en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

靳胜凯,男,1991年生。工程师,主要从事岩浆岩石学研究。E-mail:jinsk01@qq.com。

通讯作者:

刘博,男,1986年生。高级工程师,主要从事基础地质学研究。E-mail:liubo33564@163.com。

参考文献
Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50: 51~73.
参考文献
Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48: 43~55.
参考文献
Chen Chen, Zhang Zhicheng, Li Ke, Chen Yan, Tang Wenhao, Li Jianfeng. 2015. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China Block. Journal of Asian Earth Sciences, 97: 307~319.
参考文献
Douce P A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications, 168: 55~75.
参考文献
Eby G N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26: 115~134.
参考文献
Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenesis and tectonic implications. Gelology, 20: 641~644.
参考文献
Frost B R, Arculus R J, Barnes C G, Collins W J, Ellis D J, Frost C D. 2001. A geochemical classification of granitic rocks. Journal of Petrology, 42: 2033~2048.
参考文献
Gao Shuang. 2016. Study on petrogenesis of middle Triassic granites in Chayouzhongqi, Inner Mongolia, the middle segment of the northern margin of the North China Craton. Master's thesis of Nanjing University, 1~96 (in Chinese with English abstract).
参考文献
Griffin W L, Wang Xiang, Jackson S E, Pearson N J, O'Reilly S Y, Xu Xisheng, Zhou Xinmin. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.
参考文献
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews of Mineralogy and Geochemistry, 53: 27~62.
参考文献
Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91: 181~193.
参考文献
Jahn B M, Capdevila R, Liu Dunyi, Vernon A, Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23: 629~653.
参考文献
Jian Ping, Liu Dunyi, Kroner A, Windley B F, Shi Yuruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Liqao, Tomurhuu D. 2010. Evolution of a Permian intra oceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118: 169~190.
参考文献
Jiang Neng, Guo Jinghui, Chang Guohu. 2013. Nature and evolution of the lower crust in the eastern North China craton: A review. Earth-science Reviews, 122: 1~9.
参考文献
Jiang Neng, Guo Jinghui, Zhai Mingguo, Zhang Shuangquan. 2010. ~2. 7 Ga crust growth in the North China craton. Precambrian Research, 179: 37~49.
参考文献
Kamei A, Owada M, Nagao T, Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: Evidence from clinopyroxene and whole rock compositions. Lithos, 75: 359~371.
参考文献
Langmuir C H. 1989. Geochemical consequences of in situ crystallization. Nature, 340: 199~205.
参考文献
Li Jinyi, Gao Liming, Sun Guihua, Li Yaping, Wang Yanbin. 2007. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates. Acta Petrologica Sinica, 23(3): 565~582 (in Chinese with English abstract).
参考文献
Li Jinyi, Zhang Jin, Yang Tiannan, Li Yaping, Sun Guihua, Zhu Zhixin, Wang Lijia. 2009. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas. Journal of Jilin University (Earth Science Edition), 39(4): 584~605 (in Chinese with English abstract).
参考文献
Li Longxue, Hou Qingye, Huang Dingling, Wang Xinyu. 2021. Early Permian granitic magmatism in middle part of the northern margin of the North China craton: Petrogenesis, source, and tectonic setting. Minerals, 11: 99.
参考文献
Li Pengwu, Gao Rui, Guan Ye, Li Qqiusheng. 2006. Palaeomagnetic constraints on the final closure time of Solonker Linxi suture. Journal of Jilin University (Earth Science Edition), 36(5): 744~758 (in Chinese with English abstract).
参考文献
Li Pengwu, Gao Rui, Guan Ye, Li Qiusheng. 2009. The closure time of the Paleo-Asian Ocean and the paleo-Tethys Ocean: Implication for the tectonic cause of the end-Permian mass extinction. Journal of Jilin University (Earth Science Edition), 39(3): 521~527 (in Chinese with English abstract).
参考文献
Li Shan, Wilde S A, Wang Tao, Xiao Wenjiao, Guo Qianqian. 2016. Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt. Gondwana Research, 29: 168~180.
参考文献
Li Shucai, Zhang Xionghua, Li Ruanbo, Yang Xinjie, Zhang Liangyuan. 2019. Geological age of Linxi Formation in Linxi, Inner Mongolia, and its sedimentary environment. Geological Science and Technology Information, 38(1): 1~7 (in Chinese with English abstract).
参考文献
Liao Xiangdong, Sun Song, Chi Huanzhao, Jia Dingyu, Nan Zeyu, Zhou Wenna. 2019. The Late Permian highly fractionated I-type granites from Sishijia pluton in southestern Inner Mongolia, North China: A post-collisional magmatism record and its implication for the closure of Paleo-Asian Ocean. Lithos, 328~329, 262~275.
参考文献
Liu Qun, Wang Wanqiong, Qiu Dianming, Bai Xinhui, Zhang Jinfeng, Wang Xin. 2015. Early Carboniferous tectonic attribute of the central-northern margin of North China craton: Constraints from geochemistry of highly fractionated I-type granites in Cahayouhouqi area. Journal of Jilin University (Earth Science Edition), 45(4): 1121~1131 (in Chinese with English abstract).
参考文献
Liu Wengang, Wei Shuang, Zhang Jian, Ao Cong, Liu Futian, Cai Bin, Zhou Hongying, Yang Jilong, Li Chaofeng. 2020. An improved separation scheme for Sr through fluoride coprecipitation combined with a cation-exchange resin from geological samples with high Rb/Sr ratios for high-precision determination of Sr isotope ratios. Journal of Analytical Atomic Spectrometry, 35: 953~960.
参考文献
Long Xinyu, Tang Jie, Xu Wenliang, Sun Chenyang, Luan Jinpeng, Guo Peng. 2022. A crustal growth model for the eastern Central Asian Orogenic Belt: Constraints from granitoids in the Songnen massif and Duobaoshan terrane. Gondwana Research, 107: 325~338.
参考文献
Long Xinyu, Xu Wenliang, Yang Hao, Tang Jie, Sorokin A A, Ovchinnikov R O. 2021. Late Permian-Triassic tectonic nature of the eastern Central Asian Orogenic Belt: Constraints from the geochronology and geochemistry of igneous rocks in the Bureya massif. Lithos, 380~381.
参考文献
Ludwig K. 2003. User's Manual for Isoplot/Ex version 3. 00—A Geochronology Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, 4: 1~70.
参考文献
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.
参考文献
McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223~253.
参考文献
Pan Guitang, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhang Ziyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang. 2009. Subdivision of tectonic units in China. Geology in China, 36(1): 1~28 (in Chinese with English abstract).
参考文献
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956~983.
参考文献
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58: 63~81.
参考文献
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891~931.
参考文献
Sengör A M C, Natal'In B A, Burtman V S. 1993. Evolution of the altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299~307.
参考文献
Shao Ji'an, Wang You, Tang Kedong. 2017. A reflection on the Xarmoron tectonomagmatic belt, Inner Mongolia, China. Acta Petrologica Sinica, 33(10): 3002~3010 (in Chinese with English abstract).
参考文献
Shi Yuruo, Liu Cui, Deng Jinfu, Jian Ping. 2014. Geochronological frame of granitoids from Central Inner Mongolia and its tectonomagmatic evolution. Acta Petrologica Sinica, 30 (11): 3155~3171 (in Chinese with English abstract).
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publication, 42(1): 313~345.
参考文献
Sun Yuewu, Ding Haisheng, Liu Huan, Zhang Dejun, Gong Fanhao, Zheng Yuejuan. 2016. Fossil plants from the Guadalupian Yujiabeigou Formation in the northern margin of North China plate and their tectonic implications. Journal of Jilin University (Earth Science Edition), 46(5): 1268~1283 (in Chinese with English abstract).
参考文献
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45: 29~44.
参考文献
Tong Ying, Jahn B M, Wang Tao, Hong Dawei, Smith E I, Sun Min. 2015. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance. Journal of Asian Earth Sciences, 97(1): 320~336.
参考文献
Wang Shijie, Xu Zhongyuan, Li Changhai, Lü Hongda, Liu Yang, Wang Wenlong, Fu Xueming. 2020. Evolution of central-southern margin of the Xing-Meng Orogenic Belt in the Late Paleozoic: Evidence from Carboniferous-Permian sedimentary formation and volcanic rock in Sonid Right Banner, Inner Mongolia. Acta Petrologica Sinica, 36(8): 2493~2520 (in Chinese with English abstract).
参考文献
Wang Wanqiong. 2014. Late Paleozoic tectonic evolution of the central-northern margin of the North China Plate: Constraints from zircon U-Pb ages and geochemistry of igneous rocks in Ondor Sum-Jining area. Doctoral dissertation of Jilin University (in Chinese with English abstract).
参考文献
Wang Wanqiong, Xu Zhongyuan, Liu Zhenghong, Zhao Qingying, Jiang Xiaojun. 2013. Early-Middle Permian tectonic evolution of the central-northern margin of the North China Craton: Constraints from zircon U-Pb ages and geochemistry of the granitoids. Acta Petrologica Sinica, 29(9): 2987~3003 (in Chinese with English abstract).
参考文献
Wang Wanqiong, Xi Aihua, Ge Yuhui, Bai Xinhui, Wang Hu. 2021. Petrogenesis and tectonic implications of the biotite monzogranite and associated mafic microgranular enclaves in Tumuertai area, Inner Mongolia. Acta Petrologica Sinica, 37(4): 1082~1098 (in Chinese with English abstract).
参考文献
Wang Wenlong, Liu Yang, Zhao Ligang, Teng Fei, Yang Zeli. 2020. Dataset of chronology, geochemistry and zircon Hf iotopes of Permian magmatites in the middle section of the northern margin of North China Craton. Geology in China, 47(S1): 44~53 (in Chinese with English abstract).
参考文献
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407~419.
参考文献
Wilde S A. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction--A review of the evidence. Tectonophysics, 662: 345~362.
参考文献
Wilde S A, Zhao Guochun, Sun Min. 2002. Development of the North China craton during the Late Archaean and its final amalgamation at 1. 8 Ga; some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5: 85~94.
参考文献
Windley B F, Alexeiev D, Xiao Wenjiao, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164: 31~47.
参考文献
Wolf M B, London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochimica et Cosmochimica Acta, 58: 4127~4145.
参考文献
Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105~126.
参考文献
Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220.
参考文献
Xiao Wenjiao, Windley B F, Hao Jie, Zhai Mingguo. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 8~20.
参考文献
Xing Jilin. 2010. The geochemic characteristics and geodynamic significance of the granite in Wenduermiao uplift zone in Inner Mogolia. Master's thesis of Jilin University, 23~26 (in Chinese with English abstract).
参考文献
Xu Bei, Zhao Pan, Wang Yanyang, Liao Wen, Luo Zhiwen, Bao Qingzhong, Zhou Yongheng. 2015. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183~196.
参考文献
Yang Fan, Jiang Yanyan, Chen Jingsheng, Han Xing. 2022. Chronology and geochemistry of Carboniferous-Permian intrusive rocks in Zhuanshanzi mining area, Chifeng, middle part of the northern margin of the North China Craton: Constraints on the tectonic evolution of the Paleo-Asian Ocean. Acta Petrologica Sinica, 38(8): 2467~2488 (in Chinese with English abstract).
参考文献
Zeng Qingdong, Yang Jinhui, Liu Jianming, Chu Shaoxiong, Duan Xiaoxia, Zhang Z L, Zhang Weiqing, Zhang Song. 2012. Genesis of the Chehugou Mo-bearing granitic complex on the northern margin of the North China Craton: Geochemistry zircon U-Pb age and Sr-Nd-Pb isotopes. Geological Magazine, 149(5): 753~767.
参考文献
Zhang Jin, Qu Junfeng, Zhang Beihang, Zhao Heng, Zheng Ronggou, Liu Jianfeng, Niu Pengfei, Yun Long, Zhao Shuo, Zhang Yiping. 2022. Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic. American Journal of Science, 322(7): 851~897.
参考文献
Zhang Qi. 2013. The criteria and discrimination for A-type granites: A reply to the question put forward by Wang Yang and some other persons for "A-type granite: What is the essence?" Acta Petrologica et Mineralogica, 32(2): 267~274 (in Chinese with English abstract).
参考文献
Zhang Shuanhong, Zhao Yue, Liu Jianmin, Hu Jianmin, Song Biao, Liu Jian, Wu Hai. 2010. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review. Acta Petrologica et Mineralogica, 29(6): 824~842 (in Chinese with English abstract).
参考文献
Zhang Shuanhong. Zhao Yue, Liu Xiaochun, Liu Dunyi, Chen Fukun, Xie Liewen, Chen Haihong. 2009. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block: Constraints on the composition and evolution of the lithospheric mantle. Lithos, 110: 229~246.
参考文献
Zhang Yongmei, Zhang Huafeng, Liu Wencan, Zhou Zhiguang. 2009. Timing and petrogenesis of the Damiao granodiorite, Siziwangqi, Inner Mongolia. Acta Petrologica Sinica, 25(12): 3165~3181 (in Chinese with English abstract).
参考文献
Zhao Heng, Zhang Jin, Zhang Beihang, Qu Junfeng, Zhang Yiping, Niu Pengfei, Hui Jie, Wang Yannan. 2022. Structures and chronology of the Yabrai shear zone in the Alxa, NW China: Constraints on the late Paleozoic shear system in central segment of the Central Asian Orogenic Belt. Journal of Structural Geology, 158.
参考文献
高爽. 2016. 华北板块北缘中段内蒙古察右中旗地区中三叠世花岗岩成因研究. 南京大学硕士学位论文, 1~96.
参考文献
李锦轶, 高立明, 孙桂华, 李亚萍, 王彦斌. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565~582.
参考文献
李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584~605.
参考文献
李朋武, 高锐, 管烨, 李秋生. 2006. 内蒙古中部索仑林西缝合带封闭时代的古地磁分析. 吉林大学学报, 36(5): 744~758.
参考文献
李朋武, 高锐, 管烨, 李秋生. 2009. 古亚洲洋和古特提斯洋的闭合时代——论二叠纪末生物灭绝事件的构造起因. 吉林大学学报 (地球科学版), 39(3): 521~527.
参考文献
李树才, 张雄华, 李沅柏, 杨欣杰, 张亮元. 2019. 内蒙古林西地区林西组地质时代及沉积环境. 地质科技情报, 38(1): 1~7.
参考文献
刘群, 王挽琼, 邱殿明, 白新会, 张金凤, 王新. 2015. 华北板块北缘中段早石炭世构造属性: 察哈尔右翼后旗高分异Ⅰ型花岗岩地球化学的制约. 吉林大学学报 (地球科学版), 45(4): 1121~1131.
参考文献
潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分. 中国地质, 36(1): 1~28.
参考文献
邵济安, 王友, 唐克东. 2017. 有关内蒙古西拉木伦带古生代-早中生代构造环境的讨论. 岩石学报, 33(10): 3002~3010.
参考文献
石玉若, 刘翠, 邓晋福, 简平. 2014. 内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨. 岩石学报, 30(11): 3155~3171.
参考文献
孙跃武, 丁海生, 刘欢, 张德军, 公繁浩, 郑月娟. 2016. 华北板块北缘中二叠统于家北沟组植物化石及其大地构造意义. 吉林大学学报 (地球科学版), 46(5): 1268~1283.
参考文献
王师捷, 徐仲元, 李长海, 吕红达, 刘洋, 王文龙, 付雪明. 2020. 兴蒙造山带中段南缘晚古生代演化过程: 来自苏尼特右旗地区沉积地层及火山岩的证据. 岩石学报, 36(8): 2493~2520.
参考文献
王挽琼. 2014. 华北板块北缘中段晚古生代构造演化: 温都尔庙—集宁火成岩年代学、地球化学的制约. 吉林大学博士学位论文.
参考文献
王挽琼, 徐仲元, 刘正宏, 赵庆英, 蒋孝君. 2013. 华北板块北缘中段早中二叠世的构造属性: 来自花岗岩类锆石U-Pb年代学及地球化学的制约. 岩石学报, 29(9): 2987~3003.
参考文献
王挽琼, 郗爱华, 葛玉辉, 白新会, 王虎. 2021. 内蒙古土牧尔台地区黑云母二长花岗岩及其暗色包体的成因及构造意义. 岩石学报, 37(4): 1082~1098.
参考文献
王文龙, 刘洋, 赵利刚, 滕飞, 杨泽黎. 2020. 华北板块北缘中段二叠纪岩浆岩年代学、地球化学及错石 Hf同位素测试数据集. 中国地质, 47(S1): 32~39.
参考文献
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.
参考文献
刑济麟. 2010. 内蒙古温都尔庙隆起带花岗岩的地球化学特征及地球动力学意义. 吉林大学硕士学位论文, 23~26.
参考文献
杨帆, 姜艳艳, 陈井胜, 韩兴. 2022. 华北克拉通北缘中段赤峰撰山子矿区石炭纪-二叠纪侵入岩年代学和地球化学: 对古亚洲洋构造演化的制约. 岩石学报, 38(8): 2467~2488.
参考文献
张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对“A型花岗岩的实质是什么”的质疑. 岩石矿物学杂志, 32(2): 267~274.
参考文献
张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824~842.
参考文献
章永梅, 张华峰, 刘文灿, 周志广. 2009. 内蒙古中部四子王旗大庙岩体时代及成因. 岩石学报, 25(12): 3165~3181.
目录contents

