en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈学根,男,1996年生。在读博士生,矿物学、岩石学、矿床学专业。E-mail:1651826761@qq.com。

通讯作者:

苏尚国,男,1965年生。教授,博士生导师,主要从事岩石学及矿床学的教学及研究工作。E-mail:susg@cugb.edu.cn。

参考文献
Audétat A, Keppler H. 2004. Viscosity of fluids in subduction zones. Science, 303(5657): 513~516.
参考文献
Ballhaus C G, Stumpfl E F. 1986. Sulfide and platinum mineralization in the Merensky Reef: Evidence from hydrous silicates and fluid inclusions. Contributions to Mineralogy and Petrology, 94(2): 193~204.
参考文献
Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42: 2279~2302.
参考文献
Boudreau A. 2016. The Stillwater Complex, Montana—Overview and the significance of volatiles. Mineralogical Magazine, 80(4): 585~637.
参考文献
Boudreau A. 2019. Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions. New York: Cambridge University Press, 1~275.
参考文献
Brimhall G H, Crerar D A. 1987. Ore fluids: Magmatic to supergene. In: Reviews in Mineralogical & Geochemistry. Mineralogical Society of American, Geochemistry Society.
参考文献
Campos-Alvarez N O, Samson I M, Fryer B J. 2012. The roles of magmatic and hydrothermal processes in PGE mineralization, Ferguson Lake deposit, Nunavut, Canada. Mineralium Deposita, 47(4): 441~465.
参考文献
Chai G, Naldrett A J. 1992. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, Northwest China. Economic Geology, 87(6): 1475~1495.
参考文献
Chen Liemeng, Song Xieyan, Danyushevsky L V. 2015. Occurrence and genesis of platinum group elements in metal sulfide of Jinchuan Cu-Ni deposit. Acta Mineralogica Sinica, 35(S1): 142 (in Chinese).
参考文献
Chen Liemeng, Song Xieyan, Danyushevsky L V, Wang Yushan, Tian Yulong, Xiao Jiafei. 2015. A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni-Cu sulfide deposit, NW China. Ore Geology Reviews, 65: 955~967.
参考文献
Dong Shaohua, Bi Xianwu, Hu Ruizhong, Chen Youwei, Chen Heng. 2011. Characteristics of ore-forming fluid in Yaogangxian quartz-vein wolframite deposit, Hunan Province. Journal of Mineralogy and Petrology, 31(2): 54~60 (in Chinese with English abstract)
参考文献
Dong Yu, Wei Bo, Wang C Y. 2021. Major types and occurrences of platinum-group minerals in the Jinchuan Ni-Cu-(PGE) sulfide deposit: Insights for PGE enrichment during hydrothermal alteration. Acta Petrologica Sinica, 37(9): 2875~2888 (in Chinese with English abstract).
参考文献
Fleet M E, Stone W E, Crocket J H. 1991. Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: Effects of melt composition, concentration, and oxygen fugacity. Geochimica et Cosmochimica Acta, 55(9): 2545~2554.
参考文献
Fleet M E, Crocket J H, Liu Menghua, Stone W E. 1999. Laboratory partitioning of platinum group elements (PGE) and gold with application to magmatic sulfide PGE deposits. Lithos, 47(1-2): 127~142.
参考文献
Hack A C, Thompson A B, Aerts M. 2007. Phase relations involving hydrous silicate melts, aqueous fuids, and minerals. Reviews in Mineralogy and Geochemistry, 65(1): 129~185.
参考文献
Helmy H M, Bragagni A. 2017. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020℃. Geochimica et Cosmochimica Acta, 216: 169~183.
参考文献
Helmy H M, Fonseca R O C. 2017. The behavior of Pt, Pd, Cu and Ni in the Se-sulfide system between 1050 and 700℃ and the role of Se in platinum-group elements fractionation in sulfide melts. Geochimica et Cosmochimica Acta, 216: 141~152
参考文献
Holloway J R. 1981. Volatile Interactions in Magmas. New York: Springer.
参考文献
Hulbert L J. 1991. Geological Environment of Platinum Group Metals. Translated by Shen Chengheng, Liu Daorong, Lu Jun. Beijing: Geological Publishing House (in Chinese).
参考文献
Jiang Jinjin, Song Xieyan, Chen Liemeng, Wang Liang, Fu Zhiqiang, 2014. Geochemistry and petrogenetic significances of semimetal and platinum group elements of the Longshou mine of the Jinchuan Ni-Cu sulfide deposit. Bulletin of Mineralogy, Petrology and Geochemistry, 33(6): 882~892 (in Chinese with English abstract).
参考文献
Jiao Jiangang, Tang Zhongli, Yan Haiqing, Xu Gang, He Ke, Duan Jun. 2012. PGE characteristics of Cu-rich ores in the Jinchuan Cu-Ni sulfide deposit and its genesis. Northwestern Geology, 45(2): 242~253 (in Chinese with English abstract).
参考文献
Jiao Jiangang, Han Feng, Zhao Liandang, Duan Jun, Wang Mengxi. 2019. Magnetite geochemistry of the Jinchuan Ni-Cu-PGE deposit, NW China: Implication for its ore-forming processes. Minerals, 9: 593.
参考文献
Keppler H, Wyllie P J. 199l. Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems hap-logranite-H2O-HCl and haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109: 139~150.
参考文献
Kessel R, Ulmer P, Pettke T, Schmidt M W, Thompson A B. 2005a. The water-basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400℃. Earth and Planetary Science Letters, 237(3-4): 873~892.
参考文献
Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005b. Trace element signature of subduction-zone fuids, melts and supercritical liquids at 120-180 km depth. Nature, 437(7059): 724~727.
参考文献
Li Chusi, Xu Zhanghua, de Waal S A, Ripley E M, Maier W D. 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis. Mineralium Deposita, 39(2): 159~172.
参考文献
Li Xiaochun, Zhou Meifu. 2015. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China. Geochimica et Cosmochimica Acta, 166: 53~73.
参考文献
Liang Qinglin, Song Xieyan, Richard W, Chen Liemeng, Yu Songyue, Nadezhda A, Krivolutskaya N A, Dai Zhihui. 2022. Thermodynamic conditions control the valences state of semimetals thus affecting the behavior of PGE in magmatic sulfide liquids. Geochimica et Cosmochimica Acta, 321: 1~15.
参考文献
Liu Meiyu, Su Shangguo, Song Chen, Cai Nan. 2015. Moving direction of magmatic conduit metallogenic system in Jinchuan Cu-Ni(PGE)sulfide deposit. Engineering Science, 17(2): 12 (in Chinese with English abstract).
参考文献
Liu Meiyu, Zhou Meifu, Su Shangguo, Chen Xuegen. 2021. Contrasting geochemistry of apatite from peridotites and sulfide ores of the Jinchuan Ni-Cu sulfide deposit, NW China. Economic Geology, 116(5): 1073~1092.
参考文献
Liu Weihua, Borg S, Testemale D, Etschmann B, Hazemann J L, Brugger J. 2010. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35-440 degrees and 600 bar: An in-situ xas study. Geochimica et Cosmochimica Acta, 75(5): 1227~1248.
参考文献
London D. 1997. Estimating abundances of volatile and other mobile components in evolved silicic melts through mineral-melt equilibria. Journal of Petrology, 38: 1691~1706.
参考文献
Mansur E T, Barnes S J, Duran C J. 2021. An overview of chalcophile element contents of pyrrhotite, pentlandit, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits. Mineralium Deposita, 56(1): 179~204.
参考文献
Migdisov A A, Zezin D, Williams-Jones A E. 2011. An experimental study of cobalt (II) complexation in Cl- and H2S-bearing hydrothermal solutions. Geochim Cosmochim Acta, 75: 4065~4079.
参考文献
Molnar F, Watkinson D H, Jones P C. 2001. Multiple hydrothermal processes in footwall units of the north range, sudbury igneous complex, Canada, and implications for the genesis of vein-type Cu-Ni-PGE deposits. Economic Geology, 96 (7): 1645~1670.
参考文献
Mungall J E, Brenan J M. 2003. Experimental evidence for the chalcophile behavior of the halogens. Canadian Mineralogist, 41(1): 207~220.
参考文献
Mungall J E, Brenan J M, Godel B, Barnes S J, Gaillard F. 2015. Transport of metals and sulphur in magmas by flortation of sulphide melt on vapour bubbles. Nature Geosicence, 8(3): 216~219.
参考文献
Naldrett A J. 1999. World-class Ni-Cu-PGE deposits: Key factors in their genesis. Mineralium Deposita, 34(3): 227~240.
参考文献
Naldrett T, Kinnaird J, Wilson A, Chunnett G. 2008. Concentration of PGE in the Earth's crust with special reference to the bushveld complex. Earth Science Frontiers, 15(5): 264~297.
参考文献
Ni Huaiwei, Zhang Li, Xiong Xiaolin, Mao Zhu, Wang Jingyun. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Science Reviews, 167: 62~71.
参考文献
Prichard H M, Knight R D, Fisher P C, McDonald I, Zhou Meifu, Wang Christina Y. 2013. Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China: An example of selenium remobilization by postmagmatic fluids. Mineralium Deposita, 48(6): 767~786.
参考文献
Song Chen. 2015. Magmatic channel metallogenic system of Jinchuan Cu-Ni (platinum) sulfide deposit. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese).
参考文献
Song Xieyan, Zhou Meifu, Wang Christineyan, Qi Liang, Zhang Chengjiang. 2006. Role of crustal contamination in the formation of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. International Geology Review, 48: 1113~1132.
参考文献
Song Xieyan, Keays R R, Zhou Meifu, Qi Liang, Ihlenfeld C, Xiao Jiafei. 2009. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochimica et Cosmochimica Acta, 73(2): 404~424.
参考文献
Song Xieyan, Danyushevsky L V, Keays R R, Chen Liemeng, Wang Yushan, Tian Yulong, Xiao Jiafei. 2012. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China. Mineralium Deposita, 47(3): 277~297.
参考文献
Song Xieyan, She Yuwei, Chen Liemeng. 2016. Geochemical characteristics and significance of platinum-group elements in stratified pluton in Emei igneous province. Geological Society of China, Chinese Society of Mineralogy, Petrology and Geochemistry, China Mining Association (in Chinese).
参考文献
Stone W E, Crocket J H, Fleet M E. 1990. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200℃. Geochimica et Cosmochimica Acta, 54(8): 2341~2344.
参考文献
Su Shangguo, Zhou Meifu, Qi Liang, Li Chusi, Tang Zhongli, Geng Ke. 2006. Enrichment mechanism of platinum and palladium in Jinchuan Cu-Ni-PGE deposit, Gansu Province. National Conference on Mineral Deposits. Geological Society of China, Chinese Society of Mineralogy, Petrology and Geochemistry, China Mining Association (in Chinese).
参考文献
Su Shangguo, Shen Cunli, Deng Jinfu, Tang Zhongli, Geng Ke. 2007. Geochemistry behavior of platinum group elements (PGE) and main types of PGE deposits in the world. Geoscience, 21 (2): 361 (in Chinese with English abstract).
参考文献
Su Shangguo, Li Chusi, Zhou Meifu, Edward M R, Qi Liang. 2008. Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China.Mineralium Deposita, 43(6): 609~622.
参考文献
Su Shangguo, Lu Xin, Santosh M, Hou Jianguang, Cui Ying, Cui Xiaoliang. 2021. Geochemical and Fe-isotope characteristics of the largest Mesozoic skarn deposit in China: Implications for the mechanism of Fe skarn formation. Ore Geology Reviews, 138: 104400.
参考文献
Sun He, Tang Dongmei, Qin Kezhang, Fan Xin, Xiao Qinghua, Su Benxun. 2009. Advances of geochemical behavior of chalcophile elements and applications in metallogeny of magmatic Cu-Ni-PGE sulfide deposits. Geological Review, 55(6): 840~850 (in Chinese with English abstract).
参考文献
Tang Zhongli. 1993. Genetic model of the Jinchuan nickel-copper deposit. Geological Association of Canada Special Paper, 40: 389~401.
参考文献
Tang Zhongli. 1993. Model and regional metallogenic prediction of Jinchuan Cu-Ni sulfide (platinum-bearing) deposit. Gansu Provincial Bureau of Geology and Mineral Resources, Jinchuan Nonferrous Metal Company (in Chinese).
参考文献
Tang Zhongli, Li Wenyuan. 1995. The Metallogenetic Model and Geological Contrast of the Jinchuan Platinum Bearing Cu-Ni Sulfide Deposit. Beijing: Geological Publishing House (in Chinese).
参考文献
The Sixth Geological Team of Gansu Provincial Bureau of Geology and Mineral Resources. 1984. Geology of Baijiazuizi Cu-Ni Sulfide Deposit. Beijing: Geological Publishing House (in Chinese).
参考文献
Tonnelier N J. 2010. Geology and genesis of the Jinchuan Ni-Cu-(PGE) deposit, China. Doctoral dissertation of Laurentian University.
参考文献
Vatin-Perignon N, Amosse J, Radelli L, Keller F, Leyva T C. 2000. Platinum group element behaviour and thermochemical constraints in the ultrabasic-basic complex of the Vizcaino Peninsula, Baja California Sur, Mexico. Lithos, 53(1): 59~80.
参考文献
Wang Yan, Zhong Hong, Cao Yonghua, Wei Bo, Chen Chen. 2020. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review. Chinese Science Bulletin, 65(33): 3825~3838 (in Chinese with English abstract).
参考文献
Webster J D, Tappen C M, Mandeville C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200 MPa. Geochimica et Cosmochimica Acta, 73: 559~581.
参考文献
Wood S A, Williams-Jones A E. 2007. Speciation and solubility of Co (II) in the system Co-O-H-Cl-S at saturated water vapor pressure up to 300℃. In: Bullen T D, Wang Y, eds. Water-Rock Interaction(Vols. 1 and 2). London: Taylor and Francis Ltd, 395~398.
参考文献
Xiong Xiaolin, Ni Huaiwei, Chen Wei, Ruan Mengfei, Wang Jintuan, Liu Xingchen, Li Li. 2020. Element migration of supercritical fluids in subduction zones: Progress and problems of experimental researches. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 502~508 (in Chinese with English abstract).
参考文献
Yang Jingsui, Zheng Xinhua, Wang Xibin, Shi Rendeng. 1999. New progress on genesis of Cu-Co-Zn sulfide deposit in Derni-also on the surrounding rock of the deposit being ophiolite mantle peridotite rather than ultrabasic volcanic rock. Earth Science Frontiers, 16(1): 2(in Chinese).
参考文献
Yang Xuanzhu, Ishihara S, Zhao D H. 2006. Genesis of the Jinchuan PGE, deposit, China: Evidence from fluid inclusions, mineralogy and geochemistry of precious elements. Mineralogy and Petrology, 86(1-2): 109~128.
参考文献
Zeng Renyu, Lai Jianqing, Mao Xiancheng, Zhao Yin, Liu Pin, Zhu Jiawei, Yue Bin, Ai Qixing. 2016. Distinction of platinum group elements geochemistry in Jinchuan Cu-Ni sulfide deposit and its implication for magmatic evolution. The Chinese Journal of Nonferrous Metals, 26(1): 149~163 (in Chinese with English abstract).
参考文献
Zhang Mingjie, Tang Qingyan, Li Wenyuan, Yu Ming, Hu Peiqing, Li Jianping. 2015. The roles of volatiles in mineralizations of magmatic Ni-Cu-PGE sulfide deposits-implications for potential metallogenic mechanism of super-large scale magmatic deposits in small magma. Engineering Science, 17(2): 40~49 (in Chinese with English abstract).
参考文献
Zhu Wenfeng, Liang Youbin. 2000. Occurrence state and distribution of platinum group elements in the Jinchuan Cu-Ni sulphide deposit. Geology and Prospecting, 36(1): 26~28 (in Chinese with English abstract).
参考文献
陈列锰, 宋谢炎, Danyushevsky L V. 2015. 金川铜镍矿床金属硫化物中铂族元素赋存状态及成因. 矿物学报, 35(S1): 142.
参考文献
董宇, 魏博, 王焰. 2021. 金川铜镍硫化物矿床中铂族矿物的主要类型和产出特征: 热液蚀变过程中铂族元素的富集机理. 岩石学报, 37(9): 2875~2888.
参考文献
Hulbert L J. 1991. 铂族金属的地质环境. 沈承珩, 刘道荣, 卢军, 等译. 北京: 地质出版社.
参考文献
甘肃省地质矿产局第六地质队. 1984. 白家咀子硫化铜镍矿床地质. 北京: 地质出版社.
参考文献
江金进, 宋谢炎, 陈列锰, 王亮, 符志强. 2014. 金川铜镍矿床龙首矿区半金属元素与铂族金属地球化学特征及成因意义. 矿物岩石地球化学通报, 33(6): 882~892.
参考文献
焦建刚, 汤中立, 闫海卿, 徐刚, 何克, 段俊. 2012. 金川铜镍硫化物矿床中富铜矿石铂族金属特征及矿床成因. 西北地质, 45(2): 242~253.
参考文献
刘美玉, 苏尚国, 宋晨, 蔡楠. 2015. 甘肃金川铜镍(铂)硫化物矿床岩浆通道前进方向探讨. 中国工程科学, 17(2): 12.
参考文献
宋晨. 2015. 金川铜镍(铂)硫化物矿床岩浆通道成矿系统. 中国地质大学(北京)博士学位论文.
参考文献
宋谢炎, 佘余伟, 陈列锰. 2016. 峨眉大火成岩省层状岩体铂族元素地球化学特征及其意义. 中国地质学会, 中国矿物岩石地球化学学会, 中国矿业联合会.
参考文献
苏尚国, 周美夫, 漆亮, 李楚斯, 汤中立, 耿科. 2006. 甘肃金川铜镍铂矿床铂钯富集体富集机理. 全国矿床会议. 中国地质学会, 中国矿物岩石地球化学学会, 中国矿业联合会.
参考文献
苏尚国, 沈存利, 邓晋福, 汤中立, 耿科. 2007. 铂族金属的地球化学行为及全球主要铂族金属矿床类型. 现代地质, 21 (2): 361.
参考文献
孙赫, 唐冬梅, 秦克章, 范新, 肖庆华, 苏本勋. 2009. 亲铜元素的地球化学行为研究进展及其在岩浆硫化物矿床中的应用. 地质论评, 55(6): 840~850.
参考文献
汤中立. 1993. 甘肃金川铜镍硫化物(含铂)矿床模式及区域成矿预测. 甘肃省地矿局, 金川有色金属公司.
参考文献
汤中立, 李文渊. 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比. 北京: 地质出版社.
参考文献
王焰, 钟宏, 曹勇华, 魏博, 陈晨. 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制. 科学通报, 65(33): 3825~3838.
参考文献
熊小林, 倪怀玮, 陈伟, 阮梦飞, 王锦团, 刘星成, 李立. 2020. 俯冲带超临界流体的元素迁移: 实验研究进展和存在的问题. 矿物岩石地球化学通报, 39(3): 502~508.
参考文献
杨经绥, 郑新华, 王希斌, 史仁灯. 1999. 德尔尼Cu-Co-Zn硫化物矿床的成因探讨新进展——兼论矿床围岩是蛇绿岩地幔橄榄岩而不是超基性火山岩. 地学前缘, 16(1): 2.
参考文献
张铭杰, 汤庆艳, 李文渊, 余明, 胡沛青, 李建平. 2015. 岩浆镍铜铂族矿床成矿过程中流体的作用: 对小岩体超大型矿床的启示. 中国工程科学, 17(2): 40~49.
参考文献
曾认宇, 赖健清, 毛先成, 赵莹, 刘嫔, 朱佳玮, 岳斌, 艾启兴. 2016. 金川铜镍硫化物矿床铂族金属地球化学差异及其演化意义. 中国有色金属学报, 26(1): 149~163.
参考文献
朱文凤, 梁有彬. 2000. 金川铜镍硫化物矿床铂族元素的赋存状态及分布规律. 地质与勘探, 36(1): 26~28.
目录contents

