利的空间。断层的发育通常可以促进峡谷体系的演化。东岛北海底峡谷主干两岸发育大量SW—NE走向的断层(图1b)或断层崖峭壁,以断层为界,向坡降后方阶梯性后退,产生多级台阶(图6),呈梯田型侧壁,表明断层对峡谷侧壁滑坡发育的控制作用,断层边界是沉积脆弱地带,更易遭受侵蚀,进一步促进峡谷底部的下切和横截面的拓宽。

  • 峡谷的转向,与岩浆底辟、海山、海丘“屏障”作用相关(苏明等,2014)。峡谷两岸及周缘发育岩浆活动体,对峡谷展布产生直接影响。峡谷B段末端向北岸的NE方向延伸,因该处遇到低隆起、分布底座面积较大的海丘(图4和图6d),峡谷前进受阻,开始转向东部;D段峡谷南岸有海山、海丘(图4)、岩浆侵入体(图2b)分布,阻碍峡谷向E、向S方向延伸,因此峡谷主干向NE、NNE方向延伸,直到入盆前东南岸依然有海山、海丘阻挡(图7),受其约束,它们起伏高差近750 m,成为峡谷难以“逾越”的地形,南岸的岩浆活动对峡谷的影响为“遮挡效应”(图8)。因此断裂、海底地形及岩浆活动控制了峡谷的整体走向格局。

  • 5 结论

  • (1)东岛北峡谷体系是由峡谷头部4条分支峡谷、1条主干峡谷和峡谷口外浊积朵体构成,有Ⅰ区、Ⅱ区和Ⅲ区3个区域的分支峡谷和水道群,作为台地碳酸盐沉积物源的运输渠道,搬运至东岛北峡谷内,使得该峡谷成为碳酸盐碎屑物向深海盆运输的重要通道。

  • (2)东岛北峡谷中中新世发育以来,受重力流作用为主,持续发生侵蚀和充填,侧壁不断发生垮塌和滑坡;受浊流作用影响,形成沉积物波、浊积扇;峡谷北岸因流体逸散作用,局部出现密集的海底麻坑,冲刷作用影响独立麻坑连接起来,成为峡谷北岸侧壁的冲刷水道。表明东岛北峡谷体系现今仍处于活跃状态。

  • 图8 东岛北海底峡谷体系发育模式图

  • Fig.8 Development mode of Dongdaobei submarine canyon system

  • (3)研究区主要发育NE走向的断裂系统,以及证实的局部岩浆活动。这些构造活动(断裂和岩浆活动)、海底地形(海山、海丘)对东岛北峡谷体系的展布与沉积构型有显著影响。断裂、岩浆活动和海底地形控制了峡谷的整体走向与路径,同时影响峡谷沉积作用与演化过程。

  • 参考文献

    • Bernhardt A, Jobe Z R, Lowe D R. 2011. Stratigraphic evolution of a submarine channel-lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile. Marine and Petroleum Geology, 28: 785~806.

    • Briais A, Patriat P, Tapponnier P. 1993. Updated in terpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299~6328.

    • Chen Hongjun, Cai Guanqiang, Luo Weidong, Wu Jiaoqi, Huang Lei, Li Liqing. 2012. Features of canyon morphology and their origin in the Shenhu area, Northern Slope of the South China Sea. Marine Geology & Quaternary Geology, 32(5): 19~26 (in Chinese with English abstract).

    • Davies R J, Thatcher K E, Mathias S A, Yang J. 2012. Deepwater canyons: An escape route for methane sealed by methane hydrate. Earth and Planetary Science Letters, 323-324: 72~78.

    • Du Wenbo, Cai Guanqiang, Huang Weikai, Chen Jiale, Nie Xin, Wan Xiaoming. 2021. Seismic reflection characteristics of Neogene carbonate platforms in the Xisha sea area and their controlling factors. Marine Geology Frontiers, 37(1): 20~30 (in Chinese with English abstract).

    • Gao Hongfang, Nie Xin, Luo Weidong. 2021. “Source to sink” analysis of a sea basin: The Quaternary deepwater turbidite fan system in Pearl River Valley-Northwest subbasin, northern South China Sea. Marine Geology & Quaternary Geology, 41(2): 1~12 (in Chinese with English abstract).

    • Harris P T, Whiteway T. 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285: 69~85.

    • Helland-Hansen W, Steel R J, Somme T O. 2012. Shelf genesis revisited. Journal of Sedimentary Research, 82: 133~148.

    • Huang Yi, Cheng Jun, Wang Mingmin, Wang Shuhong, Yan Wen. 2022. Gas hydrate dissociation events during LGM and their potential trigger of submarine landslides: Foraminifera and geochemical records from two cores in the northern South China Sea. Frontiers of Earth Science, 10: 1~11.

    • Li Chunfeng, Li Jiabiao, Ding Weiwei, Franke D. 2015. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research, 120(3): 1377~1399.

    • Li Hua, Liang Jianshe, Qiu Chunguang, Zhao Hongyan, Hu Bin, Rao Su, Wang Beibei, Kong Lingwu, Cai Jun, Wu Dongsheng, He Youbin, Guo Xiao. 2022. The relationship between tectonic events and sedimentary systems in coastal key basins of the East Africa. Acta Geologica Sinica, 96(5): 1855~1867 (in Chinese with English abstract).

    • Li Lin, Zhang Cheng, Yan Chun, Yang Taotao, Xie Xinong, Wang Shaokai, Chu Shengming. 2021. Characteristics and genetic mechanism of a large scale submarine gravity-driven system in Huaguang depression, Qiongdongnan basin. Earth Science, 46(10): 3707~3716 (in Chinese with English abstract).

    • Li Xuejie, Wang Dawei, Wu Shiguo, Wang Weiwei, Liu Gang. 2017. Geomorphology of Sansha Canyon: Identification and implication. Marine Geology & Quaternary Geology, 37(3): 28~36 (in Chinese with English abstract).

    • Li Xuejie, Wang Zhe, Yao Yongjian, Gao Hongfang, Zhu Song, Xu Ziying. 2020. The formation and evolution of the South China Sea. Geology in China, 47(5): 1310~1322 (in Chinese with English abstract).

    • Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flatslab subduction model. Geology, 35(2): 179~182.

    • Lin Changsong, Liu Jingyan, Cai Shixiang, Zhang Yanmei, Lü Ming, Li Jie. 2001. Sedimentary composition and development background of large incised valley and submarine gravity flow system in Yinggehai-Qiongdongnan basin. Chinese Science Bulletin, 46(1): 69~72 (in Chinese).

    • Liu Jie, Su Ming, Qiao Shaohua, Sha Zhibin, Wu Nengyou, Yang Rui. 2016. Forming mechanism of the slope-confined submarine canyons in the Baiyun sag, Pearl River Mouth basin. Acta Sedimentologica Sinica, 34(5): 940~950 (in Chinese with English abstract).

    • Ma Benjun, Qin Zhiliang, Wu Shiguo, Cai Guanqiang, Li Xiangbo, Wang Bin, Liu Xueqin, Qin Yongpeng, Huang Xiaoxia . 2021. High-resolution acoustic data revealing peri-platform sedimentary characteristics in the Xisha Archipelago, South China Sea. Interpretation, 9(2): 1~44.

    • McDonnell A, Loucks R G, Galloway W E. 2008. Paleocene to Eocene deepwater slope canyons, western Gulf of Mexico: Further insishts for the provenance of deep-water offshore Wilcox Group plays. AAPG Bulletin, 92(9): 1169~1189.

    • Pang Xiong, Chen Changmin, Zhu Ming, He Min, Liu Baojun, Shen Jun, Lian Shiyong. 2007. Baiyun Movement, a great tectonic event on the Oligocene—Miocene boundary in the northern South China Sea and its implications. Geological Review, 53(2): 145~151 (in Chinese with English abstract).

    • Popescua I, Lericolais G, Paninc N, Normand A, Dinu C, Drezen E L. 2004. The Danube submarine canyon (Black Sea): Morphology and sedimentary processes. Marine Geology, 206: 249~265.

    • Posamentier H W, Kolla V. 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73: 367~388.

    • Pubellier M, Aurelio M, Sautter B. 2018. The life of a marginal basin depicted in a structural map of the South China Sea. Episodes, 41(3): 139~142.