    摘要

    本文对华北克拉通北缘中段内蒙古化德地区二叠纪—三叠纪5个花岗质侵入体进行了岩相学、地球化学、锆石U-Pb年代学以及Sr-Nd-Hf同位素研究。结果表明本次所研究的岩体主要起源于华北克拉通古老下地壳的部分熔融,八音察汗岩体形成于早二叠世(276±1 Ma),在岩浆上升过程中发生了岩浆混合作用;白音特拉岩体形成于中二叠世(270±1 Ma),为地壳加厚作用下变质杂砂岩部分熔融形成的S型花岗岩;毛忽庆岩体形成于晚二叠世(254±1 Ma),为I型花岗岩;张万良岩体与康家地岩体分别形成于早三叠世(248±1 Ma)和晚三叠世(229±1 Ma),两者均为A型花岗岩。综合前人研究,本文认为研究区在早二叠世—晚三叠世经历了古亚洲洋向华北板块俯冲、俯冲-同碰撞、持续碰撞以及造山后的伸展4个阶段,古亚洲洋东段在研究区的闭合时间应为中二叠世晚期。

    Abstract

    This paper presents detailed petrological, zircon U-Pb chronological, whole-rock geochemical and Sr-Nd-Hf isotopic studies on the Permian-Triassic granitic intrusions in Huade County, Inner Mongolia. The geochemical and isotopic features indicate that the studied intrusions were derived from a Paleo- to Mesoproterozoic crustal source of the North China craton. The Bayinchahan intrusions experienced magma mixing during the magma upwelling. The Baiyintla intrusions were S-type granite formed by partial melting of metamorphic greywacke during crustal thickening, the Maohuqing intrusions were I-type granite, the Kangjiadi and the Zhangwanliang intrusions were A-type granite. Zircon dating results indicate that the Bayinchahan, Baiyintela, Maohuqing, Zhangwanliang and Kangjiadi plutons were formed in the Early Permian (276±1 Ma), the Middle Permian (270±1 Ma), the Late Permian (254±1 Ma), the Early Triassic (248±1 Ma) and the Late Triassic (229±1 Ma), respectively. Combined with previous studies, we conclude that the study area experienced subduction, subduction-collision, continuous collision and post-orogenic extension during the Early Permian to Late Triassic. The closing time of the eastern part of the Paleo-Asian Ocean in the study area should be the late Middle Permian.

  • 中亚造山带是全球规模最大的显生宙增生型造山带,位于东欧板块、西伯利亚板块与中朝、塔里木板块之间,记录了巨量陆壳增生,其形成与古亚洲洋的俯冲消减密切相关(Jahn et al.,20002004; Wilde et al.,20022015; Windley et al.,2007; Long Xinyu et al.,20212022)。兴蒙造山带位于中亚造山带东段,是西伯利亚板块与华北板块碰撞拼贴的产物(李锦轶等,2007)。围绕古亚洲洋的构造演化前人取得了丰富的研究成果,然而在古亚洲洋东段的最终闭合时限问题上还存在较大争议。邵济安等(2017)根据沉积岩岩相学分析,蛇绿岩混杂堆积和地层沉积建造及石炭纪地层与蛇绿岩之间的接触关系认为闭合时限为泥盆纪—早石炭世。Li Shan et al.,(2016)发现华北板块北缘存在早—中二叠世碱性花岗岩,推断古亚洲洋在早—中二叠世已经闭合。李朋武等(20062009)基于古地磁和生物群混生及生物灭绝事件,李锦轶等(2009)基于晚二叠世林西蛇绿岩、索伦山蛇绿岩的就位及早三叠世华北板块北缘带状分布的A型花岗岩认为华北板块及西伯利亚板块拼贴时间为晚二叠世—早三叠世。因此,厘清兴蒙造山带东段关键地区在晚古生代—早中生代的构造演化属性成为破译古亚洲洋洋陆转换过程的关键地质问题。

  • 华北克拉通北缘增生带以赤峰-白云鄂博断裂带为界北邻兴蒙造山带,在古生代经历了明显的增生和改造,受古亚洲洋板块俯冲,以及西伯利亚和华北板块的碰撞造山作用影响,形成了东西向展布的岩浆岩带(Windley et al.,2007; 张栓宏等,2010; 石玉若等,2014)。最近在位于华北陆块北缘中段的内蒙古化德地区发现有晚古生代—早中生代(二叠纪—三叠纪)多个时间期次的岩浆活动,这为我们精细刻画古亚洲洋东段在华北板块北缘中段的闭合时限提供了一个很好的机会。本文在详细的野外地质调查基础上,通过详细的岩石学、岩相学、全岩地球化学、同位素年代学及Sr-Nd-Hf同位素研究,为探讨华北板块北缘晚古生代—早中生代岩浆-构造演化及限定古亚洲洋闭合时限提供重要的科学依据。

  • 1 地质背景

  • 研究区地处内蒙古乌兰察布市东部,大地构造上属于华北克拉通北缘狼山-白云鄂博裂谷(图1;潘桂堂等,2009)。华北克拉通位于中国东部,是中国境内三大主要前寒武纪古老克拉通之一(另外两个分别是塔里木克拉通和扬子克拉通),由前寒武纪结晶基底及上覆的沉积盖层组成(Sengör et al.,1993; Jiang Neng et al.,2010)。前寒武纪结晶基底主要由新太古代—古元古代的TTG片麻岩、2.6~2.5 Ga的麻粒岩、斜长角闪岩、镁铁—超镁铁质侵入体等组成(Zhang Shuanhong et al.,2009; Li Longxue et al.,2021)。华北克拉通北缘以赤峰-白云鄂博断裂带为界北邻兴蒙造山带,兴蒙造山带主体部分的形成与古生代以来古亚洲洋洋壳俯冲消减、多块体汇聚和地壳增生过程密切相关(Xiao Wenjiao et al.,2003; 李锦轶等,2007; Jian Ping et al.,2010; Xu Bei et al.,2015)。兴蒙造山带自北向南可依次划分为乌里雅斯台活动陆缘、二连-贺根山蛇绿-岛弧增生带、宝力道岛弧俯冲增生带、索伦缝合带、温都尔庙俯冲-增生带以及加里东期白乃庙岛弧,其中索伦缝合带通常被认为是古亚洲洋的最终缝合位置(图1b;Jahn et al.,2000)。中—晚古生代,古亚洲洋的持续南向俯冲作用,形成了华北克拉通北缘呈东西向展布的大规模岩浆活动,其中泥盆纪岩石类型主要为碱性岩,包括正长岩及二长岩,早石炭世—中二叠世岩体主要为闪长岩、石英闪长岩及少量中酸性火山岩,二叠纪末—三叠纪岩石类型主要为正长花岗岩、二长花岗岩及碱性岩(张栓宏等,2010;王挽琼等,2013刘群等,2015)。

  • 研究区出露地层从元古宇到第四系均有分布,主要包括元古宇化德群浅变质岩,自下而上为毛忽庆组、头道沟组、朝阳河组、北流图组、戈家营组、三夏天组;下二叠统三面井组、额里图组,岩性为长石砂岩、浅变质粉砂岩、粗砾岩、中性—中酸性火山碎屑岩;中侏罗统土城子组,岩性为巨厚层砾岩;下白垩统张家口组,岩性为流纹岩、流纹质凝灰岩夹英安岩;中新统为汉诺坝组玄武岩(图2)。研究区侵入岩十分发育,以花岗质岩浆活动为主,总体呈北东向分布,部分岩体受后期韧性剪切作用影响发生糜棱岩化。

  • 图1 华北北部—内蒙古中部地区大地构造略图(据Xiao Wenjiao et al.,2003修改)

  • Fig.1 Sketch tectonic map of the northern North China-central Inner Mongolia (modified after Xiao Wenjiao et al., 2003)

  • 2 岩相学特征

  • 本次针对研究区内八音察汗岩体、白音特拉岩体、毛忽庆岩体及张万良岩体、康家地岩体进行了野外调查和岩石学研究。

  • 2.1 八音察汗岩体

  • 八音察汗岩体主要分布在研究区中部,出露面积约13.9 km2,被后期细粒闪长岩脉、闪长玢岩脉侵入,呈岩株状产出,形态为不规则枝状。该岩体的岩石类型包括中细粒似斑状黑云石英二长闪长岩、中细粒似斑状黑云闪长岩,两者为渐变接触关系。岩体整体出露较差,球形风化发育,在野外形成馒头状、蘑菇状地貌。岩体中闪长质包体(MME)较发育,形态多为椭圆状、纺锤状,长轴一般长10~20 cm,个别达20~35 cm,短轴5~10 cm(图3a)。岩体南部被侏罗系土城子组覆盖,其他部位多被第四系覆盖,未见与周围地层、岩体接触关系。岩体中闪长质脉岩较为发育,多呈北东向展布。

  • 中细粒似斑状黑云石英二长闪长岩样品新鲜面呈深灰色,风化面呈黄褐色,似斑状结构,块状构造。岩石主要由石英、斜长石、黑云母、角闪石、钾长石等组成。在QAP图解中均落入石英二长闪长岩区(图4a)。斑晶成分为斜长石,含量约为20%,颗粒大小为0.1 cm×0.8 cm~0.3 cm×1.0 cm,环带构造发育,具不均匀绢云母化、黏土化,发育聚片双晶。基质成分:石英,无色透明,他形粒状,粒径2~4 mm,含量10%左右;斜长石,乳白色,自形—半自形板柱状,颗粒大小为1 mm×3 mm~2 mm×5 mm,含量40%左右;角闪石,半自形长柱状,颗粒大小为1.5 mm×3.0 mm左右,淡黄绿色,柱状,横截面为菱形六边形,含量15%左右;黑云母,鳞片状,多色性显著,含量15%左右(图3f)。