    摘要

    金川岩浆铜镍(铂)硫化物矿床是我国最主要的铂族等战略性关键金属宝库。金川矿床中铂族金属的富集过程和富集机制还存在很多争论。本文通过详细的矿物学及矿床学研究,厘定了金川矿床成矿阶段。成矿阶段可划分为硫化物矿浆结晶阶段、挥发分流体作用阶段及热液改造阶段。其中硫化物矿浆结晶阶段的主要矿物组合为镍黄铁矿(Pn-a)-磁黄铁矿(Po-a)-黄铜矿(Ccp-a);挥发分流体作用阶段的主要矿物组合为镍黄铁矿(Pn-b)-磁黄铁矿(Po-b)-黄铜矿(Ccp-b)-黄铁矿(Py-Ⅰ)-磁铁矿(Mag-Ⅰ)-菱铁矿-叶蛇纹石-磷灰石-铬铁矿-白云石-方解石(Cal-Ⅰ)-金云母。热液改造阶段的矿物组合为透闪石-绿泥石-蛇纹石-方解石(Cal-Ⅱ)-磁铁矿(Mag-Ⅱ)。高倍电子探针镜下发现,金川矿床铂族矿物与磁铁矿(Mag-Ⅰ)、黄铁矿(Py-Ⅰ)、铬铁矿、磷灰石、黄铜矿、磁黄铁矿、镍黄铁矿及菱铁矿等共生。金川铜镍硫化物矿床中铂族元素(PGM)矿物主要包括硫砷铱矿(IrAsS)、钯的铋化物、碲化物和硒化物、钯的金属互化物(PdAu2)、砷铂矿(PtAs2)、铂单质以及铂的金属合金(Pt-Fe)。其中大量的PGM分布于镍黄铁矿的裂隙中,或产于镍黄铁矿、磁黄铁矿及蛇纹石裂隙中。与磁铁矿、菱铁矿、铬铁矿、黄铜矿、磷灰石以及叶蛇纹石等矿物共生,指示PGE富集与氧化性流体加入密切相关。金川矿石镍黄铁矿(Pn-b)、磁黄铁矿(Po-b)、黄铜矿(Ccp-b)、黄铁矿(Py-Ⅰ)、磁铁矿(Mag-Ⅰ)以及菱铁矿中高Co含量,表明流体在Co的超常富集过程中也起到了决定性作用。金川矿石中大量碳酸盐矿物、叶蛇纹石、金云母、磁铁矿、黄铁矿、铬铁矿以及富Cl磷灰石的出现;S、Mg元素呈网脉状分布于蚀变橄榄石和硫化物中,推测流体组分可能是一种富C富Cl的富含挥发分的高氧逸度流体。金川铬铁矿、磁铁矿(Ⅰ)、菱铁矿等矿物中高Ti、高Nb含量和高Nb/Ta比值,暗示此流体可能是一种高温的超临界流体。以上特征综合表明该特征流体对金川铜镍硫化物矿床中铂族元素等关键金属的超常富集起到了关键控制作用。当挥发分流体与残余硫化物矿浆相互作用及改造先存硫化物及橄榄石时,不仅会促使Os、Ir、Ru、Rh、Pt、Pd进一步活化、富集,还会导致流体中PGE强烈富集,使得流体中的Pd、Se、Te、Bi、Pt含量不断提高,最终形成大量的PGM。综上所述,本文认为在岩浆演化晚期可能存在一种高氧逸度的富Cl富C的深源流体注入岩浆房,该深源挥发分流体对PGE及Co的迁移和超常富集起到了关键控制作用。

    Abstract

    The Jinchuan magmatic Cu-Ni (PGE) sulfide deposit is the most important strategic metal treasure-house of platinum group. The enrichment process and mechanism of platinum group metals (PGEs) in Jinchuan deposit are still controversial. Based on detailed mineralogical and deposit studies, it is found that the mineralization stage of Jinchuan deposit can be divided into sulfide melt crystallization stage, interaction stage of volatile fluid-sulfide melt and hydrothermal alteration stage. The mineral paragenetic assemblages in the sulfide melt crystallization stage are pentlandite (Pn-a)+pyrrhotite (Po-a)+chalcopyrite (Ccp-a). The mineral paragenetic assemblages in the interaction stage of volatile fluid-sulfide melt are pentlandite (Pn-b)+pyrite (Py-Ⅰ)+chalcopyrite (Ccp-b)+magnetite (Mag-Ⅰ)+siderite+serpentine+apatite+dolomite+calcite (Cal-Ⅰ)+phlogopite. In the hydrothermal alteration stage, the mineral paragenetic assemblages are tremolite+chlorite+serpentine+calcite (Cal-Ⅱ)+magnetite (Mag-Ⅱ). It is found that platinum group minerals are paragenetic with magnetite (Mag-Ⅰ), pyrite (Py-Ⅰ), chromite, chalcopyrite (Ccp-b), apatite, pentlandite, pyrrhotite and siderite in Jinchuan deposit under high-power electron probe microscopy. The study of PGMs in Jinchuan Cu-Ni sulfide deposit shows that the types of PGM include sulfoarsenide (IrAsS), bismuth of palladium, telluride and selenide of palladium, metal complexes of palladium (PdAu2), platinum and its metal alloy (Pt-Fe). Among them, most PGMSs are distributed in the cracks of pentlandite, pyrrhotite and altered olivine, and paragenetic with magnetite, siderite, chromite, chalcopyrite, apatite and antigorite, indicating that PGE enrichment is closely related to fluid addition. The high contents of Co in Pn-b, Ccp-b, Py-Ⅰ, Mag-Ⅰ and siderite in Jinchuan ores indicates that fluid also plays a decisive role in the super-enrichment of Co. The occurrence of a large number of carbonate minerals, antigorite, phlogopite, magnetite, pyrite, chromite and Cl-rich apatite in the Jinchuan ores, S and Mg elements are distributed in olivine and sulfide in net-vein. It is speculated that the fluid component may be a C-rich and Cl-rich fluid with high oxygen fugacity. The high contents of Ti and Nb and Nb/Ta ratio of chromite, magnetite-Ⅰ, siderite and other minerals in the Jinchuan deposit suggest that the fluid may be a high-temperature supercritical fluid. The above characteristics indicate that this fluid plays a key role in controlling the super-enrichment of PGE and other key metal elements in the Jinchuan Cu-Ni sulfide deposit: when the volatile fluid interacted with the residual sulfide melt and altered the preexisting sulfide and olivine, it not only promotes the further activation and enrichment of Os, Ir, Ru, Rh, Pt and Pd, but also leads to the strong enrichment of PGE in the fluid, which increases the content of Pd, Se, Te, Bi and Pt in the fluid, and finally forms most PGMs. In conclusion, we conclude that there may be an acidic, high oxygen fugacity, Cl-rich and C-rich derived from deep mantle fluid in the late stage of magma evolution, which plays a key role in controlling the migration and super-enrichment of PGE and Co.

  • 铂族金属(platinum-group elements,PGE)、钴(Co)和铬(Cr)金属资源的主要矿床类型与镁铁-超镁铁质岩有关。岩浆铜镍硫化物矿床提供了几乎全部的PGE储量。金川铜镍(铂)硫化物矿床,作为世界第三大镍矿床,亚洲第一大铂族金属矿床,世界第四大钴矿床,同时还富含铬、锑、镓及锗等战略性关键金属,是我国战略性关键金属的宝库。

  • 金川矿床中铂族金属的富集过程和富集机制目前还存在很多争论。Song Xieyan et al. (2012)陈列锰等(2015)研究结果表明:在高温阶段,单硫化物固溶体硫化物(MSS)发生分离结晶作用,Ni、Co、Os、Ir、Ru、Rh等相容元素在MSS中富集,而Cu、Pt、Pd、Ag、Te、Bi等不相容元素进入富Cu残余硫化物矿浆中;随温度下降,富Cu残余矿浆结晶为富Cu中间固溶体(ISS)。同时由于Ir及部分Rh在较早阶段形成Ir-As-S及Ir-Rh-As-S等金属矿物,导致MSS中的Ir、Rh亏损;随温度进一步降低,MSS出溶形成镍黄铁矿和磁黄铁矿,Os、Ru、Rh、Re等以类质同象形式代替硫化物中Fe的位置进入镍黄铁矿和磁黄铁矿中,Co主要代替Ni进入镍黄铁矿中。富Cu中间固溶体出溶形成黄铜矿,由于Pt、Pd在黄铜矿中均为强不相容,因此,Pt与As、Te等元素形成含Pt的铂族矿物;大部分Pd通过扩散到MSS中,最后以类质同象形式代替Ni进入镍黄铁矿;少部分形成含Pd的独立矿物。因此,单硫化物固溶体的结晶分离作用控制了铂族金属的富集。焦建刚等(2012)认为金川矿床中硫化物矿浆发生单硫化物固溶体结晶,在重力分异或构造扰动下,富Cu、Pt、Pd的残余硫化物在局部聚集成矿。同时根据大量铂族金属数据的统计与模拟计算,获得了金川矿床母岩浆的PGE组成:Os=0.355×10-9,Ir=0.265×10-9,Ru=0.277×10-9,Rh=0.144×10-9,Pt=4.91×10-9,Pd=2.32×10-9,Ni=338×10-6,Cu=174×10-6。通过R因子与硫化物分异结晶过程模拟,认为金川铜镍硫化物矿床的R因子为300~1000,平均为567,R因子值在1号与24号矿体中明显大于2号矿体。Song Xieyan et al.(2012)陈列锰等(2015)研究表明金川矿床中单硫化物固溶体的分离结晶作用控制了IPGE及PPGE的富集。但金川矿床中Os、Ir、Ru、Rh平均含量在晚期贯入型矿体中最高,且这些元素在铂钯富集体上下部位最高(汤中立,1993)。这些特征表明可能还有气体/流体搬运因素控制了Os、Ir、Ru、Rh的富集。同时,目前也有越来越多的证据表明深部流体/气体参与了铂族金属的富集过程(Naldrett,1999张铭杰,2015Boudreau,20162019董宇等,2021; Liu Meiyu et al.,2021)。

  • 金川矿床中大量的金属硫化物与磁铁矿、铬铁矿、白云石、菱铁矿、方解石、磷灰石等矿物平直共生,没有明显的穿插和交代关系,表明这些氧化物、挥发分流体矿物与金属硫化物同时形成,平衡共生。Liu Meiyu et al.(2021)研究发现金川矿床中岩体中磷灰石与矿石中的磷灰石成分特征不同。矿石中磷灰石富Cl,含有约5.6%的Cl,几乎不含F;而岩石中磷灰石含有约0.9%的F,约1%的Cl。根据Cl在硫化物矿浆和硅酸盐岩浆中的分配系数DClSul/sil=0.03~0.11(Mungall,2003),可知Cl元素倾向于进入硅酸盐熔体,矿石中富Cl磷灰石可能代表有另一地质事件的加入。依据磷灰石的原位氧同位素δ18OV-SMOW值(5.62‰~6.47‰;Liu Meiyu et al.,2021),可以认为矿石中与硫化物共生的富Cl磷灰石不是岩浆后期热液成因,它们具有明显的幔源特征。这些特征暗示深部幔源富Cl富C的挥发分流体可能参与了岩浆铜镍铂硫化物矿床的形成。本次工作通过野外地质调查以及详细的室内岩相学、矿相学研究,结合TIMA、地球化学数据分析,对金川铜镍硫化物矿床成矿阶段进行详细划分,确定各成矿阶段的矿物共生组合,铂族元素的赋存状态、铂族矿物的类型以及分布特征,弄清楚硫化物矿浆形成、演化过程中挥发分流体加入在铂族金属矿床形成中的作用,探讨挥发分流体与硫化物矿浆相互作用过程与PGE及Co等关键金属超常富集的耦合关系。

  • 1 地质概况

  • 金川铜镍(铂)硫化物矿床是世界第三大岩浆铜镍硫化物矿床。大地构造位置处于华北克拉通西北部阿拉善地块南缘的龙首山隆起带(图1;汤中立和李文渊,1995)。龙首山隆起带位于河西走廊中段北部,西起板桥堡,东至金川镇,长度达195 km,宽度约30~35 km,整体呈北西—南东向狭长带状分布,向东逐渐转为近东西向。北邻潮水盆地,南邻河西走廊,与北祁连造山带隔河西走廊遥遥相望,西至金塔-鼎新断裂(图1a)。

  • 金川铜镍(铂)硫化物矿床主要岩石类型有二辉橄榄岩,橄榄二辉岩,纯橄岩,二辉石岩等,还有少量的斜长二辉橄榄岩。此外,矿床中还存在着许多辉绿岩脉和煌斑岩脉。1号矿体中的岩相呈中心对称分布,中心是纯橄岩,从中心辐射两侧依次是二辉橄榄岩,橄榄二辉岩和二辉石岩等。2号矿体则出现明显的垂直分带,从底部到最上层,分别是纯橄岩,二辉橄榄岩,橄榄二辉岩,二辉石岩等。

  • 矿床总体构造线从北向西延伸。矿体被F16、F17等几个规模较大的断层划分为四个矿区(图1b),由西向东依次为三、一、二、四矿区(甘肃省地质矿产局第六地质队,1984),容矿岩体为一套镁铁-超镁铁质侵入岩,主要岩性为二辉橄榄岩及纯橄岩。矿床主要由三个最具经济价值的矿体组成,分别为一矿区的24号矿体,以及赋存于二矿区岩体东西两侧的1号和2号矿体(Tonnelier,2010)。

  • 金川矿床中矿石类型多样,主要有浸染状矿石、网状矿石和块状矿石,其硫化物含量分别为5%~20%、25%~40%及含70%以上。矿石中最常见的硫化物组合为磁黄铁矿-镍黄铁矿-黄铜矿,伴生的铂族矿物包括砷铂矿以及铂钯的铋化物、碲化物、硒化物等( Yang Xuanzhu et al.,2006; Su Shangguo et al.,2008; Prichard et al.,2013; 王焰等,2020)。

  • 图1 金川地区地质简图

  • Fig.1 Simplified geological maps of the Jinchuan area

  • (a)—大地构造背景图;(b)—金川矿床地质简图(据Tang Zhongli,1993; Li Chusi et al.,2004; Song Xieyan et al.,2012修改)

  • (a) —geotectonic location of the Jinchuan area; (b) —geological sketch map of Jinchuan deposit (modified after Tang Zhongli, 1993; Li Chusi et al., 2004; Song Xieyan et al., 2012)

  • 网状矿石是金川矿床中分布最为广泛也是最重要的矿石类型。金属硫化物在主要造岩矿物(橄榄石、辉石等)的颗粒间隙中紧密分布,相互连接形成网格状结构,硫化物含量可达30%。部分造岩矿物,如橄榄石受硫化物熔蚀影响,形成椭圆状或圆状。局部可见硫化物充填部分造岩矿物颗粒中,在其他部分不充填,形成半网状矿石。此类矿石一般分布于矿体中部或底部。

  • 金川铜镍(铂)硫化物矿床的PGE主要分布于一、二矿区的结合处,向东西两侧品位逐渐降低,向东至2号矿体已基本无矿化。另外,金川矿体PGE分布具有一定程度的分带特征,以1号矿体最为明显,自矿体中心至边部,PPGE含量渐少,IPGE逐渐增多。

  • 2 分析方法

  • 本次研究对Ⅰ矿区和Ⅱ矿区的岩石和矿石样品进行了系统采集,其中矿石样品分别来自Ⅰ-24和Ⅱ-1和Ⅱ-2矿体。利用光学显微镜对其中海绵陨铁矿石和块状矿石样品进行岩相学观察,并进一步挑选出10件网状矿石进行详细的矿物学研究。

  • TESCAN综合矿物分析仪(TIMA)获得的矿物相或元素分布图在中国地质科学院地质研究所完成。在25 kV加速电压、8.47 nA束电流、15 mm工作距离和100.50 nm光斑尺寸的条件下,对薄片进行自动矿物学方法相图绘制分析。集成矿物分析仪(型号为TIMA 3-XLMH)单矿物电子探针分析测试在河北省区域地质矿产调查研究所实验室完成。其中矿物主量元素测试是利用配备有四道波谱仪的JEOL JXA-8230型电子探针显微分析仪进行的。分析条件为15 kV加速电压,20 nA加速电流,束斑直径5 μm。标准样品为美国SPI矿物标样,金属标准和国家标准样品GSB。

  • LA-ICP-MS在国家地质实验测试中心完成。使用Agilent 7700x ICP-MS,采用相干GeoLasPro 193 nm激光烧蚀系统产生的激光原位烧蚀。在监测20 s的空白气体后,对160个连续的(4 Hz)44 μm激光脉冲烧蚀样品表面约40 s。生成的气溶胶由氦气载气携带,然后通过T型连接器与氩气补充气体混合,然后进入ICP-MS仪器获取离子信号强度。

  • 3 金川矿床成矿阶段划分

  • 根据矿物产状、矿物共生组合及矿物化学成分特征可将金川矿床成矿阶段划分为硫化物矿浆结晶阶段、挥发分流体-矿浆相互作用阶段和热液蚀变阶段。

  • 金川矿床硫化物结晶阶段的矿物共生组合为:镍黄铁矿、磁黄铁矿及黄铜矿。由于受流体超压作用影响,本阶段硫化物发育强烈的破裂,矿物中裂隙发育。裂隙内部矿物组合为磁铁矿、蛇纹石、碳酸盐矿物及磷灰石等(图2a~f)。以上特征表明这些硫化物结晶可能相对较早,被后期挥发分流体强烈改造。故本文将其划分为硫化物矿浆结晶矿床阶段,主要分布于堆晶橄榄石间隙中。

  • 显微镜下观察发现,金川矿石中磁铁矿、菱铁矿、金云母、铬铁矿、磷灰石以及白云石等矿物与金属硫化物接触界面平直(图3a~d),没有明显的穿插和交代关系,表明这些氧化物、碳酸盐矿物与金属硫化物同时形成,平衡共生。推测这些共生矿物组合是在早先硫化物矿浆结晶之后,挥发分流体与残余的硫化物矿浆相互作用而成。当早先的硫化物矿浆结晶之后,加入的挥发分流体会与残余的硫化物矿浆发生相互作用,形成一系列矿物组合。依据镜下观察分析,挥发分流体-硫化物矿浆相互作用阶段硫化物裂隙发育较弱,该阶段出现的矿物组合主要为镍黄铁矿+黄铁矿+黄铜矿+磁黄铁矿+磁铁矿+菱铁矿+白云石+铬铁矿+金云母+钛铁矿+磷灰石(图3a~d),其中菱铁矿、磁铁矿以及铬铁矿与钛铁矿关系相对密切。

  • 挥发分流体注入岩浆房后,不仅会与残余的硫化物矿浆相互作用,也会改造先形成的橄榄石和硫化物等矿物。金川矿床矿石中部分橄榄石被挥发分流体改造强烈,大部分被改造成蛇纹石,仅有少量的橄榄石还有残留。镜下观察发现蛇纹石内部出现大量的裂隙,裂隙中出现镍黄铁矿+黄铁矿+铬铁矿+菱铁矿+磁铁矿+蛇纹石等矿物共生组合(图4)。橄榄石内部大量网脉状或放射状裂隙的出现,表明可能有流体超压的发生。通过TIMA矿物相及元素扫描分析,残留橄榄石被流体熔蚀成浑圆状,边部及裂隙中出现一些黄铁矿,表明有高温S的加入,这些S很可能是流体与硫化物矿浆作用时带入的硫。

  • 图2 金川矿床硫化物矿浆结晶阶段矿物特征

  • Fig.2 Microscopic mineral characteristics of sulfide melt crystallization stage in the Jinchuan deposit

  • (a)~(e)—镍黄铁矿、黄铜矿以及磁黄铁矿分布于堆晶橄榄石间隙,且这些硫化物内部出现强烈的裂隙,裂隙中矿物组合主要为磁铁矿,方解石,磷灰石及蛇纹石;(f)—方解石和磷灰石组成的矿物集合体在硫化物中呈裂隙状分布;Ccp—黄铜矿;Pn—镍黄铁矿;Po—磁黄铁矿;Srp—蛇纹石;Ol—橄榄石;Mag—磁铁矿;Ap—磷灰石;Cal—方解石;Sd—菱铁矿;Sul—硫化物;Atg—叶蛇纹石

  • (a) ~ (e) —pentlandite, chalcopyrite and pyrrhotite are distributed in the gap of cumulate olivine, with appearing strong cracks, and the minerals assemblages are mainly calcite, siderite, magnetite, apatite, and serpentine in the cracks; (f) —the mineral aggregate of calcite and apatite is fissured in sulfide; Ccp—chalcopyrite; Pn—pentlandite; Po—pyrrhotite; Srp—serpentine; Ol—olivine; Mag—magnetite; Ap—apatite; Cal—calcite; Sd—siderite; Sul—sulfide; Atg—antigorite

  • 图3 金川矿床挥发分流体与硫化物矿浆作用阶段矿物特征

  • Fig.3 Mineral characteristics of interaction stage of volatile fluid-sulfide melt in Jinchuan deposit

  • (a)—镍黄铁矿、黄铜矿与磁铁矿、铬铁矿共生;(b)—镍黄铁矿、黄铁矿与磁铁矿、磷灰石共生;(c)—镍黄铁矿与方解石平直共生;(d)—白云石与硫化物平直共生;Pn—镍黄铁矿;Ccp—黄铜矿;Py—黄铁矿;Srp—蛇纹石;Mag—磁铁矿;Chr—铬铁矿;Sul—硫化物;Ap—磷灰石;Cal—方解石

  • (a) —pentlandite and chalcopyrite are paragenetic with magnetite and chromite; (b) —pentlandite is paragenetic with pyrite, magnetite and apatite; (c) —pentlandite is paragenetic with calcite; (d) —dolomite is paragenetic with sulfide; Pn—pentlandite; Ccp—chalcopyrite; Py—pyrite; Srp—serpentine; Mag—magnetite; Chr—chromite; Sul—sulfide; Ap—apatite; Cal—calcite

  • 本文将硫化物矿浆结晶阶段的镍黄铁矿、磁黄铁矿和黄铜矿分别称为Pn-a、Po-a和Ccp-a;将挥发分流体与硫化物矿浆相互作用形成的镍黄铁矿、磁黄铁矿、黄铜矿、黄铁矿、方解石和磁铁矿分别称为Pn-b、Po-b、Ccp-b、Py-Ⅰ、Cal-Ⅰ和Mag-Ⅰ;将热液作用形成的黄铁矿和磁铁矿分别称为Py-Ⅱ和Mag-Ⅱ。总之,硫化物矿浆结晶阶段的矿物组合为镍黄铁矿a+磁黄铁矿a+黄铜矿a;挥发分流体与硫化物矿浆结晶阶段的矿物组合为镍黄铁矿(b)+磁黄铁矿(b)+黄铜矿(b)+黄铁矿(Ⅰ)+磁铁矿(Ⅰ)+铬铁矿+磷灰石+金云母+方解石(Ⅰ)+白云石+菱铁矿+叶蛇纹石;挥发分流体改造先存橄榄石的矿物组合为镍黄铁矿b+黄铁矿(Ia)+磁铁矿(Ia)+菱铁矿+铬铁矿+蛇纹石;挥发分流体改造先存硫化物的矿物组合为黄铁矿(Ib)+磁铁矿(Ib)+方解石(Ⅰ)+磷灰石+蛇纹石。各组合中矿物成分特征见4.2节。

  • 热液阶段的矿物组合以绿泥石+蛇纹石(利蛇纹石/纤蛇纹石)+透闪石+方解石(II)+磁铁矿(II)+黄铁矿(II)为主,主要产于造岩矿物的边缘。局部可见,橄榄石边部出现绿泥石+滑石+透闪石的次生反应边。热液阶段形成的绿泥石在镜下呈绿色、淡蓝色,晶体以鳞片状为主,叶片状次之,主要为辉石、角闪石的次生变化产物。热液蚀变形成的蛇纹石主要为利蛇纹石和纤蛇纹石。金川部分方解石的平均δ18OSMOW为18.58‰,表明后期有热液蚀变作用的产物(宋晨,2015)。另外,蚀变矿物透闪石的流体包裹体测温结果为235~365℃(Yang Xuanzhu et al.,2006),也暗示具有更晚期的低温热液蚀变作用。

  • 图4 金川矿床中挥发分流体改造橄榄石特征

  • Fig.4 Characteristics of olivine altered by volatiles fluid in Jinchuan deposit

  • (a)、(b)—橄榄石出现大量裂隙,裂隙内部出现的矿物组合为镍黄铁矿、黄铁矿、菱铁矿、铬铁矿以及蛇纹石;(c)—蛇纹石内部出现的矿物组合为磁铁矿、菱铁矿、金云母、蛇纹石以及铬铁矿等;(d)—残留橄榄石边部以及裂隙内出现蛇纹石、黄铁矿、磁铁矿以及菱铁矿;Pn—镍黄铁矿;Py—黄铁矿;Srp—蛇纹石;Mag—磁铁矿;Chr—铬铁矿;Sd—菱铁矿; Ol—橄榄石

  • (a) , (b) —olivine appears many cracks, and mineral assemblages include pentlandite, pyrite, siderite, chromite and serpentine appear inside cracks; (c) —mineral assemblages in serpentine are magnetite, siderite, phlogopite, chromite and other minerals; (d) —serpentine, pyrite, magnetite and siderite were found in residual olivine edges and fractures; Pn—pentlandite; Py—pyrite; Srp—serpentine; Mag—magnetite; Chr—chromite; Sd—siderite; Ol—olivine

  • 4 金川铂族金属赋存状态及铂族矿物特征

  • 4.1 金川矿床中铂族金属和钴的赋存状态

  • 前人对金川矿床铂族金属分布规律与铂族矿物特征成因已有了丰富研究成果(苏尚国等,2007; Su Shangguo et al.,2008; 焦建刚等,2012; 江金进等,2014; 陈列锰等,2015; 曾认宇等,2016王焰等, 2020)。金川岩浆铜镍(铂)硫化物矿床的PGE主要分布于一、二矿区的结合处,向东西两侧品位逐渐降低,向西至2号矿体已基本无矿化(刘美玉等,2015)。另外,金川矿体PGE分布具有一定程度的分带特征,以1号矿体最为明显,自矿体中心至边部,PPGE含量渐少,IPGE逐渐增多。金川矿床已发现的PGE矿物共28种和含PGE矿物9种。金川PGE主要富集于1号矿体和24号矿体的铂钯富集体中。通过TIMA矿物元素扫描分析,本次研究发现Os、Ir、Ru、Rh主要赋存于金属硫化物(黄铁矿+磁黄铁矿+镍黄铁矿+黄铜矿)、蛇纹石及硫化物裂隙中的矿物组合(菱铁矿+蛇纹石+磁铁矿+铬铁矿+黄铁矿)中。其中黄铜矿相较于其他硫化物、碳酸盐矿物及氧化物,具有更高的Os含量(图5)。Pt元素主要分布于硫化物中、蛇纹石及硫化物裂隙中的矿物组合,其中蚀变橄榄石裂隙中的菱铁矿、磁铁矿、铬铁矿的Pt元素含量较高。然而Pd元素与Pt元素不同,主要分布于蛇纹石以及硫化物裂隙中的矿物组合中(磁铁矿、菱铁矿和铬铁矿),其中蛇纹石及内部的矿物组合(磁铁矿-铬铁矿-蛇纹石)较金属硫化物中Pd含量高的多(图5)。

  • 图5 金川铜镍硫化物矿床网状矿石中PGE、Co及Cr元素分布特征

  • Fig.5 Distribution characteristics of PGE, Co and Cr in net-textured ores of Jinchuan Cu-Ni sulfide deposit

  • 总之,通过以上分析可知,在黄铜矿中Os含量最高,在菱铁矿、磁铁矿、铬铁矿、蛇纹石中Pd含量最高,Pt和Ir元素在硫化物、氧化物及碳酸盐矿物中含量最高。Ru、Rh元素在硫化物含量最高。金川矿石中Co元素主要赋存于金属硫化物、氧化物及碳酸盐矿物中,其中镍黄铁矿、黄铁矿、磁铁矿以及菱铁矿中Co含量最高,蚀变橄榄石-蛇纹石以及钛铁矿中Co含量最低。

  • 金川铂族金属除了呈类质同象存在于硫化物中外,主要呈独立矿物存在。本次研究通过高倍电子探针镜下分析发现网状矿石中的PGM主要分为以下几类:Pd的独立矿物主要以Pd的铋化物、碲化物、硒化物以及Pd的金属互化物为主;Pt主要以砷铂矿(PtAs2)、Fe-Pt、铂单质为主;Ir主要以硫砷化物和砷化物(IrAsS)为主(图6,图7);Os、Rh和Ru并未发现有独立矿物存在。

  • 其中PGM的产出特征也存在一定差异:一部分PGM分布于硫化物中,硫化物无裂隙或发育较弱的裂隙,与磁铁矿+菱铁矿+磁黄铁矿+蛇纹石等矿物组合共生(图6),包括Pd的铋化物和碲化物(PdBi2、PdTe、PdBiTe、PdBiSe、PdBiTeSe);另一部分PGM主要产于硫化物以及橄榄石或蛇纹石的裂隙中,与蛇纹石+磁铁矿+菱铁矿+金云母+镍黄铁矿+磷灰石+铬铁矿共生(图7),以铋碲钯矿、铂单质和硫砷铱矿为主,其次为Pd的硒化物,以及少量铋钯矿(PdBi2)。金川铂族矿物的能谱数据详见附表1。

  • 4.2 铂族金属的地球化学特征

  • 朱文凤等(2000)Su Shangguo et al.(2008)研究表明Pt、Pd与Cu的相关性最强,Pt、Pd与Ni的相关性较低或不明显,Ni与(Os+Ir+Ru+Rh)的相关性很弱,而Cu与(Os+Ir+Ru+Rh)却呈反相关。这也表明随着铜的增加,Pt、Pd有递增的趋势,而Os、Ir、Ru、Rh的含量几乎没有发生变化,但在特富镍矿石中,Os、Ir、Ru、Rh的含量也有所增高。

  • 图6 金川矿床硫化物矿浆和挥发分流体作用阶段的PGM分布特征

  • Fig.6 Distribution characteristics of PGM during the interaction stage of sulfide melt-volatile fluid in the Jinchuan deposit

  • (a)—PdBi2与脉状磁铁矿、镍黄铁矿共生;(b)—PdBiTe与脉状磁铁矿、菱铁矿、黄铁矿、镍黄铁矿以及蛇纹石共生;(c)—PdTe与磁铁矿、蛇纹石以及镍黄铁矿共生;(d)—PdBiSe与镍黄铁矿、脉状磁铁矿、磁黄铁矿以及蛇纹石共生;(e)—PdAu2与磁铁矿、镍黄铁矿以及蛇纹石共生;(f)—Pt-Fe合金与磁黄铁矿和方解石共生; Pn—镍黄铁矿;Po—磁黄铁矿;Py—黄铁矿;Atg—叶蛇纹石;Mag—磁铁矿;Sd—菱铁矿;Cal—方解石

  • (a) —PdBi2 is paragenetic with pentlandite and veined magnetite; (b) —PdBiTe is paragenetic with veined magnetite, siderite, pyrite pentlandite and serpentine; (c) —PdTe and PbTe are paragenetic with magnetite, serpentine and pentlandite; (d) —PdBiSe is paragenetic with veined magnetite, pentlandite pyrrhotite and serpentine; (e) —PdAu2 is paragenetic with pyrite, pentlandite, chalcopyrite and siderite; (f) —Pt-Fe is paragenetic with pyrrhotite and calcite; Pn—pentlandite; Po—pyrrhotine; Py—pyrite; Atg—antigorite; Mag—magnetite; Sd—siderite; Cal—calcite

  • 金川各矿体PGE地幔标准配分曲线整体显示PPGE富集的左倾曲线特征,IPGE含量较低,分布趋势较为平缓,反映了不同样品具有同源岩浆的特征(朱文凤等,2000刘美玉等,2015)。再者,整体上,由西到东,PGE含量显示出逐渐降低的趋势。另外,最西侧的58号矿体较其他矿体不同,显示出强烈的低IPGE,富PPGE的特征。本文对金川矿体的不同类型矿石进行了100%硫化物重新计算,对其所含PGE含量进行了相关性图解分析(图8;Chai and Naldrett,1992; Song Xieyan et al.,2006; Su Shangguo et al.,2008)发现,不同矿体间Ir与Rh,Ru均显示出极好的正相关关系,但Ir与Pd、Pt之间均无明显相关性;Rh与Ru也显示出极好的正相关关系;Pd、Pt之间也具有弱相关关系,其中24号矿体的Pt与Pd相关性较强。

  • 金川矿床硫化物矿浆结晶阶段形成了黄铜矿(Ccp-a)、镍黄铁矿(Pn-a)及磁黄铁矿(Po-a),挥发分流体-硫化物矿浆结晶阶段形成了黄铜矿(Ccp-b)、镍黄铁矿(Pn-b)及磁黄铁矿(Po-b)。通过分析矿浆结晶阶段黄铜矿、磁黄铁矿和镍黄铁矿的地球化学特征,发现Ccp-a的As、Cr含量明显较低,Ni、Co含量变化较大,其中Ni含量为7.40×10-6~203.69×10-6(均值为103.59×10-6),Co含量为0.58×10-6~10.62×10-6(均值为3.95×10-6)。Pn-a具有相对较低的Ni、Co含量,Ni含量为31.44%~33.23%,Co含量为0.58%~0.72%,较高的Fe含量,其含量为30.76%~34.66%。Po-a具有较低的S、Co含量,较高的Fe含量(图9c、d)。本文镍黄铁矿、磁黄铁矿以及磁铁矿的电子探针数据详见附表2,镍黄铁矿、黄铜矿、黄铁矿、菱铁矿以及铬铁矿的数据详见附表3。

  • 图7 金川矿床挥发分流体改造早结晶硫化物阶段的PGM的赋存特征

  • Fig.7 Occurrence characteristics of PGM in the early crystallization sulfide stage altered by volatile fluid in the Jinchuan deposit

  • (a)—Pd(BiTe)产出于镍黄铁矿的裂缝中;(b)—硫砷铱矿(IrAsS)分布于蛇纹石裂缝中,与金云母、镍黄铁矿、磷灰石及磁铁矿共生;(c)、(d)—Pd(BiTe)分布于镍黄铁矿及磁黄铁矿的裂隙,与脉状磁铁矿共生;(e)—PdBiTeSe沿着镍黄铁矿的裂隙呈脉状分布,与菱铁矿共生;(f)—Pt单质分布于蛇纹石裂缝中,与菱铁矿、磁铁矿、铬铁矿以及黄铁矿共生;Pn—镍黄铁矿;Po—磁黄铁矿;Srp—蛇纹石;Phl—金云母;Ap—磷灰石;Atg—叶蛇纹石;Mag—磁铁矿;Sd—菱铁矿;Chr—铬铁矿

  • (a) —Pd (BiTe) is produced in the cracks of pentlandite; (b) —IrAsS is produced in the cracks of serpentine and paragenetic with phlogopite, pentlandite, apatite and magnetite; (c) , (d) —Pd (BiTe) is produced in the cracks of pentlandite and pyrrhotite, and paragenetic with vein-like magnetite; (e) —PdBiTeSe in veins was distributed along cracks of pentlandite, and paragenetic with siderite; (f) —native-Pt is distributed in cracks of serpentine and paragenetic with siderite, magnetite, chromite, and pyrite; Pn—pentlandite; Po—pyrrhotine; Srp—serpentine; Phl—phlogopite; Ap—apatite; Atg—antigorite; Mag—magnetite; Sd—siderite; Chr—chromite

  • 综合对比两个阶段金属硫化物的化学数据特征,我们发现Ccp-b较Ccp-a具有更高的Ni、Co、As、Cr含量(图9c~f,附表2),其中Ni含量为10.10×10-6~939.01×10-6(均值为196.73×10-6),Co含量为0.27×10-6~83.50×10-6(均值为22.38×10-6),As含量为0.26×10-6~8.37×10-6,Cr含量为3.09×10-6~203.18×10-6。Pn-b比Pn-a具有较高的Ni、Co含量,较低的Fe含量(图9a、b,附表2),其中Co含量为0.72%~1.47%,Ni含量为34.33%~38.21%,Fe含量为28.12%~31.44%,Se/As为11.32~41.45。Po-b比Po-a具有更高的S、Co含量,较低的Fe含量(图9c、d,附表2)。

  • 金川矿石中与铂族矿物共生的矿物组合为磁铁矿(Ⅰ)+菱铁矿+叶蛇纹石+黄铁矿(Ⅰ)+磁黄铁矿+镍黄铁矿+黄铜矿+磷灰石(图6,图7)。其中与铂族矿物共生的磁铁矿的CoO含量为0.06%~0.17%,Cr2O3含量为0.01%~0.12%(附表2),其稀土配分模式相对比较平坦,ΣREE为0.14×10-6~0.16×10-6,呈明显的负Eu异常,负Ce异常,亏损K、Ba、Nb、Sr、Zr,相对富集Th、Pb、P等元素,并且Ni、Cu元素含量较高(未刊发数据)。与铂族矿物共生的黄铁矿(Ⅰ)的ΣREE较低(0.34×10-6~0.87×10-6),具较高的Co、Ni含量,较低的Ti含量(附表3),其中Ni含量为4.51×10-6~311×10-6,Co含量为26.5×10-6~254×10-6,Ti含量为0.19×10-6~0.31×10-6,Co/Ni较高,为0.11~5.88,Se/As为14.75~68.53。与铂族矿物共生的菱铁矿的Pt含量为171.45×10-9,Co含量为0.24×10-6~2.04×10-6,Cr含量为82.91×10-6~381.46×10-6(附表3)。与铂族矿物共生的铬铁矿Co含量为125.82×10-6~499.71×10-6(附表3)。金川矿床中与铂族矿物共生的镍黄铁矿的Ti含量相对较低,为0.07×10-6~0.18×10-6,Co含量较高,为8488×10-6~10562 ×10-6,相对富集Ba、Sr、As、Pb元素(附表3)。

  • 图8 金川矿床各矿体100%硫化物PGE相关性图解(a~f,数据引自Chai and Naldrett,1992; Song Xieyan et al.,2006; Su Shangguo et al.,2008

  • Fig.8 PGE correlation diagram of 100% sulfide from orebody in Jinchuan deposit (a~f, data quoted from Chai and Naldrett, 1992; Song Xieyan et al., 2006; Su Shangguo et al., 2008)

  • 图9 金川铜镍矿床中金属硫化物中元素相关图解(a~f)

  • Fig.9 Correlation diagram of elements of metal sulfide (a~f) in the Jinchuan Cu-Ni deposit

  • 金川矿石中铬铁矿常与菱铁矿、黄铁矿(Ⅰ)、叶蛇纹石、磁铁矿(Ⅰ)等矿物共生。通过对铬铁矿的化学特征分析(图10,附表3)),发现铬铁矿具有高Ti特征,强烈富集Rb +Ba +Sr元素和Nb +Ta +Th +U元素,且随着Nb +Ta +Th +U元素含量增加,Rb+Ba+Sr元素含量也在增加,表明高场强元素与大离子亲石元素在铬铁矿中具有一致的地球化学行为,同时金川铬铁矿也具有高的Pt含量(17.03×10-9~514.59×10-9)、高Ti、高Nb(0.01×10-6~12.07×10-6),高Nb/Ta比值(7.82~292.64,均值68.90)的特征,暗示成矿流体具有高温流体的性质。 Jiao Jiangang et al.(2019)中与硫化物共生的磁铁矿数据也同样显示磁铁矿的Ti含量最高可达4855.50×10-6,同时也具有高的Co(0.38×10-6~96.4×10-6)、Ni(13.8×10-6~2137×10-6)以及高Nb含量(0.01×10-6~12.70×10-6)和高Nb/Ta比值(1.13~317.63,均值57.28)。金川铬铁矿、磁铁矿的Nb/Ta 比值显著高于原始地幔(Nb/Ta≈17.7),同时铬铁矿、菱铁矿的高Th/La比值(0.08~58.92)、Ba/La比值以及高Nb含量,表明其具有高温含水熔体的特征,暗示他们的形成可能与超临界流体有关。

  • 图10 金川矿床中铬铁矿和磁铁矿的化学特征图解(a~f)

  • Fig.10 Chemical characteristics of chromite and magnetite (a~f) in the Jinchuan deposit

  • 5 讨论

  • 5.1 流体超压及流体成分

  • 流体超压是岩石中流体所产生的一种超负荷压力,在地壳深部封闭条件下,当流体压力大于其负荷压力时,流体超压现象可能会出现。深部岩浆房流体超压产生时,流体沿构造薄弱带的打开、进一步形成成矿通道、驱使含矿熔体(矿浆)继续向上侵位至关重要(Dong Shaohua et al.,2011; Su Shangguo et al.,2021)。

  • TIMA图像分析发现,金川网状矿石中橄榄石及硫化物中裂隙极其发育。裂隙呈放射状分布(图11a~d)。阴极发光图像中也显示碳酸盐+磷灰石脉在金属硫化物中呈放射状分布(图2f)。这些强烈发育的放射状裂隙,表明流体灌入岩浆房后压力急剧增大,显示出流体超压的矿物学特征。另外,金川矿床中出现有大量隐爆角砾岩型矿石。这些特征均表明金川成矿过程中有流体超压的出现。南非Bushveld铂族金属矿床和美国Stillwater中铂族金属矿体也均存在隐爆角砾岩型矿石,矿石中硫化物矿物与含流体矿物如磷灰石、方解石等共生(Naldrett,1999; Boudreau,20162019)。

  • 金川网状矿石中叶蛇纹石和磁铁矿分布于堆晶硫化物的裂隙中,Mg元素呈明显的网脉状分布,S元素呈放射状分布于蛇纹石中或呈环形分布于残留橄榄石边部(图11c、d),推测有相对富S的流体参与,关于S元素的来源,可能是流体与矿浆作用时释放的硫。Brimhall and Crerar(1987)的实验结果表明流体中可以非常富集S。S在流体中主要以H2S的形式存在,这种富S富Cl的流体溶解于水不饱和的晶间熔体中时,会与硅酸质岩浆发生反应:H2Svolatile+FeOmelt+O2-=FeSmelt+2OH-melt,有效加快熔体中的S饱和,促进硫化物的沉淀熔离 (Holloway,1981; Ballhaus and Stumpfl,1986)。同时随着反应的进行,熔体中OH-含量持续增加,也就解释了硫化物中常伴随大量含水矿物的结晶。

  • 越来越多的研究成果表明,挥发分流体在岩浆铜镍(铂)硫化物矿床形成、定位过程中起着非常重要的作用(Mungall et al.,2015)。金川矿床中挥发分流体与矿浆相互作用阶段出现的矿物组合主要为镍黄铁矿+磁黄铁矿+黄铁矿+铬铁矿+磁铁矿+钛铁矿+白云石+方解石菱铁矿+叶蛇纹石+磷灰石,大量酸盐矿物(白云石、方解石以及菱铁矿)的出现,推测有富C的流体参与了成矿的过程,目前的研究发现(未公开发表数据)矿石中与硫化物共生的方解石与围岩中方解石的的主微量元素特征差别较大,围岩中方解石相对富MgO,富集Ba、La、Ce和Sm元素,亏损Rb、Th、K、Zr、Pb和Ti元素;矿石中方解石相对富FeO+MnO,明显富集Ba、La、Sr和Pb元素,亏损Rb、K和Ti元素。矿石中与硫化物平直共生方解石的原位C和O同位素数据(未公开发表数据)也很好地证明了该C质流体来源于深部地幔。其次,矿石中方解石的氧同位素特征(宋晨,2015)也表明该富C流体来自深部地幔。金川矿石中富Cl磷灰石的出现,表明有相对富Cl的流体的加入(Liu Meiyu et al.,2021),依据Cl在硫化物矿浆和硅酸盐岩浆中的分配系数DClSul/sil=0.03~0.11(Mungall,2003),可认为F元素倾向进入硫化物矿浆中,Cl元素倾向进入硅酸盐熔体,然而金川矿石中磷灰石富Cl,可能与岩浆演化,岩浆出溶大量富Cl的流体有关,但是随着岩浆的演化,岩浆是越来越富F(Keppler et al.,1991; London et al.,1997; Webster et al.,2009; Li Xiaochun and Zhou Meifu,2015),不会导致矿石中磷灰石富Cl。依据Liu Meiyu et al.(2021)富Cl磷灰石的原位氧同位素δ18OV-SMOW值(5.62‰~6.47‰),可知其具有幔源特征,不是岩浆后期热液成因,代表着有新的地质事件的加入。推测流体组分,可能是一种富C富Cl的流体。总之,深部富C和富Cl的流体加入,不仅是硫化物矿浆上升的重要驱动力,也是PGE以及Co富集的主要机制。金川矿床中大量铬铁矿、磁铁矿以及菱铁矿等碳酸盐矿物的形成与氧化性挥发分流体密切相关。推测深部地幔来源的挥发分流体注入可能是流体超压及硫化物矿浆运移的动力源。

  • 图11 金川网状矿石TIMA元素扫描分析(a~d)

  • Fig.11 TIMA element scanning analysis (a~d) of Jinchuannet-textured ores

  • 金川网状矿石中铬铁矿以及菱铁矿的高Th/La以及Ba/la比值,高的大离子亲石元素和高场强元素含量,可以看出它们均与流体的活动关系密切,高Nb/Ta比值(大于原始地幔≈17.7)暗示该挥发分流体富集了大量的Nb元素,由于Nb在富水流体中的分配系数较低,在富水熔体中分配系数较高,高Nb含量推测该流体可能是一种超临界流体。此外, Jiao Jiangang et al.(2019)研究的与硫化物共生的磁铁矿数据也同样显示磁铁矿的Ti含量最高可达4855.50×10-6,同时也具有高的Co(0.38×10-6~96.4×10-6)、Ni(13.8×10-6~2137×10-6)以及高Nb含量(0.01×10-6~12.70×10-6)和高Nb/Ta比值(1.13~317.63,均值57.28)。超临界流体具有迁移高场强元素(HFSE)、重稀土元素(HREE)在流体中不活动元素的超强迁移能力(Kessel et al.,2005b; Ni Huaiwei et al.,2017)和迁移相容元素的能力。此外,超临界地质流体具有流体般的扩散速度、黏度和熔体般的湿润性(Audétat and Keppler,2004; Kessel et al.,2005a; Hack et al.,2007; Ni Huaiwei et al.,2017),这使得超临界地质流体是成矿元素迁移的理想溶剂(熊小林等,2020)。

  • 5.2 铂族金属和钴的富集机制

  • 本文通过对金川矿体的不同类型矿石进行了100%硫化物重新计算,对其所含PGE含量进行了相关性图解分析发现(图9;Chai and Naldrett,1992; Song Xieyan et al.,2006; Su Shangguo et al.,2008),不同矿体间Ir与Pd,Pt之间均无明显相关性;暗示R因子并非是控制PGE富集的主导因素。

  • 铂族金属在硫化物矿浆/硅酸盐熔体之间的分配系数(DPGESul/Sil)高达104~106,铂族金属分配系数大小的排序为:Pd>Rh>Pt>Ru≈Os≈Ir,随着氧逸度增高,分配系数有降低的趋势(Stone et al.,1990; Fleet et al.,1991)。当岩浆中S饱和时会形成硫化物矿浆,铂族金属(PGE)将强烈富集在硫化物矿浆中(Fleet et al.,19911999)。硫化物矿浆冷却结晶时,首先结晶单硫化物固溶体,铂族金属在单硫化物固溶体与残留硫化物矿浆中的分配系数为:D(Ir)=3.4~11,D(Os)=4.3,D(Ru)=4.2,D(Rh)=1.17~3.03,D(Pt)=0.05~0.2,D(Pd)=0.09~0.2(Barnes et al.,2001)。因此,在硫饱和条件下,在硫化物熔体结晶分异过程中,Os、Ir、Ru、Rh会优先进入单硫化物固溶体(MSS)中,Pt、Pd优先保留于残余硫化物熔体中(图12)。已有的研究表明金川矿床中单硫化物固溶体的分离结晶作用控制了IPGE及PPGE的富集(Song Xieyan et al.,2012陈列锰等,2015)。但金川矿床中Os、Ir、Ru、Rh平均含量在晚期贯入型矿体中最高,且这些元素在铂钯富集体上下部位最高(汤中立,1993)。这些特征表明可能其他因素控制了Os、Ir、Ru、Rh的富集。实验表明PGE和金一样,由于受d轨道影响,无论是氧化性的热卤水还是还原性的富硫及有机质热液,当它们流经含贵金属的原岩时,PGE和金可以溶解进入溶液,并以配合物的形式迁移(Vatin-Perignon and Amosse,2000; Molnar et al.,2001)。铂族元素的配合物主要有氯络合物、硫氢络合物、氨络合物、氰络合物、氢氧络合物及硫代硫酸盐络合物等(Molnar et al.,2001)。董宇等(2021)研究发现硫砷铱矿不仅出现于单硫化物固溶体(MSS)冷凝形成的镍黄铁矿和磁黄铁矿中,也出现于由中间态硫化物固溶体(ISS)冷凝形成的黄铜矿中,表明硫砷铱矿是在早于MSS及ISS阶段形成。本文研究发现硫砷铱矿与镍黄铁矿、磁铁矿、铬铁矿、菱铁矿、磷灰石及金云母共生,分布于橄榄石裂隙中,表明硫砷铱矿的形成与挥发分流体密切相关。此外,我们还发现网状矿石的黄铜矿中具有高的Os含量(图5)。这些特征也表明挥发分流体参与了PGM的形成和铂族金属的富集。一般认为含As的铂族矿物,如硫砷铱矿、硫砷铑矿、砷铂矿等是在高温条件下结晶形成的。金川蚀变橄榄石裂隙中硫砷铱矿的出现,可能表明有高温的挥发分流体促使PGE发生活化而进一步富集。蛇纹石内的高Pd含量(图5)也表明了PGE与流体关系密切,表明挥发分流体可能对PGE进行了迁移、富集和沉淀。同时蚀变橄榄石裂隙中的硫砷铱矿具有相对高的Pt含量(图7b,附表1),表明Ir和Pt是同时富集的,这也从侧面表明单硫化物固溶体分离结晶不是控制PGE的富集主导因素。本文研究发现PdAu2、Pt金属合金(Pt-Fe)及铋碲钯矿、铋钯矿等钯矿物常与菱铁矿+磁铁矿+蛇纹石+黄铁矿+镍黄铁矿+磁黄铁矿的矿物组合共生(图6,图7),铂单质分布于蛇纹石裂隙,与菱铁矿、磁铁矿、铬铁矿以及蛇纹石等矿物组合共生(图6,图7),以上这些铂族矿物的分布特征均表明PGM的形成与挥发分流体关系密不可分。董宇等(2021)研究发现,含Pd矿物的产出随镍黄铁矿及磁黄铁矿蚀变程度的增加,数量有所增加,表明热液流体在PGE的搬运迁移过程中起到重要的作用,流体也可以活化富集PGE。金川部分铋碲钯矿等含钯矿物也产于镍黄铁矿的裂隙中,表明PGM的产出与流体超压形成裂隙关系密切。一般认为,如Pt-Fe合金和硫砷铱矿等富硫铂族矿物是在岩浆演化过程中形成的典型铂族矿物(Campos-Alvarez et al.,2012),然而当挥发分流体中PGE含量较高时,PGE也可以与熔体以及流体中的Fe、As等结合,形成一些Pt-Fe以及Pt-Fe-Al合金。Song Xieyan et al. (2009)研究认为金川矿床成矿的母岩浆为高镁玄武质,母岩浆中PGE含量较低,不利于独立铂族矿物(砷铂矿、硫砷铱矿)从硅酸盐岩浆中结晶出来。金川矿石中Pt-Fe合金和硫砷铱矿的形成更可能与挥发分流体的加入对PGE富集作用有关。

  • 图12 金川矿床PGE在矿浆形成演化过程中的地球化学行为(据苏尚国等,2006Naldrett,2008宋谢炎等,2016修改)

  • Fig.12 Geochemical behavior of PGE during sulfide melt formation and evolution in Jinchuan deposit (modified after Su Shangguo et al., 2006; Naldrett, 2008; Song Xieyan et al., 2016)

  • 金川PGM的大量产出与镍黄铁矿+磁黄铁矿+黄铁矿+黄铜矿+金云母+磁铁矿+蛇纹石+磷灰石+菱铁矿及其他碳酸盐矿物密切相关,表明挥发分流体可能参与了铂族金属的形成、搬运与定位过程。

  • 一般认为岩浆演化过程中Pd很难形成硒化物(Helmy and Fonseca,2017),Prichard et al.(2013)总结全球含PGE硒化物的产出特征,发现这些硒化物形成的物理化学条件十分相似,其成矿流体一般为酸性、高盐度和高氧逸度的流体。该环境下有利于Pd的迁移和富集。在酸性、高氧逸度的富C富Cl富S的流体环境下,Pd极易形成较为稳定的Pd(Ⅱ)-Cln络合物进行迁移。金川大量PGM产于硫化物中、裂隙以及蚀变橄榄石内部,与镍黄铁矿、黄铁矿、磁铁矿、蛇纹石、金云母及碳酸盐等矿物共生,表明流体与硫化物矿浆作用及对先存矿物改造过程中,会导致流体中Bi、Pd、Pt、Se、Te以及IPGE强烈富集,形成大量的铋钯矿、铋硒钯矿、铋碲钯矿、PtAu2、Pt单质、Pt-Fe以及硫砷铱矿。这些酸性、高氧逸度的特征流体对PGE的迁移富集具有重要作用,促进铂族元素的富集。总的来说,铂族金属的富集不仅与单硫化物固溶体的分离结晶有关(Hulbert,1991; Chen Liemeng et al.,2015; Helmy and Bragagni,2017; Helmy and Fonseca,2017; Mansur et al.,2021),还受深源富Cl富C高氧逸度的挥发分流体的影响,并导致了铂族金属的超常富集。

  • 在岩浆演化过程中,Co在硫化物矿浆与硅酸盐熔体之间的分配系数经不同方法测得DCoSul/Sil介于20~580之间(孙赫等,2009),Co主要随着Fe、S、Ni进入硫化物矿浆中。在早期硫化物矿浆结晶阶段,由于Co与Ni地球化学行为相似,使Co主要赋存于硫化物矿浆早阶段结晶出的MSS,主要为镍黄铁矿及磁黄铁矿中。Liang Qinglin et al.(2022)最新研究表明,不同的热力学条件(尤其是fO2)会控制半金属(尤其是As)的价态,从而影响硫化物熔体早期结晶过程中Ir、Rh和Pt的行为。在相对较低的fO2下,硫化物熔体具有较高的Asn-/Asn+比,形成丰富的Ir-AsS、Rh-AsS和Pt作为成核团簇。

  • 钴(Co)在热液中的地球化学行为受流体性质、温度和盐度等多种因素影响。已有的实验结果表明,热液中Co主要以氯络合物形式迁移(Wood et al.,2007);当体系中存在H2S时,在200~300℃时Co以CoCl42-为主迁移,在<200~300℃时,以Co(HS)+为主迁移(Migdisov et al.,2011);在>150℃及高盐度的流体中,Co以CoCl42-迁移,在<150℃及低盐度流体中,Co以CoCl2(H2O)迁移(Liu Weihua et al.,2010)。

  • 从钴的TIMA元素分布图(图6)以及对金川各矿物的化学特征分析,可发现Co主要赋存于镍黄铁矿、磁黄铁矿、菱铁矿、磁铁矿及黄铁矿之中。金川矿石中钴的独立矿物主要有:砷镍钴矿(Ni2.03Co0.073As2、镍质辉钴矿(Co0.57Ni0.33Fe0.1)AsS、铁镍辉钴矿(Co6.02Ni1.93Fe2.0510As2S9、钴毒矿(Fe4.87 Co0.83Ni0.3)AsS和辉砷镍矿(Ni5.9 Co0.82 Fe1.208As5S6甘肃省地质矿产局第六地质队,1984)。

  • 关于钴(Co)的迁移富集机制目前仍存在争议。杨经绥等(1999)认为Co可能来源于深部的火山热液流体,与超镁铁质岩无关。岩浆晚期热液活动也可造成硫化物矿石中的Co发生迁移并局部富集,导致岩浆成因硫化物(如镍黄铁矿、磁黄铁矿等)向热液成因硫化物(如黄铁矿)转变过程中Co进入不同硫化物相。王焰等(2020)研究表明,当橄榄石及辉石受到高盐度岩浆热液改造后,Co会被大量释放,岩浆硫化物(Po,Pn)转变成热液硫化物(Py),Co进入Py。金川挥发分流体与硫化物矿浆作用阶段的镍黄铁矿、黄铜矿较早先结晶的MSS及ISS含有更高的Co含量(图10a~f),表明挥发分流体的加入可能是Co元素超常富集的机制。磁铁矿、铬铁矿以及菱铁矿等流体矿物中的高Co含量(图5),也表明高氧逸度的流体会搬运、萃取和富集大量的Co元素。

  • 金川原始岩浆为高镁玄武质岩浆(Song et al.,2009),温度约在1200℃左右,富含PGE、和有限的PGE、TAB等多金属元素,此时可能存在部分局部饱和的TAB与Pd、Pt直接形成PGM。当岩浆温度下降至大约900℃时,硫化物矿浆开始熔离出来,绝大部分的PGE、Co、Ni、Cu进入硫化物矿浆中,随着硫化物矿浆的结晶,IPGE、Co、Ni、TAB倾向进入到MSS硫化物中,导致残余富Cu矿浆富集Pt、Pd。深源富Cl富C的流体加入残余硫化物矿浆中,促使Pt、Pd金属在相对氧化条件下强烈富集,在硫化物内及裂隙中形成大量的PGM。同时,深源流体也会促使Os、Ir、Ru、Rh进一步活化、富集和沉淀,在蚀变橄榄石内出现硫砷铱矿。总之,深源挥发分流体加入到金川硫化物矿浆成矿过程是金川矿床铂族金属超常富集的主要因素,具体铂族金属超常富集如图13所示。

  • 综上所述,本研究认为在金川大规模成矿过程中可能存在一种高氧逸度的富Cl富C的高温或超临界流体,该流体与硫化物矿浆作用、改造先结晶的橄榄石及硫化物,促使PGE发生活化富集,使得流体中的PGE、Se、Te、Bi、Co含量不断提高,最终形成大量的PGM以及富钴矿物。

  • 6 结论

  • (1)根据岩相学、矿相学和矿物化学特征,将金川矿床成矿阶段划分为:硫化物矿浆结晶阶段、挥发分流体作用阶段以及热液改造等3个阶段。其中,硫化物矿浆结晶阶段的矿物共生组合为:镍黄铁矿(Pn-a)+磁黄铁矿(Po-a)+黄铜矿(Ccp-a)。挥发分流体与硫化物矿浆相互作用阶段的矿物共生组合为:镍黄铁矿(Pn-b)+磁黄铁矿(Po-b)+黄铜矿(Ccp-b)+黄铁矿(Ⅰ)+磁铁矿(Ⅰ)+铬铁矿+磷灰石+金云母+方解石(Ⅰ)+白云石+菱铁矿+叶蛇纹石。热液改造阶段的矿物共生组合为透闪石+绿泥石+蛇纹石+方解石(Ⅱ)+磁铁矿(Ⅱ)。

  • (2)金川铜镍(铂)硫化物矿床矿石中橄榄石以及硫化物矿浆结晶阶段形成的硫化物裂隙十分发育,裂隙中矿物共生组合为:菱铁矿+磁铁矿+叶蛇纹石+黄铁矿+镍黄铁矿±黄铜矿±硫砷铱矿±砷铂矿±碲钯矿;方解石与磷灰石集合体脉在硫化物中也呈放射状分布;同时金川矿床中存在较多隐爆角砾岩型矿石。这些特征均表明金川矿床形成和定位过程中存在流体超压现象。与硫化物共生的磷灰石富Cl,且与碳酸盐矿物共生。推测流体超压与富C、富Cl的挥发分流体的注入密切相关。

  • 图13 金川铜镍硫化物矿床铂族元素的富集示意图

  • Fig.13 Schematic diagram of PGE enrichment in Jinchuan Cu-Ni sulfide deposit

  • (a)—地幔高程度部分熔融,形成硫不饱和的幔源基性岩浆;(b)—幔源岩浆硫化物饱和,熔离出硫化物矿浆;(c)—硫化物矿浆冷却结晶时,先结晶单硫化物固溶体(MSS),随着温度降低残余硫化物矿浆结晶成中间态硫化物固溶体(ISS);(d)、(e)—高氧逸度挥发分流体注入后,出现流体超压,早先结晶的MSS和橄榄石出现大量裂隙,被流体强烈改造,不仅会萃取出大量的Co及PGE,还会与残余的硫化物矿浆作用,形成大量氧化物、碳酸盐矿物以及硫化物的共生组合,进一步富集Co和PGE,最终形成大量的PGM

  • (a) —S-undersaturated mafic magmas are produced by high degrees of partial melting of the mantle; (b) —S-saturated mantle-derived magma segregate sulfide melt; (c) —when the sulfide melt is cooled and crystallized, MSS is first crystallized, and the residual sulfide melt is crystallized into ISS with the decrease of temperature; (d) , (e) —the injection of high oxygen fugacity volatile fluid leads to fluid overpressure, with appearing most cracks in early-crystallized MSS and olivine and strongly altered by fluid, not only can extract most Co, and PGE, also interact with the residual sulfide melt, forming most mineral paragenetic assemblages including oxide, carbonate minerals and sulfide, and further enrichment of Co and PGE, eventually form most PGM

  • (3)金川矿床铂族金属矿物(硫砷铱矿、钯金矿、铋碲钯矿及砷铂矿等)主要产出于橄榄石内部裂隙、镍黄铁矿与磁黄铁矿的裂隙中以及内部,与菱铁矿+磷灰石+磁铁矿+叶蛇纹石+金云母±硫化物等矿物共生。这些特征表明挥发分流体使IPGE与PPGE同时富集。

  • (4)与PGM共生的磁铁矿、菱铁矿以及黄铁矿等矿物均具有高的Co含量。这些特征表明深部富Cl、富C、高氧逸度流体在PGE及Co的超常富集过程中起到了关键作用。金川矿床中铬铁矿、磁铁矿以及菱铁矿等均具有高的Ti和Nb含量、高的Th/La、Ba/La及Nb/Ta比值(Nb/Ta>17.7),暗示金川成矿流体可能是一种高温的超临界流体。此外,金川方解石及磷灰石的氧同位素特征以及叶蛇纹石的大量产出,也表明有高温挥发分流体的加入。

  • 附件:本文附件(附表1~3)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202311090?st=article_issue

  • 参考文献

    • Audétat A, Keppler H. 2004. Viscosity of fluids in subduction zones. Science, 303(5657): 513~516.

    • Ballhaus C G, Stumpfl E F. 1986. Sulfide and platinum mineralization in the Merensky Reef: Evidence from hydrous silicates and fluid inclusions. Contributions to Mineralogy and Petrology, 94(2): 193~204.

    • Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42: 2279~2302.

    • Boudreau A. 2016. The Stillwater Complex, Montana—Overview and the significance of volatiles. Mineralogical Magazine, 80(4): 585~637.

    • Boudreau A. 2019. Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions. New York: Cambridge University Press, 1~275.

    • Brimhall G H, Crerar D A. 1987. Ore fluids: Magmatic to supergene. In: Reviews in Mineralogical & Geochemistry. Mineralogical Society of American, Geochemistry Society.

    • Campos-Alvarez N O, Samson I M, Fryer B J. 2012. The roles of magmatic and hydrothermal processes in PGE mineralization, Ferguson Lake deposit, Nunavut, Canada. Mineralium Deposita, 47(4): 441~465.

    • Chai G, Naldrett A J. 1992. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, Northwest China. Economic Geology, 87(6): 1475~1495.

    • Chen Liemeng, Song Xieyan, Danyushevsky L V. 2015. Occurrence and genesis of platinum group elements in metal sulfide of Jinchuan Cu-Ni deposit. Acta Mineralogica Sinica, 35(S1): 142 (in Chinese).

    • Chen Liemeng, Song Xieyan, Danyushevsky L V, Wang Yushan, Tian Yulong, Xiao Jiafei. 2015. A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni-Cu sulfide deposit, NW China. Ore Geology Reviews, 65: 955~967.

    • Dong Shaohua, Bi Xianwu, Hu Ruizhong, Chen Youwei, Chen Heng. 2011. Characteristics of ore-forming fluid in Yaogangxian quartz-vein wolframite deposit, Hunan Province. Journal of Mineralogy and Petrology, 31(2): 54~60 (in Chinese with English abstract)

    • Dong Yu, Wei Bo, Wang C Y. 2021. Major types and occurrences of platinum-group minerals in the Jinchuan Ni-Cu-(PGE) sulfide deposit: Insights for PGE enrichment during hydrothermal alteration. Acta Petrologica Sinica, 37(9): 2875~2888 (in Chinese with English abstract).

    • Fleet M E, Stone W E, Crocket J H. 1991. Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: Effects of melt composition, concentration, and oxygen fugacity. Geochimica et Cosmochimica Acta, 55(9): 2545~2554.

    • Fleet M E, Crocket J H, Liu Menghua, Stone W E. 1999. Laboratory partitioning of platinum group elements (PGE) and gold with application to magmatic sulfide PGE deposits. Lithos, 47(1-2): 127~142.

    • Hack A C, Thompson A B, Aerts M. 2007. Phase relations involving hydrous silicate melts, aqueous fuids, and minerals. Reviews in Mineralogy and Geochemistry, 65(1): 129~185.

    • Helmy H M, Bragagni A. 2017. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020℃. Geochimica et Cosmochimica Acta, 216: 169~183.

    • Helmy H M, Fonseca R O C. 2017. The behavior of Pt, Pd, Cu and Ni in the Se-sulfide system between 1050 and 700℃ and the role of Se in platinum-group elements fractionation in sulfide melts. Geochimica et Cosmochimica Acta, 216: 141~152

    • Holloway J R. 1981. Volatile Interactions in Magmas. New York: Springer.

    • Hulbert L J. 1991. Geological Environment of Platinum Group Metals. Translated by Shen Chengheng, Liu Daorong, Lu Jun. Beijing: Geological Publishing House (in Chinese).

    • Jiang Jinjin, Song Xieyan, Chen Liemeng, Wang Liang, Fu Zhiqiang, 2014. Geochemistry and petrogenetic significances of semimetal and platinum group elements of the Longshou mine of the Jinchuan Ni-Cu sulfide deposit. Bulletin of Mineralogy, Petrology and Geochemistry, 33(6): 882~892 (in Chinese with English abstract).

    • Jiao Jiangang, Tang Zhongli, Yan Haiqing, Xu Gang, He Ke, Duan Jun. 2012. PGE characteristics of Cu-rich ores in the Jinchuan Cu-Ni sulfide deposit and its genesis. Northwestern Geology, 45(2): 242~253 (in Chinese with English abstract).

    • Jiao Jiangang, Han Feng, Zhao Liandang, Duan Jun, Wang Mengxi. 2019. Magnetite geochemistry of the Jinchuan Ni-Cu-PGE deposit, NW China: Implication for its ore-forming processes. Minerals, 9: 593.

    • Keppler H, Wyllie P J. 199l. Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems hap-logranite-H2O-HCl and haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109: 139~150.

    • Kessel R, Ulmer P, Pettke T, Schmidt M W, Thompson A B. 2005a. The water-basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400℃. Earth and Planetary Science Letters, 237(3-4): 873~892.

    • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005b. Trace element signature of subduction-zone fuids, melts and supercritical liquids at 120-180 km depth. Nature, 437(7059): 724~727.

    • Li Chusi, Xu Zhanghua, de Waal S A, Ripley E M, Maier W D. 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis. Mineralium Deposita, 39(2): 159~172.

    • Li Xiaochun, Zhou Meifu. 2015. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China. Geochimica et Cosmochimica Acta, 166: 53~73.

    • Liang Qinglin, Song Xieyan, Richard W, Chen Liemeng, Yu Songyue, Nadezhda A, Krivolutskaya N A, Dai Zhihui. 2022. Thermodynamic conditions control the valences state of semimetals thus affecting the behavior of PGE in magmatic sulfide liquids. Geochimica et Cosmochimica Acta, 321: 1~15.

    • Liu Meiyu, Su Shangguo, Song Chen, Cai Nan. 2015. Moving direction of magmatic conduit metallogenic system in Jinchuan Cu-Ni(PGE)sulfide deposit. Engineering Science, 17(2): 12 (in Chinese with English abstract).

    • Liu Meiyu, Zhou Meifu, Su Shangguo, Chen Xuegen. 2021. Contrasting geochemistry of apatite from peridotites and sulfide ores of the Jinchuan Ni-Cu sulfide deposit, NW China. Economic Geology, 116(5): 1073~1092.

    • Liu Weihua, Borg S, Testemale D, Etschmann B, Hazemann J L, Brugger J. 2010. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35-440 degrees and 600 bar: An in-situ xas study. Geochimica et Cosmochimica Acta, 75(5): 1227~1248.

    • London D. 1997. Estimating abundances of volatile and other mobile components in evolved silicic melts through mineral-melt equilibria. Journal of Petrology, 38: 1691~1706.

    • Mansur E T, Barnes S J, Duran C J. 2021. An overview of chalcophile element contents of pyrrhotite, pentlandit, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits. Mineralium Deposita, 56(1): 179~204.

    • Migdisov A A, Zezin D, Williams-Jones A E. 2011. An experimental study of cobalt (II) complexation in Cl- and H2S-bearing hydrothermal solutions. Geochim Cosmochim Acta, 75: 4065~4079.

    • Molnar F, Watkinson D H, Jones P C. 2001. Multiple hydrothermal processes in footwall units of the north range, sudbury igneous complex, Canada, and implications for the genesis of vein-type Cu-Ni-PGE deposits. Economic Geology, 96 (7): 1645~1670.

    • Mungall J E, Brenan J M. 2003. Experimental evidence for the chalcophile behavior of the halogens. Canadian Mineralogist, 41(1): 207~220.

    • Mungall J E, Brenan J M, Godel B, Barnes S J, Gaillard F. 2015. Transport of metals and sulphur in magmas by flortation of sulphide melt on vapour bubbles. Nature Geosicence, 8(3): 216~219.

    • Naldrett A J. 1999. World-class Ni-Cu-PGE deposits: Key factors in their genesis. Mineralium Deposita, 34(3): 227~240.

    • Naldrett T, Kinnaird J, Wilson A, Chunnett G. 2008. Concentration of PGE in the Earth's crust with special reference to the bushveld complex. Earth Science Frontiers, 15(5): 264~297.

    • Ni Huaiwei, Zhang Li, Xiong Xiaolin, Mao Zhu, Wang Jingyun. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Science Reviews, 167: 62~71.

    • Prichard H M, Knight R D, Fisher P C, McDonald I, Zhou Meifu, Wang Christina Y. 2013. Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China: An example of selenium remobilization by postmagmatic fluids. Mineralium Deposita, 48(6): 767~786.

    • Song Chen. 2015. Magmatic channel metallogenic system of Jinchuan Cu-Ni (platinum) sulfide deposit. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese).

    • Song Xieyan, Zhou Meifu, Wang Christineyan, Qi Liang, Zhang Chengjiang. 2006. Role of crustal contamination in the formation of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. International Geology Review, 48: 1113~1132.

    • Song Xieyan, Keays R R, Zhou Meifu, Qi Liang, Ihlenfeld C, Xiao Jiafei. 2009. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochimica et Cosmochimica Acta, 73(2): 404~424.

    • Song Xieyan, Danyushevsky L V, Keays R R, Chen Liemeng, Wang Yushan, Tian Yulong, Xiao Jiafei. 2012. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China. Mineralium Deposita, 47(3): 277~297.

    • Song Xieyan, She Yuwei, Chen Liemeng. 2016. Geochemical characteristics and significance of platinum-group elements in stratified pluton in Emei igneous province. Geological Society of China, Chinese Society of Mineralogy, Petrology and Geochemistry, China Mining Association (in Chinese).

    • Stone W E, Crocket J H, Fleet M E. 1990. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200℃. Geochimica et Cosmochimica Acta, 54(8): 2341~2344.

    • Su Shangguo, Zhou Meifu, Qi Liang, Li Chusi, Tang Zhongli, Geng Ke. 2006. Enrichment mechanism of platinum and palladium in Jinchuan Cu-Ni-PGE deposit, Gansu Province. National Conference on Mineral Deposits. Geological Society of China, Chinese Society of Mineralogy, Petrology and Geochemistry, China Mining Association (in Chinese).

    • Su Shangguo, Shen Cunli, Deng Jinfu, Tang Zhongli, Geng Ke. 2007. Geochemistry behavior of platinum group elements (PGE) and main types of PGE deposits in the world. Geoscience, 21 (2): 361 (in Chinese with English abstract).

    • Su Shangguo, Li Chusi, Zhou Meifu, Edward M R, Qi Liang. 2008. Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China.Mineralium Deposita, 43(6): 609~622.

    • Su Shangguo, Lu Xin, Santosh M, Hou Jianguang, Cui Ying, Cui Xiaoliang. 2021. Geochemical and Fe-isotope characteristics of the largest Mesozoic skarn deposit in China: Implications for the mechanism of Fe skarn formation. Ore Geology Reviews, 138: 104400.

    • Sun He, Tang Dongmei, Qin Kezhang, Fan Xin, Xiao Qinghua, Su Benxun. 2009. Advances of geochemical behavior of chalcophile elements and applications in metallogeny of magmatic Cu-Ni-PGE sulfide deposits. Geological Review, 55(6): 840~850 (in Chinese with English abstract).

    • Tang Zhongli. 1993. Genetic model of the Jinchuan nickel-copper deposit. Geological Association of Canada Special Paper, 40: 389~401.

    • Tang Zhongli. 1993. Model and regional metallogenic prediction of Jinchuan Cu-Ni sulfide (platinum-bearing) deposit. Gansu Provincial Bureau of Geology and Mineral Resources, Jinchuan Nonferrous Metal Company (in Chinese).

    • Tang Zhongli, Li Wenyuan. 1995. The Metallogenetic Model and Geological Contrast of the Jinchuan Platinum Bearing Cu-Ni Sulfide Deposit. Beijing: Geological Publishing House (in Chinese).

    • The Sixth Geological Team of Gansu Provincial Bureau of Geology and Mineral Resources. 1984. Geology of Baijiazuizi Cu-Ni Sulfide Deposit. Beijing: Geological Publishing House (in Chinese).

    • Tonnelier N J. 2010. Geology and genesis of the Jinchuan Ni-Cu-(PGE) deposit, China. Doctoral dissertation of Laurentian University.

    • Vatin-Perignon N, Amosse J, Radelli L, Keller F, Leyva T C. 2000. Platinum group element behaviour and thermochemical constraints in the ultrabasic-basic complex of the Vizcaino Peninsula, Baja California Sur, Mexico. Lithos, 53(1): 59~80.

    • Wang Yan, Zhong Hong, Cao Yonghua, Wei Bo, Chen Chen. 2020. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review. Chinese Science Bulletin, 65(33): 3825~3838 (in Chinese with English abstract).

    • Webster J D, Tappen C M, Mandeville C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200 MPa. Geochimica et Cosmochimica Acta, 73: 559~581.

    • Wood S A, Williams-Jones A E. 2007. Speciation and solubility of Co (II) in the system Co-O-H-Cl-S at saturated water vapor pressure up to 300℃. In: Bullen T D, Wang Y, eds. Water-Rock Interaction(Vols. 1 and 2). London: Taylor and Francis Ltd, 395~398.

    • Xiong Xiaolin, Ni Huaiwei, Chen Wei, Ruan Mengfei, Wang Jintuan, Liu Xingchen, Li Li. 2020. Element migration of supercritical fluids in subduction zones: Progress and problems of experimental researches. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 502~508 (in Chinese with English abstract).

    • Yang Jingsui, Zheng Xinhua, Wang Xibin, Shi Rendeng. 1999. New progress on genesis of Cu-Co-Zn sulfide deposit in Derni-also on the surrounding rock of the deposit being ophiolite mantle peridotite rather than ultrabasic volcanic rock. Earth Science Frontiers, 16(1): 2(in Chinese).

    • Yang Xuanzhu, Ishihara S, Zhao D H. 2006. Genesis of the Jinchuan PGE, deposit, China: Evidence from fluid inclusions, mineralogy and geochemistry of precious elements. Mineralogy and Petrology, 86(1-2): 109~128.

    • Zeng Renyu, Lai Jianqing, Mao Xiancheng, Zhao Yin, Liu Pin, Zhu Jiawei, Yue Bin, Ai Qixing. 2016. Distinction of platinum group elements geochemistry in Jinchuan Cu-Ni sulfide deposit and its implication for magmatic evolution. The Chinese Journal of Nonferrous Metals, 26(1): 149~163 (in Chinese with English abstract).

    • Zhang Mingjie, Tang Qingyan, Li Wenyuan, Yu Ming, Hu Peiqing, Li Jianping. 2015. The roles of volatiles in mineralizations of magmatic Ni-Cu-PGE sulfide deposits-implications for potential metallogenic mechanism of super-large scale magmatic deposits in small magma. Engineering Science, 17(2): 40~49 (in Chinese with English abstract).

    • Zhu Wenfeng, Liang Youbin. 2000. Occurrence state and distribution of platinum group elements in the Jinchuan Cu-Ni sulphide deposit. Geology and Prospecting, 36(1): 26~28 (in Chinese with English abstract).

    • 陈列锰, 宋谢炎, Danyushevsky L V. 2015. 金川铜镍矿床金属硫化物中铂族元素赋存状态及成因. 矿物学报, 35(S1): 142.

    • 董宇, 魏博, 王焰. 2021. 金川铜镍硫化物矿床中铂族矿物的主要类型和产出特征: 热液蚀变过程中铂族元素的富集机理. 岩石学报, 37(9): 2875~2888.

    • Hulbert L J. 1991. 铂族金属的地质环境. 沈承珩, 刘道荣, 卢军, 等译. 北京: 地质出版社.

    • 甘肃省地质矿产局第六地质队. 1984. 白家咀子硫化铜镍矿床地质. 北京: 地质出版社.

    • 江金进, 宋谢炎, 陈列锰, 王亮, 符志强. 2014. 金川铜镍矿床龙首矿区半金属元素与铂族金属地球化学特征及成因意义. 矿物岩石地球化学通报, 33(6): 882~892.

    • 焦建刚, 汤中立, 闫海卿, 徐刚, 何克, 段俊. 2012. 金川铜镍硫化物矿床中富铜矿石铂族金属特征及矿床成因. 西北地质, 45(2): 242~253.

    • 刘美玉, 苏尚国, 宋晨, 蔡楠. 2015. 甘肃金川铜镍(铂)硫化物矿床岩浆通道前进方向探讨. 中国工程科学, 17(2): 12.

    • 宋晨. 2015. 金川铜镍(铂)硫化物矿床岩浆通道成矿系统. 中国地质大学(北京)博士学位论文.

    • 宋谢炎, 佘余伟, 陈列锰. 2016. 峨眉大火成岩省层状岩体铂族元素地球化学特征及其意义. 中国地质学会, 中国矿物岩石地球化学学会, 中国矿业联合会.

    • 苏尚国, 周美夫, 漆亮, 李楚斯, 汤中立, 耿科. 2006. 甘肃金川铜镍铂矿床铂钯富集体富集机理. 全国矿床会议. 中国地质学会, 中国矿物岩石地球化学学会, 中国矿业联合会.

    • 苏尚国, 沈存利, 邓晋福, 汤中立, 耿科. 2007. 铂族金属的地球化学行为及全球主要铂族金属矿床类型. 现代地质, 21 (2): 361.

    • 孙赫, 唐冬梅, 秦克章, 范新, 肖庆华, 苏本勋. 2009. 亲铜元素的地球化学行为研究进展及其在岩浆硫化物矿床中的应用. 地质论评, 55(6): 840~850.

    • 汤中立. 1993. 甘肃金川铜镍硫化物(含铂)矿床模式及区域成矿预测. 甘肃省地矿局, 金川有色金属公司.

    • 汤中立, 李文渊. 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比. 北京: 地质出版社.

    • 王焰, 钟宏, 曹勇华, 魏博, 陈晨. 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制. 科学通报, 65(33): 3825~3838.

    • 熊小林, 倪怀玮, 陈伟, 阮梦飞, 王锦团, 刘星成, 李立. 2020. 俯冲带超临界流体的元素迁移: 实验研究进展和存在的问题. 矿物岩石地球化学通报, 39(3): 502~508.

    • 杨经绥, 郑新华, 王希斌, 史仁灯. 1999. 德尔尼Cu-Co-Zn硫化物矿床的成因探讨新进展——兼论矿床围岩是蛇绿岩地幔橄榄岩而不是超基性火山岩. 地学前缘, 16(1): 2.

    • 张铭杰, 汤庆艳, 李文渊, 余明, 胡沛青, 李建平. 2015. 岩浆镍铜铂族矿床成矿过程中流体的作用: 对小岩体超大型矿床的启示. 中国工程科学, 17(2): 40~49.

    • 曾认宇, 赖健清, 毛先成, 赵莹, 刘嫔, 朱佳玮, 岳斌, 艾启兴. 2016. 金川铜镍硫化物矿床铂族金属地球化学差异及其演化意义. 中国有色金属学报, 26(1): 149~163.

    • 朱文凤, 梁有彬. 2000. 金川铜镍硫化物矿床铂族元素的赋存状态及分布规律. 地质与勘探, 36(1): 26~28.

  • 参考文献

    • Audétat A, Keppler H. 2004. Viscosity of fluids in subduction zones. Science, 303(5657): 513~516.

    • Ballhaus C G, Stumpfl E F. 1986. Sulfide and platinum mineralization in the Merensky Reef: Evidence from hydrous silicates and fluid inclusions. Contributions to Mineralogy and Petrology, 94(2): 193~204.

    • Barnes S J, Roeder P L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42: 2279~2302.

    • Boudreau A. 2016. The Stillwater Complex, Montana—Overview and the significance of volatiles. Mineralogical Magazine, 80(4): 585~637.

    • Boudreau A. 2019. Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions. New York: Cambridge University Press, 1~275.

    • Brimhall G H, Crerar D A. 1987. Ore fluids: Magmatic to supergene. In: Reviews in Mineralogical & Geochemistry. Mineralogical Society of American, Geochemistry Society.

    • Campos-Alvarez N O, Samson I M, Fryer B J. 2012. The roles of magmatic and hydrothermal processes in PGE mineralization, Ferguson Lake deposit, Nunavut, Canada. Mineralium Deposita, 47(4): 441~465.

    • Chai G, Naldrett A J. 1992. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, Northwest China. Economic Geology, 87(6): 1475~1495.

    • Chen Liemeng, Song Xieyan, Danyushevsky L V. 2015. Occurrence and genesis of platinum group elements in metal sulfide of Jinchuan Cu-Ni deposit. Acta Mineralogica Sinica, 35(S1): 142 (in Chinese).

    • Chen Liemeng, Song Xieyan, Danyushevsky L V, Wang Yushan, Tian Yulong, Xiao Jiafei. 2015. A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni-Cu sulfide deposit, NW China. Ore Geology Reviews, 65: 955~967.

    • Dong Shaohua, Bi Xianwu, Hu Ruizhong, Chen Youwei, Chen Heng. 2011. Characteristics of ore-forming fluid in Yaogangxian quartz-vein wolframite deposit, Hunan Province. Journal of Mineralogy and Petrology, 31(2): 54~60 (in Chinese with English abstract)

    • Dong Yu, Wei Bo, Wang C Y. 2021. Major types and occurrences of platinum-group minerals in the Jinchuan Ni-Cu-(PGE) sulfide deposit: Insights for PGE enrichment during hydrothermal alteration. Acta Petrologica Sinica, 37(9): 2875~2888 (in Chinese with English abstract).

    • Fleet M E, Stone W E, Crocket J H. 1991. Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: Effects of melt composition, concentration, and oxygen fugacity. Geochimica et Cosmochimica Acta, 55(9): 2545~2554.

    • Fleet M E, Crocket J H, Liu Menghua, Stone W E. 1999. Laboratory partitioning of platinum group elements (PGE) and gold with application to magmatic sulfide PGE deposits. Lithos, 47(1-2): 127~142.

    • Hack A C, Thompson A B, Aerts M. 2007. Phase relations involving hydrous silicate melts, aqueous fuids, and minerals. Reviews in Mineralogy and Geochemistry, 65(1): 129~185.

    • Helmy H M, Bragagni A. 2017. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020℃. Geochimica et Cosmochimica Acta, 216: 169~183.

    • Helmy H M, Fonseca R O C. 2017. The behavior of Pt, Pd, Cu and Ni in the Se-sulfide system between 1050 and 700℃ and the role of Se in platinum-group elements fractionation in sulfide melts. Geochimica et Cosmochimica Acta, 216: 141~152

    • Holloway J R. 1981. Volatile Interactions in Magmas. New York: Springer.

    • Hulbert L J. 1991. Geological Environment of Platinum Group Metals. Translated by Shen Chengheng, Liu Daorong, Lu Jun. Beijing: Geological Publishing House (in Chinese).

    • Jiang Jinjin, Song Xieyan, Chen Liemeng, Wang Liang, Fu Zhiqiang, 2014. Geochemistry and petrogenetic significances of semimetal and platinum group elements of the Longshou mine of the Jinchuan Ni-Cu sulfide deposit. Bulletin of Mineralogy, Petrology and Geochemistry, 33(6): 882~892 (in Chinese with English abstract).

    • Jiao Jiangang, Tang Zhongli, Yan Haiqing, Xu Gang, He Ke, Duan Jun. 2012. PGE characteristics of Cu-rich ores in the Jinchuan Cu-Ni sulfide deposit and its genesis. Northwestern Geology, 45(2): 242~253 (in Chinese with English abstract).

    • Jiao Jiangang, Han Feng, Zhao Liandang, Duan Jun, Wang Mengxi. 2019. Magnetite geochemistry of the Jinchuan Ni-Cu-PGE deposit, NW China: Implication for its ore-forming processes. Minerals, 9: 593.

    • Keppler H, Wyllie P J. 199l. Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems hap-logranite-H2O-HCl and haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109: 139~150.

    • Kessel R, Ulmer P, Pettke T, Schmidt M W, Thompson A B. 2005a. The water-basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400℃. Earth and Planetary Science Letters, 237(3-4): 873~892.

    • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005b. Trace element signature of subduction-zone fuids, melts and supercritical liquids at 120-180 km depth. Nature, 437(7059): 724~727.

    • Li Chusi, Xu Zhanghua, de Waal S A, Ripley E M, Maier W D. 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis. Mineralium Deposita, 39(2): 159~172.

    • Li Xiaochun, Zhou Meifu. 2015. Multiple stages of hydrothermal REE remobilization recorded in fluorapatite in the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, Southwest China. Geochimica et Cosmochimica Acta, 166: 53~73.

    • Liang Qinglin, Song Xieyan, Richard W, Chen Liemeng, Yu Songyue, Nadezhda A, Krivolutskaya N A, Dai Zhihui. 2022. Thermodynamic conditions control the valences state of semimetals thus affecting the behavior of PGE in magmatic sulfide liquids. Geochimica et Cosmochimica Acta, 321: 1~15.

    • Liu Meiyu, Su Shangguo, Song Chen, Cai Nan. 2015. Moving direction of magmatic conduit metallogenic system in Jinchuan Cu-Ni(PGE)sulfide deposit. Engineering Science, 17(2): 12 (in Chinese with English abstract).

    • Liu Meiyu, Zhou Meifu, Su Shangguo, Chen Xuegen. 2021. Contrasting geochemistry of apatite from peridotites and sulfide ores of the Jinchuan Ni-Cu sulfide deposit, NW China. Economic Geology, 116(5): 1073~1092.

    • Liu Weihua, Borg S, Testemale D, Etschmann B, Hazemann J L, Brugger J. 2010. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35-440 degrees and 600 bar: An in-situ xas study. Geochimica et Cosmochimica Acta, 75(5): 1227~1248.

    • London D. 1997. Estimating abundances of volatile and other mobile components in evolved silicic melts through mineral-melt equilibria. Journal of Petrology, 38: 1691~1706.

    • Mansur E T, Barnes S J, Duran C J. 2021. An overview of chalcophile element contents of pyrrhotite, pentlandit, chalcopyrite, and pyrite from magmatic Ni-Cu-PGE sulfide deposits. Mineralium Deposita, 56(1): 179~204.

    • Migdisov A A, Zezin D, Williams-Jones A E. 2011. An experimental study of cobalt (II) complexation in Cl- and H2S-bearing hydrothermal solutions. Geochim Cosmochim Acta, 75: 4065~4079.

    • Molnar F, Watkinson D H, Jones P C. 2001. Multiple hydrothermal processes in footwall units of the north range, sudbury igneous complex, Canada, and implications for the genesis of vein-type Cu-Ni-PGE deposits. Economic Geology, 96 (7): 1645~1670.

    • Mungall J E, Brenan J M. 2003. Experimental evidence for the chalcophile behavior of the halogens. Canadian Mineralogist, 41(1): 207~220.

    • Mungall J E, Brenan J M, Godel B, Barnes S J, Gaillard F. 2015. Transport of metals and sulphur in magmas by flortation of sulphide melt on vapour bubbles. Nature Geosicence, 8(3): 216~219.

    • Naldrett A J. 1999. World-class Ni-Cu-PGE deposits: Key factors in their genesis. Mineralium Deposita, 34(3): 227~240.

    • Naldrett T, Kinnaird J, Wilson A, Chunnett G. 2008. Concentration of PGE in the Earth's crust with special reference to the bushveld complex. Earth Science Frontiers, 15(5): 264~297.

    • Ni Huaiwei, Zhang Li, Xiong Xiaolin, Mao Zhu, Wang Jingyun. 2017. Supercritical fluids at subduction zones: Evidence, formation condition, and physicochemical properties. Earth-Science Reviews, 167: 62~71.

    • Prichard H M, Knight R D, Fisher P C, McDonald I, Zhou Meifu, Wang Christina Y. 2013. Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China: An example of selenium remobilization by postmagmatic fluids. Mineralium Deposita, 48(6): 767~786.

    • Song Chen. 2015. Magmatic channel metallogenic system of Jinchuan Cu-Ni (platinum) sulfide deposit. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese).

    • Song Xieyan, Zhou Meifu, Wang Christineyan, Qi Liang, Zhang Chengjiang. 2006. Role of crustal contamination in the formation of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. International Geology Review, 48: 1113~1132.

    • Song Xieyan, Keays R R, Zhou Meifu, Qi Liang, Ihlenfeld C, Xiao Jiafei. 2009. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochimica et Cosmochimica Acta, 73(2): 404~424.

    • Song Xieyan, Danyushevsky L V, Keays R R, Chen Liemeng, Wang Yushan, Tian Yulong, Xiao Jiafei. 2012. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China. Mineralium Deposita, 47(3): 277~297.

    • Song Xieyan, She Yuwei, Chen Liemeng. 2016. Geochemical characteristics and significance of platinum-group elements in stratified pluton in Emei igneous province. