en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

彭佳欣,女,2000年生,硕士研究生,古生物与地层学,主要从事小壳化石研究。E-mail: pengjx@chd.edu.cn。

通讯作者:

郭俊锋,男,1976年生。教授,主要从事寒武纪地层古生物研究工作。E-mail: junfengg@chd.edu.cn。

参考文献
Abaimova G P. 1978. Anabaritids-the oldest fossils with calcareous skeleton. Trudy sibirskpgo Naučno-issledovatel'skogo Instituta Geologii, Geofiziki i Mineral'nogo Syr'â, 260: 77~83, (in Russian).
参考文献
Baum B. 2006. Left-right asymmetry: Actin-myosin through the looking glass. Current Biology, 16: R502~R504.
参考文献
Bengtson S, Conway Morris S, Cooper B J, Jell P A, Runnegar B N. 1990. Early Cambrian Fossils from South Australia. Brisbane: Association of Australasian Palaeontologists, Memoir 9.
参考文献
Bengtson S. 2002. Origins and early evolution of predation. Paleontological Society Papers: 289~318
参考文献
Blum M, Ott T. 2018. Animal left-right asymmetry. Current Biology, 28(7): R301~R304.
参考文献
Cai Yaoping, Xiao Shuhai, Li Guoxiang, Hua Hong. 2019. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. Geology, 47(4): 380~384.
参考文献
Carroll S B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature, 376: 479~485.
参考文献
Chen Junyuan, Peng Qingqing. 2005. An Early Cambrian problematic organism (Anabarites) and its possible affinity. Acta Paleontologica Sinica, 1: 57~65 (in Chinese with English abstract).
参考文献
Chen Ping. 1984. Discovery ofLower Cambrian small shelly fossils from Jijiapo, Yichang, west Hubei and its significance. Proceedings of Strgraphic Paleontology, 13: 49~64 (in Chinese with English abstract).
参考文献
Conway Morris S, Chen Meng'e. 1989. Lower Cambrian anabaritids from South China. Geological Magazine, 126: 615~632.
参考文献
Darwin C R. 1865. On the movements and habits of climbing plants. Botanical Journal of the Linnean Society, 9: 1~118.
参考文献
Devaere L, Korn D, Ghaderi A, Struck U, Bavandpur A K. 2021. New and revised small shelly fossil record from the Lower Cambrian of northern Iran. Papers in Palaeontology, 1~41.
参考文献
Ding Lianfang, Zhang Luyi, Li Yong, Dong Junshe. 1992. TheStudy of the Late Sinian-Early Cambrian Biota from the Northern Margin of Yangtze Platform. Beijing: Scientific and Technical Documents Publishing House (in Chinese).
参考文献
Duboc V, Röttinger E, Lapraz F, Besnardeau L, Thierry L. 2005. Left-right asymmetry in the sea urchin embryo is regulated by Nodal signaling on the right side. Developmental Cell, 9: 147~158.
参考文献
Dzik J. 1986. Chordate Affinities of the Conodonts. New York: Oxford University Press.
参考文献
Edwards W, Moles A T, Franks P. 2007. The global trend in plant twining direction. Global Ecology and Biogeography, 16(6): 795~800.
参考文献
Esakova N V, Zhegallo E A. 1996. Biostratigraphy and fauna of the Lower Cambrian of Mongolia. Transactions of the joint Russian-Mongolian paleontological expedition, 46: 1~216, (in Russian).
参考文献
Fedonkin M A. 1985. Non-skeletal fauna of the Vendian: Promorphological analysis. The Vendian System, 1: 10~69.
参考文献
Fedonkin M A. 1986. Precambrian Problematic Animals: Their Body Plan and Phylogeny. New York: Oxford University Press.
参考文献
Feng Man. 2005. Comparison of the Early Cambrian Anabarites between Ningqiang area, Shaanxi and Chaohu area, Anhui. Acta Micropalaeontologica Sinica, 22(4): 412~416 (in Chinese with English abstract).
参考文献
Finnerty J R. 2003. The origins of axial patterning in the metazoan: How old is bilaterial symmetry? International Journal of Developmental Biology, 47: 523~529.
参考文献
Gao Zhenjia, Wang Wuyan, Peng Changwen, Li Yongan, Xiao Bing. 1985. The Sinian in Aksu-Wushi Area, Xinjiang. Urumchi: Xinjiang People's Publishing House (in Chinese with English abstract).
参考文献
Gill A E. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press.
参考文献
Glaessner M F. 1976. Early Phanerozoic annelid worms and their geological and biological significance. Geological Society of London Journal, 132: 259~275.
参考文献
Grande C, Patel N H. 2009. Nodal signalling is involved in left-right asymmetry in snails. Nature, 457: 1007~1011.
参考文献
Grande C. 2010. Left-right asymmetries in Spiralia. Integrative & Comparative Biology, 50(5): 744~755.
参考文献
Guo Junfeng, Li Yong, Han Jian, Zhang Xingliang, Zhang Zhifei, Ou Qiang, Liu Jianni, Shu Degan, Maruyama S, Komiya T. 2008. Fossilassociation from the Lower Cambrian Yanjiahe Formation in the Yangtze Gorges Area, Hubei, south China. Acta Geologica Sinica (English Edition), 82(6): 1124~1132.
参考文献
Guo Junfeng, Li Yong, Li Guoxiang. 2014. Small shelly fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research, 25(3): 999~1007.
参考文献
Guo Junfeng, Han Jian, Van Iten H, Wang Xing, Qiang Yaqin, Song Zuchen, Wang Wenzhe, Zhang Zhifei, Li Guoxiang. 2020. A fourteen-faced hexangulaconulariid from the Early Cambrian (Stage 2) Yanjiahe Formation, South China. Journal of Paleontology, 94(1): 45~55.
参考文献
Guo Junfeng, Li Guoxiang, Qiang Yaqin, Song Zuchen, Zhang Zhifei, Han Jian, Wang Wenzhe. 2021. Watsonella crosbyi from the Lower Cambrian (Terreneuvian, Stage 2) Yanjiahe Formation in Three Gorges Area, South China. Palaeoworld, 30(1): 1~19.
参考文献
Han Jian, Li Guoxiang, Kubota S, Ou Qiang, Toshino S, Wang Xing, Yang Xiaoguang, Uesugi K, Masato H, Sasaki O, Kano H, Sato T, Komiya T. 2016. Internal microanatomy and zoological affinity of the Early Cambrian Olivooides. Acta Geologica Sinica (English Edition), 90(1): 38~65.
参考文献
Harvey R P. 1998. Links in the left/right axial pathway. Cell, 94(3): 273~276.
参考文献
Hashimoto T. 2002. Molecular genetic analysis of left-right handedness in plants. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 357(1422): 799~808.
参考文献
Henley C L. 2012. Possible origins of macroscopic left-right asymmetry in organisms. Journal of Statistical Physics, 148(4): 740~774.
参考文献
Iakovleva N V, Gorbushin A M, Zelck U E. 2006. Partial characterization of mitogen-activated protein kinases (MAPK) from haemocytes of the common periwinkle, Littorina littorea (Gastropoda: Prosobranchia). Fish and Shellfifish Immunology, 20(4): 665~668.
参考文献
Ivantsov A Y, Vickers-Rich P, Zakrevskaya M A, Hall M. 2019. Conical thecae of Precambrian macroorganisms. Paleontological Journal, 53(11): 1134~1146.
参考文献
Jiang Zhiwen. 1984. Evolution of early shelly metazoans and basic characteristics of Meishucun fauna. Proceedings of Strgraphic Paleontology, 13: 1~26 (in Chinese with English abstract).
参考文献
Kouchinsky A, Bengtson S. 2002. The tube wall of Cambrian anabaritids. Acta Palaeontologica Polonica, 47(3): 431~444.
参考文献
Kouchinsky A, Bengtson S, Feng Weimin, Kutygin R, Val'kov A. 2009. The Lower Cambrian fossil anabaritids: Affinities, occurrences and systematics. Journal of Systematic Palaeontology, 7(3): 241~293.
参考文献
Kouchinsky A, Bengtson S, Sébastien C, Vendrasco M. 2015. An Early Cambrian fauna of skeletal fossils from the Emyaksin Formation, Northern Siberia. Acta Palaeontologica Polonica, 60(2): 421~512.
参考文献
Kouchinsky A, Bengtson S, Landing E, Steiner M, Vendrasco M, Ziegler K. 2017. Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia. Acta Palaeontologica Polonica, 62(2): 311~440.
参考文献
Kouchinsky A, Alexander R, Bengtson S, Bowyer F, Clausen S, Holmer L E, Kolesnikov K A, Korovnikov I V, Pavlov V, Skovsted C B, Ushatinskaya G, Wood R, Zhuravlev A Y. 2022. Early-Middle Cambrian stratigraphy and faunas from Northern Siberia. Acta Palaeontologica Polonica, 67(2): 341~464.
参考文献
Kuilling O. 1955. Den Kaledonska fjöllkedjaas berggrund inom Västerbottens län. Sveriges Geologiska Undersäking, Serie C, 3: 101~296.
参考文献
Levin M. 2005. Left-right asymmetry in embryonic development: A comprehensive review. Mechanisms of Development, 122(1): 3~25
参考文献
Li Peng, Hua Hong, Zhang Luyi, Zhang Dongdong, Jin Xianbao, Liu Zhu. 2007. Internal microstructure and affiliation of theLower Cambrian Anabarites from southern Shaanxi, China. Acta Palaeontologica Sinica, 46(3): 327~333 (in Chinese with English abstract).
参考文献
Lin Gonghua, Ci Haixin, Liu Yongan, Su Jianping. 2010. Phylogenetic development analysis of chirality of twining plants. Anhui Agricultural Science, 38(8): 3944~3947+3950 (in Chinese with English abstract).
参考文献
Liu Baojun, Xu Xiaosong, Luo Anping, Kang Chenglin. 1987. Storm events and phosphate deposition Cambrian on the western margin of the Yangtze platform, China. Acta Sedimentologica Sinica, 5(3): 28~39+186 (in Chinese with English abstract).
参考文献
Liu Ping, Yang Xiaoguang, Tang Qingqin, He Kaiyue, Zhang Yiheng. 2021. Computational fluid dynamics analysis of the gregarious behavior of Anabarites trisulcatus from the Early Cambrian. Acta Micropalaeontologica Sinica, 38(3): 234~240 (in Chinese with English abstract).
参考文献
Luo Huilin, Jiang Zhiwen, Wu Xiche, Song Xueliang, Ouyang Lin. 1982. The Sinian-Cambrian Boundary in Eastern Yunnan, China. Kunming: Yunnan People's Publishing House (in Chinese).
参考文献
Martindale M Q. 2005. The evolution of metazoan axial properties. Nature Reviews Genetics, 6: 917~927.
参考文献
Missarzhevsky V V. 1974. New data on the oldest fossils of the Early Cambrian of the Siberian platform. In: Zhuravleva I T and Rozanov A Y, eds. Biostratigraphy and Palaeontology of the Lower Cambrian of Europe and Northern Asia. Nauka, Moscow, 179~189, (in Russian).
参考文献
Missarzhevsky V V. 1983. Stratigraphy of the oldest Phanerozoic strata of the Anabar massif. Sovetskaya geologiya, 62~73 (in Russian).
参考文献
Missarzhevsky V V. 1989. The oldest skeletal fossils and stratigraphy of the Precambrian-Cambrian boundary beds. Trudy Geologicheskogo Instituta, Akademiâ Nauk SSSR, 443: 237 (in Russian).
参考文献
Palmer A R. 1996. From symmetry to asymmetry: Phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proceedings of the National Academy of Sciences of the United States of America, 93(25): 14279~14286.
参考文献
Palmer A R. 2009. Animal asymmetry. Current Biology, 19(12): R473~R477.
参考文献
Parkhaev P Y, Demidenko Y E. 2010. Zooproblematica and mollusca from the Lower Cambrian Meishucun section (Yunnan, China) and taxonomy and systematics of the Cambrian small shelly fossils of China. Paleontological Journal, 44(8): 883~1161.
参考文献
Persson A. 1998. How do we understand the Coriolis force? Bulletin of the American Meteorological Society, 79: 1373~1385.
参考文献
Qian Yi. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucun Stage in central and S. W. China. Acta Paleontologica Sinica, 16(2): 259~260 (in Chinese with English abstract).
参考文献
Qian Yi. 1978. The Early Cambrian hyolithids in central and Southwest China and their stratigraphical significance. Journal of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, No. 11, 1~38 (in Chinese with English abstract).
参考文献
Qian Yi. 1999. Taxonomy and Biostratigraphy of Small Shelly Fossils in China. Beijing: Science Press (in Chinese with English abstract).
参考文献
Qian Yi, Yin Gongzheng. 1984. Small shelly fossils from the lowerest Cambrian in Guizhou. Proceedings of Stratigraphic Paleontology, 2: 91~129 (in Chinese with English abstract).
参考文献
Qian Yi, Bengtson S. 1989. Paleontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province of South China. Fossils and Strata, 24: 1~156.
参考文献
Rogov V I, Karlova G A, Marusin V V, Kochnev B B, Nagovitsin K E, Grazhdankin D V. 2015. Duration of the first biozone in the Siberian hypostratotype of the Vendian. Russian Geology and Geophysics, 56(4): 573~583.
参考文献
Rosén S. 1919. Uber einige neue problematica in einem fossilfuhrenden kalkshtein aus dem nordschwedischen Hochgebirge. Bulletin of the Geological Institute of the University of Uppsala, 16: 159~168.
参考文献
Rozanov A Y, Missarzhevsky V V, Volkova N A, Voronova L G, Krylov I N, Keller B M, Korolyuk I K, Lendzion K, Michniak R, Pyhova N G, Sidorov A D. 1969. The Tommotian Stage and the Cambrian lower boundary problem. Trudy Geologicheskogo Instituta, Akademi Nauk SSSR, 206: 1~380 (in Russian).
参考文献
Schierwater B, Kamm K. 2010. The early evolution of Hox genes: A battle of believe? Oxygen Transport to Tissue XXXIII, 689: 81~90.
参考文献
Sendino C, Zágoršek K, Taylor P D. 2012. Asymmetry in an Ordovician conulariid cnidarian. Lethaia, 45(3): 423~431.
参考文献
Shao Tiequan, Wang Qi, Liu Yunhuan, Tang Hanhua, Zhang Yanan, Xue Guoqiang, Wang Zhaojing. 2015. Research on the symmetrical evolution of Anabarites from the Cambrian Xixiang biota in southern Shaanxi province. Acta Micropalaeontologica Sinica, 32(4): 396~402 (in Chinese with English abstract).
参考文献
Smyth D R. 2016. Helical growth in plant organs: Mechanisms and significance. Development, 143(18): 3272~3282.
参考文献
Song Zuchen, Guo Junfeng, Han Jian, Van Iten H, Qiang Yaqin, Peng Jiaxin, Sun Jie, Zhang Zhifei. 2022. A new species of Septuconularia (Hexangulaconulariidae, Cnidaria) from Cambrian Stage 2, South China. Acta Geologica Sinica (English Edition), 96(3): 757~765.
参考文献
Steiner M, Li Guoxiang, Qian Yi, Zhu Maoyan. 2004. Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance. Geobios, 37: 259~275.
参考文献
Steiner M, Yang Ben, Hohl S, Zhang Lei, Chang Shan. 2020. Cambrian small skeletal fossil and carbon isotope records of the southern Huangling Anticline, Hubei (China) and implications for chemostratigraphy of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 554: 1~19.
参考文献
Sun Chen. 2018. Terminal Ediacaran microfossil biota from the northwestern margin of the Yangtze platform. Master's thesis of Northwest University (in Chinese with English abstract).
参考文献
Sysoev V A. 1965. Main features of evolution of hyoliths. In: Vozin V F, ed. Palaeontology and Biostratigraphy of Palaeozoic and Triassic Deposits of Yakutia. Nauka, Moscow, 5~20, (in Russian).
参考文献
Torsvik T H, Cocks L R M. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geological Society London Memoirs, 38(1): 5~24.
参考文献
Val'kov A K, Sysoev V A. 1970. Cambrian angustiochreids of Siberia. In: Bobrov A K, (ed. ), Stratigrafiyâ I Paleontologiyâ Proterozoyâ I Kembriyâ Vostoka Sibirskoj Platformy. Âkutskoe Knižnoe Izdatel'stvo, Âkutsk, 94~100 (in Russian).
参考文献
Val'kov, A K. 1982. Lower Cambrian Biostratigraphy of the Eastern Siberian Platform. Moscow: Nauka, 92 (in Russian).
参考文献
Verrill A E. 1865. Classification of polyps (extract condensed from synopsis of the Polyps and Corals of the North Pacific Exploring Expedition under Commodore C. Ringgold and Captain John Rogers, U. S. N. ). Communications of the Essex Institute, 4: 145~152.
参考文献
Voronova L G, Missarzhevsky V V. 1969. Finds of algae and worm tubes in the Precambrian-Cambrian boundary beds of the northern part of the Siberian platform. Doklady Akademi Nauk SSSR, 184: 207~210 (in Russian).
参考文献
Wada H, Matsumoto D. 2018. Twisting growth in plant roots. Plant Biomechanics: From Structure to Function at Multiple Scales, 127~140.
参考文献
Wang Qi, Liu Yunhuan, Shao Tiequan, Zhang Hu, Zhang Yanan, Tang Hanhua, Jiang Kaiqing, Wang Zhaojing, Pang Guotao, Qin Jiachen. 2017. Research on the tubular fossils on the Cambrian Xixiang biota in southern Shaanxi Province, NW China. Acta Micropalaeontologica Sinica, 34(1): 49~60 (in Chinese with English abstract).
参考文献
Watanabe H, Schmidt H A, Kuhn A, Höger S K, Kocagöz Y, Laumann-Lipp N, Özbek S, Holstein T W. 2014. Nodal signalling determines biradial asymmetry in Hydra. Nature, 515: 112~115.
参考文献
Xiao Bing. 1989. Review of the age of Uyirtus Formation in the light of the discovery of Anabarites. Xinjiang Geology, 7 (4): 35~39 (in Chinese with English abstract).
参考文献
Xing Yusheng, Ding Qixiu, Luo Huilin, He Tinggui, Wang Yangeng, et al. 1983. The Sinian-Cambrian Boundary of China. Institute of Geology, Chinese Academy of Geological Sciences, 10: 1~262 (in Chinese with English abstract).
参考文献
Yang Xiaoguang, Han Jian. 2017. Ambient inclusion trails and microboring structures on Early Cambrian microfossils. Chinese Science Bulletin, 62(35): 1~10 (in Chinese with English abstract).
参考文献
Yin Jicheng, Ding Lianfang, He Tinggui, Lin Changbao. 1980. On the Sinian-Cambrian boundary in Gaoqiao County, Emei, Sichuan. Bulletin Chinese Academy Geological Sciences (series Ⅰ), 2(1): 59~74 (in Chinese).
参考文献
Zhang Yanan, Liu Yunhuan, Shao Tiequan, Wang Qi, Qin Jiachen, Li Linlu, Zhou Xingyu. 2022. The morphology and affinity of anabaritids revealed by their internal moldsfrom the Cambrian Fortunian, Southern Shaanxi, China. Palaeoworld, 96(2): 1~7.
参考文献
Zhu Maoyan, Zhang Junming, Steiner M, Yang Aihua, Li Guoxiang, Erdtmann B D. 2003. Sinian-Cambrian stratigraphic framework for shallow- to deep- water environments of the Yangtze platform: An integrated approach. Progress in Natural Science, 13(12): 951~960.
参考文献
Zhu Maoyan, Zhuravlev A Y, Wood R A, Zhao Fangchen, Sukhov S S. 2017. A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian platform. Geology, 45(5): 459~462.
参考文献
Zhuravlev A Y, Liñán E, Gámez Vintaned J A, Debrenne F. Fedorov A B. 2012. New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian platform and Spain. Acta Palaeontologica Polonica, 57(1): 205~224.
参考文献
Zhuravlev A Y, Wood R A. 2018. The two phases of the Cambrianexplosion. Scientific Reports, 8(1): 1~10.
参考文献
陈均远, 彭晴晴. 2005. 寒武纪早期疑难生物类群阿纳巴管 (Anabarites) 亲缘性的探讨. 古生物学报, 1: 57~65.
参考文献
陈平. 1984. 湖北宜昌计家坡下寒武统底部小壳化石的发现及其意义. 地层古生物论文集, 13: 49~64.
参考文献
丁莲芳, 张录易, 李勇, 董军社. 1992. 扬子地台北缘晚震旦世—早寒武世早期生物群研究. 北京: 科学技术文献出版社.
参考文献
冯曼. 2005. 陕南宁强地区和安徽巢湖地区早寒武世小壳化石Anabarites之比较. 微体古生物学报, 22(4): 412~416.
参考文献
高振家, 王务严, 彭昌文, 李永安, 肖兵. 1985. 新疆阿克苏—乌什地区震旦系. 新疆: 新疆人民出版社.
参考文献
蒋志文. 1984. 早期带壳生物演化及梅树村动物群的基本特征. 地层古生物论文集, 13: 1~26.
参考文献
李朋, 华洪, 张录易, 张东东, 金显宝, 刘竹. 2007. 陕南早寒武世Anabarites, 壳体内部结构及亲缘关系探讨. 古生物学报, 3: 327~333.
参考文献
林恭华, 慈海鑫, 刘永安, 苏建平. 2010. 缠绕植物手性的系统发育分析. 安徽农业科学, 38(8): 3944~3947+3950.
参考文献
刘宝珺, 许效松, 罗安屏, 康承林. 1987. 中国扬子地台西缘寒武纪风暴事件与磷矿沉积. 沉积学报, 5(3): 28~39+186.
参考文献
刘平, 杨晓光, 唐清钦, 何凯悦, 张毅恒. 2021. 寒武纪早期锥管状化石Anabarites trisulcatus群居行为的计算流体力学分析. 微体古生物学报, 38(3): 234~240.
参考文献
罗惠麟, 蒋志文, 武希彻, 宋学良, 欧阳麟. 1982. 云南东部震旦系—寒武系界线. 昆明: 云南人民出版社.
参考文献
钱逸. 1977. 华中西南区早寒武世梅树村阶的软舌螺纲及其他化石. 古生物学报, 16(2): 259~260.
参考文献
钱逸. 1978. 华中西南区早寒武世软舌螺化石的研究及其地层意义. 中国科学院南京地质古生物研究所集刊, 11: 1~38.
参考文献
钱逸. 1999. 中国小壳化石分类学与生物地层学. 北京: 科学出版社.
参考文献
钱逸, 尹恭正. 1984. 贵州早寒武世早期小壳动物化石的研究. 地层古生物论文集, 2: 91~129.
参考文献
邵铁全, 王琪, 刘云焕, 唐汉华, 张亚楠, 薛国强, 王朝景. 2015. 陕南寒武纪西乡生物群中Anabarites对称性演化研究. 微体古生物学报, 32(4): 396~402.
参考文献
孙辰. 2018. 扬子地台西北缘埃迪卡拉纪末期微体化石生物群研究. 西北大学硕士学位论文.
参考文献
王琪, 刘云焕, 邵铁全, 张虎, 张亚楠, 唐汉华, 姜开拓, 王朝景, 庞国涛, 秦嘉琛. 2017. 陕南寒武纪梅树村期西乡生物群中的管状化石研究. 微体古生物学报, 34(1): 49~60.
参考文献
肖兵. 1989. 化石Anabarites的发现及再论玉尔吐斯组的时代归属. 新疆地质, 7(4): 35~39.
参考文献
邢裕盛, 丁启秀, 罗惠麟, 何廷贵, 王砚耕, 等. 1983. 中国震旦系—寒武系界线. 北京: 地质出版社, 中国地质科学院地质研究所所刊, 第10号: 1~262.
参考文献
杨晓光, 韩健. 2017. 寒武纪早期微体化石上的异质体拖曳迹与微型钻孔结构. 科学通报, 62(35): 1~10.
参考文献
殷继成, 丁莲芳, 何廷贵, 林昌宝. 1980. 四川峨眉高桥震旦系—寒武系界线. 中国地质科学院院报, 2(1): 59~74.
目录contents