  • 2.2 白音特拉岩体

  • 白音特拉岩体在研究区出露面积较小,呈岩株状产出,出露面积约1.3 km2,侵入早二叠世额里图组流纹岩中(图2),且在接触带附近的岩体中可见流纹岩捕掳体。

  • 岩体的主要岩石类型为中粒黑云母二长花岗岩,样品新鲜面肉红色,风化面呈黄褐色,中粒花岗结构,块状构造(图3b)。岩石主要由石英、钾长石、斜长石等组成。在QAP图解中均落入二长花岗岩区域(图4a)。石英:粒径一般为2.3~5.0 mm,他形粒状,一级灰白干涉色,含量约为30%;钾长石:粒径一般为2.0~5.0 mm,可见正条纹长石,正长石,一级灰干涉色,卡式双晶,可见文象结构,含量约为30%;斜长石:粒径一般为1.8~5.0 mm,主要为更中长石,无色,板柱状,聚片双晶,含量约为35%;黑云母:呈鳞片状,含量约为5%(图3h)。

  • 2.3 毛忽庆岩体

  • 毛忽庆岩体分布较为集中,侵入中元古代化德群毛忽庆组及头道沟组,出露面积约4.0 km2,部分在头道沟组变质岩中呈脉状产出。岩体出露程度较差,球形风化发育,在地表多以馒头状、蘑菇状产出。岩石节理较为发育,裂隙中可见褐铁矿化现象(图3c)。

  • 岩体主要岩石类型为花岗斑岩,样品风化面呈灰褐色,新鲜面灰白色,斑状结构,块状构造。岩石由斑晶、基质组成。斑晶:由斜长石、钾长石、石英组成,粒径一般0.2~1.7 mm。斜长石呈自形—半自形板状,星散分布或聚斑状产出,具轻微绢云母化、高岭土化,含量约为5%;石英呈浑圆状、港湾熔蚀状,零星分布,轻微波状消光。基质:由长英质组成。长石呈微晶板条状、指纹状、文象状等嵌布在石英基底上构成包含嵌晶结构,杂乱分布,有的集合体似球粒,含量约为90%(图3i)。

  • 2.4 张万良岩体

  • 张万良岩体在研究区出露面积较小,呈岩株状产出,出露面积约11.0 km2,岩体北西部侵入中元古代中细粒似斑状黑云母二长花岗岩,其余部位均被第四系覆盖。

  • 岩体的主要岩石类型为中细粒似斑状黑云母二长花岗岩,样品风化面呈黄褐色,新鲜面浅肉红色,似斑状-基质细中粒花岗结构,块状构造(图3d)。岩石由钾长石、斜长石、石英、黑云母组成。在QAP图解中均落入二长花岗岩区域(图4a)。钾长石:呈近半自形板状,少他形粒状,杂乱分布,粒径一般2~5 mm,少数5~10 mm(为似斑晶),钾长石主要为微斜条纹长石,具高岭土化,有时粒内嵌布少量斜长石,少交代斜长石,含量约为45%。斜长石:呈半自形板状,杂乱分布,粒径一般2~5 mm,表面具不均匀绢云母化、黏土化,少量可见环带构造,含量约为30%。石英:呈他形粒状,细粒化现象明显,呈集合体状填隙于长石间,粒径一般0.2~2.0 mm,粒内具波状消光,粒间镶嵌状接触,含量约为20%。黑云母:呈叶片状,零散分布,略显长轴定向,片径一般0.2~2.0 mm,多色性明显(图3j)。

  • 图2 内蒙古化德地区地质简图

  • Fig.2 Simplified geological map of the Huade area, Inner Mongolia

  • 2.5 康家地岩体

  • 康家地岩体在研究区出露面积较大,分布较为集中,呈岩株状产出,出露面积约33.8 km2。主要岩石类型包括细中粒似斑状黑云母二长花岗岩及中粒似斑状黑云母二长花岗岩。岩体在北部、东部侵入中元古代变质花岗岩及中二叠世细中粒二长花岗岩中,南部侵入化德群三夏天组变质岩。

  • 图3 内蒙古化德地区二叠纪—三叠纪侵入岩野外及显微镜下特征

  • Fig.3 Representative field photographs and microphotographs of the Permian-Triassic intrusions in the Huade area, Inner Monglia

  • (a)—八音察汗岩体野外球形风化特征,岩石发育灰黑色闪长质包体;(b)—白音特拉岩体野外产出特征;(c)—毛忽庆岩体侵入中元古代化德群变质岩;(d)—张万良岩体球形风化特征;(e)—康家地岩体细中粒似斑状黑云母二长花岗岩中的石英和斜长石似斑晶;(f)—黑云石英二长闪长岩中的斜长石发育环带构造,可见菱形角闪石(正交偏光);(g)—八音察汗岩体中闪长质包体内矿物的互相穿插及具淬火结构的针状磷灰石(正交偏光);(h)—中粒黑云母二长花岗岩发育聚片双晶的斜长石和卡纳双晶的钾长石(正交偏光);(i)—花岗斑岩中的斜长石斑晶具半自形结构,环带构造发育(正交偏光);(j)—张万良岩体中细粒似斑状黑云母二长花岗岩镜下特征(正交偏光);(k、l)—康家地岩体细中粒似斑状黑云母二长花岗岩显微镜下特征,斜长石表面具绢云母化、黏土化,(k)为正交偏光,(l)为单偏光;Bi—黑云母;Q—石英;Hb—角闪石;Pl—斜长石;Kfs—钾长石;Ap—磷灰石

  • (a) —Bayinchahan intrusion is characterized by spherical weathering, with diorite inclusions developed; (b) —field characteristics of Baiyintela intrusion; (c) —Maohuqing intrusion intrudes into the Middle Proterozoic Huade Group; (d) —spherical weathering of Zhangwanliang intrusion; (e) —quartz and plagioclase phenocryst in Kangjiadi intrusion; (f) —rhombic amphibole and plagioclase with zonal structure in biotite quartz monzodiorite (crossed polars) ; (g) —minerals with interpenetration and needle-like apatite with quenching structure in Bayinchahan diorite inclusions (crossed polars) ; (h) —plagioclase and potassium feldspar in medium grained biotite monzogranite characterized by polysynthetic twin and carlsbad twin, respectively; (i) —plagioclase phenocrysts in the granite porphyry have a hypidiomorphic texture, with zonal structures developed (crossed polars) ; (j) —photomicrograph of medium to fine grained porphyritic biotite monzogranite in Zhangwanliang (crossed polars) ; (k, l) —photomicrograph of fine to medium grained porphyritic biotite monzogranite, with sericitization developed on the surface of plagioclase in Kangjiadi, (k) —crossed polars, (l) —plane-polarized light; Bi—biotite; Q—quartz; Hb—hornblende; Pl—plagioclase; Kfs—K-feldspar; Ap—apatite

  • 图4 内蒙古化德地区二叠纪—三叠纪侵入岩分类图解

  • Fig.4 Classification diagrams of the Permian-Triassic intrusions in the Huade area, Inner Mongolia

  • (a)—QAP(据Maniar and Piccoli,1989);(b)—A/CNK-A/NK(据Maniar and Piccoli,1989);(c)—SiO2-(Na2O+K2O-CaO)(据Frost et al.,2001);(d)—SiO2-K2O(据Peccerillo and Taylor,1976);文献数据引自王挽琼,2014; Liao Xiangdong et al.,2019; Li Longxue et al.,2021王挽琼等,2021

  • (a) —QAP (after Maniar and Piccoli, 1989) ; (b) —A/CNK-A/NK (after Maniar and Piccoli, 1989) ; (c) —SiO2- (Na2O+K2O-CaO) (after Frost et al., 2001) diagram; (d) —SiO2-K2O (after Peccerillo and Taylor, 1976) ; data from Wang Wanqiong, 2014; Liao Xiaodong et al., 2019; Li Longxue et al., 2021; Wang Wanqiong et al., 2021

  • 岩石风化面呈肉红色,新鲜面浅肉红色,似斑状结构,块状构造。岩石由斜长石、钾长石、石英、黑云母组成。似斑晶主要为钾长石,半自形板状,颗粒大小为5 mm×8 mm~5 mm×15 mm,钾长石主要为微斜条纹长石,有时粒内嵌布少量斜长石,含量10%~15%(图3e)。基质为细中粒花岗结构,钾长石钠质条纹主要呈细脉状、树枝状,含量30%左右;斜长石呈半自形板状,主要为中长石,含量35%左右;石英呈他形粒状,单晶或集合体填隙状分布于长石粒间,含量20%左右,部分石英为斑晶;黑云母晶体弯曲扭折现象发育,局部具绿泥石化,含量大于5%,其他5%(图3k、l)。

  • 3 样品及分析方法

  • 本文共采集了23件代表性新鲜样品用于开展全岩主微量元素分析,其中八音察汗岩体2件样品、毛忽庆岩体2件样品、康家地岩体2件样品还开展了Rb-Sr和Sm-Nd同位素分析。5件锆石U-Pb同位素测年样品分别取自八音察汗岩体(样品BYCH-UPb;114°08′51″N、41°41′31″E)、白音特拉岩体(样品BYTL-UPb;114°14′13″N、41°55′57″E)、毛忽庆岩体(样品MHQ-UPb;114°02′28″N、41°36′42″E)、张万良岩体(样品ZWL-UPb;114°27′22″N、41°48′10″E)、康家地岩体(样品KJD-UPb;114°21′33″N、41°47′39″E)。

  • 全岩主微量元素的测试在河北省区域地质矿产调查研究所实验室完成。主量元素采用PW4400型X射线荧光光谱仪(XRF),测试电压50 kV,电流为60 mA。分析误差小于1%。实验步骤如下:将岩石表层用切割机去除,取中间新鲜部位,而后将样品初步粉碎并在玛瑙钵中研磨至200目。将粉末样品与助熔剂置于烘箱中,温度调制105℃,烘烤2 h后取出置于干燥器内冷却至常温;将装有样品的小瓷坩埚放入1000℃马弗炉内烧1 h,而后取出放于干燥器内,冷却称重,测其烧失量;将样品置于玛瑙研钵中进行研磨,磨至无颗粒感时向样品中加入助熔剂再进行研磨,待均匀后转入铂金坩埚,而后滴加4~5滴0.12 g/mL NH4Br脱模剂;将铂金坩埚放置于熔样机上,把样品熔融成片子,最后对片子进行编号,置于干燥器内待测。

  • 微量及稀土元素在河北省区域地质矿产调查研究所实验室使用 PE300D 等离子质谱仪(ICP-MS)完成测试,使用国际标样GSR-2和GSR-3来监测实验室精度,检测温度为25℃,分析精度小于1%。实验过程如下:每个样品称取约20 mg粉末置于铁袱龙Beaker中,之后向样品中加入高纯度HF、HNO3溶液,在100℃的电热板上放置7 d,使其完全溶解,之后在70℃条件下低温蒸干。随后向蒸干的Beaker中加入7 mol/L的 HNO3,同样在70℃低温条件下再次将其蒸干。最后样品与溶液以1:1000 的比例在2%的 HNO3中进行溶解,进行下一步的上机测试。

  • 锆石挑选、制靶及阴极发光照相、激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)锆石原位微区U-Pb分析均在中国地质调查局天津地质调查中心实验室完成。锆石U-Pb定年的激光剥蚀系统为GeoLasPro 193准分子激光发生器,ICP-MS仪器型号为ThermoFisHer公司的Neptune。激光剥蚀的斑束直径为30 μm,频率为5 Hz。实验过程以He为载气,采用Glitter程序计算同位素比值及U-Pb年龄标准差。年龄计算及谐和图制作采用Isoplot 3.0程序(Ludwig,1991)。

  • 锆石原位微区Hf同位素分析的锆石点均挑选自LA-ICP-MS锆石U-Pb定年的有效点,在中国地质调查局天津地质调查中心实验室完成,使用与U-Pb年龄测定相同的激光器及质谱仪,测试以GJ-1作为外标,具体仪器配置和实验操作过程、分析步骤参考Wu Fuyuan et al.(2006)。Hf同位素数据处理采用ICPMSDataCal9.2程序完成。测试束斑直径为50 μm,激光能量密度为3.5 J/cm2,频率8 Hz,剥蚀时间为40 s,剥蚀气溶胶由氦气送入质谱仪完成。

  • Rb-Sr和Sm-Nd同位素组成分析均在中国地质调查局天津地质调查中心实验室进行。准确称取0.1 g样品于聚四氟乙烯溶样罐,加入2.5 mL HF、0.5 mL HNO3、0.015 mL HClO4,置于150℃的电热板上保温一周用于溶解样品。采用AG50W×12强酸性阳离子交换树脂和P507树脂分离提纯Sr和Nd,详细的分析流程及仪器参数见Liu Wengang et al.(2020)。利用Triton型热电离质谱仪(TIMS)(Thermo Electron公司)测定Sr和Nd同位素比值,利用88Sr/86Sr=8.375209和146Nd/144Nd=0.7219分别对Sr和Nd进行质量分馏校正。国际标样SRM987和Jndi-1用于监测仪器状态,其中SRM987测定结果为87Sr/86Sr=0.710247±0.000008(2SE);Jndi-1测定结果为143Nd/144Nd=0.512113±0.000007(2SE)。实验过程以国际标准岩石样品BCR-2(玄武岩)监测分离流程,其结果是:87Sr/86Sr=0.705022±0.000014(2SE); 143Nd/144Nd=0.512651±0.000006(2SE)。

  • 4 分析结果

  • 4.1 锆石U-Pb年代学

  • 从所选测年锆石阴极发光照片来看,大部分锆石内平行晶体的韵律性生长环带或振荡环带特征发育(图5),Th/U比值均大于0.1(0.18~1.13),为典型的岩浆成因锆石(Hoskin et al.,2003),详细分析结果见附表1。

  • 中细粒似斑状黑云石英二长闪长岩样品(BYCH-UPb)中的锆石呈短柱—长柱状,晶形发育较好,长宽比为1.2∶1~2∶1(图5a),样品共进行了25个点的有效测试分析,采用普通铅204Pb校正,206Pb/238U年龄变化范围为279~272 Ma,在206Pb/238U-207Pb/235U年龄图解上数据点分布在谐和线上及其附近,206Pb/238U加权平均年龄为276±1 Ma,MSWD=0.15(图6a)。

  • 图5 内蒙古化德地区二叠纪—三叠纪侵入岩代表性锆石阴极发光图(黄色圆圈及数字为Hf同位素测试点位和εHf(t)值)

  • Fig.5 Cathodoluminescence images of representative zircons from the Permian-Triassic intrusions in the Huade area, Inner Mongolia (yellow circles and numbers represent Hf isotope analysis points and εHf (t) values)

  • 中粒黑云母二长花岗岩样品(BYTL-UPb)中的锆石主要呈半自形,颗粒长约70~110 μm,长宽比1~1.5(图5b)。对样品选取27个锆石颗粒进行了分析,所有测试点均投影在谐和线上或附近,206Pb/238U年龄变化范围为274~265 Ma,加权平均年龄为270±1 Ma,MSDW=0.92(图6b)。

  • 花岗斑岩样品(MHQ-UPb)中的锆石颗粒呈长柱状,晶形完整,表面光滑,颗粒长约150~280 μm,长宽比1.5~2.8(图5c)。25个锆石U-Pb数据点显示U、Th含量变化较小,Th/U比值均大于0.1(0.18~0.51),206Pb/238U年龄都落在谐和曲线上或附近,206Pb/238U年龄变化范围为275~251 Ma,加权平均年龄为254 ±1 Ma,MSDW=0.22(图6c)。

  • 中细粒似斑状黑云母二长花岗岩样品(ZWL-UPb)中的锆石颗粒呈半自形—自形短柱状,个别晶形不完整,发育均匀的震荡环带(图5d),206Pb/238U年龄范围为251±3~243±3 Ma,22个测点U-Pb年龄结果构成一紧密相关年龄组,其加权平均年龄为248±1 Ma(MSWD=0.67;图6d)。

  • 细中粒似斑状黑云母二长花岗岩样品(KJD-UPb)中锆石呈短柱状,自形—半自形,颗粒长约100~180 μm,长宽比1~1.8(图5e)。选取了17个锆石颗粒进行U-Pb年龄测定,采用普通铅204Pb校正,206Pb/238U年龄变化范围为232~227 Ma,加权平均年龄为229±1 Ma,MSDW=0.40(图6e)。

  • 4.2 全岩地球化学特征

  • 八音察汗岩体中细粒似斑状黑云石英二长闪长岩的SiO2含量为62.88%~66.01%,K2O含量变化范围为2.84%~3.67%(表1)。全碱(Na2O+K2O)含量为6.43%~7.02%,样品点均落在钙碱性区(图4c)。Al2O3含量较高,为15.39%~16.19%,铝饱和指数A/CNK为0.92~0.96,为准铝质岩石(图4b)。从微量元素对原始地幔标准化蛛网图上可以看出(图7b),样品富集大离子亲石元素K、Rb,亏损高场强元素Nb、Ta、Zr和Ti;无明显的Sr、Eu负异常(δEu =0.99~1.13)。5个岩体的所有样品都属于高钾钙碱性系列,具有高度富集轻稀土而亏损重稀土的特征,轻重稀土比值较高,表现为右倾的配分模式(图4d,图7)。

  • 图6 内蒙古化德地区二叠纪—三叠纪侵入岩锆石U-Pb年龄谐和图

  • Fig.6 LA-ICP-MS zircon U-Pb concordia diagrams of the Permian-Triassic intrusions in the Huade area, Inner Mongolia

  • 表1 内蒙古化德地区二叠纪—三叠纪岩体全岩主量元素(%)和微量元素(×10-6)测试结果

  • Table1 Major (%) and trace (×10-6) elements for the Permian-Triassic intrusions in the Huade area, Inner Mongolia

  • 续表1

  • 白音特拉岩体中粒黑云母二长花岗岩SiO2含量为69.70%~70.71%,K2O含量为4.44%~4.53%,均高于Na2O含量(2.74%~2.82%)。全碱Na2O+K2O含量比较高,为7.22%~7.27%,样品点均落在碱钙性区(图4c)。Al2O3含量较高,为14.96 %~15.46%,平均为15.22%,铝饱和指数A/CNK为1.06~1.09,均大于1,为弱过铝质岩石。毛忽庆、康家地、张万良等岩体也具有相似的A/CNK值,显示弱过铝质特征(图4)。样品具有较高的CaO含量(2.35%~2.83%)。样品稀土总量较高(ΣREE=254.21×10-6~293.61×10-6),(La/Yb)N=16.76~22.55,轻稀土分馏较重稀土更为明显,重稀土相对平坦(图7a)。Eu存在负异常(δEu=0.63~0.74)。微量元素原始地幔标准化蛛网图解显示样品总体富集大离子亲石元素K、Rb、U,强烈亏损高场强元素Nb、Ta、Ti,略微亏损Zr(图7b,表1)。

  • 毛忽庆岩体花岗斑岩SiO2含量与白音特拉岩体较为相似,但变化范围较大,含量为68.46%~71.07%。全碱(Na2O+K2O)含量为7.55%~7.85%,MgO含量较高,为1.03%~1.19%,CaO含量为1.41%~2.12%(表1)。样品稀土总量较低(ΣREE=79.24×10-6~122.31×10-6),LREE/HREE=15.69~18.29。(La/Sm)N=6.88~8.90,(Gd/Yb)N=2.44~3.59,表明轻稀土相对重稀土分馏程度较高。岩石具有Eu正异常(δEu=1.34~1.76),具倒“V”谷的曲线特征。在微量元素蛛网图上(图7b),呈现Nb、Ta、Ti亏损,Th、U、K等富集特征。样品具有弱的Sr正异常,同时显示了相同的配分曲线特征,表明其为同源岩浆演化而来。

  • 张万良岩体中细粒似斑状黑云母二长花岗岩SiO2含量为72.86%~76.95%,所有样品的K2O含量(4.07%~5.16%)均高于Na2O含量(2.95%~3.47%),全碱含量比较高(7.52%~8.36%),属高钾钙碱性系列(图4d,表1)。

  • 康家地岩体细中粒似斑状黑云母二长花岗岩样品SiO2含量为71.57%~76.12%,Al2O3含量为12.83%~15.28%、K2O含量4.24%~6.61%,Na2O含量相对较低,全碱(Na2O+K2O)含量为7.65%~10.26%(图4c,表1)。MgO含量变化范围较大,为0.07%~0.30%,CaO含量为0.14%~1.02%。张万良岩体与康家地岩体具有相似的稀土和微量元素配分曲线(图7c、d),均显示了显著的Nb、Eu、Sr、Ti负异常及Rb、K、U的正异常。两个岩体的重稀土相对平坦,分馏程度较低。

  • 4.3 全岩Sr-Nd同位素特征

  • 八音察汗岩体的(87Sr/86Sr)i较为一致,为0.70936~0.70939;具有一致的负εNdt),为-8.18~-8.26,二阶段模式年龄tDM2为1720~1713 Ma。毛忽庆岩体的(87Sr/86Sr)i变化范围较大,为 0.70814~0.71098,εNdt)为-7.2~-11.63,二阶段模式年龄tDM2为1970~1614 Ma。康家地岩体的(87Sr/86Sr)i相对八音察汗岩体偏低,为0.70410~0.70966,同时具有更低εNdt),为-10.80~-15.93,二阶段模式年龄tDM2为2320~1885 Ma(图8)。详细分析结果见表2。

  • 图7 内蒙古化德地区二叠纪—三叠纪侵入岩全岩球粒陨石标准化稀土元素配分图(a,c)和原始地幔标准化蛛网图(b,d) (球粒陨石和原始地幔标准化数据引自Sun and McDonough,1989;灰色部分为研究区二叠纪—三叠纪花岗质岩浆岩数据,文献数据引自王挽琼,2014Liao Xiangdong et al.,2019Li Longxue et al.,2021王挽琼等,2021

  • Fig.7 Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized trace element patterns (b, d) of the Permian-Triassic intrusions in the Huade area, Inner Mongolia (standard reference values of chondrite and primary mantle are from Sun and McDonough, 1989; gray fields show data from Wang Wanqiong, 2014; Liao Xiangdong et al., 2019; Li Longxue et al., 2021; Wang Wanqiong et al., 2021)

  • 表2 内蒙古化德地区二叠纪—三叠纪岩体Sr-Nd同位素分析结果

  • Table2 Sr-Nd isotope data for the Permian-Triassic intrusions in the Huade area, Inner Mongolia

  • 图8 内蒙古化德地区二叠纪—三叠纪侵入岩锆石(87Sr/86Sr)iNdt)图解(华北克拉通镁铁质下地壳数据引自Jiang Neng et al.,2013; 华北克拉通北缘晚古生代中酸性岩体数据引自张栓宏等,2010)

  • Fig.8 (87Sr/86Sr) iNd (t) diagram of the Permian-Triassic intrusions in the Huade area, Inner Mongolia (data of mafic lower crust in the North China Craton after Jiang Neng et al., 2013; data of late Paleozoic intermediate-acid intrusions in northern margin of the North China Craton after Zhang Shuanhong et al., 2010)

  • 4.4 锆石Lu-Hf同位素特征

  • 八音察汗岩体的176Hf/177Hf组成变化范围为0.282437~0.282646,Hf同位素组成较一致,εHft)为-5.93~1.50,二阶段模式年龄TDM2为2252~1586 Ma,属古元古代—中元古代。白音特拉岩体的176Hf/177Hf组成变化范围为0.282158~0.282296,εHft)为-15.96~-11.18,二阶段模式年龄TDM2为3143~2714 Ma,年龄早于八音察汗岩体。毛忽庆岩体的176Hf/177Hf组成变化范围为0.282168~0.282877,除一个样品点εHft)>0,为8.6外,εHft)为-15.95~-8.76,二阶段模式年龄TDM2为3132~2490 Ma,属于古元古代。张万良岩体的176Hf/177Hf组成变化范围为0.282119~0.282553,εHft)变化范围较大,为-17.88~-2.66,二阶段模式年龄TDM2为3107~1938 Ma,属于古元古代。康家地岩体的176Hf/177Hf组成变化范围为0.282407~0.282848,除两个样品的εHft)>0外,εHft)为-8.04~-2.39,二阶段模式年龄TDM2为2409~1901 Ma(图9,附表2)。

  • 5 岩石成因

  • 5.1 八音察汗中细粒似斑状黑云母石英二长闪长岩

  • 八音察汗中细粒似斑状黑云母石英二长闪长岩SiO2变化范围为62.88%~66.01%,属钙碱性中酸性岩石。关于中性—中酸性岩浆来源,前人提出了多种可能的模型,主要包括:①玄武质岩浆的分离结晶作用派生(Langmuir,1989);② 玄武质岩浆与长英质岩浆的混合作用(Griffin et al.,2002);③ 下地壳玄武质岩石的直接部分熔融(Rapp and Watson,1995)。

  • 图9 内蒙古化德地区二叠纪—三叠纪侵入岩锆石Hf同位素图解(据吴福元等,2007

  • Fig.9 Correlation between Hf isotopic compositions and crystallization ages of the Permian-Triassic intrusions in the Huade area, Inner Mongolia (after Wu Fuyuan et al., 2007)

  • (b)中阴影部分为华北板块北缘中段二叠纪—三叠纪岩浆岩数据;文献引自Liao Xiangdong et al.,2019; Li Longxue et al.,2021王文龙等,2020及其相关文献

  • Gray fields show data from Liao Xiangdong et al., 2019; Li Longxue et al., 2021; Wang Wenlong et al., 2020 and references theirin

  • 若石英二长闪长岩形成于玄武质岩浆的分离结晶,则需要一个比石英二长闪长岩体大的多的玄武质岩浆房存在,研究区除了有中性岩脉(闪长岩、闪长玢岩脉)分布外,没有同时代的基性岩体出露。玄武质岩浆分离结晶形成的岩石系列通常有高的Al2O3含量(可达18%;Rapp and Watson,1995),而样品的Al2O3含量明显低于该数值(15.39%~16.19%),可以排除石英二长闪长岩的玄武质岩浆分离结晶作用成因。

  • 石英二长闪长岩样品Nb/Ta值为5.26~14.56,平均值为9.73,低于地幔17.5的平均值,与地壳平均值11更为接近(McDonough and Sun,1995),显示壳源岩浆性质。同时,样品具有负的εHft)(-5.93~-1.80,除两个样品>0外)和较老的Hf(2252~1586 Ma)、Nd二阶段模式年龄(1720~1713 Ma),具有与华北克拉通北缘镁铁质下地壳一致的(87Sr/86Sr)i值,Sr-Nd同位素组成与华北克拉通北缘晚古生代中酸性岩体范围一致,表明其源区物质主要为中元古代下地壳物质(图9)。此外,石英二长闪长岩样品具有低的Y和ΣHREE含量,且Al2O3/(FeO+MgO+TiO2)比较低(<2.44),与下地壳角闪岩部分熔融产生的熔体一致(图10)。然而与华北克拉通北缘镁铁质下地壳相比,石英二长闪长岩样品显示了稍高的εNdt)值(图9),同时有两个样品的εHft)>0(大部分数据小于0,图8a),暗示八音察汗岩体的母岩浆中可能有少量幔源物质加入,这也与其中多见暗色包体特征一致。

  • 图10 八音察汗岩体Al2O3+FeO+MgO+TiO2 与Al2O3/ (FeO+MgO+TiO2)协变图解(据Douce,1999

  • Fig.10 Al2O3+FeO+MgO+TiO2 versus Al2O3/ (FeO+MgO+TiO2) covariance diagram of the Bayinchahan intrusion (after Douce, 1999)

  • 八音察汗岩体在形成过程中可能发生了玄武质与长英质岩浆混合作用,证据主要包括:① 岩体中暗色微粒包体较发育,形态多为椭圆状、纺锤状、不规则状,包体粒度较细,具有冷凝边结构(图3a);② 显微镜下斜长石环带结构发育,暗示矿物形成过程中岩浆成分的变化(图3f);③ 矿物存在明显的不平衡现象,黑云母、斜长石、角闪石发生互相穿插(图3g);④ 斜长石晶体内部发育具淬火结构的针状磷灰石(图3g)。以上证据表明八音察汗岩体在形成过程中发生了岩浆混合作用,且是温度较高的基性岩浆注入相对冷的长英质岩浆。

  • 综上,八音察汗岩体的母岩浆可能起源于中元古代华北克拉通北缘镁铁质下地壳角闪岩相的部分熔融,并有少量幔源物质加入。

  • 5.2 白音特拉中粒黑云母二长花岗岩

  • 白音特拉中粒黑云母二长花岗岩SiO2含量为69.70%~70.71%,具高钾碱钙性特征(图4)。具有低的10000Ga/Al值(<2.6,图11),未发现铁橄榄石、钠闪石等典型碱性暗色矿物,可以排除为A型花岗岩。角闪石、堇青石是判别I型与S型花岗岩的直接证据,而白音特拉黑云母二长花岗岩未见上述标志性矿物,在缺少矿物学直接证据的情况下,一般可根据岩石地球化学特征来判断。在SiO2-P2O5散点图上未显示出I型花岗岩所具有的负相关特征,而显示出正相关性。Al2O3/TiO2=42.36~42.94,均小于100;K2O/Na2O=1.57~1.65,比值均大于1;CaO/Na2O=0.85~1.00,与S型花岗岩地球化学特征一致(SiO2<74%;Al2O3/TiO2<100、K2O/Na2O>1;CaO/Na2O>0.3;McDonough and Sun,1995)。在微量元素蛛网图中,富集K、Rb、U等大离子亲石元素,亏损高场强元素Nb、Ta、Ti,略微亏损Zr,也与S型花岗岩特征一致(图7b)。中粒黑云母二长花岗岩样品Nb/Ta值为12.39~14.78,低于地幔17.5的平均值,与地壳平均值11更为接近;Zr/Hf值为34.47~35.04,与地壳平均值33较为接近,显示壳源岩浆特征(McDonough and Sun,1995)。此外,样品具有相对中等的Y(21.00~23.10)和低的Yb(2.22~2.56)含量,相对平坦的HREE配分模式以及中等的Eu、Sr负异常,表明岩浆源区的残留相不是石榴子石而可能是斜长石,或在岩浆过程中发生了斜长石的分离结晶。样品176Hf/177Hf组成变化范围为0.282158~0.282296,εHft)为-15.96~-11.18,显示古老地壳源区特征;二阶段模式年龄TDM2为3143~2714 Ma,表明白音特拉岩体起源于古元古代地壳的部分熔融(图8)。

  • 岩浆的CaO/Na2O比值可以很好地反映花岗岩的源区特征,砂质岩部分熔融可以形成过铝质花岗岩,对应熔体的CaO/Na2O比值通常大于0.3;泥质岩部分熔融形成强富铝、富钾的熔体,CaO/Na2O比值通常小于0.3(Sylvester,1998)。白音特拉岩体样品CaO/Na2O的平均值为0.86~1.00(>0.3),暗示源区为变质杂砂岩。C/MF-A/MF图解中(图12a),样品也主要分布在变质砂岩部分熔融区域。综上,白音特拉中粒黑云母二长花岗岩是古元古代地壳中变质杂砂岩部分熔融的产物。

  • 5.3 毛忽庆花岗斑岩

  • 毛忽庆花岗斑岩与白音特拉中粒黑云母二长花岗岩相比SiO2含量变化较大,为高钾钙碱性-碱钙性岩石。岩石样品10000Ga/Al值在2.40~2.79之间,部分样品大于2.6,但未见钠闪石-钠铁闪石、霓石-霓辉石、铁橄榄石等标志性碱性暗色矿物,可以排除为A型花岗岩(图11)。岩石副矿物中可见大量I型花岗岩特征矿物榍石,且未见富铝矿物堇青石、白云母等,同时结合SiO2与P2O5负的相关性(图12b;Wolf and London,1994),表明毛忽庆岩体属I型花岗岩。

  • 起源于地幔的熔体,通常有高的Mg#值(>40)。毛忽庆岩体样品的Mg#<30,且缺失镁铁质暗色微粒包体,可以排除幔源岩浆混合作用成因。Nb/U(4.11~5.89)、Zr/Hf(34.31~36.04)值与地壳范围接近。毛忽庆岩体具有负的εHft)值(-15.95~-8.76),二阶段模式年龄TDM2为3132~2490 Ma,同时具有负的εNdt)值(-7.2~-11.63),二阶段模式年龄tDM2为1970~1614 Ma,与华北克拉通镁铁质下地壳具有相似的Sr-Nd同位素组成(图9),表明其可能起源于古老下地壳的部分熔融。

  • 5.4 张万良岩体和康家地岩体

  • 似斑状黑云母二长花岗岩具有相对富硅(张万良岩体SiO2含量为72.86%~76.95%,康家地岩体为71.57%~76.12%)、富碱(Na2O+K2O;张万良岩体为7.52%~8.36%,康家地岩体为7.65%~10.26%),属于高钾钙碱性系列,同时具有富铁、贫Sr、Eu、Ba、Ti、P(P2O5普遍0.1%)的特征,具有类似“海鸥”型的稀土元素配分模式(图7c),与典型的A型花岗岩地球化学特征一致。

  • 两个岩体的微量元素Ga含量较高,除一个康家地岩体样品外,所有样品的10000Ga/Al都大于2.6,在Whalen et al.(1987) 提出的10000Ga/Al-Ce、10000Ga/Al-Zr、10000Ga/Al-K2O/MgO(图11a~c)判别图解中,样品均落入了A型花岗岩区。A型花岗岩产于伸展的构造背景得到了普遍的认同,其形成构造背景大致可以分为A1型和A2型2个亚型,并认为A1型是洋岛型玄武质岩浆的分异产物,A2型的源岩是大陆地壳或底侵的镁铁质地壳(Eby,1992)。A1型花岗岩往往产于非造山的板内裂谷、地幔柱热构造环境,而A2型花岗岩产于后碰撞或后造山环境(Eby,19901992)。在Nb-Y-Ce图解和Nb-Y-3Ga图解中(图11d),样品多数落入A2区域,表明张万良岩体及康家地岩体均为高钾钙碱性A2型花岗岩。

  • 图11 内蒙古化德地区二叠纪—三叠纪侵入岩10000Ga/Al与Ce(a)、Zr(b)、K2O/ MgO(c,据Whalen et al.,1987)图解和Nb-Y-Ce图解(d,据Eby,1992

  • Fig.11 Variation diagrams of 10000Ga/Al versus Ce (a) , Zr (b) , K2O/MgO (c, after Whalen et al., 1987) , and Nb-Y-Ce diagram of the Permian-Triassic intrusions in the Huade area, Inner Mongolia (d, after Eby, 1992)

  • 图12 白音特拉岩体C/MF-A/MF图解(a,据Altherr et al.,2000)和白音特拉、毛忽庆岩体SiO2-P2O5协变图解(b)

  • Fig.12 C/MF versus A/MF covariance diagram of the Baiyintela intrusion (a, after Altherr et al., 2000) ; SiO2-P2O5 covariance diagrams of the Baiyintela and Maohuqing intrusions (b)

  • 两个岩体都显示了接近壳源特征的Nb/Ta、Zr/Hf值,暗示花岗质岩石岩浆源区为陆壳物质。张万良岩体的εHft)变化范围较大,为-15.88~-2.66,二阶段模式年龄TDM2为3132~2490 Ma,暗示其主要起源于古元古代地壳部分熔融(图8)。康家地岩体样品与华北克拉通镁铁质下地壳具有相似的Sr-Nd同位素组成(图9),εNdt)为-10.80~-15.93,二阶段模式年龄tDM2为2320~1885 Ma。与张万良岩体相比,康家地岩体样品的εHft)主要集中在-8.04~-2.39,二阶段模式年龄TDM2为2409~1901 Ma,同时有两个测点显示了正的εHft)值(分别为4.14和7.42),在εHft)-年龄图解中位于球粒陨石线与亏损地幔之间(图8),表明其可能起源于古元古代古老地壳的部分熔融,但在上升过程中可能有少量年轻地壳组分的混入。

  • 综上所述,本文所研究的岩体主要起源于古老地壳的部分熔融。八音察汗岩体起源于华北克拉通北缘镁铁质下地壳角闪岩相的部分熔融,并有少量幔源物质加入;白音特拉岩体为中下地壳变质杂砂岩部分熔融形成的S型花岗岩;毛忽庆岩体为I型花岗岩;康家地岩体和张万良岩体均为A型花岗岩。

  • 6 构造背景及其对古亚洲洋最终闭合时限的约束

  • 兴蒙造山带自古生代以来的构造演化由古亚洲洋的俯冲-闭合过程主导,白乃庙岛弧与华北克拉通北缘在晚石炭世拼合之后,古亚洲洋板块向南俯冲于拼合的白乃庙岛弧与华北克拉通之下,持续到早二叠世(李锦轶等,2007Liao Xiangdong et al.,2019; Li Longxue et al.,2021)。古亚洲洋的持续俯冲消减导致了俯冲带内强烈的壳-幔岩浆作用过程,形成了横亘于华北板块北缘的大规模大陆边缘弧岩浆岩带(石玉若等,2014; Chen Chen et al.,2015; Tong Ying et al.,2015)。区域上,从弧岩浆的地球化学特征变化来看,早期岩浆作用的源区组成中存在显著的幔源岩浆参与,而随着时间的推移,晚期的岩浆作用则主要起源于古老地壳物质的部分熔融,幔源岩浆的物质贡献逐渐减弱,这也与俯冲带岩浆成分的演化规律相符(张栓宏等,2010)。华北板块北缘中段二叠纪—三叠纪岩浆活动的主要集中时期为280~260 Ma(二叠纪),而关于三叠纪岩浆活动已报道的数据则主要集中在早三叠世(图13),研究区及邻区详细的岩浆事件统计信息见附表3。

  • 图13 华北克拉通北缘中段二叠纪— 三叠纪岩浆岩年龄频度图

  • Fig.13 Histograms of ages for the Permian-Triassic igneous from the middle part of the northern margin of the North China craton

  • 华北板块北缘早二叠世侵入岩岩石组合主要为闪长岩+花岗闪长岩+二长花岗岩,相对应的火山岩岩石组合为安山岩+英安岩+流纹岩,以钙碱性系列为主,其矿物组合、岩石地球化学等方面均显示出活动大陆边缘岩浆特征(Li Shan et al.,2016; Liao Xiangdong et al.,2019; 杨帆等,2022)。研究区八音察汗岩体的锆石U-Pb年龄为276 Ma,属早二叠世,在Yb+Ta-Rb和Y-Nb构造环境判别图解中均落入火山弧区域,在R1-R2图解中也落在了板块碰撞前区域,指示该时期研究区处于古亚洲洋向华北板块俯冲下的活动大陆边缘环境(图14; Pearce et al.,1984; Batchelor and Bowden,1985)。这一观点也得到了研究区沉积岩石学和火山岩证据支持。研究区北侧出露一套早二叠世三面井组砂岩、粉砂岩,其中含有大量的火山碎屑物质,显示了近源快速沉积的特点,是对古亚洲洋在早二叠世俯冲消减作用的沉积响应(王师捷等,2020)。同时,研究区二叠纪额里图组中的安山岩属高Mg安山岩(待发表数据),也同样显示为俯冲带环境的产物(Kamei et al.,2004)。古亚洲洋的持续俯冲过程中,俯冲板片持续释放的流体/熔体使上覆的岩石圈地幔不断富集并发生部分熔融,形成的基性熔体继续上升并底侵下地壳,古老下地壳部分熔融形成研究区早二叠世岩浆。前文提到八音察汗岩体的岩浆可能起源于中元古代华北克拉通北缘镁铁质下地壳角闪岩相的部分熔融,缺少幔源岩浆物质贡献的证据,也表明早二叠世时期古亚洲在研究区位置已进入俯冲消亡作用晚期(图15a)。

  • 华北板块北缘中段中二叠世的岩浆作用十分发育,在研究区岩浆活动也主要集中在中二叠世,发育一套花岗闪长岩、二长花岗岩岩石组合,并出现标志同碰撞环境的S型花岗岩。白音特拉岩体为起源于中下地壳变质杂砂岩部分熔融的S型花岗岩,锆石U-Pb年龄为270 Ma,属中二叠世,在Yb+Ta-Rb和Y-Nb构造环境判别图解中落在火山弧与同碰撞的过渡位置,在R1-R2图解中也主要落入了同碰撞与板块碰撞前的过渡区域,暗示其可能形成于大陆边缘弧向同碰撞转换的构造背景(图14)。区域上中二叠世发育大量具有同碰撞或俯冲到同碰撞过渡特征的花岗岩体,包括镶黄旗东侧倒浪呼都格二长花岗岩(265±2 Ma;邢济麟,2010)、集宁北部年龄为268.7±1.3 Ma的花岗岩(王晚琼等,2013)、四子王旗大庙岩体(265±7 Ma;章永梅等2009)、车户沟正长花岗斑岩(265 Ma;Zeng Qingdong et al.,2012)等。进入中二叠世,随着古亚洲洋的俯冲消亡,华北板块与南蒙古微陆块开始相互碰撞,陆壳底部开始初步加厚,导致中下地壳发生部分熔融,形成大量S型花岗岩(图15b)。

  • 华北板块北缘晚二叠世花岗岩类岩石组合主要为黑云母花岗岩、二长花岗岩和碱长花岗岩,多为高钾钙碱性系列,岩石类型以I型花岗岩和A型花岗岩为主,少量为S型花岗岩(Liao Xiangdong et al.,2019; Li Longxue et al.,2021)。毛忽庆花岗斑岩为I型花岗岩,形成时间为254 Ma,在Yb+Ta-Rb和Y-Nb图解中落入了火山弧区(图14a、b),而在R1-R2图解显示了同碰撞花岗岩特征(图14c),构造环境判别图解往往具有多解性,因此需要综合判断。如前所述,研究区在早二叠世为大陆边缘弧环境,进入中二叠世则发育有同碰撞成因的S型花岗岩,因此晚二叠世毛忽庆岩体不太可能形成于火山弧构造背景。此外,前人对林西地区的岩相古地理研究显示,华北克拉通与兴蒙造山带之间的深海盆地在晚二叠世已演化为陆相河湖沉积,表明华北克拉通北缘在晚二叠世已经发生隆升(李树才等,2019)。孙跃武等(2016)对分布于内蒙古赤峰地区的于家北沟组沉积地层植物化石研究显示,在晚二叠世时期安加拉植物群与华夏植物群的混生现象在中国北方普遍存在,暗示古亚洲洋在晚二叠世已经闭合。综上,研究区在晚二叠世应为同碰撞构造环境,即南蒙古微陆块与华北克拉通北缘在中二叠世发生碰撞并持续到晚二叠世(图15c)。随着碰撞作用的持续进行,导致了地层中NEE-NE向褶皱构造及华北北缘E-W向韧性剪切作用(Zhang Jin et al.,2022; Zhao Heng et al.,2022)。在研究区韧性剪切带内眼球状糜棱岩样品中取得白云母的40Ar-39Ar坪年龄为256±3 Ma(待发表数据),代表了该剪切带形成的上限年龄。

  • 图14 内蒙古化德地区二叠纪—三叠纪侵入岩构造环境判别图解(a、b,据Pearce et al.,1984) 和R1-R2(c,据Batchelor and Bowden,1985)

  • Fig.14 Diagrams of tectonic environment (a, b; after Pearce et al., 1984) and R1 vs. R2 (c, after Batchelor and Bowden, 1985) for the Permian-Triassic intrusions in the Huade area, Inner Mongolia

  • WPG—板内; ORG—洋中脊;VAG—火山弧;syn-COLG—同碰撞;Post-CEG—后碰撞;①—地幔分异;②—板块碰撞前;③—碰撞后隆起;④—造山晚期;⑤—非造山;⑥—同碰撞;⑦—造山后

  • WPG—within plate granite; ORG— ocean ridge granite; VAG— volcanic arc granite; syn-COLG—syn-collosion granite; Post-CEG— post collosion granite; ①—mantle fractionates; ②—pre-plate collision; ③—post-collision uplift; ④—late-orogenic; ⑤—anorogenic; ⑥—syn-collision; ⑦—post-orogenic

  • 在华北克拉通北缘区域范围三叠纪岩浆活动均有分布,目前报道的数据主要集中在华北克拉通东段地区,而中段地区三叠纪岩浆活动相对较弱。根据形成时代可将三叠纪岩浆活动划分为早三叠世(250~247 Ma)和中晚三叠世(241~208 Ma)两期,主要岩石类型为正长花岗岩、二长花岗岩、碱性杂岩(张栓宏等,2010;高爽,2016)。该期花岗岩类型主要为A型,少量为I型,S型花岗岩不甚发育。在岩石组合、岩浆演化、矿物组成、地球化学及同位素等方面均显示后碰撞/后造山岩浆作用的特征。早三叠世张万良岩体与晚三叠世康家地岩体均为A型花岗岩,具有高硅、高钾钙碱性及过铝质特征,与区域同时期岩浆特征类似。在Y+Nb-Rb和Y-Nb构造环境判别图解中,多数样品落入后碰撞花岗岩区域,在R1-R2图解中样品也主要分布在造山晚期位置(图14c)。此外,早三叠世及晚三叠世发育的A型花岗岩在Nb-Y-Ce图解和Nb-Y-3Ga图解中,样品多数落入A2区域,属于A2型花岗岩,而A2型花岗岩通常形成于后碰撞或后造山环境(图11d; Eby,19901992; 张旗,2013)。综上,研究区从早三叠世花岗岩开始进入造山期后的伸展拉张环境,并一直持续到晚三叠世(图15d)。

  • 图15 华北克拉通北缘中段早二叠世—晚三叠世构造演化模式图

  • Fig.15 Schematic model showing the tectonic-evolutionfrom Early Permian to Late Triassic in the middle part of the northern margin of the North China Craton

  • 综上,笔者建立了研究区晚古生代—早中生代构造演化模型,构造演化可分为4个阶段(图15)。第一阶段(洋-陆俯冲阶段):早二叠世古亚洲洋板块向南俯冲于华北克拉通之下;第二阶段(俯冲-同碰撞阶段):中二叠世,随着古亚洲洋板块俯冲停止,蒙古微陆块与华北克拉通北缘发生碰撞,实现了洋-陆转换过程;第三阶段(陆-陆碰撞阶段):晚三叠世,碰撞造山作用持续进行,在碰撞过程中,导致了地层中NEE-NE向褶皱构造及华北北缘E-W向韧性剪切作用;第四阶段(后碰撞伸展阶段):进入早三叠世,区域上广泛发育后碰撞成因的A型花岗岩,表明研究区从早三叠世开始进入造山期后的伸展拉张环境,并一直持续到晚三叠世。

  • 7 结论

  • (1)通过锆石U-Pb年代学研究表明,八音察汗岩体的侵位年龄为276±1 Ma,形成时代为早二叠世;白音特拉岩体的侵位年龄为270±1 Ma,形成时代为中二叠世;毛忽庆岩体的侵位年龄为254±1 Ma,属晚二叠世;张万良岩体的侵位年龄为248±1 Ma,属早三叠世;康家地岩体的侵位年龄为229±1 Ma,属晚三叠世。

  • (2)岩石地球化学及Sr-Nd-Hf同位素特征表明华北克拉通北缘中段内蒙古化德地区二叠纪—三叠纪花岗质岩体主要起源于古老下地壳或中下地壳的部分熔融。八音察汗岩体起源于华北克拉通北缘镁铁质下地壳角闪岩相的部分熔融,并有少量幔源物质加入;白音特拉岩体为古老地壳变质杂砂岩部分熔融形成的S型花岗岩;毛忽庆岩体为I型花岗岩;康家地岩体和张万良岩体均为A型花岗岩,且在岩浆上升过程中混入了少量年轻地壳组分。

  • (3)内蒙古化德地区在早二叠世—晚三叠世经历了古亚洲洋向华北克拉通俯冲、俯冲-同碰撞、持续碰撞以及造山后的伸展4个阶段,古亚洲洋东段在研究区的闭合时间应为中二叠世晚期。

  • 致谢:感谢河北省区域地质矿产调查研究所实验室和中国地质调查局天津地质调查中心实验室在样品分析测试过程中提供帮助。两位匿名审稿人对论文提出了宝贵修改意见,在此表示诚挚的感谢。

  • 附件:本文附件(附表1~3)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202401093?st=article_issue

  • 参考文献

    • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50: 51~73.

    • Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48: 43~55.

    • Chen Chen, Zhang Zhicheng, Li Ke, Chen Yan, Tang Wenhao, Li Jianfeng. 2015. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China Block. Journal of Asian Earth Sciences, 97: 307~319.

    • Douce P A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications, 168: 55~75.

    • Eby G N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26: 115~134.

    • Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenesis and tectonic implications. Gelology, 20: 641~644.

    • Frost B R, Arculus R J, Barnes C G, Collins W J, Ellis D J, Frost C D. 2001. A geochemical classification of granitic rocks. Journal of Petrology, 42: 2033~2048.

    • Gao Shuang. 2016. Study on petrogenesis of middle Triassic granites in Chayouzhongqi, Inner Mongolia, the middle segment of the northern margin of the North China Craton. Master's thesis of Nanjing University, 1~96 (in Chinese with English abstract).

    • Griffin W L, Wang Xiang, Jackson S E, Pearson N J, O'Reilly S Y, Xu Xisheng, Zhou Xinmin. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews of Mineralogy and Geochemistry, 53: 27~62.

    • Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91: 181~193.

    • Jahn B M, Capdevila R, Liu Dunyi, Vernon A, Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23: 629~653.

    • Jian Ping, Liu Dunyi, Kroner A, Windley B F, Shi Yuruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Liqao, Tomurhuu D. 2010. Evolution of a Permian intra oceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118: 169~190.

    • Jiang Neng, Guo Jinghui, Chang Guohu. 2013. Nature and evolution of the lower crust in the eastern North China craton: A review. Earth-science Reviews, 122: 1~9.

    • Jiang Neng, Guo Jinghui, Zhai Mingguo, Zhang Shuangquan. 2010. ~2. 7 Ga crust growth in the North China craton. Precambrian Research, 179: 37~49.

    • Kamei A, Owada M, Nagao T, Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: Evidence from clinopyroxene and whole rock compositions. Lithos, 75: 359~371.

    • Langmuir C H. 1989. Geochemical consequences of in situ crystallization. Nature, 340: 199~205.

    • Li Jinyi, Gao Liming, Sun Guihua, Li Yaping, Wang Yanbin. 2007. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates. Acta Petrologica Sinica, 23(3): 565~582 (in Chinese with English abstract).

    • Li Jinyi, Zhang Jin, Yang Tiannan, Li Yaping, Sun Guihua, Zhu Zhixin, Wang Lijia. 2009. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas. Journal of Jilin University (Earth Science Edition), 39(4): 584~605 (in Chinese with English abstract).

    • Li Longxue, Hou Qingye, Huang Dingling, Wang Xinyu. 2021. Early Permian granitic magmatism in middle part of the northern margin of the North China craton: Petrogenesis, source, and tectonic setting. Minerals, 11: 99.

    • Li Pengwu, Gao Rui, Guan Ye, Li Qqiusheng. 2006. Palaeomagnetic constraints on the final closure time of Solonker Linxi suture. Journal of Jilin University (Earth Science Edition), 36(5): 744~758 (in Chinese with English abstract).

    • Li Pengwu, Gao Rui, Guan Ye, Li Qiusheng. 2009. The closure time of the Paleo-Asian Ocean and the paleo-Tethys Ocean: Implication for the tectonic cause of the end-Permian mass extinction. Journal of Jilin University (Earth Science Edition), 39(3): 521~527 (in Chinese with English abstract).

    • Li Shan, Wilde S A, Wang Tao, Xiao Wenjiao, Guo Qianqian. 2016. Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt. Gondwana Research, 29: 168~180.

    • Li Shucai, Zhang Xionghua, Li Ruanbo, Yang Xinjie, Zhang Liangyuan. 2019. Geological age of Linxi Formation in Linxi, Inner Mongolia, and its sedimentary environment. Geological Science and Technology Information, 38(1): 1~7 (in Chinese with English abstract).

    • Liao Xiangdong, Sun Song, Chi Huanzhao, Jia Dingyu, Nan Zeyu, Zhou Wenna. 2019. The Late Permian highly fractionated I-type granites from Sishijia pluton in southestern Inner Mongolia, North China: A post-collisional magmatism record and its implication for the closure of Paleo-Asian Ocean. Lithos, 328~329, 262~275.

    • Liu Qun, Wang Wanqiong, Qiu Dianming, Bai Xinhui, Zhang Jinfeng, Wang Xin. 2015. Early Carboniferous tectonic attribute of the central-northern margin of North China craton: Constraints from geochemistry of highly fractionated I-type granites in Cahayouhouqi area. Journal of Jilin University (Earth Science Edition), 45(4): 1121~1131 (in Chinese with English abstract).

    • Liu Wengang, Wei Shuang, Zhang Jian, Ao Cong, Liu Futian, Cai Bin, Zhou Hongying, Yang Jilong, Li Chaofeng. 2020. An improved separation scheme for Sr through fluoride coprecipitation combined with a cation-exchange resin from geological samples with high Rb/Sr ratios for high-precision determination of Sr isotope ratios. Journal of Analytical Atomic Spectrometry, 35: 953~960.

    • Long Xinyu, Tang Jie, Xu Wenliang, Sun Chenyang, Luan Jinpeng, Guo Peng. 2022. A crustal growth model for the eastern Central Asian Orogenic Belt: Constraints from granitoids in the Songnen massif and Duobaoshan terrane. Gondwana Research, 107: 325~338.

    • Long Xinyu, Xu Wenliang, Yang Hao, Tang Jie, Sorokin A A, Ovchinnikov R O. 2021. Late Permian-Triassic tectonic nature of the eastern Central Asian Orogenic Belt: Constraints from the geochronology and geochemistry of igneous rocks in the Bureya massif. Lithos, 380~381.

    • Ludwig K. 2003. User's Manual for Isoplot/Ex version 3. 00—A Geochronology Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, 4: 1~70.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.

    • McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223~253.

    • Pan Guitang, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhang Ziyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang. 2009. Subdivision of tectonic units in China. Geology in China, 36(1): 1~28 (in Chinese with English abstract).

    • Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956~983.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58: 63~81.

    • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891~931.

    • Sengör A M C, Natal'In B A, Burtman V S. 1993. Evolution of the altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299~307.

    • Shao Ji'an, Wang You, Tang Kedong. 2017. A reflection on the Xarmoron tectonomagmatic belt, Inner Mongolia, China. Acta Petrologica Sinica, 33(10): 3002~3010 (in Chinese with English abstract).

    • Shi Yuruo, Liu Cui, Deng Jinfu, Jian Ping. 2014. Geochronological frame of granitoids from Central Inner Mongolia and its tectonomagmatic evolution. Acta Petrologica Sinica, 30 (11): 3155~3171 (in Chinese with English abstract).

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publication, 42(1): 313~345.

    • Sun Yuewu, Ding Haisheng, Liu Huan, Zhang Dejun, Gong Fanhao, Zheng Yuejuan. 2016. Fossil plants from the Guadalupian Yujiabeigou Formation in the northern margin of North China plate and their tectonic implications. Journal of Jilin University (Earth Science Edition), 46(5): 1268~1283 (in Chinese with English abstract).

    • Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45: 29~44.

    • Tong Ying, Jahn B M, Wang Tao, Hong Dawei, Smith E I, Sun Min. 2015. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance. Journal of Asian Earth Sciences, 97(1): 320~336.

    • Wang Shijie, Xu Zhongyuan, Li Changhai, Lü Hongda, Liu Yang, Wang Wenlong, Fu Xueming. 2020. Evolution of central-southern margin of the Xing-Meng Orogenic Belt in the Late Paleozoic: Evidence from Carboniferous-Permian sedimentary formation and volcanic rock in Sonid Right Banner, Inner Mongolia. Acta Petrologica Sinica, 36(8): 2493~2520 (in Chinese with English abstract).

    • Wang Wanqiong. 2014. Late Paleozoic tectonic evolution of the central-northern margin of the North China Plate: Constraints from zircon U-Pb ages and geochemistry of igneous rocks in Ondor Sum-Jining area. Doctoral dissertation of Jilin University (in Chinese with English abstract).

    • Wang Wanqiong, Xu Zhongyuan, Liu Zhenghong, Zhao Qingying, Jiang Xiaojun. 2013. Early-Middle Permian tectonic evolution of the central-northern margin of the North China Craton: Constraints from zircon U-Pb ages and geochemistry of the granitoids. Acta Petrologica Sinica, 29(9): 2987~3003 (in Chinese with English abstract).

    • Wang Wanqiong, Xi Aihua, Ge Yuhui, Bai Xinhui, Wang Hu. 2021. Petrogenesis and tectonic implications of the biotite monzogranite and associated mafic microgranular enclaves in Tumuertai area, Inner Mongolia. Acta Petrologica Sinica, 37(4): 1082~1098 (in Chinese with English abstract).

    • Wang Wenlong, Liu Yang, Zhao Ligang, Teng Fei, Yang Zeli. 2020. Dataset of chronology, geochemistry and zircon Hf iotopes of Permian magmatites in the middle section of the northern margin of North China Craton. Geology in China, 47(S1): 44~53 (in Chinese with English abstract).

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407~419.

    • Wilde S A. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction--A review of the evidence. Tectonophysics, 662: 345~362.

    • Wilde S A, Zhao Guochun, Sun Min. 2002. Development of the North China craton during the Late Archaean and its final amalgamation at 1. 8 Ga; some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5: 85~94.

    • Windley B F, Alexeiev D, Xiao Wenjiao, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164: 31~47.

    • Wolf M B, London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochimica et Cosmochimica Acta, 58: 4127~4145.

    • Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105~126.

    • Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220.

    • Xiao Wenjiao, Windley B F, Hao Jie, Zhai Mingguo. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 8~20.

    • Xing Jilin. 2010. The geochemic characteristics and geodynamic significance of the granite in Wenduermiao uplift zone in Inner Mogolia. Master's thesis of Jilin University, 23~26 (in Chinese with English abstract).

    • Xu Bei, Zhao Pan, Wang Yanyang, Liao Wen, Luo Zhiwen, Bao Qingzhong, Zhou Yongheng. 2015. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183~196.

    • Yang Fan, Jiang Yanyan, Chen Jingsheng, Han Xing. 2022. Chronology and geochemistry of Carboniferous-Permian intrusive rocks in Zhuanshanzi mining area, Chifeng, middle part of the northern margin of the North China Craton: Constraints on the tectonic evolution of the Paleo-Asian Ocean. Acta Petrologica Sinica, 38(8): 2467~2488 (in Chinese with English abstract).

    • Zeng Qingdong, Yang Jinhui, Liu Jianming, Chu Shaoxiong, Duan Xiaoxia, Zhang Z L, Zhang Weiqing, Zhang Song. 2012. Genesis of the Chehugou Mo-bearing granitic complex on the northern margin of the North China Craton: Geochemistry zircon U-Pb age and Sr-Nd-Pb isotopes. Geological Magazine, 149(5): 753~767.

    • Zhang Jin, Qu Junfeng, Zhang Beihang, Zhao Heng, Zheng Ronggou, Liu Jianfeng, Niu Pengfei, Yun Long, Zhao Shuo, Zhang Yiping. 2022. Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic. American Journal of Science, 322(7): 851~897.

    • Zhang Qi. 2013. The criteria and discrimination for A-type granites: A reply to the question put forward by Wang Yang and some other persons for "A-type granite: What is the essence?" Acta Petrologica et Mineralogica, 32(2): 267~274 (in Chinese with English abstract).

    • Zhang Shuanhong, Zhao Yue, Liu Jianmin, Hu Jianmin, Song Biao, Liu Jian, Wu Hai. 2010. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review. Acta Petrologica et Mineralogica, 29(6): 824~842 (in Chinese with English abstract).

    • Zhang Shuanhong. Zhao Yue, Liu Xiaochun, Liu Dunyi, Chen Fukun, Xie Liewen, Chen Haihong. 2009. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block: Constraints on the composition and evolution of the lithospheric mantle. Lithos, 110: 229~246.

    • Zhang Yongmei, Zhang Huafeng, Liu Wencan, Zhou Zhiguang. 2009. Timing and petrogenesis of the Damiao granodiorite, Siziwangqi, Inner Mongolia. Acta Petrologica Sinica, 25(12): 3165~3181 (in Chinese with English abstract).

    • Zhao Heng, Zhang Jin, Zhang Beihang, Qu Junfeng, Zhang Yiping, Niu Pengfei, Hui Jie, Wang Yannan. 2022. Structures and chronology of the Yabrai shear zone in the Alxa, NW China: Constraints on the late Paleozoic shear system in central segment of the Central Asian Orogenic Belt. Journal of Structural Geology, 158.

    • 高爽. 2016. 华北板块北缘中段内蒙古察右中旗地区中三叠世花岗岩成因研究. 南京大学硕士学位论文, 1~96.

    • 李锦轶, 高立明, 孙桂华, 李亚萍, 王彦斌. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565~582.

    • 李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584~605.

    • 李朋武, 高锐, 管烨, 李秋生. 2006. 内蒙古中部索仑林西缝合带封闭时代的古地磁分析. 吉林大学学报, 36(5): 744~758.

    • 李朋武, 高锐, 管烨, 李秋生. 2009. 古亚洲洋和古特提斯洋的闭合时代——论二叠纪末生物灭绝事件的构造起因. 吉林大学学报 (地球科学版), 39(3): 521~527.

    • 李树才, 张雄华, 李沅柏, 杨欣杰, 张亮元. 2019. 内蒙古林西地区林西组地质时代及沉积环境. 地质科技情报, 38(1): 1~7.

    • 刘群, 王挽琼, 邱殿明, 白新会, 张金凤, 王新. 2015. 华北板块北缘中段早石炭世构造属性: 察哈尔右翼后旗高分异Ⅰ型花岗岩地球化学的制约. 吉林大学学报 (地球科学版), 45(4): 1121~1131.

    • 潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分. 中国地质, 36(1): 1~28.

    • 邵济安, 王友, 唐克东. 2017. 有关内蒙古西拉木伦带古生代-早中生代构造环境的讨论. 岩石学报, 33(10): 3002~3010.

    • 石玉若, 刘翠, 邓晋福, 简平. 2014. 内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨. 岩石学报, 30(11): 3155~3171.

    • 孙跃武, 丁海生, 刘欢, 张德军, 公繁浩, 郑月娟. 2016. 华北板块北缘中二叠统于家北沟组植物化石及其大地构造意义. 吉林大学学报 (地球科学版), 46(5): 1268~1283.

    • 王师捷, 徐仲元, 李长海, 吕红达, 刘洋, 王文龙, 付雪明. 2020. 兴蒙造山带中段南缘晚古生代演化过程: 来自苏尼特右旗地区沉积地层及火山岩的证据. 岩石学报, 36(8): 2493~2520.

    • 王挽琼. 2014. 华北板块北缘中段晚古生代构造演化: 温都尔庙—集宁火成岩年代学、地球化学的制约. 吉林大学博士学位论文.

    • 王挽琼, 徐仲元, 刘正宏, 赵庆英, 蒋孝君. 2013. 华北板块北缘中段早中二叠世的构造属性: 来自花岗岩类锆石U-Pb年代学及地球化学的制约. 岩石学报, 29(9): 2987~3003.

    • 王挽琼, 郗爱华, 葛玉辉, 白新会, 王虎. 2021. 内蒙古土牧尔台地区黑云母二长花岗岩及其暗色包体的成因及构造意义. 岩石学报, 37(4): 1082~1098.

    • 王文龙, 刘洋, 赵利刚, 滕飞, 杨泽黎. 2020. 华北板块北缘中段二叠纪岩浆岩年代学、地球化学及错石 Hf同位素测试数据集. 中国地质, 47(S1): 32~39.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

    • 刑济麟. 2010. 内蒙古温都尔庙隆起带花岗岩的地球化学特征及地球动力学意义. 吉林大学硕士学位论文, 23~26.

    • 杨帆, 姜艳艳, 陈井胜, 韩兴. 2022. 华北克拉通北缘中段赤峰撰山子矿区石炭纪-二叠纪侵入岩年代学和地球化学: 对古亚洲洋构造演化的制约. 岩石学报, 38(8): 2467~2488.

    • 张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对“A型花岗岩的实质是什么”的质疑. 岩石矿物学杂志, 32(2): 267~274.

    • 张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824~842.

    • 章永梅, 张华峰, 刘文灿, 周志广. 2009. 内蒙古中部四子王旗大庙岩体时代及成因. 岩石学报, 25(12): 3165~3181.

  • 参考文献

    • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50: 51~73.

    • Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48: 43~55.

    • Chen Chen, Zhang Zhicheng, Li Ke, Chen Yan, Tang Wenhao, Li Jianfeng. 2015. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China Block. Journal of Asian Earth Sciences, 97: 307~319.

    • Douce P A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geological Society, London, Special Publications, 168: 55~75.

    • Eby G N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26: 115~134.

    • Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenesis and tectonic implications. Gelology, 20: 641~644.

    • Frost B R, Arculus R J, Barnes C G, Collins W J, Ellis D J, Frost C D. 2001. A geochemical classification of granitic rocks. Journal of Petrology, 42: 2033~2048.

    • Gao Shuang. 2016. Study on petrogenesis of middle Triassic granites in Chayouzhongqi, Inner Mongolia, the middle segment of the northern margin of the North China Craton. Master's thesis of Nanjing University, 1~96 (in Chinese with English abstract).

    • Griffin W L, Wang Xiang, Jackson S E, Pearson N J, O'Reilly S Y, Xu Xisheng, Zhou Xinmin. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews of Mineralogy and Geochemistry, 53: 27~62.

    • Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91: 181~193.

    • Jahn B M, Capdevila R, Liu Dunyi, Vernon A, Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. Journal of Asian Earth Sciences, 23: 629~653.

    • Jian Ping, Liu Dunyi, Kroner A, Windley B F, Shi Yuruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Liqao, Tomurhuu D. 2010. Evolution of a Permian intra oceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118: 169~190.

    • Jiang Neng, Guo Jinghui, Chang Guohu. 2013. Nature and evolution of the lower crust in the eastern North China craton: A review. Earth-science Reviews, 122: 1~9.

    • Jiang Neng, Guo Jinghui, Zhai Mingguo, Zhang Shuangquan. 2010. ~2. 7 Ga crust growth in the North China craton. Precambrian Research, 179: 37~49.

    • Kamei A, Owada M, Nagao T, Shiraki K. 2004. High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: Evidence from clinopyroxene and whole rock compositions. Lithos, 75: 359~371.

    • Langmuir C H. 1989. Geochemical consequences of in situ crystallization. Nature, 340: 199~205.

    • Li Jinyi, Gao Liming, Sun Guihua, Li Yaping, Wang Yanbin. 2007. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates. Acta Petrologica Sinica, 23(3): 565~582 (in Chinese with English abstract).

    • Li Jinyi, Zhang Jin, Yang Tiannan, Li Yaping, Sun Guihua, Zhu Zhixin, Wang Lijia. 2009. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas. Journal of Jilin University (Earth Science Edition), 39(4): 584~605 (in Chinese with English abstract).

    • Li Longxue, Hou Qingye, Huang Dingling, Wang Xinyu. 2021. Early Permian granitic magmatism in middle part of the northern margin of the North China craton: Petrogenesis, source, and tectonic setting. Minerals, 11: 99.

    • Li Pengwu, Gao Rui, Guan Ye, Li Qqiusheng. 2006. Palaeomagnetic constraints on the final closure time of Solonker Linxi suture. Journal of Jilin University (Earth Science Edition), 36(5): 744~758 (in Chinese with English abstract).

    • Li Pengwu, Gao Rui, Guan Ye, Li Qiusheng. 2009. The closure time of the Paleo-Asian Ocean and the paleo-Tethys Ocean: Implication for the tectonic cause of the end-Permian mass extinction. Journal of Jilin University (Earth Science Edition), 39(3): 521~527 (in Chinese with English abstract).

    • Li Shan, Wilde S A, Wang Tao, Xiao Wenjiao, Guo Qianqian. 2016. Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt. Gondwana Research, 29: 168~180.

    • Li Shucai, Zhang Xionghua, Li Ruanbo, Yang Xinjie, Zhang Liangyuan. 2019. Geological age of Linxi Formation in Linxi, Inner Mongolia, and its sedimentary environment. Geological Science and Technology Information, 38(1): 1~7 (in Chinese with English abstract).

    • Liao Xiangdong, Sun Song, Chi Huanzhao, Jia Dingyu, Nan Zeyu, Zhou Wenna. 2019. The Late Permian highly fractionated I-type granites from Sishijia pluton in southestern Inner Mongolia, North China: A post-collisional magmatism record and its implication for the closure of Paleo-Asian Ocean. Lithos, 328~329, 262~275.

    • Liu Qun, Wang Wanqiong, Qiu Dianming, Bai Xinhui, Zhang Jinfeng, Wang Xin. 2015. Early Carboniferous tectonic attribute of the central-northern margin of North China craton: Constraints from geochemistry of highly fractionated I-type granites in Cahayouhouqi area. Journal of Jilin University (Earth Science Edition), 45(4): 1121~1131 (in Chinese with English abstract).

    • Liu Wengang, Wei Shuang, Zhang Jian, Ao Cong, Liu Futian, Cai Bin, Zhou Hongying, Yang Jilong, Li Chaofeng. 2020. An improved separation scheme for Sr through fluoride coprecipitation combined with a cation-exchange resin from geological samples with high Rb/Sr ratios for high-precision determination of Sr isotope ratios. Journal of Analytical Atomic Spectrometry, 35: 953~960.

    • Long Xinyu, Tang Jie, Xu Wenliang, Sun Chenyang, Luan Jinpeng, Guo Peng. 2022. A crustal growth model for the eastern Central Asian Orogenic Belt: Constraints from granitoids in the Songnen massif and Duobaoshan terrane. Gondwana Research, 107: 325~338.

    • Long Xinyu, Xu Wenliang, Yang Hao, Tang Jie, Sorokin A A, Ovchinnikov R O. 2021. Late Permian-Triassic tectonic nature of the eastern Central Asian Orogenic Belt: Constraints from the geochronology and geochemistry of igneous rocks in the Bureya massif. Lithos, 380~381.

    • Ludwig K. 2003. User's Manual for Isoplot/Ex version 3. 00—A Geochronology Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, 4: 1~70.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.

    • McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223~253.

    • Pan Guitang, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhang Ziyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang. 2009. Subdivision of tectonic units in China. Geology in China, 36(1): 1~28 (in Chinese with English abstract).

    • Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956~983.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58: 63~81.

    • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891~931.

    • Sengör A M C, Natal'In B A, Burtman V S. 1993. Evolution of the altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299~307.

    • Shao Ji'an, Wang You, Tang Kedong. 2017. A reflection on the Xarmoron tectonomagmatic belt, Inner Mongolia, China. Acta Petrologica Sinica, 33(10): 3002~3010 (in Chinese with English abstract).

    • Shi Yuruo, Liu Cui, Deng Jinfu, Jian Ping. 2014. Geochronological frame of granitoids from Central Inner Mongolia and its tectonomagmatic evolution. Acta Petrologica Sinica, 30 (11): 3155~3171 (in Chinese with English abstract).

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publication, 42(1): 313~345.

    • Sun Yuewu, Ding Haisheng, Liu Huan, Zhang Dejun, Gong Fanhao, Zheng Yuejuan. 2016. Fossil plants from the Guadalupian Yujiabeigou Formation in the northern margin of North China plate and their tectonic implications. Journal of Jilin University (Earth Science Edition), 46(5): 1268~1283 (in Chinese with English abstract).

    • Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45: 29~44.

    • Tong Ying, Jahn B M, Wang Tao, Hong Dawei, Smith E I, Sun Min. 2015. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance. Journal of Asian Earth Sciences, 97(1): 320~336.

    • Wang Shijie, Xu Zhongyuan, Li Changhai, Lü Hongda, Liu Yang, Wang Wenlong, Fu Xueming. 2020. Evolution of central-southern margin of the Xing-Meng Orogenic Belt in the Late Paleozoic: Evidence from Carboniferous-Permian sedimentary formation and volcanic rock in Sonid Right Banner, Inner Mongolia. Acta Petrologica Sinica, 36(8): 2493~2520 (in Chinese with English abstract).

    • Wang Wanqiong. 2014. Late Paleozoic tectonic evolution of the central-northern margin of the North China Plate: Constraints from zircon U-Pb ages and geochemistry of igneous rocks in Ondor Sum-Jining area. Doctoral dissertation of Jilin University (in Chinese with English abstract).

    • Wang Wanqiong, Xu Zhongyuan, Liu Zhenghong, Zhao Qingying, Jiang Xiaojun. 2013. Early-Middle Permian tectonic evolution of the central-northern margin of the North China Craton: Constraints from zircon U-Pb ages and geochemistry of the granitoids. Acta Petrologica Sinica, 29(9): 2987~3003 (in Chinese with English abstract).

    • Wang Wanqiong, Xi Aihua, Ge Yuhui, Bai Xinhui, Wang Hu. 2021. Petrogenesis and tectonic implications of the biotite monzogranite and associated mafic microgranular enclaves in Tumuertai area, Inner Mongolia. Acta Petrologica Sinica, 37(4): 1082~1098 (in Chinese with English abstract).

    • Wang Wenlong, Liu Yang, Zhao Ligang, Teng Fei, Yang Zeli. 2020. Dataset of chronology, geochemistry and zircon Hf iotopes of Permian magmatites in the middle section of the northern margin of North China Craton. Geology in China, 47(S1): 44~53 (in Chinese with English abstract).

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95: 407~419.

    • Wilde S A. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction--A review of the evidence. Tectonophysics, 662: 345~362.

    • Wilde S A, Zhao Guochun, Sun Min. 2002. Development of the North China craton during the Late Archaean and its final amalgamation at 1. 8 Ga; some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5: 85~94.

    • Windley B F, Alexeiev D, Xiao Wenjiao, Kröner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164: 31~47.

    • Wolf M B, London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochimica et Cosmochimica Acta, 58: 4127~4145.

    • Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105~126.

    • Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185~220.

    • Xiao Wenjiao, Windley B F, Hao Jie, Zhai Mingguo. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 8~20.

    • Xing Jilin. 2010. The geochemic characteristics and geodynamic significance of the granite in Wenduermiao uplift zone in Inner Mogolia. Master's thesis of Jilin University, 23~26 (in Chinese with English abstract).

    • Xu Bei, Zhao Pan, Wang Yanyang, Liao Wen, Luo Zhiwen, Bao Qingzhong, Zhou Yongheng. 2015. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183~196.

    • Yang Fan, Jiang Yanyan, Chen Jingsheng, Han Xing. 2022. Chronology and geochemistry of Carboniferous-Permian intrusive rocks in Zhuanshanzi mining area, Chifeng, middle part of the northern margin of the North China Craton: Constraints on the tectonic evolution of the Paleo-Asian Ocean. Acta Petrologica Sinica, 38(8): 2467~2488 (in Chinese with English abstract).

    • Zeng Qingdong, Yang Jinhui, Liu Jianming, Chu Shaoxiong, Duan Xiaoxia, Zhang Z L, Zhang Weiqing, Zhang Song. 2012. Genesis of the Chehugou Mo-bearing granitic complex on the northern margin of the North China Craton: Geochemistry zircon U-Pb age and Sr-Nd-Pb isotopes. Geological Magazine, 149(5): 753~767.

    • Zhang Jin, Qu Junfeng, Zhang Beihang, Zhao Heng, Zheng Ronggou, Liu Jianfeng, Niu Pengfei, Yun Long, Zhao Shuo, Zhang Yiping. 2022. Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic. American Journal of Science, 322(7): 851~897.

    • Zhang Qi. 2013. The criteria and discrimination for A-type granites: A reply to the question put forward by Wang Yang and some other persons for "A-type granite: What is the essence?" Acta Petrologica et Mineralogica, 32(2): 267~274 (in Chinese with English abstract).

    • Zhang Shuanhong, Zhao Yue, Liu Jianmin, Hu Jianmin, Song Biao, Liu Jian, Wu Hai. 2010. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review. Acta Petrologica et Mineralogica, 29(6): 824~842 (in Chinese with English abstract).

    • Zhang Shuanhong. Zhao Yue, Liu Xiaochun, Liu Dunyi, Chen Fukun, Xie Liewen, Chen Haihong. 2009. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block: Constraints on the composition and evolution of the lithospheric mantle. Lithos, 110: 229~246.

    • Zhang Yongmei, Zhang Huafeng, Liu Wencan, Zhou Zhiguang. 2009. Timing and petrogenesis of the Damiao granodiorite, Siziwangqi, Inner Mongolia. Acta Petrologica Sinica, 25(12): 3165~3181 (in Chinese with English abstract).

    • Zhao Heng, Zhang Jin, Zhang Beihang, Qu Junfeng, Zhang Yiping, Niu Pengfei, Hui Jie, Wang Yannan. 2022. Structures and chronology of the Yabrai shear zone in the Alxa, NW China: Constraints on the late Paleozoic shear system in central segment of the Central Asian Orogenic Belt. Journal of Structural Geology, 158.

    • 高爽. 2016. 华北板块北缘中段内蒙古察右中旗地区中三叠世花岗岩成因研究. 南京大学硕士学位论文, 1~96.

    • 李锦轶, 高立明, 孙桂华, 李亚萍, 王彦斌. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束. 岩石学报, 23(3): 565~582.

    • 李锦轶, 张进, 杨天南, 李亚萍, 孙桂华, 朱志新, 王励嘉. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584~605.

    • 李朋武, 高锐, 管烨, 李秋生. 2006. 内蒙古中部索仑林西缝合带封闭时代的古地磁分析. 吉林大学学报, 36(5): 744~758.

    • 李朋武, 高锐, 管烨, 李秋生. 2009. 古亚洲洋和古特提斯洋的闭合时代——论二叠纪末生物灭绝事件的构造起因. 吉林大学学报 (地球科学版), 39(3): 521~527.

    • 李树才, 张雄华, 李沅柏, 杨欣杰, 张亮元. 2019. 内蒙古林西地区林西组地质时代及沉积环境. 地质科技情报, 38(1): 1~7.

    • 刘群, 王挽琼, 邱殿明, 白新会, 张金凤, 王新. 2015. 华北板块北缘中段早石炭世构造属性: 察哈尔右翼后旗高分异Ⅰ型花岗岩地球化学的制约. 吉林大学学报 (地球科学版), 45(4): 1121~1131.

    • 潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分. 中国地质, 36(1): 1~28.

    • 邵济安, 王友, 唐克东. 2017. 有关内蒙古西拉木伦带古生代-早中生代构造环境的讨论. 岩石学报, 33(10): 3002~3010.

    • 石玉若, 刘翠, 邓晋福, 简平. 2014. 内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨. 岩石学报, 30(11): 3155~3171.

    • 孙跃武, 丁海生, 刘欢, 张德军, 公繁浩, 郑月娟. 2016. 华北板块北缘中二叠统于家北沟组植物化石及其大地构造意义. 吉林大学学报 (地球科学版), 46(5): 1268~1283.

    • 王师捷, 徐仲元, 李长海, 吕红达, 刘洋, 王文龙, 付雪明. 2020. 兴蒙造山带中段南缘晚古生代演化过程: 来自苏尼特右旗地区沉积地层及火山岩的证据. 岩石学报, 36(8): 2493~2520.

    • 王挽琼. 2014. 华北板块北缘中段晚古生代构造演化: 温都尔庙—集宁火成岩年代学、地球化学的制约. 吉林大学博士学位论文.

    • 王挽琼, 徐仲元, 刘正宏, 赵庆英, 蒋孝君. 2013. 华北板块北缘中段早中二叠世的构造属性: 来自花岗岩类锆石U-Pb年代学及地球化学的制约. 岩石学报, 29(9): 2987~3003.

    • 王挽琼, 郗爱华, 葛玉辉, 白新会, 王虎. 2021. 内蒙古土牧尔台地区黑云母二长花岗岩及其暗色包体的成因及构造意义. 岩石学报, 37(4): 1082~1098.

    • 王文龙, 刘洋, 赵利刚, 滕飞, 杨泽黎. 2020. 华北板块北缘中段二叠纪岩浆岩年代学、地球化学及错石 Hf同位素测试数据集. 中国地质, 47(S1): 32~39.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

    • 刑济麟. 2010. 内蒙古温都尔庙隆起带花岗岩的地球化学特征及地球动力学意义. 吉林大学硕士学位论文, 23~26.

    • 杨帆, 姜艳艳, 陈井胜, 韩兴. 2022. 华北克拉通北缘中段赤峰撰山子矿区石炭纪-二叠纪侵入岩年代学和地球化学: 对古亚洲洋构造演化的制约. 岩石学报, 38(8): 2467~2488.

    • 张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对“A型花岗岩的实质是什么”的质疑. 岩石矿物学杂志, 32(2): 267~274.

    • 张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824~842.

    • 章永梅, 张华峰, 刘文灿, 周志广. 2009. 内蒙古中部四子王旗大庙岩体时代及成因. 岩石学报, 25(12): 3165~3181.