    • Puga-Bernabeu A, Webster J M, Beaman R J, Guilbaud V. 2011. Morphology and controls on the evolution of a mixed carbonate-siliciclastic submarine canyon system, Great Barrier Reef margin, north-eastern Australia. Marine Geology, 289: 100~116.

    • Pyrcz M J, Catuneanu O, Deutsch C V. 2005. Stochastic surface-based modeling of turbidite lobes. AAPG Bulletin, 89: 177~191.

    • Qian Xing, Zhang Li, WuShiguo, Yi Hai, Lin Zhen, Yang Zhen. 2017. Sedimentary response to tectonic evolution of the Northwest Sub-basin, South China Sea. Geotectonica et Metallogenia, 41(2): 248~257 (in Chinese with English abstract).

    • Su Ming, Zhang Cheng, Xie Xinong, Wang Zhengfeng, Jiang Tao, He Yunlong, Zhang Cuimei. 2014. Controlling factors on the submarine canyon system: A case study of the Central Canyon System in the Qiongdongnan basin, northern South China Sea. Science China: Earth Sciences, 44(8): 1807~1820 (in Chinese with English abstract).

    • Sun Meijing, Gao Hongfang, Li Xuejie. 2018. Sedimentary characteristics and origin of Taitung Canyon in eastern waters of Taiwan Island. Earth Science, 43(10): 3709~3718 (in Chinese with English abstract).

    • Sun Meijing, Yao Yongjian, Luo Weidong, Hu Xiaosan, Zhou Jiao, Xu Ziying, Ju Dong, Liu Jie. 2022. Sedimentary evolution characteristics and controlling factors of Zhongjiannan canyons in northwestern South China Sea. Earth Science, 47(11): 4005~4019 (in Chinese with English abstract).

    • Wang Xingxing, Cai Feng, Sun Zhilei, Li Qing, Li Ang, Sun Yunbao, Wang Hongbin, Sun Qiliang. 2022. Tectonic and oceanographic controls on the slope-confined dendritic canyon system in the Dongsha slope, South China Sea. Geomorphology, 410.

    • Wu Shiguo, Zhu Weilin, Ma Yongsheng. 2018. Vicissitude of Cenozoic carbonate platforms in the South China Sea: Sedimentation in semi-closed marginal seas. Marine Geology & Quaternary Geology, 38(6): 1~17 (in Chinese with English abstract).

    • Xu Shang, Wang Yingmin, Peng Xuechao, Zhuo Haiteng, Qiu Yan, Zhou Wei. 2013. Depositional elements and settings of HD133 and HD77 cores in the Taiwan Canyon. Acta Sedimentologica Sinica, 31(2): 325~330 (in Chinese with English abstract).

    • Yang Xi, Feng Xiuli, Li Mengshuai. 2022. Numerical simulation and analysis of the turbidity current deposit in Yingqiong continental slope in the northern South China Sea. Acta Geologica Sinica, 96(4): 1412~1420 (in Chinese with English abstract).

    • Zhong Guangjian, Gao Hongfang. 2005. Sequence characteristics of Cenozoic stratigraphy in Zhongjiannan basin, South China Sea. Geotectonica et Metallogenia, 29(3): 403~409 (in Chinese with English abstract).

    • Zhu Weilin, Wang Zhenfeng, Mi Lijun, Du Xuebin, Xie Xinong, Lu Yongchao, Zhang Daojun, Sun Zhipeng, Liu Xinyu, You Li. 2015. Sequence stratigraphic framework and reef growth unit of well Xike-1 from Xisha Islands, South China Sea. Earth Science—Journal of China University of Geosciences, 40(4): 677~687 (in Chinese with English abstract).

    • 陈泓君, 蔡观强, 罗伟东, 吴峧岐, 黄磊, 李丽青. 2012. 南海北部陆坡神狐海域峡谷地貌形态特征与成因. 海洋地质与第四纪地质, 32(5): 19~26.

    • 杜文波, 蔡观强, 黄文凯, 陈家乐, 聂鑫, 万晓明. 2021. 西沙海区新近纪碳酸盐岩台地地震响应特征和控制因素. 海洋地质前沿, 37(1): 20~30.

    • 高红芳, 聂鑫, 罗伟东. 2021. 海盆沉积“源-汇”系统分析: 南海北部珠江海谷-西北次海盆第四纪深水浊积扇. 海洋地质与第四纪地质, 41(2): 1~12.

    • 李华, 梁建设, 邱春光, 赵红岩, 胡滨, 饶溯, 王贝贝, 孔令武, 蔡俊, 吴东胜, 何幼斌, 郭笑. 2022. 东非海岸重点盆地渐新世构造事件-沉积体系耦合关系研究. 地质学报, 96(5): 1855~1867.

    • 李林, 张成, 闫春, 杨涛涛, 解习农, 王少凯, 储生明. 2021. 琼东南盆地华光凹陷大型海底重力滑动系统特征及其成因机制. 地球科学, 46(10): 3707~3716.

    • 李学杰, 王大伟, 吴时国, 王微微, 刘刚. 2017. 三沙海底峡谷识别与地貌特征分析. 海洋地质与第四纪地质, 37(3): 28~36.

    • 李学杰, 王哲, 姚永坚, 高红芳, 祝嵩, 徐子英. 2020. 南海成因及其演化模式探讨. 中国地质, 47(5): 1310~1322.

    • 林畅松, 刘景彦, 蔡世祥, 张艳梅, 吕明, 李杰. 2001. 莺-琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报, 46(1): 69~72.

    • 刘杰, 苏明, 乔少华, 沙志斌, 吴能友, 杨睿. 2016. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨. 沉积学报, 34(5): 940~950.

    • 庞雄, 陈长民, 朱明, 何敏, 柳保军, 申俊, 连世勇. 2007. 深水沉积研究前缘问题. 地质论评, 53(2): 145~151.

    • 钱星, 张莉, 吴时国, 易海, 林珍, 杨振. 2017. 南海西北次海盆构造演化的沉积响应. 大地构造与成矿学, 41(2): 248~257.

    • 苏明, 张成, 解习农, 王振峰, 姜涛, 何云龙, 张翠梅. 2014. 深水峡谷体系控制因素分析——以南海北部琼东南盆地中央峡谷体系为例. 中国科学: 地球科学, 44(8): 1807~1820.

    • 孙美静, 高红芳, 李学杰, 刘杰. 2018. 台湾东部海域台东峡谷沉积特征及其成因. 地球科学, 43(10): 3709~3718.

    • 孙美静, 姚永坚, 罗伟东, 胡小三, 周娇, 徐子英, 鞠东, 刘杰. 2022. 南海西北部中建南海底峡谷群的发现及演化特征. 地球科学, 47(11): 4005~4019.

    • 吴时国, 朱伟林, 马永生. 2018. 南海半封闭边缘海碳酸盐台地兴衰史. 海洋地质与第四纪地质, 38(6): 1~17.

    • 徐尚, 王英民, 彭学超, 卓海腾, 邱燕, 周伟. 2013. 台湾海峡HD133和HD77柱状样的沉积构成和发育背景. 沉积学报, 31(2): 325~330.

    • 杨茜, 冯秀丽, 李梦帅. 2022. 南海北部莺琼陆坡浊流沉积数值模拟分析. 地质学报, 96(4): 1412~1420.

    • 钟广见, 高红芳. 2005. 中建南盆地新生代层序地层特征. 大地构造与成矿学, 29(3): 403~409.

    • 朱伟林, 王振峰, 米立军, 杜学斌, 解习农, 陆永潮, 张道军, 孙志鹏, 刘新宇, 尤丽. 2015. 南海西沙西科1井层序地层格架与礁生长单元特征. 地球科学——中国地质大学学报, 40(4): 677~687.

  • 参考文献

    • Bernhardt A, Jobe Z R, Lowe D R. 2011. Stratigraphic evolution of a submarine channel-lobe complex system in a narrow fairway within the Magallanes foreland basin, Cerro Toro Formation, southern Chile. Marine and Petroleum Geology, 28: 785~806.

    • Briais A, Patriat P, Tapponnier P. 1993. Updated in terpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299~6328.

    • Chen Hongjun, Cai Guanqiang, Luo Weidong, Wu Jiaoqi, Huang Lei, Li Liqing. 2012. Features of canyon morphology and their origin in the Shenhu area, Northern Slope of the South China Sea. Marine Geology & Quaternary Geology, 32(5): 19~26 (in Chinese with English abstract).

    • Davies R J, Thatcher K E, Mathias S A, Yang J. 2012. Deepwater canyons: An escape route for methane sealed by methane hydrate. Earth and Planetary Science Letters, 323-324: 72~78.

    • Du Wenbo, Cai Guanqiang, Huang Weikai, Chen Jiale, Nie Xin, Wan Xiaoming. 2021. Seismic reflection characteristics of Neogene carbonate platforms in the Xisha sea area and their controlling factors. Marine Geology Frontiers, 37(1): 20~30 (in Chinese with English abstract).

    • Gao Hongfang, Nie Xin, Luo Weidong. 2021. “Source to sink” analysis of a sea basin: The Quaternary deepwater turbidite fan system in Pearl River Valley-Northwest subbasin, northern South China Sea. Marine Geology & Quaternary Geology, 41(2): 1~12 (in Chinese with English abstract).

    • Harris P T, Whiteway T. 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285: 69~85.

    • Helland-Hansen W, Steel R J, Somme T O. 2012. Shelf genesis revisited. Journal of Sedimentary Research, 82: 133~148.

    • Huang Yi, Cheng Jun, Wang Mingmin, Wang Shuhong, Yan Wen. 2022. Gas hydrate dissociation events during LGM and their potential trigger of submarine landslides: Foraminifera and geochemical records from two cores in the northern South China Sea. Frontiers of Earth Science, 10: 1~11.

    • Li Chunfeng, Li Jiabiao, Ding Weiwei, Franke D. 2015. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research, 120(3): 1377~1399.

    • Li Hua, Liang Jianshe, Qiu Chunguang, Zhao Hongyan, Hu Bin, Rao Su, Wang Beibei, Kong Lingwu, Cai Jun, Wu Dongsheng, He Youbin, Guo Xiao. 2022. The relationship between tectonic events and sedimentary systems in coastal key basins of the East Africa. Acta Geologica Sinica, 96(5): 1855~1867 (in Chinese with English abstract).

    • Li Lin, Zhang Cheng, Yan Chun, Yang Taotao, Xie Xinong, Wang Shaokai, Chu Shengming. 2021. Characteristics and genetic mechanism of a large scale submarine gravity-driven system in Huaguang depression, Qiongdongnan basin. Earth Science, 46(10): 3707~3716 (in Chinese with English abstract).

    • Li Xuejie, Wang Dawei, Wu Shiguo, Wang Weiwei, Liu Gang. 2017. Geomorphology of Sansha Canyon: Identification and implication. Marine Geology & Quaternary Geology, 37(3): 28~36 (in Chinese with English abstract).

    • Li Xuejie, Wang Zhe, Yao Yongjian, Gao Hongfang, Zhu Song, Xu Ziying. 2020. The formation and evolution of the South China Sea. Geology in China, 47(5): 1310~1322 (in Chinese with English abstract).

    • Li Zhengxiang, Li Xianhua. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flatslab subduction model. Geology, 35(2): 179~182.

    • Lin Changsong, Liu Jingyan, Cai Shixiang, Zhang Yanmei, Lü Ming, Li Jie. 2001. Sedimentary composition and development background of large incised valley and submarine gravity flow system in Yinggehai-Qiongdongnan basin. Chinese Science Bulletin, 46(1): 69~72 (in Chinese).

    • Liu Jie, Su Ming, Qiao Shaohua, Sha Zhibin, Wu Nengyou, Yang Rui. 2016. Forming mechanism of the slope-confined submarine canyons in the Baiyun sag, Pearl River Mouth basin. Acta Sedimentologica Sinica, 34(5): 940~950 (in Chinese with English abstract).

    • Ma Benjun, Qin Zhiliang, Wu Shiguo, Cai Guanqiang, Li Xiangbo, Wang Bin, Liu Xueqin, Qin Yongpeng, Huang Xiaoxia . 2021. High-resolution acoustic data revealing peri-platform sedimentary characteristics in the Xisha Archipelago, South China Sea. Interpretation, 9(2): 1~44.

    • McDonnell A, Loucks R G, Galloway W E. 2008. Paleocene to Eocene deepwater slope canyons, western Gulf of Mexico: Further insishts for the provenance of deep-water offshore Wilcox Group plays. AAPG Bulletin, 92(9): 1169~1189.

    • Pang Xiong, Chen Changmin, Zhu Ming, He Min, Liu Baojun, Shen Jun, Lian Shiyong. 2007. Baiyun Movement, a great tectonic event on the Oligocene—Miocene boundary in the northern South China Sea and its implications. Geological Review, 53(2): 145~151 (in Chinese with English abstract).

    • Popescua I, Lericolais G, Paninc N, Normand A, Dinu C, Drezen E L. 2004. The Danube submarine canyon (Black Sea): Morphology and sedimentary processes. Marine Geology, 206: 249~265.

    • Posamentier H W, Kolla V. 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73: 367~388.

    • Pubellier M, Aurelio M, Sautter B. 2018. The life of a marginal basin depicted in a structural map of the South China Sea. Episodes, 41(3): 139~142.

    • Puga-Bernabeu A, Webster J M, Beaman R J, Guilbaud V. 2011. Morphology and controls on the evolution of a mixed carbonate-siliciclastic submarine canyon system, Great Barrier Reef margin, north-eastern Australia. Marine Geology, 289: 100~116.

    • Pyrcz M J, Catuneanu O, Deutsch C V. 2005. Stochastic surface-based modeling of turbidite lobes. AAPG Bulletin, 89: 177~191.

    • Qian Xing, Zhang Li, WuShiguo, Yi Hai, Lin Zhen, Yang Zhen. 2017. Sedimentary response to tectonic evolution of the Northwest Sub-basin, South China Sea. Geotectonica et Metallogenia, 41(2): 248~257 (in Chinese with English abstract).

    • Su Ming, Zhang Cheng, Xie Xinong, Wang Zhengfeng, Jiang Tao, He Yunlong, Zhang Cuimei. 2014. Controlling factors on the submarine canyon system: A case study of the Central Canyon System in the Qiongdongnan basin, northern South China Sea. Science China: Earth Sciences, 44(8): 1807~1820 (in Chinese with English abstract).

    • Sun Meijing, Gao Hongfang, Li Xuejie. 2018. Sedimentary characteristics and origin of Taitung Canyon in eastern waters of Taiwan Island. Earth Science, 43(10): 3709~3718 (in Chinese with English abstract).

    • Sun Meijing, Yao Yongjian, Luo Weidong, Hu Xiaosan, Zhou Jiao, Xu Ziying, Ju Dong, Liu Jie. 2022. Sedimentary evolution characteristics and controlling factors of Zhongjiannan canyons in northwestern South China Sea. Earth Science, 47(11): 4005~4019 (in Chinese with English abstract).

    • Wang Xingxing, Cai Feng, Sun Zhilei, Li Qing, Li Ang, Sun Yunbao, Wang Hongbin, Sun Qiliang. 2022. Tectonic and oceanographic controls on the slope-confined dendritic canyon system in the Dongsha slope, South China Sea. Geomorphology, 410.

    • Wu Shiguo, Zhu Weilin, Ma Yongsheng. 2018. Vicissitude of Cenozoic carbonate platforms in the South China Sea: Sedimentation in semi-closed marginal seas. Marine Geology & Quaternary Geology, 38(6): 1~17 (in Chinese with English abstract).

    • Xu Shang, Wang Yingmin, Peng Xuechao, Zhuo Haiteng, Qiu Yan, Zhou Wei. 2013. Depositional elements and settings of HD133 and HD77 cores in the Taiwan Canyon. Acta Sedimentologica Sinica, 31(2): 325~330 (in Chinese with English abstract).

    • Yang Xi, Feng Xiuli, Li Mengshuai. 2022. Numerical simulation and analysis of the turbidity current deposit in Yingqiong continental slope in the northern South China Sea. Acta Geologica Sinica, 96(4): 1412~1420 (in Chinese with English abstract).

    • Zhong Guangjian, Gao Hongfang. 2005. Sequence characteristics of Cenozoic stratigraphy in Zhongjiannan basin, South China Sea. Geotectonica et Metallogenia, 29(3): 403~409 (in Chinese with English abstract).

    • Zhu Weilin, Wang Zhenfeng, Mi Lijun, Du Xuebin, Xie Xinong, Lu Yongchao, Zhang Daojun, Sun Zhipeng, Liu Xinyu, You Li. 2015. Sequence stratigraphic framework and reef growth unit of well Xike-1 from Xisha Islands, South China Sea. Earth Science—Journal of China University of Geosciences, 40(4): 677~687 (in Chinese with English abstract).

    • 陈泓君, 蔡观强, 罗伟东, 吴峧岐, 黄磊, 李丽青. 2012. 南海北部陆坡神狐海域峡谷地貌形态特征与成因. 海洋地质与第四纪地质, 32(5): 19~26.

    • 杜文波, 蔡观强, 黄文凯, 陈家乐, 聂鑫, 万晓明. 2021. 西沙海区新近纪碳酸盐岩台地地震响应特征和控制因素. 海洋地质前沿, 37(1): 20~30.

    • 高红芳, 聂鑫, 罗伟东. 2021. 海盆沉积“源-汇”系统分析: 南海北部珠江海谷-西北次海盆第四纪深水浊积扇. 海洋地质与第四纪地质, 41(2): 1~12.

    • 李华, 梁建设, 邱春光, 赵红岩, 胡滨, 饶溯, 王贝贝, 孔令武, 蔡俊, 吴东胜, 何幼斌, 郭笑. 2022. 东非海岸重点盆地渐新世构造事件-沉积体系耦合关系研究. 地质学报, 96(5): 1855~1867.

    • 李林, 张成, 闫春, 杨涛涛, 解习农, 王少凯, 储生明. 2021. 琼东南盆地华光凹陷大型海底重力滑动系统特征及其成因机制. 地球科学, 46(10): 3707~3716.

    • 李学杰, 王大伟, 吴时国, 王微微, 刘刚. 2017. 三沙海底峡谷识别与地貌特征分析. 海洋地质与第四纪地质, 37(3): 28~36.

    • 李学杰, 王哲, 姚永坚, 高红芳, 祝嵩, 徐子英. 2020. 南海成因及其演化模式探讨. 中国地质, 47(5): 1310~1322.

    • 林畅松, 刘景彦, 蔡世祥, 张艳梅, 吕明, 李杰. 2001. 莺-琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报, 46(1): 69~72.

    • 刘杰, 苏明, 乔少华, 沙志斌, 吴能友, 杨睿. 2016. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨. 沉积学报, 34(5): 940~950.

    • 庞雄, 陈长民, 朱明, 何敏, 柳保军, 申俊, 连世勇. 2007. 深水沉积研究前缘问题. 地质论评, 53(2): 145~151.

    • 钱星, 张莉, 吴时国, 易海, 林珍, 杨振. 2017. 南海西北次海盆构造演化的沉积响应. 大地构造与成矿学, 41(2): 248~257.

    • 苏明, 张成, 解习农, 王振峰, 姜涛, 何云龙, 张翠梅. 2014. 深水峡谷体系控制因素分析——以南海北部琼东南盆地中央峡谷体系为例. 中国科学: 地球科学, 44(8): 1807~1820.

    • 孙美静, 高红芳, 李学杰, 刘杰. 2018. 台湾东部海域台东峡谷沉积特征及其成因. 地球科学, 43(10): 3709~3718.

    • 孙美静, 姚永坚, 罗伟东, 胡小三, 周娇, 徐子英, 鞠东, 刘杰. 2022. 南海西北部中建南海底峡谷群的发现及演化特征. 地球科学, 47(11): 4005~4019.

    • 吴时国, 朱伟林, 马永生. 2018. 南海半封闭边缘海碳酸盐台地兴衰史. 海洋地质与第四纪地质, 38(6): 1~17.

    • 徐尚, 王英民, 彭学超, 卓海腾, 邱燕, 周伟. 2013. 台湾海峡HD133和HD77柱状样的沉积构成和发育背景. 沉积学报, 31(2): 325~330.

    • 杨茜, 冯秀丽, 李梦帅. 2022. 南海北部莺琼陆坡浊流沉积数值模拟分析. 地质学报, 96(4): 1412~1420.

    • 钟广见, 高红芳. 2005. 中建南盆地新生代层序地层特征. 大地构造与成矿学, 29(3): 403~409.

    • 朱伟林, 王振峰, 米立军, 杜学斌, 解习农, 陆永潮, 张道军, 孙志鹏, 刘新宇, 尤丽. 2015. 南海西沙西科1井层序地层格架与礁生长单元特征. 地球科学——中国地质大学学报, 40(4): 677~687.