    摘要

    在现生生物和化石记录中螺旋手性十分常见,然而,其发生机制一直悬而未决,尤其是寒武纪早期小壳化石。阿纳巴管类(anabaritids)是一类广布于寒武纪纽芬兰世地层中呈明显三辐射对称的管状化石,前人对该类化石中螺旋扭转属种的研究大多仅限于形态描述,其手性机制讨论甚少。本文依托湖北宜昌寒武系纽芬兰统岩家河组中111枚右手螺旋手性的小壳化石——Anabarites cf. tripartitus,探讨该类化石右手螺旋模式生长机制,认为螺旋扭转原因并非外部环境所致(水流变化、埋藏作用、科里奥利力),而应从生物自身因素(功能形态学、分子发育生物学)出发探究其固定的右旋不对称性机制。

    Abstract

    Helical chirality is a widespread phenomenon observed in both extant organisms and the fossil record. Despite its prevalence, this phenomenon has received comparatively little attention in scientific research, especially in the context of small shelly fossils from the Early Cambrian. Anabaritids, a group of tubular fossils exhibiting distinctive triradial symmetry,are known from the Early Cambrian strata worldwide. Previous studies on some helical anabaritid species have mostly focused on morphological descriptions, with the underlying causes for their helical chirality remaining largely unexplored. This study examines the mechanism responsible for the fixed right-handed (dextral) spiral chiralityobserved in Anabarites cf. tripartitus, based on an analysis of 111 specimensobtained from Member 5 of the Yanjiahe Formation (Cambrian Stage 2) in the Three Gorges area of Hubei Province, China. The cause of right-handed helical chirality should be inferred from the perspective of molecular genetics, considering biological factors (e.g., functional morphology, molecular developmental biology) instead of external environmental factors (e.g.,water change, taphonomy, Coriolis force).

  • 阿纳巴管类(anabaritids)是寒武纪纽芬兰世地层中广泛分布的一类具有矿化骨骼的、毫米级大小的三辐射对称疑难单体管栖生物类群(钱逸,1978蒋志文,1984Conway Morris et al.,1989Qian Yi et al.,1989Bengtson et al.,1990钱逸等,1999Kouchinsky et al.,20092017邵铁全等,2015王琪等,2017)。该类化石常以内核形式保存,呈锥管状,由3条纵向槽将化石分为3个同等大小的扇叶(lobe),横截面由圆形到圆三角形不等(图1)。

  • 阿纳巴管类在寒武纪早期全球浅水碳酸盐岩沉积区均有分布,如西伯利亚、蒙古、哈萨克斯坦、中国华南、冈瓦纳、阿瓦隆、劳伦和波罗的等,其中,在西伯利亚板块丰度和分异度最高(Kouchinsky et al.,2009)。三辐射对称的阿纳巴管类最先报道于瑞典下寒武统石灰岩中,但未进行正式命名及特征描述(Rosén,1919Kuilling,1955)。Sysoev(1965)描述了来自西伯利亚的三辐射阿纳巴管类,并首次命名为Hyolithellus sp.(=Anabarites trisulcatusKouchinsky et al.,2009修订))。Voronova et al.(1969)依据西伯利亚的化石标本,正式命名阿纳巴管类第一个有效的属种名Anabarites trisulcatus Missarzhevsky,1969(Rozanov et al.,1969)。Val'kov et al.(1970)Anabarites为模式属建立Augustiochreidae科,但根据国际动物命名委员会(ICZN)的规定被认为是无效的命名(Bengtson et al.,1990)。目前,源于科名Anabaritidae Missarzhevsky,1974的名称阿纳巴管类(anabaritids)得到更为广泛地使用。鉴于前人在研究阿纳巴管类时过于强调个体标本的差异,出现了许多同物异名现象,Kouchinsky et al.(2009)对已发表的该类化石材料进行了系统梳理,将已发表的19属中的14个视为同异名,仅保留并重新厘定了AnabaritesCambrotubulusSelindeochreaAculeochreaMariochrea 5个属。

  • 阿纳巴管类在我国主要分布于滇东、鄂西、黔中、陕南、皖南、川西南以及新疆阿克苏—乌什等地寒武纪纽芬兰世地层(钱逸,1977高振家等,1985肖兵,1989Conway Morris et al.,1989钱逸等,1999)。前人先后报道了众多的物种,但绝大部分为Anabarites trisulcatus的同异名。经过多轮修订,我国目前的阿纳巴管类可能仅含Anabarite trisulcatusA. koroboviA. tristichusA. tripartitusA. cf. tripartitusA. hexasulcatusA. ternariusA. biplicatusA. isiticusAculeochrea tripartitusCambrotubulus decurvatus,以及Selindeochrea ternariaConway Morris et al.,1989Qian Yi et al.,1989Steiner et al.,20042020Kouchinsky et al.,200920172022王琪等,2017)。

  • 图1 阿纳巴管类部分属种内核横截面及其关键形态特征示意图(据Kouchinsky et al.,2009,Figure 2)

  • Fig.1 Cross-sections of internal moulds of some anabaritids and the key morphological features (after Kouchinsky et al., 2009, Figure 2)

  • (a)—Anabarites trisulcatus Missarzhevsky; Voronova et al.,1969;(b)—Anabarites tripartitus Missarzhevsky; Rozanov et al.,1969;(c~e)—Anabarites cf. tripartitus Missarzhevsky; Rozanov et al.,1969,图1c、d为口端横截面,其中,图1c据岩家河组标本,图1d据西伯利亚标本,图1e据岩家河组右手螺旋内核标本;(f)—Anabarites ternarius Missarzhevsky; Rozanov et al.,1969;(g、h)—Anabarites ex gr. ternarius Missarzhevsky; Rozanov et al.,1969,分别为口端(图1g)和始端(图1h);(i)—Selindeochrea tecta Val'kov,1982;(j、k)—Selindeochrea cf. tecta Val'kov,1982,分别为始端(图1j)和口端(图1k);(l)—Mariochrea sinuosa Val'kov,1982,显示口端具同心内陷的单个节片;(m)—Anabarites tricarinatus Missarzhevsky; Rozanov et al.,1969,显示扇叶上突出的纵向龙脊;(n)—Aculeochrea ornata Val'kov and Sysoev,1970,显示带有瘤点的节片向上堆叠;比例尺均代表500 μm

  • (a) —Anabarites trisulcatus Missarzhevsky; Voronova et al., 1969; (b) —Anabarites tripartitus Missarzhevsky; Rozanov et al., 1969; (c~e) —Anabarites cf. tripartitus Missarzhevsky; Rozanov et al., 1969; at the aperture of the Fig.1c, d, and the Fig.1c from the Yanjiahe Formation, Fig.1d from Siberian, Fig.1e is the internal mould with right-handed helix from the Yanjiahe Formation; (f) —Anabarites ternarius Missarzhevsky; Rozanov et al., 1969; (g, h) —Anabarites ex gr. ternarius Missarzhevsky; Rozanov et al., 1969, at the aperture (Fig.1g) and at the apex (Fig.1h) ; (i) —Selindeochrea tecta Val'kov, 1982; (j, k) —Selindeochrea cf. tecta Val'kov, 1982, at the apex (Fig.1j) and at the aperture (Fig.1k) ; (l) —Mariochrea sinuosa Val'kov, 1982, apertural view of the internal mould showing a segment with concentric invagination at the aperture; (m) —Anabarites tricarinatus Missarzhevsky; Rozanov et al., 1969, the lobes extended distally by prominent longitudinal keels; (n) —Aculeochrea ornata Val'kov and Sysoev, 1970, segments with tubercles stacked up; scale bar are all 500 μm

  • 近年来,阿纳巴管类在寒武纪第三期早期(Kouchinsky et al.,2015)和埃迪卡拉纪晚期地层中陆续被发现(Zhuravlev et al.,20122018Rogov et al.,2015Zhu Maoyan et al.,2017孙辰,2018Cai Yaoping et al.,2019),表明其地层延限范围为埃迪卡拉系顶部至寒武系第三阶,由此进一步更新了小壳化石生物地层学的对比标准。

  • 除地层学意义外,前人亦对阿纳巴管类的生物学属性进行了有益的探讨,提出了环节动物管栖多毛类(Voronova et al.,1969Rozanov et al.,1969Glaessner,1976)、刺胞动物(Missarzhevsky,1974Abaimova,1978;Vol'kov,1982;钱逸等,1984Fedonkin,19851986陈均远等,2005冯曼,2005李朋等,2007Ivantsov et al.,2019Zhang Yanan et al.,2022)、软舌螺类(钱逸,19771978殷继成等,1980罗惠麟等,1982邢裕盛等,1983陈平,1984蒋志文,1984),或疑难骨骼化石(Missarzhevsky,1983Dzik,1986)等诸多亲缘关系假说。近年来,越来越多的研究认为阿纳巴管类应为刺胞动物,而未谈论纲、目分类(Kouchinsky et al.,200920172022Devaere et al.,2021)。

  • 最近,在湖北宜昌岩家河组第5段中采集到了大量保存精美呈强烈扭转的阿纳巴管类化石,该类化石3个扇叶共腔,呈右手螺旋状相互缠绕成绳状或麻花状。本文根据这类阿纳巴管类的形态特征,对其属种分类进行系统的厘定,并对其扭转的可能成因进行探讨。

  • 1 化石产地层位及研究方法

  • 本文所研究的111枚阿纳巴管类扭转化石标本,均采自湖北宜昌地区黄陵背斜南翼岩家河剖面岩家河组第5段(寒武系纽芬兰统第二阶)(图2)。岩家河组为一套浅海碳酸盐台地内部局部凹陷沉积地层(Zhu Maoyan et al.,2003Guo Junfeng et al.,20142021),与下伏灯影组白马沱段及上覆水井沱组均为平行不整合接触。依据其岩性及生物化石组合不同,自下而上分为五段,其中第5段为灰—深灰色中层状含硅磷质砾屑灰岩,小壳化石丰富(陈平,1984Guo Junfeng et al.,2008Song Zuchen et al.,2022),含Watsonella crosbyi组合带(Guo Junfeng et al.,20142021)。

  • 本文所研究的微体化石样品采用酸泡分离法获取:将含有化石的硅磷质砾屑灰岩样品破碎成8~10 cm大小的小块,将岩样置于8%~10%的冰醋酸中,每隔3~4 d更换一次酸,每30 d将不溶解的残渣通过两层不同孔径大小的网筛(4 mm和0.15 mm)过滤,获得含有小壳化石的砂样。将砂样烘干后在双目实体显微镜下手工挑选,获得化石标本,并将其固定于粘有导电双面胶的靶台上,用Au镀膜。在长安大学西部矿产资源与地质工程教育部重点实验室使用FEI Quanta650扫描电子显微镜(SEM)扫描成像,加速电压为15~20 kV。所有标本均编目并保存于长安大学地球科学与资源学院。

  • 本文形态学术语及解剖学名词据Kouchinsky et al.(2009),同一个体上较细为始端、略粗为口端。管体扭转方向采用右手法则确定:化石始端在下,口端在上,以右手大拇指沿着螺旋轴向上伸开,其余4指握住化石,如果扇叶螺旋方向与4指旋转方向一致则为右手螺旋,若不一致则为左手螺旋。

  • 2 系统古生物学

  • 阿纳巴管类作为一类三辐射对称固着底栖管状后生动物,化石保存常缺乏软躯体信息,故而其形态学分类特征及亲缘关系一直颇具争议,高级别分类阶元较难确定。前人曾尝试从横截面形状、外部纹饰、对称类型等不同形态特征对阿纳巴管类进行分类,划定于不同目、科(Val'kov et al.,1970Val'kov,1982Missarzhevsky,19741989Esakova et al.,1996Kouchinsky et al.,2009)。

  • 本文所研究的阿纳巴管类化石扇叶螺旋扭转率与其他阿纳巴管类物种具有较大差异,但其辐射对称性及一端开口的管状骨骼形态特征支持将其归属于刺胞动物,暂不讨论其所属纲、目,仅基于化石标本整体呈辐射对称的锥管状形态将其归入阿纳巴管科(Anabaritidae),并通过横截面特征、壳面纹饰结构、管体对称性进行属一级划分,种级特征则以横截面、锥管扭转曲率大小以及纹饰为主。

  • 刺胞动物门Phylum Cnidaria Verrill,1865

  • 纲、目未定Class and Order uncertain

  • 阿纳巴管科Family Anabaritidae Missarzhevsky,1974

  • 阿纳巴管属Genus Anabarites Missarzhevsky; Voronova et al.,1969

  • 1992 Trifistulella Qin et Li;丁莲芳等,p.90;

  • 2009 Anabarites Missarzhevsky;Kouchinsky et al.,p.253(及其异名表);

  • 2015 Anabarites Missarzhevsky;Kouchinsky et al., p.499;

  • 图2 湖北宜昌地区寒武系纽芬兰统岩家河组地理位置、地层序列及野外照片(据Guo Junfeng et al.,2020,Figure1)

  • Fig.2 Locality, stratigraphy sequence and field photos of the Cambrian (Terreneuvian) Yanjiahe Formation in Yichang, Hubei Province, China (after Guo Junfeng et al., 2020, Figure1)

  • (a)—湖北省三峡地区地质简图,显示寒武系地层展布;(b)—岩家河地区地质图,显示岩家河组地层展布; 红色五角星显示所研究地层剖面位置;(c)—三峡地区岩家河剖面寒武系纽芬兰统地层序列,红色五角星标注化石采集层位;(d)—岩家河组第5段详细划分;(e)—岩家河组第5段野外照片,显示岩家河组和上覆水井沱组界线;(f)—化石手标本照片,显示硅磷质砾屑灰岩和磷块岩界线

  • (a) —simplified geological sketch map of the Three Gorges area, Hubei Province, South China, showing the outcrops of Cambrian strata; (b) —detailed geological sketch map of the Yanjiahe area, showing the outcrops of the Yanjiahe Formation; red five-pointed star indicate locations of measured stratigraphic sections; (c) —stratigraphic sequence of Cambrian Terreneuvian strata in the Yanjiahe section, Three Gorge area; red five-pointed star indicating the horizons where fossils were collected; (d) —stratigraphic sequence of Member 5 of the Yanjiahe Formation; (e) —field photos of Member 5 of Yanjiahe Formation, showing the boundary between Yanjiahe Formation and Shuijingtuo Formation; (f) —photos of fossil hand-specimens, showing the boundary between siliceous-phosphatic-intraclastic limestone and phosphorite

  • 2017 Anabarites Missarzhevsky;Kouchinsky et al., p.417;

  • 2021 Anabarites Missarzhevsky;Devaere et al., p.18;

  • 2022 Anabarites Missarzhevsky;Kouchinsky et al., p.433.

  • 模式种Anabarites trisulcatus Missarzhevsky; Voronova et al.,1969,寒武系幸运阶,西伯利亚地台Kotujkan河河口。

  • 属征 呈三辐射对称的钙质壳或内核,外壳表面没有明显的纵向龙脊、横向褶皱,口端无同心内陷(据Kouchinsky et al.,2009)。

  • 分布时代 西伯利亚、中国华南、蒙古西部、阿瓦隆、冈瓦纳、哈萨克斯坦、波罗的等地埃迪卡拉系顶部-寒武系第三阶。

  • 三深裂阿纳巴管(相似种) Anabarites cf. tripartitus MissarzhevskyRozanov et al.,1969

  • 图3~图5

  • 1992 Trifistulella funis Qin et Li;丁莲芳等,90 页,图版 Ⅲ,图7;

  • 2009 Anabarites cf. tripartitus Missarzhevsky;Kouchinsky et al., p.270,Figure21;

  • 2020 Anabarites cf. tripartitus Missarzhevsky;Steiner et al., Fig.5K.

  • 图3 宜昌地区岩家河组Anabarites cf. tripartitus内核整体形态

  • Fig.3 Internal moulds of Anabarites cf. tripartitus from Yanjiahe Formation in Yichang area

  • (a~k)—内核标本侧视图,(a2、b2、c2、d2、e2、f2、g2)分别为(a1、b1、c1、d1、e1、f1、g1)局部放大,箭头指示放大部位;(b2、d2)—较浅的与口端平行的横纹;(g2)—口端形态;(i~k)—管体向口端方向其中槽逐渐变宽变深; 所有标本均采自岩家河剖面;(a~k)标本号分别为CUBar13-22、CUBar23-26、CUBar32-45、CUBar91-2、CUBar91-3、CUBar91-6、CUBar91-11、CUBar100-11、CUBar100-15、CUBar119-24、CUBar162-10

  • (a~k) —internal moulds, lateral views, (a2, b2, c2, d2, e2, f2, g2) magnifications of (a1, b1, c1, d1, e1, f1, g1) , respectively, arrows indicate the locations of magnification; (b2, d2) —showing the faintly shallow transversal lines parallel to the aperture; (g2) —showing the apertural outline; (i~k) —showing the variational grooves from apex to aperture; specimens are all from the Yanjiahe section; the sample numbers of (a~k) are CUBar13-22, CUBar23-26, CUBar32-45, CUBar91-2, CUBar91-3, CUBar91-6, CUBar91-11, CUBar100-11, CUBar100-15, CUBar119-24, CUBar162-10, respectively

  • 材料  111枚标本均采自湖北宜昌地区黄陵背斜南翼岩家河剖面寒武系纽芬兰统岩家河组第5段(寒武系第二阶)。

  • 种征 化石毫米级大小,锥管状,始端方向较细而口端略粗,纵槽深而宽,3个扇叶等粗共腔,螺旋三辐射对称。

  • 描述 管体直或略微弯曲,由始端向口端方向缓慢膨胀,直径由始端方向160~450 μm逐渐变化到口端190~670 μm;两端均保存不完整,保存长度为600~4500 μm不等(图3,测量示意图见图1e)。壳面上3条深而宽的纵槽将管体等分为3个扇叶,右手螺旋扭转呈螺旋三辐射对称的绳状或麻花状,平均旋转速率540°/mm(图3)。三扇叶和纵槽在内核标本中更为明显,而保存包壳(coating)的标本纵槽则相对较浅(图5b)。管体横截面为涡旋状(图4)。所研究的111个化石标本中,大多数内核表面光滑无纹饰无生长线,极少数标本的内核(7个)以及外壳(3个)表面具有较浅的与口端平行的横向旋纹(图3b、图4d、图5a)。

  • 图4 宜昌地区岩家河组Anabarites cf. tripartitus内核截面形态

  • Fig.4 Cross-sections of internal moulds of Anabarites cf. tripartitus from Yanjiahe Formation in Yichang area

  • (a~e)—内核,管体口端横截面图;(a2、b2、e2)分别为(a1、b1、e1)局部放大,箭头指示放大部位;(d、e1)显示较浅的与口端平行的横纹; 所有标本均采自岩家河剖面;(a~e)标本号分别为CUBar13-2、CUBar13-3、CUBar162-8、CUBar92-2、CUBar92-3

  • (a~e) —cross-sections of internal moulds of anabaritids, apertural view; (a2, b2, e2) , magnifications of (a1, b1, e1) , respectively, arrows indicate the location of amplification; (d, e1) showing the faintly shallow transversal lines parallel to the aperture; specimens are all from the Yanjiahe section; the sample numbers of (a~e) are CUBar13-2, CUBar13-3, CUBar162-8, CUBar92-2, CUBar92-3, respectively

  • 保存特征 该类化石多以磷酸盐化内核形式保存,部分标本保存了极薄的外部磷酸盐包壳(external coating),其很好地复制了管体的外部结构(图5a~g)。包壳与内核之间在扇叶部分空间较小,而在纵槽处则具有一定的空间度,说明化石原始管体的厚度在纵槽处较厚(图5b)。外部磷酸盐包壳与内核间可见密集丝状的的壳内藻Endoconchia angusta Runnegar; Bengtson et al.,1990,这些丝状细菌在纵槽部分尤为集聚,呈微小细管状,弯曲程度不一,部分丝状体末端出现球状体(图5c~g),反映了在生物体死后,细菌降解的过程。

  • 部分标本内核表面可见微管状结构—异质体拖曳迹(ambient inclusion trails(AITs)),为矿物晶粒(可能为黄铁矿)在基质迁移过程中形成的痕迹(图5h、i)(杨晓光等,2017)。残缺不全,凹凸不平的外部磷酸盐包壳反映了壳内藻生命活动过程中因分解作用在原始管体留下的痕迹(图5d~g)。

  • 讨论 本文所研究化石与Anabarites tripartitus均具相似的扇叶形态以及纵槽处同具向口端方向平缓弯曲的生长线,但鉴于其具特殊的右手螺旋属性且本文所述标本均未保存完整始端,与Kouchinsky et al.(2009,Figure 21C~D)和Steiner et al.(2020,Fig.5K)所展示和描述的A. cf. tripartitus形态特征一致,故将其归为A. cf. tripartitus

  • 丁莲芳等(1992)在岩家河组发现该类化石并命名为绳状三管壳Trifistulella funis Qin et Li,认为其三管不共腔,仅在扭转的轴部粘连。Parkhaev et al.(2010)则将其划归于蓝细菌Trifistulella tortilis Demidenko,2010(Parkhaev et al.,2010,Plate8,fig.2a、b、c),认为该类化石是由3个中空的螺旋缠绕管的集合体。笔者重新对该枚化石(标本号HZF10,丁莲芳等,1992,图版Ⅲ,图7)进行观察,发现此化石实际为共腔的三辐射螺旋管组成,其形态学特征与本文研究的同产地层位的百余枚Anabarites cf. tripartitus一致,故将其厘定为A. cf. tripartitus

  • Anabaritescf. tripartitus与阿纳巴管类其他属种的不同之处在于,3个扇叶以右手螺旋方式呈三维“S”状扭转成麻花状或绳状,横截面为涡旋状。例如:A. cf. tripartitusA. ex gr. trisulcatus,form 2(Kouchinsky et al.,2009,Figure 10A~C)、A. ternarius(图6a~c)、Selindeochrea tecta(图6f、g)、Aculeochrea tripartitus王琪等,2017,图2g)的最明显区别在于前者的3个扇叶为右手螺旋缠绕;而后4者则为左手螺旋缠绕。Anabarites cf. tripartitusA. ex gr. ternarius(图6d、e)和S. cf. tecta(图6h、i)的管体虽然都是右手螺旋,但A. ex gr. ternarius口端横截面上扇叶远端渐尖且呈顺时针旋转,有别于A. cf. tripartitus口端横截面上逆时针旋转的钝圆扇叶;而S. cf. tecta则以近菱形的扇叶以及单个扇叶远端延伸的龙脊区别于A. cf. tripartitus(各属种的性状特征详见表1)。

  • 图5 宜昌地区岩家河组Anabarites cf. tripartitus保存特征

  • Fig.5 Preservation of Anabarites cf. tripartitus from Yanjiahe Formation in Yichang area

  • (a~g)—具外部磷化外壳管体;(a2、b2、c2、d2、e2、f2、g2)分别为(a1、b1、c1、d1、e1、f1、g1)中箭头处放大部位;(a2)—显示较浅的与口端平行的横纹;(b2)—显示纵槽在内核和外部包壳上的变化;(c~g)—显示壳内藻E. angusta;(h~i)—内核;(h2、i2)分别为(h1、i1)中箭头处放大部位;(h2、i2)—异质体拖曳迹(AITs); 所有标本均采自岩家河剖面;(a~i)标本号分别为CUBar84-34、CUBar100-2、CUBar100-14、CUBar100-5、CUBar100-19、CUBar162-20、CUBar100-4、CUBar91-1、CUBar162-6

  • (a~g) —preserved remnants of phosphatised coating; (a2, b2, c2, d2, e2, f2, g2) , magnifications of (a1, b1, c1, d1, e1, f1, g1) , respectively; (a2) —showing the faintly shallow transversal lines parallel to the aperture; (b2) —showing the variation of longitudinal grooves on internal mould and external coating; (c~g) —showing the E. angusta; (h~i) —internal mould; (h2, i2) —magnifications of (h1, i1) ; (h2, i2) —showing the ambient inclusion trails (AITs) ; specimens are all from the Yanjiahe section; the sample numbers of (a~i) are CUBar84-34, CUBar100-2, CUBar100-14, CUBar100-5, CUBar100-19, CUBar162-20, CUBar100-4, CUBar91-1, CUBar162-6, respectively

  • 产地层位 湖北宜昌寒武系纽芬兰统第二阶,岩家河组第5段Watsonella crosbyi组合带。

  • 3 Anabarites cf. tripartitus螺旋手性原因讨论

  • 地球上的生物形态千变万化,但绝大多数物种身体构型显示出形态对称:球形(如涡藻)、辐射对称(如海葵)、两侧对称(如涡虫)和假两侧对称(如人)。但在生物发育过程中形态对称往往被改变,生物体身体构型的不对称现象逐渐被研究者关注,如蟹类身体某一侧的螯肢相对增大(Palmer,19962009),绝大多数腹足类右螺旋缠绕(Palmer,19962009Levin,2005; Grande,2010Henley,2012Blum et al.,2018),攀缘植物攀爬过程中右手螺旋或左手螺旋缠绕等(Hashimoto,2002Edwards et al.,2007林恭华等,2010Smyth,2016Wada et al.,2018)。

  • 图6 西伯利亚寒武纪纽芬兰世具螺旋手性的部分阿纳巴管类

  • Fig.6 Some species of anabaritids with spiral chirality from Cambrian Terreneuvian in Siberia

  • (a~c)—Anabarites ternarius Missarzhevsky; Rozanov et al.,1969,图6a、b、c分别引自Kouchinsky et al.,2009,Figure 23A、B、24A,左手螺旋;(a~b)—内核;(c)—横截面;(d~e)—Anabarites ex gr. ternarius Missarzhevsky; Rozanov et al.,1969,图6d1、d2、e分别引自Kouchinsky et al.,2009,Figure 25B、A、C,右手螺旋;(d1、e)—内核;(d2)—内核横截面;(f~g)—Selindeochrea tecta Val'kov,1982,图6f、g1、g2分别引自Kouchinsky et al.,2009,Figure 46B、D、C,左手螺旋;(f、g1)—内核;(g2)—内核横截面;(h~i)—Selindeochrea cf. tecta Val'kov,1982,图6h、i1、i2分别引自Kouchinsky et al.,2009,Figure 47H、C、A,右手螺旋;(h、i1)—内核;(i2)—横截面

  • (a~c) —Anabarites ternarius Missarzhevsky; Rozanov et al., 1969, Fig.6a, b, c in this paper modified from Kouchinsky et al., 2009, Figure 23A, B, 24A, separately, left-handed helical; (a~b) —internal moulds; (c) —cross-section; (d~e) —Anabarites ex gr. ternarius Missarzhevsky; Rozanov et al., 1969, Fig.6d1, d2, e in this paper modified from Kouchinsky et al., 2009, Figure 25B, A, C, separately, right-handed helical; (d1, e) —internal moulds, lateral views; (d2) —cross-section of the internal mould, apertural view; (f~g) —Selindeochrea tecta Val'kov, 1982, Fig.6f, g1, g2 in this paper modified from Kouchinsky et al., 2009, Figure 46B, D, C, separately, left-handed helical; (f, g1) —internal moulds, lateral views; (g2) —cross-section of the internal mould, apertural view; (h~i) —Selindeochrea cf. tecta Val'kov, 1982, Fig.6h, i1, i2 in this paper modified from Kouchinsky et al., 2009, Figure 47H, C, A, separately, right-handed helical; (h, i1) —internal moulds, lateral views; (i2) —cross-section of the internal mould, apertural view

  • 手性螺旋是不对称现象的一种重要形式。如果只考虑方向,物种的螺旋不对称形式通常分为两大类:① 方向不对称(directional asymmetry,DA),分为左手螺旋(所有个体均为左手螺旋)(left-handed helix,LH)以及右手螺旋(所有个体均为右手螺旋)(right-handed helix,RH);② 方向随机性,左右手螺旋均频繁出现,也称反对称(antisymmetry,AS)(Palmer,19962009)。

  • 本文所研究的111枚岩家河组Anabarites cf. tripartitus标本均为右手螺旋缠绕模式,即为方向不对称,其螺旋扭转原因可以从外因及内因两方面进行探讨。可能的外部因素有水流变化、埋藏作用、科里奥利力3种解释,下面将一一展开讨论:

  • 表1 寒武纪纽芬兰世具螺旋手性的部分阿纳巴管类特征

  • Table1 The diagnosis of some anabaritids with spiral chirality from Cambrian Terreneuvian

  • (1)螺旋结构与水流变化。前人认为阿纳巴管类外部构型与水流作用存在一定关系,其螺旋状微结构与水流作用有关(李朋等,2007王琪等,2017)。刘平等(2021)对陕南宽川铺组Anabarites trisulcatus进行流体模拟定量分析,发现群体中单一个体所受压力由前至后、由边缘向中心递减,在高流速水体中作用效果更加显著。通过对岩家河组第5段产出的百余枚化石标本观察发现,其螺旋程度并无太大差异,且均为固定的右手螺旋,暗示了该类化石在水动力环境下的螺旋扭转并未受到水流压力影响,否定了螺旋结构受水流作用影响的假设。寒武纪早期扬子板块位于中、低纬度区域,大规模的风暴时有发生,该时期海洋环境动荡不平,水动力条件强劲,无定向水流,同样与该类化石稳定的右手螺旋特征相悖(刘宝珺等,1987)。同样值得注意的是,与A. cf. tripartitus共生的其他阿纳巴管类,如A. trisulcatus,并未螺旋扭转,这种生活在同一水流环境下的不同属种螺旋扭转性不同也表明水流作用并非是影响A. cf. tripartitus的外因条件。

  • (2)螺旋结构与埋藏作用。化石埋藏后的压实、部分破坏和扭曲,理论上可以将对称的圆锥形外骨骼转化为不对称的化石(Sendino et al.,2012)。然而A. cf. tripartitus的螺旋扭转很难被解释为一种埋藏作用产物,因为,埋藏过程是随机的,并不能保证化石向某单一方向扭转,显然这种情况发生的概率微乎其微。同为三维立体保存的岩家河组其他几类共生化石,如六角锥石类、橄榄蛋类,并未表现出螺旋扭转结构。岩家河组第5段产出的百余枚A. cf. tripartitus标本均表现为右手螺旋形态,表明该特征是生物体本身的形态而并非随机的埋藏作用所致。

  • (3)螺旋结构与科里奥利力。科里奥利力(Coriolis force)是一种惯性力,使北半球移动的流体表现为向右偏斜而南半球则向左偏斜(Gill,1982Persson,1998)。假设科里奥利力与生物体螺旋手性有关,那么其螺旋方向应该与所在半球位置一一对应,北半球右旋而南半球左旋,并不会出现同一半球存在两种方向的螺旋。

  • 在寒武纪纽芬兰世,扬子板块主体处于赤道附近,峡东及陕南均位于赤道以南(Torsvik et al.,2013)(图7)。本文所研究的湖北宜昌岩家河组的111枚Anabarites cf. tripartitus化石标本,并未出现左手螺旋,均为右手螺旋管体,并不符合科里奥利力所形成的螺旋结构。此外,与鄂西地区毗邻的陕南西乡张家沟纽芬兰统宽川铺组的1枚标本Aculeochrea tripartitus为左手螺旋,1枚标本A. trisulcatus呈右手螺旋(王琪等,2017);陕南宁强石钟沟剖面纽芬兰统宽川铺组的A. trisulcatus Missarzhevsky同样既有左手螺旋,也有右手螺旋(图8)。另外,当时同样位于南半球的西伯利亚板块发现的具螺旋状结构的阿纳巴管类标本,也既有左手螺旋(如:A. ternariusSelindeochrea tecta),又有右手螺旋(如:A. ex gr. ternariusS. cf. tecta)(Kouchinsky et al.,2009)。由此看来,岩家河A. cf. tripartitus所表现出的固定右手螺旋特性与半球位置并无对应关系,也排除了科里奥利力与阿纳巴管类螺旋手性的相关性。此外,Edwards et al.(2007)在全球尺度范围调查了1485株攀援植物的螺旋手性,结果发现其右手螺旋手性与纬度(P=0.33)和半球位置(P=0.63)均无相关性,否定了植物螺旋手性与科里奥利力的因果关系。

  • 综上所述,水流变化、埋藏原因、科里奥利力等外部环境因素,均不能很好地解释A. cf. tripartitus为何呈固定的右手螺旋构型,而非左手螺旋或不螺旋形态的原因。因此,从生物自身因素(功能形态学、分子发育生物学)出发探究其固定的右手螺旋构型机制可能是更好的思路。

  • 目前,已知的阿纳巴管类,具有螺旋管体的类型和不具有螺旋管体的类型均具有一个显著特征,即管体内腔体积或多或少有所减小。而且,从幸运期到第二期,扇叶扭转率显著增强(图8)。该形态变化的原因目前不明,从功能形态学角度来看,本文推测很可能与4个方面的因素有关。① 与寒武纪开始就已经出现的捕食者—被捕食者的“军备竞赛”有关(Bengtson et al.,2002)。由于底栖固着生物之间的竞争,固着生物必须向上生长,以获得足够食物。而锥形的阿纳巴管类因具有文石质矿化外骨骼而具有很大的优势(Kouchinsky et al.,2002),再加上其化石丰度相当大,因此,具有绝对的生态优势。但是,随着管体的生长,管口逐渐增大,和具近乎全封闭围鞘的橄榄蛋类化石(Han Jian et al.,2016)相比,管口缺乏足够的保护,很容易让捕食者侵入。而螺旋个体较小的管口可有效减少捕食者入侵破坏软体组织的概率。② 不同大小的管口,意味着不同的阿纳巴管类获得的食物大小的上限,代表了不同类型的生态分异现象。③ 因阿纳巴管类一般生长在浅水环境,水流的运动容易引起不同大小的有机和无机的颗粒的搬运,而大的无机颗粒会对阿纳巴管类有影响,因此,非常有必要控制管口的大小。④ 阿纳巴管类螺旋管体,相比于非螺旋管体,管体扩张角更小,因此,受到水流的冲击更小。以上形态学分析可以解释管体螺旋产生的有利条件,但难以解释手性螺旋的偏好,尤其是A. cf. tripartitus所表现出的固定右手螺旋构型。

  • 图7 寒武纪早期具螺旋手性阿纳巴管类古地理分布(据Torsvik et al.,2013修改)

  • Fig.7 Palaeogeographical distribution of the early Cambrian anabaritids with helical chirality (modified from Torsvik et al, 2013)

  • (a)—为本文所研究标本;(b)—来自王琪等(2017);(c)—为韩健未发表资料;(d~g)—数据源于Kouchinsky et al.,2009

  • (a) —fossil specimen studied in this article; (b) —cite from Wang Qi et al. (2017) ; (c) —unpublished data from Han Jian; (d~g) —cite from Kouchinsky et al., 2009

  • 图8 寒武纪具螺旋手性阿纳巴管类时代分布

  • Fig.8 Temporal distribution of Cambrian anabaritids with helical chirality

  • (a)—本文所研究化石标本,Anabarites cf. tripartitus Missarzhevsky; Rozanov et al.,1969;(b~d)—引自王琪等,2017;(b)—Anabarites trisulcatus Missarzhevsky; Voronova et al.,1969;(c)—Aculeochrea tripartitus Missarzhevsky; Rozanov et al.,1969;(d)—Anabarites isiticus Missarzhevsky,1974;(e~g)—韩健未发表资料;(e)—Anabarites trisulcatus Missarzhevsky; Voronova et al.,1969;(f)—Anabarites isisticus Missarzhevsky,1974;(g)—Anabarites isisticus Missarzhevsky,1974;(h~l)—引自Kouchinsky et al.,2009;(h)—Anabarites ex gr. trisulcatus Missarzhevsky; Voronova et al.,1969,form 2;(i)—Anabarites ternarius Missarzhevsky; Rozanov et al.,1969;(j)—Selindeochrea tecta Val'kov,1982;(k)—Anabarites ex gr. ternarius Missarzhevsky; Rozanov et al.,1969;(l)—Selindeochrea cf. tecta Val'kov,1982

  • (a) —specimens of this article, Anabarites cf. tripartitus Missarzhevsky; Rozanov et al., 1969; (b) ~ (d) —data from Wang Qi et al., 2017; (b) —Anabarites trisulcatus Missarzhevsky; Voronova et al., 1969; (c) —Aculeochrea tripartitus Missarzhevsky; Rozanov et al., 1969; (d) —Anabarites isiticus Missarzhevsky, 1974; (e~g) —unpublished data from Han Jian; (e) —Anabarites trisulcatus Missarzhevsky; Voronova et al., 1969; (f) —Anabarites isisticus Missarzhevsky, 1974; (g) —Anabarites isisticus Missarzhevsky, 1974; (h~l) —data from Kouchinsky et al., 2009; (h) —Anabarites ex gr. trisulcatus Missarzhevsky; Voronova et al., 1969, form 2; (i) —Anabarites ternarius Missarzhevsky; Rozanov et al., 1969; (j) —Selindeochrea tecta Val'kov, 1982; (k) —Anabarites ex gr. ternarius Missarzhevsky; Rozanov et al., 1969; (l) —Selindeochrea cf. tecta Val'kov, 1982

  • 虽然,寒武纪纽芬兰世的阿纳巴管类化石标本均未保存软体结构,在阿纳巴管类化石中检测出基因序列也绝无可能,但现代生物手性研究工作提供了许多有参考价值的研究思路。根据Palmer(2009)的观点,由环境因素所引起的不对称对方向性没有偏好,表现出随机不对称;而固定的不对称(右手螺旋或左手螺旋)则受遗传所控制,且在大多数固定不对称物种中偶尔会出现少数反向个体。相比于当时同处扬子板块的陕南所出现的异常的左手螺旋个体,鄂西岩家河组百余枚的Anabarites cf. tripartitus所表现出的固定右手螺旋构型,可能暗示其右手螺旋不对称性是受遗传控制的性状。

  • Sendino et al.(2012)指出分子发育生物学的进展揭示了几个可以影响生物体对称性的因素,尤其是:① Hox基因(同源基因)是允许区域化的开关,决定生物体的结构和方向(Finnerty,2003Martindale,2005Schierwater et al.,2010);② 调节左右不对称的信号分子Nodal(由Nodal蛋白编码)(Duboc et al.,2005Grande et al.,2009)和指定背腹(DV)轴的MAPK信号通路(mitogen-activated protein kinase,激活丝裂原激活蛋白激酶)(Iakovleva et al.,2006Grande,2010)。

  • Hox基因作为一类对前后轴形成和体区分化起主导作用的调控基因,其本身并不参与特定构造的形成,而是通过诱导其他基因发生链式反应来构建身体某一特定部分(Carroll,1995)。双胚层动物体内的与Hox类似的基因(Hox-like基因)与动物主体轴(oral-aboral (OA)axis(口—反口轴)和anterior-posterior (AP)axis(前—后轴))的形成密切相关(Schierwater et al.,2010),不同的Hox基因在主体轴上具有不同的空间表达域。且在刺胞动物海葵浮浪幼体的OA轴分区上已发现前Hox-like基因cnox1-Pc和cnox2-Pc以及后Hox-like基因cnox4-Pc(Finnerty,2003)。上述现象暗示某种负责轴形成模式的Hox-like基因在本文所研究的这类双胚层刺胞动物Anabarites cf. tripartitus化石的绳状螺旋身体构型中可能同样积极表达,参与构建其扇叶螺旋扭转结构。

  • Nodal信号作为TGF-β(transforming growth factor-β,转化生长因子-β)超家族的一员,是一种调节后口动物左右不对称的蛋白(Duboc et al.,2005),在软体动物、环节动物中均有发现。在对刺胞动物水螅类Hydra magnipapillata的两辐射对称生长模式的分析研究中,发现了一个与Nodal信号相关的基因(Nodal-related基因,Ndr),该基因负责横向信号中心,诱导其他基因在Nodal下游发生链式反应形成新的身体轴,对于沿主体轴建立轴向不对称至关重要,如刺胞动物的横向分区(Watanabe et al.,2014)。Sendino et al.(2012)在对奥陶纪刺胞动物锥石类Metaconularia anomala研究时,由于尚未发现对锥石类手性螺旋更为合理的解释,推测Hox-like基因和Nodal蛋白参与控制其不对称性。

  • 至于MAPK信号通路虽已在软体动物和环节动物中展开研究,但其是否在刺胞动物中表达仍不清楚(Sendino et al.,2012)。

  • 综上所述,岩家河组Anabarites cf. tripartitus百余枚标本全部表现为固定的右手螺旋型壳,可能代表了该管体右手螺旋由右手螺旋基因控制而非环境因素所致(Palmer,2009)。当然,由于化石的石化作用,该类化石究竟受何种基因调控不得而知,但亦可依据前人对刺胞动物锥石类不对称性(Sendino et al.,2012)及水螅类两辐射对称模式(Watanabe et al.,2014)研究资料,推测Nodal蛋白、Hox-like基因、亦或是其他基因可能参与了A. cf. tripartitus右手螺旋三辐射身体构型的形成。

  • 4 结论

  • 通过与已知阿纳巴管类同具扭转特征的属种进行对比研究,将寒武系岩家河组第5段右手螺旋三管缠绕形壳归属为Anabarites cf. tripartitus Missarzhevsky; Rozanov et al.,1969。依据管状体形态、扭转方向和是否共腔等特征,将前人报道的绳状三管壳Trifistulella funis Qin et Li厘定为A. cf. tripartitus。对A. cf. tripartitus固定右手螺旋手性形成的原因进行了探讨,排除了与水流变化、埋藏作用、科里奥利力等外部因素的相关性,尝试从生物自身因素出发探究其固定的右手螺旋手性机制。功能形态学研究发现,相较于非螺旋管体,螺旋手性的阿纳巴管类管体扩张角和管体内腔体积较小,第二阶个体相较于幸运阶螺旋幅度显著加强,此类管体演变可能是为了防止捕食者和无机颗粒入侵,减小水流冲击,并在取食食物大小方面形成生态分异。依据对影响现生水螅类以及奥陶纪锥石类的刺胞动物对称性的分子发育生物学研究,推测Nodal蛋白和Hox-like基因可能与A. cf. tripartitus右手螺旋手性形成有关。

  • 致谢:感谢中国地质科学院地质研究所唐烽研究员对论文提出的宝贵意见和建议!

  • 参考文献

    • Abaimova G P. 1978. Anabaritids-the oldest fossils with calcareous skeleton. Trudy sibirskpgo Naučno-issledovatel'skogo Instituta Geologii, Geofiziki i Mineral'nogo Syr'â, 260: 77~83, (in Russian).

    • Baum B. 2006. Left-right asymmetry: Actin-myosin through the looking glass. Current Biology, 16: R502~R504.

    • Bengtson S, Conway Morris S, Cooper B J, Jell P A, Runnegar B N. 1990. Early Cambrian Fossils from South Australia. Brisbane: Association of Australasian Palaeontologists, Memoir 9.

    • Bengtson S. 2002. Origins and early evolution of predation. Paleontological Society Papers: 289~318

    • Blum M, Ott T. 2018. Animal left-right asymmetry. Current Biology, 28(7): R301~R304.

    • Cai Yaoping, Xiao Shuhai, Li Guoxiang, Hua Hong. 2019. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. Geology, 47(4): 380~384.

    • Carroll S B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature, 376: 479~485.

    • Chen Junyuan, Peng Qingqing. 2005. An Early Cambrian problematic organism (Anabarites) and its possible affinity. Acta Paleontologica Sinica, 1: 57~65 (in Chinese with English abstract).

    • Chen Ping. 1984. Discovery ofLower Cambrian small shelly fossils from Jijiapo, Yichang, west Hubei and its significance. Proceedings of Strgraphic Paleontology, 13: 49~64 (in Chinese with English abstract).

    • Conway Morris S, Chen Meng'e. 1989. Lower Cambrian anabaritids from South China. Geological Magazine, 126: 615~632.

    • Darwin C R. 1865. On the movements and habits of climbing plants. Botanical Journal of the Linnean Society, 9: 1~118.

    • Devaere L, Korn D, Ghaderi A, Struck U, Bavandpur A K. 2021. New and revised small shelly fossil record from the Lower Cambrian of northern Iran. Papers in Palaeontology, 1~41.

    • Ding Lianfang, Zhang Luyi, Li Yong, Dong Junshe. 1992. TheStudy of the Late Sinian-Early Cambrian Biota from the Northern Margin of Yangtze Platform. Beijing: Scientific and Technical Documents Publishing House (in Chinese).

    • Duboc V, Röttinger E, Lapraz F, Besnardeau L, Thierry L. 2005. Left-right asymmetry in the sea urchin embryo is regulated by Nodal signaling on the right side. Developmental Cell, 9: 147~158.

    • Dzik J. 1986. Chordate Affinities of the Conodonts. New York: Oxford University Press.

    • Edwards W, Moles A T, Franks P. 2007. The global trend in plant twining direction. Global Ecology and Biogeography, 16(6): 795~800.

    • Esakova N V, Zhegallo E A. 1996. Biostratigraphy and fauna of the Lower Cambrian of Mongolia. Transactions of the joint Russian-Mongolian paleontological expedition, 46: 1~216, (in Russian).

    • Fedonkin M A. 1985. Non-skeletal fauna of the Vendian: Promorphological analysis. The Vendian System, 1: 10~69.

    • Fedonkin M A. 1986. Precambrian Problematic Animals: Their Body Plan and Phylogeny. New York: Oxford University Press.

    • Feng Man. 2005. Comparison of the Early Cambrian Anabarites between Ningqiang area, Shaanxi and Chaohu area, Anhui. Acta Micropalaeontologica Sinica, 22(4): 412~416 (in Chinese with English abstract).

    • Finnerty J R. 2003. The origins of axial patterning in the metazoan: How old is bilaterial symmetry? International Journal of Developmental Biology, 47: 523~529.

    • Gao Zhenjia, Wang Wuyan, Peng Changwen, Li Yongan, Xiao Bing. 1985. The Sinian in Aksu-Wushi Area, Xinjiang. Urumchi: Xinjiang People's Publishing House (in Chinese with English abstract).

    • Gill A E. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press.

    • Glaessner M F. 1976. Early Phanerozoic annelid worms and their geological and biological significance. Geological Society of London Journal, 132: 259~275.

    • Grande C, Patel N H. 2009. Nodal signalling is involved in left-right asymmetry in snails. Nature, 457: 1007~1011.

    • Grande C. 2010. Left-right asymmetries in Spiralia. Integrative & Comparative Biology, 50(5): 744~755.

    • Guo Junfeng, Li Yong, Han Jian, Zhang Xingliang, Zhang Zhifei, Ou Qiang, Liu Jianni, Shu Degan, Maruyama S, Komiya T. 2008. Fossilassociation from the Lower Cambrian Yanjiahe Formation in the Yangtze Gorges Area, Hubei, south China. Acta Geologica Sinica (English Edition), 82(6): 1124~1132.

    • Guo Junfeng, Li Yong, Li Guoxiang. 2014. Small shelly fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research, 25(3): 999~1007.

    • Guo Junfeng, Han Jian, Van Iten H, Wang Xing, Qiang Yaqin, Song Zuchen, Wang Wenzhe, Zhang Zhifei, Li Guoxiang. 2020. A fourteen-faced hexangulaconulariid from the Early Cambrian (Stage 2) Yanjiahe Formation, South China. Journal of Paleontology, 94(1): 45~55.

    • Guo Junfeng, Li Guoxiang, Qiang Yaqin, Song Zuchen, Zhang Zhifei, Han Jian, Wang Wenzhe. 2021. Watsonella crosbyi from the Lower Cambrian (Terreneuvian, Stage 2) Yanjiahe Formation in Three Gorges Area, South China. Palaeoworld, 30(1): 1~19.

    • Han Jian, Li Guoxiang, Kubota S, Ou Qiang, Toshino S, Wang Xing, Yang Xiaoguang, Uesugi K, Masato H, Sasaki O, Kano H, Sato T, Komiya T. 2016. Internal microanatomy and zoological affinity of the Early Cambrian Olivooides. Acta Geologica Sinica (English Edition), 90(1): 38~65.

    • Harvey R P. 1998. Links in the left/right axial pathway. Cell, 94(3): 273~276.

    • Hashimoto T. 2002. Molecular genetic analysis of left-right handedness in plants. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 357(1422): 799~808.

    • Henley C L. 2012. Possible origins of macroscopic left-right asymmetry in organisms. Journal of Statistical Physics, 148(4): 740~774.

    • Iakovleva N V, Gorbushin A M, Zelck U E. 2006. Partial characterization of mitogen-activated protein kinases (MAPK) from haemocytes of the common periwinkle, Littorina littorea (Gastropoda: Prosobranchia). Fish and Shellfifish Immunology, 20(4): 665~668.

    • Ivantsov A Y, Vickers-Rich P, Zakrevskaya M A, Hall M. 2019. Conical thecae of Precambrian macroorganisms. Paleontological Journal, 53(11): 1134~1146.

    • Jiang Zhiwen. 1984. Evolution of early shelly metazoans and basic characteristics of Meishucun fauna. Proceedings of Strgraphic Paleontology, 13: 1~26 (in Chinese with English abstract).

    • Kouchinsky A, Bengtson S. 2002. The tube wall of Cambrian anabaritids. Acta Palaeontologica Polonica, 47(3): 431~444.

    • Kouchinsky A, Bengtson S, Feng Weimin, Kutygin R, Val'kov A. 2009. The Lower Cambrian fossil anabaritids: Affinities, occurrences and systematics. Journal of Systematic Palaeontology, 7(3): 241~293.

    • Kouchinsky A, Bengtson S, Sébastien C, Vendrasco M. 2015. An Early Cambrian fauna of skeletal fossils from the Emyaksin Formation, Northern Siberia. Acta Palaeontologica Polonica, 60(2): 421~512.

    • Kouchinsky A, Bengtson S, Landing E, Steiner M, Vendrasco M, Ziegler K. 2017. Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia. Acta Palaeontologica Polonica, 62(2): 311~440.

    • Kouchinsky A, Alexander R, Bengtson S, Bowyer F, Clausen S, Holmer L E, Kolesnikov K A, Korovnikov I V, Pavlov V, Skovsted C B, Ushatinskaya G, Wood R, Zhuravlev A Y. 2022. Early-Middle Cambrian stratigraphy and faunas from Northern Siberia. Acta Palaeontologica Polonica, 67(2): 341~464.

    • Kuilling O. 1955. Den Kaledonska fjöllkedjaas berggrund inom Västerbottens län. Sveriges Geologiska Undersäking, Serie C, 3: 101~296.

    • Levin M. 2005. Left-right asymmetry in embryonic development: A comprehensive review. Mechanisms of Development, 122(1): 3~25

    • Li Peng, Hua Hong, Zhang Luyi, Zhang Dongdong, Jin Xianbao, Liu Zhu. 2007. Internal microstructure and affiliation of theLower Cambrian Anabarites from southern Shaanxi, China. Acta Palaeontologica Sinica, 46(3): 327~333 (in Chinese with English abstract).

    • Lin Gonghua, Ci Haixin, Liu Yongan, Su Jianping. 2010. Phylogenetic development analysis of chirality of twining plants. Anhui Agricultural Science, 38(8): 3944~3947+3950 (in Chinese with English abstract).

    • Liu Baojun, Xu Xiaosong, Luo Anping, Kang Chenglin. 1987. Storm events and phosphate deposition Cambrian on the western margin of the Yangtze platform, China. Acta Sedimentologica Sinica, 5(3): 28~39+186 (in Chinese with English abstract).

    • Liu Ping, Yang Xiaoguang, Tang Qingqin, He Kaiyue, Zhang Yiheng. 2021. Computational fluid dynamics analysis of the gregarious behavior of Anabarites trisulcatus from the Early Cambrian. Acta Micropalaeontologica Sinica, 38(3): 234~240 (in Chinese with English abstract).

    • Luo Huilin, Jiang Zhiwen, Wu Xiche, Song Xueliang, Ouyang Lin. 1982. The Sinian-Cambrian Boundary in Eastern Yunnan, China. Kunming: Yunnan People's Publishing House (in Chinese).

    • Martindale M Q. 2005. The evolution of metazoan axial properties. Nature Reviews Genetics, 6: 917~927.

    • Missarzhevsky V V. 1974. New data on the oldest fossils of the Early Cambrian of the Siberian platform. In: Zhuravleva I T and Rozanov A Y, eds. Biostratigraphy and Palaeontology of the Lower Cambrian of Europe and Northern Asia. Nauka, Moscow, 179~189, (in Russian).

    • Missarzhevsky V V. 1983. Stratigraphy of the oldest Phanerozoic strata of the Anabar massif. Sovetskaya geologiya, 62~73 (in Russian).

    • Missarzhevsky V V. 1989. The oldest skeletal fossils and stratigraphy of the Precambrian-Cambrian boundary beds. Trudy Geologicheskogo Instituta, Akademiâ Nauk SSSR, 443: 237 (in Russian).

    • Palmer A R. 1996. From symmetry to asymmetry: Phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proceedings of the National Academy of Sciences of the United States of America, 93(25): 14279~14286.

    • Palmer A R. 2009. Animal asymmetry. Current Biology, 19(12): R473~R477.

    • Parkhaev P Y, Demidenko Y E. 2010. Zooproblematica and mollusca from the Lower Cambrian Meishucun section (Yunnan, China) and taxonomy and systematics of the Cambrian small shelly fossils of China. Paleontological Journal, 44(8): 883~1161.

    • Persson A. 1998. How do we understand the Coriolis force? Bulletin of the American Meteorological Society, 79: 1373~1385.

    • Qian Yi. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucun Stage in central and S. W. China. Acta Paleontologica Sinica, 16(2): 259~260 (in Chinese with English abstract).

    • Qian Yi. 1978. The Early Cambrian hyolithids in central and Southwest China and their stratigraphical significance. Journal of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, No. 11, 1~38 (in Chinese with English abstract).

    • Qian Yi. 1999. Taxonomy and Biostratigraphy of Small Shelly Fossils in China. Beijing: Science Press (in Chinese with English abstract).

    • Qian Yi, Yin Gongzheng. 1984. Small shelly fossils from the lowerest Cambrian in Guizhou. Proceedings of Stratigraphic Paleontology, 2: 91~129 (in Chinese with English abstract).

    • Qian Yi, Bengtson S. 1989. Paleontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province of South China. Fossils and Strata, 24: 1~156.

    • Rogov V I, Karlova G A, Marusin V V, Kochnev B B, Nagovitsin K E, Grazhdankin D V. 2015. Duration of the first biozone in the Siberian hypostratotype of the Vendian. Russian Geology and Geophysics, 56(4): 573~583.

    • Rosén S. 1919. Uber einige neue problematica in einem fossilfuhrenden kalkshtein aus dem nordschwedischen Hochgebirge. Bulletin of the Geological Institute of the University of Uppsala, 16: 159~168.

    • Rozanov A Y, Missarzhevsky V V, Volkova N A, Voronova L G, Krylov I N, Keller B M, Korolyuk I K, Lendzion K, Michniak R, Pyhova N G, Sidorov A D. 1969. The Tommotian Stage and the Cambrian lower boundary problem. Trudy Geologicheskogo Instituta, Akademi Nauk SSSR, 206: 1~380 (in Russian).

    • Schierwater B, Kamm K. 2010. The early evolution of Hox genes: A battle of believe? Oxygen Transport to Tissue XXXIII, 689: 81~90.

    • Sendino C, Zágoršek K, Taylor P D. 2012. Asymmetry in an Ordovician conulariid cnidarian. Lethaia, 45(3): 423~431.

    • Shao Tiequan, Wang Qi, Liu Yunhuan, Tang Hanhua, Zhang Yanan, Xue Guoqiang, Wang Zhaojing. 2015. Research on the symmetrical evolution of Anabarites from the Cambrian Xixiang biota in southern Shaanxi province. Acta Micropalaeontologica Sinica, 32(4): 396~402 (in Chinese with English abstract).

    • Smyth D R. 2016. Helical growth in plant organs: Mechanisms and significance. Development, 143(18): 3272~3282.

    • Song Zuchen, Guo Junfeng, Han Jian, Van Iten H, Qiang Yaqin, Peng Jiaxin, Sun Jie, Zhang Zhifei. 2022. A new species of Septuconularia (Hexangulaconulariidae, Cnidaria) from Cambrian Stage 2, South China. Acta Geologica Sinica (English Edition), 96(3): 757~765.

    • Steiner M, Li Guoxiang, Qian Yi, Zhu Maoyan. 2004. Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance. Geobios, 37: 259~275.

    • Steiner M, Yang Ben, Hohl S, Zhang Lei, Chang Shan. 2020. Cambrian small skeletal fossil and carbon isotope records of the southern Huangling Anticline, Hubei (China) and implications for chemostratigraphy of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 554: 1~19.

    • Sun Chen. 2018. Terminal Ediacaran microfossil biota from the northwestern margin of the Yangtze platform. Master's thesis of Northwest University (in Chinese with English abstract).

    • Sysoev V A. 1965. Main features of evolution of hyoliths. In: Vozin V F, ed. Palaeontology and Biostratigraphy of Palaeozoic and Triassic Deposits of Yakutia. Nauka, Moscow, 5~20, (in Russian).

    • Torsvik T H, Cocks L R M. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geological Society London Memoirs, 38(1): 5~24.

    • Val'kov A K, Sysoev V A. 1970. Cambrian angustiochreids of Siberia. In: Bobrov A K, (ed. ), Stratigrafiyâ I Paleontologiyâ Proterozoyâ I Kembriyâ Vostoka Sibirskoj Platformy. Âkutskoe Knižnoe Izdatel'stvo, Âkutsk, 94~100 (in Russian).

    • Val'kov, A K. 1982. Lower Cambrian Biostratigraphy of the Eastern Siberian Platform. Moscow: Nauka, 92 (in Russian).

    • Verrill A E. 1865. Classification of polyps (extract condensed from synopsis of the Polyps and Corals of the North Pacific Exploring Expedition under Commodore C. Ringgold and Captain John Rogers, U. S. N. ). Communications of the Essex Institute, 4: 145~152.

    • Voronova L G, Missarzhevsky V V. 1969. Finds of algae and worm tubes in the Precambrian-Cambrian boundary beds of the northern part of the Siberian platform. Doklady Akademi Nauk SSSR, 184: 207~210 (in Russian).

    • Wada H, Matsumoto D. 2018. Twisting growth in plant roots. Plant Biomechanics: From Structure to Function at Multiple Scales, 127~140.

    • Wang Qi, Liu Yunhuan, Shao Tiequan, Zhang Hu, Zhang Yanan, Tang Hanhua, Jiang Kaiqing, Wang Zhaojing, Pang Guotao, Qin Jiachen. 2017. Research on the tubular fossils on the Cambrian Xixiang biota in southern Shaanxi Province, NW China. Acta Micropalaeontologica Sinica, 34(1): 49~60 (in Chinese with English abstract).

    • Watanabe H, Schmidt H A, Kuhn A, Höger S K, Kocagöz Y, Laumann-Lipp N, Özbek S, Holstein T W. 2014. Nodal signalling determines biradial asymmetry in Hydra. Nature, 515: 112~115.

    • Xiao Bing. 1989. Review of the age of Uyirtus Formation in the light of the discovery of Anabarites. Xinjiang Geology, 7 (4): 35~39 (in Chinese with English abstract).

    • Xing Yusheng, Ding Qixiu, Luo Huilin, He Tinggui, Wang Yangeng, et al. 1983. The Sinian-Cambrian Boundary of China. Institute of Geology, Chinese Academy of Geological Sciences, 10: 1~262 (in Chinese with English abstract).

    • Yang Xiaoguang, Han Jian. 2017. Ambient inclusion trails and microboring structures on Early Cambrian microfossils. Chinese Science Bulletin, 62(35): 1~10 (in Chinese with English abstract).

    • Yin Jicheng, Ding Lianfang, He Tinggui, Lin Changbao. 1980. On the Sinian-Cambrian boundary in Gaoqiao County, Emei, Sichuan. Bulletin Chinese Academy Geological Sciences (series Ⅰ), 2(1): 59~74 (in Chinese).

    • Zhang Yanan, Liu Yunhuan, Shao Tiequan, Wang Qi, Qin Jiachen, Li Linlu, Zhou Xingyu. 2022. The morphology and affinity of anabaritids revealed by their internal moldsfrom the Cambrian Fortunian, Southern Shaanxi, China. Palaeoworld, 96(2): 1~7.

    • Zhu Maoyan, Zhang Junming, Steiner M, Yang Aihua, Li Guoxiang, Erdtmann B D. 2003. Sinian-Cambrian stratigraphic framework for shallow- to deep- water environments of the Yangtze platform: An integrated approach. Progress in Natural Science, 13(12): 951~960.

    • Zhu Maoyan, Zhuravlev A Y, Wood R A, Zhao Fangchen, Sukhov S S. 2017. A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian platform. Geology, 45(5): 459~462.

    • Zhuravlev A Y, Liñán E, Gámez Vintaned J A, Debrenne F. Fedorov A B. 2012. New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian platform and Spain. Acta Palaeontologica Polonica, 57(1): 205~224.

    • Zhuravlev A Y, Wood R A. 2018. The two phases of the Cambrianexplosion. Scientific Reports, 8(1): 1~10.

    • 陈均远, 彭晴晴. 2005. 寒武纪早期疑难生物类群阿纳巴管 (Anabarites) 亲缘性的探讨. 古生物学报, 1: 57~65.

    • 陈平. 1984. 湖北宜昌计家坡下寒武统底部小壳化石的发现及其意义. 地层古生物论文集, 13: 49~64.

    • 丁莲芳, 张录易, 李勇, 董军社. 1992. 扬子地台北缘晚震旦世—早寒武世早期生物群研究. 北京: 科学技术文献出版社.

    • 冯曼. 2005. 陕南宁强地区和安徽巢湖地区早寒武世小壳化石Anabarites之比较. 微体古生物学报, 22(4): 412~416.

    • 高振家, 王务严, 彭昌文, 李永安, 肖兵. 1985. 新疆阿克苏—乌什地区震旦系. 新疆: 新疆人民出版社.

    • 蒋志文. 1984. 早期带壳生物演化及梅树村动物群的基本特征. 地层古生物论文集, 13: 1~26.

    • 李朋, 华洪, 张录易, 张东东, 金显宝, 刘竹. 2007. 陕南早寒武世Anabarites, 壳体内部结构及亲缘关系探讨. 古生物学报, 3: 327~333.

    • 林恭华, 慈海鑫, 刘永安, 苏建平. 2010. 缠绕植物手性的系统发育分析. 安徽农业科学, 38(8): 3944~3947+3950.

    • 刘宝珺, 许效松, 罗安屏, 康承林. 1987. 中国扬子地台西缘寒武纪风暴事件与磷矿沉积. 沉积学报, 5(3): 28~39+186.

    • 刘平, 杨晓光, 唐清钦, 何凯悦, 张毅恒. 2021. 寒武纪早期锥管状化石Anabarites trisulcatus群居行为的计算流体力学分析. 微体古生物学报, 38(3): 234~240.

    • 罗惠麟, 蒋志文, 武希彻, 宋学良, 欧阳麟. 1982. 云南东部震旦系—寒武系界线. 昆明: 云南人民出版社.

    • 钱逸. 1977. 华中西南区早寒武世梅树村阶的软舌螺纲及其他化石. 古生物学报, 16(2): 259~260.

    • 钱逸. 1978. 华中西南区早寒武世软舌螺化石的研究及其地层意义. 中国科学院南京地质古生物研究所集刊, 11: 1~38.

    • 钱逸. 1999. 中国小壳化石分类学与生物地层学. 北京: 科学出版社.

    • 钱逸, 尹恭正. 1984. 贵州早寒武世早期小壳动物化石的研究. 地层古生物论文集, 2: 91~129.

    • 邵铁全, 王琪, 刘云焕, 唐汉华, 张亚楠, 薛国强, 王朝景. 2015. 陕南寒武纪西乡生物群中Anabarites对称性演化研究. 微体古生物学报, 32(4): 396~402.

    • 孙辰. 2018. 扬子地台西北缘埃迪卡拉纪末期微体化石生物群研究. 西北大学硕士学位论文.

    • 王琪, 刘云焕, 邵铁全, 张虎, 张亚楠, 唐汉华, 姜开拓, 王朝景, 庞国涛, 秦嘉琛. 2017. 陕南寒武纪梅树村期西乡生物群中的管状化石研究. 微体古生物学报, 34(1): 49~60.

    • 肖兵. 1989. 化石Anabarites的发现及再论玉尔吐斯组的时代归属. 新疆地质, 7(4): 35~39.

    • 邢裕盛, 丁启秀, 罗惠麟, 何廷贵, 王砚耕, 等. 1983. 中国震旦系—寒武系界线. 北京: 地质出版社, 中国地质科学院地质研究所所刊, 第10号: 1~262.

    • 杨晓光, 韩健. 2017. 寒武纪早期微体化石上的异质体拖曳迹与微型钻孔结构. 科学通报, 62(35): 1~10.

    • 殷继成, 丁莲芳, 何廷贵, 林昌宝. 1980. 四川峨眉高桥震旦系—寒武系界线. 中国地质科学院院报, 2(1): 59~74.

  • 参考文献

    • Abaimova G P. 1978. Anabaritids-the oldest fossils with calcareous skeleton. Trudy sibirskpgo Naučno-issledovatel'skogo Instituta Geologii, Geofiziki i Mineral'nogo Syr'â, 260: 77~83, (in Russian).

    • Baum B. 2006. Left-right asymmetry: Actin-myosin through the looking glass. Current Biology, 16: R502~R504.

    • Bengtson S, Conway Morris S, Cooper B J, Jell P A, Runnegar B N. 1990. Early Cambrian Fossils from South Australia. Brisbane: Association of Australasian Palaeontologists, Memoir 9.

    • Bengtson S. 2002. Origins and early evolution of predation. Paleontological Society Papers: 289~318

    • Blum M, Ott T. 2018. Animal left-right asymmetry. Current Biology, 28(7): R301~R304.

    • Cai Yaoping, Xiao Shuhai, Li Guoxiang, Hua Hong. 2019. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion. Geology, 47(4): 380~384.

    • Carroll S B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature, 376: 479~485.

    • Chen Junyuan, Peng Qingqing. 2005. An Early Cambrian problematic organism (Anabarites) and its possible affinity. Acta Paleontologica Sinica, 1: 57~65 (in Chinese with English abstract).

    • Chen Ping. 1984. Discovery ofLower Cambrian small shelly fossils from Jijiapo, Yichang, west Hubei and its significance. Proceedings of Strgraphic Paleontology, 13: 49~64 (in Chinese with English abstract).

    • Conway Morris S, Chen Meng'e. 1989. Lower Cambrian anabaritids from South China. Geological Magazine, 126: 615~632.

    • Darwin C R. 1865. On the movements and habits of climbing plants. Botanical Journal of the Linnean Society, 9: 1~118.

    • Devaere L, Korn D, Ghaderi A, Struck U, Bavandpur A K. 2021. New and revised small shelly fossil record from the Lower Cambrian of northern Iran. Papers in Palaeontology, 1~41.

    • Ding Lianfang, Zhang Luyi, Li Yong, Dong Junshe. 1992. TheStudy of the Late Sinian-Early Cambrian Biota from the Northern Margin of Yangtze Platform. Beijing: Scientific and Technical Documents Publishing House (in Chinese).

    • Duboc V, Röttinger E, Lapraz F, Besnardeau L, Thierry L. 2005. Left-right asymmetry in the sea urchin embryo is regulated by Nodal signaling on the right side. Developmental Cell, 9: 147~158.

    • Dzik J. 1986. Chordate Affinities of the Conodonts. New York: Oxford University Press.

    • Edwards W, Moles A T, Franks P. 2007. The global trend in plant twining direction. Global Ecology and Biogeography, 16(6): 795~800.

    • Esakova N V, Zhegallo E A. 1996. Biostratigraphy and fauna of the Lower Cambrian of Mongolia. Transactions of the joint Russian-Mongolian paleontological expedition, 46: 1~216, (in Russian).

    • Fedonkin M A. 1985. Non-skeletal fauna of the Vendian: Promorphological analysis. The Vendian System, 1: 10~69.

    • Fedonkin M A. 1986. Precambrian Problematic Animals: Their Body Plan and Phylogeny. New York: Oxford University Press.

    • Feng Man. 2005. Comparison of the Early Cambrian Anabarites between Ningqiang area, Shaanxi and Chaohu area, Anhui. Acta Micropalaeontologica Sinica, 22(4): 412~416 (in Chinese with English abstract).

    • Finnerty J R. 2003. The origins of axial patterning in the metazoan: How old is bilaterial symmetry? International Journal of Developmental Biology, 47: 523~529.

    • Gao Zhenjia, Wang Wuyan, Peng Changwen, Li Yongan, Xiao Bing. 1985. The Sinian in Aksu-Wushi Area, Xinjiang. Urumchi: Xinjiang People's Publishing House (in Chinese with English abstract).

    • Gill A E. 1982. Atmosphere-Ocean Dynamics. New York: Academic Press.

    • Glaessner M F. 1976. Early Phanerozoic annelid worms and their geological and biological significance. Geological Society of London Journal, 132: 259~275.

    • Grande C, Patel N H. 2009. Nodal signalling is involved in left-right asymmetry in snails. Nature, 457: 1007~1011.

    • Grande C. 2010. Left-right asymmetries in Spiralia. Integrative & Comparative Biology, 50(5): 744~755.

    • Guo Junfeng, Li Yong, Han Jian, Zhang Xingliang, Zhang Zhifei, Ou Qiang, Liu Jianni, Shu Degan, Maruyama S, Komiya T. 2008. Fossilassociation from the Lower Cambrian Yanjiahe Formation in the Yangtze Gorges Area, Hubei, south China. Acta Geologica Sinica (English Edition), 82(6): 1124~1132.

    • Guo Junfeng, Li Yong, Li Guoxiang. 2014. Small shelly fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research, 25(3): 999~1007.

    • Guo Junfeng, Han Jian, Van Iten H, Wang Xing, Qiang Yaqin, Song Zuchen, Wang Wenzhe, Zhang Zhifei, Li Guoxiang. 2020. A fourteen-faced hexangulaconulariid from the Early Cambrian (Stage 2) Yanjiahe Formation, South China. Journal of Paleontology, 94(1): 45~55.

    • Guo Junfeng, Li Guoxiang, Qiang Yaqin, Song Zuchen, Zhang Zhifei, Han Jian, Wang Wenzhe. 2021. Watsonella crosbyi from the Lower Cambrian (Terreneuvian, Stage 2) Yanjiahe Formation in Three Gorges Area, South China. Palaeoworld, 30(1): 1~19.

    • Han Jian, Li Guoxiang, Kubota S, Ou Qiang, Toshino S, Wang Xing, Yang Xiaoguang, Uesugi K, Masato H, Sasaki O, Kano H, Sato T, Komiya T. 2016. Internal microanatomy and zoological affinity of the Early Cambrian Olivooides. Acta Geologica Sinica (English Edition), 90(1): 38~65.

    • Harvey R P. 1998. Links in the left/right axial pathway. Cell, 94(3): 273~276.

    • Hashimoto T. 2002. Molecular genetic analysis of left-right handedness in plants. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 357(1422): 799~808.

    • Henley C L. 2012. Possible origins of macroscopic left-right asymmetry in organisms. Journal of Statistical Physics, 148(4): 740~774.

    • Iakovleva N V, Gorbushin A M, Zelck U E. 2006. Partial characterization of mitogen-activated protein kinases (MAPK) from haemocytes of the common periwinkle, Littorina littorea (Gastropoda: Prosobranchia). Fish and Shellfifish Immunology, 20(4): 665~668.

    • Ivantsov A Y, Vickers-Rich P, Zakrevskaya M A, Hall M. 2019. Conical thecae of Precambrian macroorganisms. Paleontological Journal, 53(11): 1134~1146.

    • Jiang Zhiwen. 1984. Evolution of early shelly metazoans and basic characteristics of Meishucun fauna. Proceedings of Strgraphic Paleontology, 13: 1~26 (in Chinese with English abstract).

    • Kouchinsky A, Bengtson S. 2002. The tube wall of Cambrian anabaritids. Acta Palaeontologica Polonica, 47(3): 431~444.

    • Kouchinsky A, Bengtson S, Feng Weimin, Kutygin R, Val'kov A. 2009. The Lower Cambrian fossil anabaritids: Affinities, occurrences and systematics. Journal of Systematic Palaeontology, 7(3): 241~293.

    • Kouchinsky A, Bengtson S, Sébastien C, Vendrasco M. 2015. An Early Cambrian fauna of skeletal fossils from the Emyaksin Formation, Northern Siberia. Acta Palaeontologica Polonica, 60(2): 421~512.

    • Kouchinsky A, Bengtson S, Landing E, Steiner M, Vendrasco M, Ziegler K. 2017. Terreneuvian stratigraphy and faunas from the Anabar Uplift, Siberia. Acta Palaeontologica Polonica, 62(2): 311~440.

    • Kouchinsky A, Alexander R, Bengtson S, Bowyer F, Clausen S, Holmer L E, Kolesnikov K A, Korovnikov I V, Pavlov V, Skovsted C B, Ushatinskaya G, Wood R, Zhuravlev A Y. 2022. Early-Middle Cambrian stratigraphy and faunas from Northern Siberia. Acta Palaeontologica Polonica, 67(2): 341~464.

    • Kuilling O. 1955. Den Kaledonska fjöllkedjaas berggrund inom Västerbottens län. Sveriges Geologiska Undersäking, Serie C, 3: 101~296.

    • Levin M. 2005. Left-right asymmetry in embryonic development: A comprehensive review. Mechanisms of Development, 122(1): 3~25

    • Li Peng, Hua Hong, Zhang Luyi, Zhang Dongdong, Jin Xianbao, Liu Zhu. 2007. Internal microstructure and affiliation of theLower Cambrian Anabarites from southern Shaanxi, China. Acta Palaeontologica Sinica, 46(3): 327~333 (in Chinese with English abstract).

    • Lin Gonghua, Ci Haixin, Liu Yongan, Su Jianping. 2010. Phylogenetic development analysis of chirality of twining plants. Anhui Agricultural Science, 38(8): 3944~3947+3950 (in Chinese with English abstract).

    • Liu Baojun, Xu Xiaosong, Luo Anping, Kang Chenglin. 1987. Storm events and phosphate deposition Cambrian on the western margin of the Yangtze platform, China. Acta Sedimentologica Sinica, 5(3): 28~39+186 (in Chinese with English abstract).

    • Liu Ping, Yang Xiaoguang, Tang Qingqin, He Kaiyue, Zhang Yiheng. 2021. Computational fluid dynamics analysis of the gregarious behavior of Anabarites trisulcatus from the Early Cambrian. Acta Micropalaeontologica Sinica, 38(3): 234~240 (in Chinese with English abstract).

    • Luo Huilin, Jiang Zhiwen, Wu Xiche, Song Xueliang, Ouyang Lin. 1982. The Sinian-Cambrian Boundary in Eastern Yunnan, China. Kunming: Yunnan People's Publishing House (in Chinese).

    • Martindale M Q. 2005. The evolution of metazoan axial properties. Nature Reviews Genetics, 6: 917~927.

    • Missarzhevsky V V. 1974. New data on the oldest fossils of the Early Cambrian of the Siberian platform. In: Zhuravleva I T and Rozanov A Y, eds. Biostratigraphy and Palaeontology of the Lower Cambrian of Europe and Northern Asia. Nauka, Moscow, 179~189, (in Russian).

    • Missarzhevsky V V. 1983. Stratigraphy of the oldest Phanerozoic strata of the Anabar massif. Sovetskaya geologiya, 62~73 (in Russian).

    • Missarzhevsky V V. 1989. The oldest skeletal fossils and stratigraphy of the Precambrian-Cambrian boundary beds. Trudy Geologicheskogo Instituta, Akademiâ Nauk SSSR, 443: 237 (in Russian).

    • Palmer A R. 1996. From symmetry to asymmetry: Phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proceedings of the National Academy of Sciences of the United States of America, 93(25): 14279~14286.

    • Palmer A R. 2009. Animal asymmetry. Current Biology, 19(12): R473~R477.

    • Parkhaev P Y, Demidenko Y E. 2010. Zooproblematica and mollusca from the Lower Cambrian Meishucun section (Yunnan, China) and taxonomy and systematics of the Cambrian small shelly fossils of China. Paleontological Journal, 44(8): 883~1161.

    • Persson A. 1998. How do we understand the Coriolis force? Bulletin of the American Meteorological Society, 79: 1373~1385.

    • Qian Yi. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucun Stage in central and S. W. China. Acta Paleontologica Sinica, 16(2): 259~260 (in Chinese with English abstract).

    • Qian Yi. 1978. The Early Cambrian hyolithids in central and Southwest China and their stratigraphical significance. Journal of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, No. 11, 1~38 (in Chinese with English abstract).

    • Qian Yi. 1999. Taxonomy and Biostratigraphy of Small Shelly Fossils in China. Beijing: Science Press (in Chinese with English abstract).

    • Qian Yi, Yin Gongzheng. 1984. Small shelly fossils from the lowerest Cambrian in Guizhou. Proceedings of Stratigraphic Paleontology, 2: 91~129 (in Chinese with English abstract).

    • Qian Yi, Bengtson S. 1989. Paleontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province of South China. Fossils and Strata, 24: 1~156.

    • Rogov V I, Karlova G A, Marusin V V, Kochnev B B, Nagovitsin K E, Grazhdankin D V. 2015. Duration of the first biozone in the Siberian hypostratotype of the Vendian. Russian Geology and Geophysics, 56(4): 573~583.

    • Rosén S. 1919. Uber einige neue problematica in einem fossilfuhrenden kalkshtein aus dem nordschwedischen Hochgebirge. Bulletin of the Geological Institute of the University of Uppsala, 16: 159~168.

    • Rozanov A Y, Missarzhevsky V V, Volkova N A, Voronova L G, Krylov I N, Keller B M, Korolyuk I K, Lendzion K, Michniak R, Pyhova N G, Sidorov A D. 1969. The Tommotian Stage and the Cambrian lower boundary problem. Trudy Geologicheskogo Instituta, Akademi Nauk SSSR, 206: 1~380 (in Russian).

    • Schierwater B, Kamm K. 2010. The early evolution of Hox genes: A battle of believe? Oxygen Transport to Tissue XXXIII, 689: 81~90.

    • Sendino C, Zágoršek K, Taylor P D. 2012. Asymmetry in an Ordovician conulariid cnidarian. Lethaia, 45(3): 423~431.

    • Shao Tiequan, Wang Qi, Liu Yunhuan, Tang Hanhua, Zhang Yanan, Xue Guoqiang, Wang Zhaojing. 2015. Research on the symmetrical evolution of Anabarites from the Cambrian Xixiang biota in southern Shaanxi province. Acta Micropalaeontologica Sinica, 32(4): 396~402 (in Chinese with English abstract).

    • Smyth D R. 2016. Helical growth in plant organs: Mechanisms and significance. Development, 143(18): 3272~3282.

    • Song Zuchen, Guo Junfeng, Han Jian, Van Iten H, Qiang Yaqin, Peng Jiaxin, Sun Jie, Zhang Zhifei. 2022. A new species of Septuconularia (Hexangulaconulariidae, Cnidaria) from Cambrian Stage 2, South China. Acta Geologica Sinica (English Edition), 96(3): 757~765.

    • Steiner M, Li Guoxiang, Qian Yi, Zhu Maoyan. 2004. Lower Cambrian small shelly fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance. Geobios, 37: 259~275.

    • Steiner M, Yang Ben, Hohl S, Zhang Lei, Chang Shan. 2020. Cambrian small skeletal fossil and carbon isotope records of the southern Huangling Anticline, Hubei (China) and implications for chemostratigraphy of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 554: 1~19.

    • Sun Chen. 2018. Terminal Ediacaran microfossil biota from the northwestern margin of the Yangtze platform. Master's thesis of Northwest University (in Chinese with English abstract).

    • Sysoev V A. 1965. Main features of evolution of hyoliths. In: Vozin V F, ed. Palaeontology and Biostratigraphy of Palaeozoic and Triassic Deposits of Yakutia. Nauka, Moscow, 5~20, (in Russian).

    • Torsvik T H, Cocks L R M. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geological Society London Memoirs, 38(1): 5~24.

    • Val'kov A K, Sysoev V A. 1970. Cambrian angustiochreids of Siberia. In: Bobrov A K, (ed. ), Stratigrafiyâ I Paleontologiyâ Proterozoyâ I Kembriyâ Vostoka Sibirskoj Platformy. Âkutskoe Knižnoe Izdatel'stvo, Âkutsk, 94~100 (in Russian).

    • Val'kov, A K. 1982. Lower Cambrian Biostratigraphy of the Eastern Siberian Platform. Moscow: Nauka, 92 (in Russian).

    • Verrill A E. 1865. Classification of polyps (extract condensed from synopsis of the Polyps and Corals of the North Pacific Exploring Expedition under Commodore C. Ringgold and Captain John Rogers, U. S. N. ). Communications of the Essex Institute, 4: 145~152.

    • Voronova L G, Missarzhevsky V V. 1969. Finds of algae and worm tubes in the Precambrian-Cambrian boundary beds of the northern part of the Siberian platform. Doklady Akademi Nauk SSSR, 184: 207~210 (in Russian).

    • Wada H, Matsumoto D. 2018. Twisting growth in plant roots. Plant Biomechanics: From Structure to Function at Multiple Scales, 127~140.

    • Wang Qi, Liu Yunhuan, Shao Tiequan, Zhang Hu, Zhang Yanan, Tang Hanhua, Jiang Kaiqing, Wang Zhaojing, Pang Guotao, Qin Jiachen. 2017. Research on the tubular fossils on the Cambrian Xixiang biota in southern Shaanxi Province, NW China. Acta Micropalaeontologica Sinica, 34(1): 49~60 (in Chinese with English abstract).

    • Watanabe H, Schmidt H A, Kuhn A, Höger S K, Kocagöz Y, Laumann-Lipp N, Özbek S, Holstein T W. 2014. Nodal signalling determines biradial asymmetry in Hydra. Nature, 515: 112~115.

    • Xiao Bing. 1989. Review of the age of Uyirtus Formation in the light of the discovery of Anabarites. Xinjiang Geology, 7 (4): 35~39 (in Chinese with English abstract).

    • Xing Yusheng, Ding Qixiu, Luo Huilin, He Tinggui, Wang Yangeng, et al. 1983. The Sinian-Cambrian Boundary of China. Institute of Geology, Chinese Academy of Geological Sciences, 10: 1~262 (in Chinese with English abstract).

    • Yang Xiaoguang, Han Jian. 2017. Ambient inclusion trails and microboring structures on Early Cambrian microfossils. Chinese Science Bulletin, 62(35): 1~10 (in Chinese with English abstract).

    • Yin Jicheng, Ding Lianfang, He Tinggui, Lin Changbao. 1980. On the Sinian-Cambrian boundary in Gaoqiao County, Emei, Sichuan. Bulletin Chinese Academy Geological Sciences (series Ⅰ), 2(1): 59~74 (in Chinese).

    • Zhang Yanan, Liu Yunhuan, Shao Tiequan, Wang Qi, Qin Jiachen, Li Linlu, Zhou Xingyu. 2022. The morphology and affinity of anabaritids revealed by their internal moldsfrom the Cambrian Fortunian, Southern Shaanxi, China. Palaeoworld, 96(2): 1~7.

    • Zhu Maoyan, Zhang Junming, Steiner M, Yang Aihua, Li Guoxiang, Erdtmann B D. 2003. Sinian-Cambrian stratigraphic framework for shallow- to deep- water environments of the Yangtze platform: An integrated approach. Progress in Natural Science, 13(12): 951~960.

    • Zhu Maoyan, Zhuravlev A Y, Wood R A, Zhao Fangchen, Sukhov S S. 2017. A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian platform. Geology, 45(5): 459~462.

    • Zhuravlev A Y, Liñán E, Gámez Vintaned J A, Debrenne F. Fedorov A B. 2012. New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian platform and Spain. Acta Palaeontologica Polonica, 57(1): 205~224.

    • Zhuravlev A Y, Wood R A. 2018. The two phases of the Cambrianexplosion. Scientific Reports, 8(1): 1~10.

    • 陈均远, 彭晴晴. 2005. 寒武纪早期疑难生物类群阿纳巴管 (Anabarites) 亲缘性的探讨. 古生物学报, 1: 57~65.

    • 陈平. 1984. 湖北宜昌计家坡下寒武统底部小壳化石的发现及其意义. 地层古生物论文集, 13: 49~64.

    • 丁莲芳, 张录易, 李勇, 董军社. 1992. 扬子地台北缘晚震旦世—早寒武世早期生物群研究. 北京: 科学技术文献出版社.

    • 冯曼. 2005. 陕南宁强地区和安徽巢湖地区早寒武世小壳化石Anabarites之比较. 微体古生物学报, 22(4): 412~416.

    • 高振家, 王务严, 彭昌文, 李永安, 肖兵. 1985. 新疆阿克苏—乌什地区震旦系. 新疆: 新疆人民出版社.

    • 蒋志文. 1984. 早期带壳生物演化及梅树村动物群的基本特征. 地层古生物论文集, 13: 1~26.

    • 李朋, 华洪, 张录易, 张东东, 金显宝, 刘竹. 2007. 陕南早寒武世Anabarites, 壳体内部结构及亲缘关系探讨. 古生物学报, 3: 327~333.

    • 林恭华, 慈海鑫, 刘永安, 苏建平. 2010. 缠绕植物手性的系统发育分析. 安徽农业科学, 38(8): 3944~3947+3950.

    • 刘宝珺, 许效松, 罗安屏, 康承林. 1987. 中国扬子地台西缘寒武纪风暴事件与磷矿沉积. 沉积学报, 5(3): 28~39+186.

    • 刘平, 杨晓光, 唐清钦, 何凯悦, 张毅恒. 2021. 寒武纪早期锥管状化石Anabarites trisulcatus群居行为的计算流体力学分析. 微体古生物学报, 38(3): 234~240.

    • 罗惠麟, 蒋志文, 武希彻, 宋学良, 欧阳麟. 1982. 云南东部震旦系—寒武系界线. 昆明: 云南人民出版社.

    • 钱逸. 1977. 华中西南区早寒武世梅树村阶的软舌螺纲及其他化石. 古生物学报, 16(2): 259~260.

    • 钱逸. 1978. 华中西南区早寒武世软舌螺化石的研究及其地层意义. 中国科学院南京地质古生物研究所集刊, 11: 1~38.

    • 钱逸. 1999. 中国小壳化石分类学与生物地层学. 北京: 科学出版社.

    • 钱逸, 尹恭正. 1984. 贵州早寒武世早期小壳动物化石的研究. 地层古生物论文集, 2: 91~129.

    • 邵铁全, 王琪, 刘云焕, 唐汉华, 张亚楠, 薛国强, 王朝景. 2015. 陕南寒武纪西乡生物群中Anabarites对称性演化研究. 微体古生物学报, 32(4): 396~402.

    • 孙辰. 2018. 扬子地台西北缘埃迪卡拉纪末期微体化石生物群研究. 西北大学硕士学位论文.

    • 王琪, 刘云焕, 邵铁全, 张虎, 张亚楠, 唐汉华, 姜开拓, 王朝景, 庞国涛, 秦嘉琛. 2017. 陕南寒武纪梅树村期西乡生物群中的管状化石研究. 微体古生物学报, 34(1): 49~60.

    • 肖兵. 1989. 化石Anabarites的发现及再论玉尔吐斯组的时代归属. 新疆地质, 7(4): 35~39.

    • 邢裕盛, 丁启秀, 罗惠麟, 何廷贵, 王砚耕, 等. 1983. 中国震旦系—寒武系界线. 北京: 地质出版社, 中国地质科学院地质研究所所刊, 第10号: 1~262.

    • 杨晓光, 韩健. 2017. 寒武纪早期微体化石上的异质体拖曳迹与微型钻孔结构. 科学通报, 62(35): 1~10.

    • 殷继成, 丁莲芳, 何廷贵, 林昌宝. 1980. 四川峨眉高桥震旦系—寒武系界线. 中国地质科学院院报, 2(1): 59~74.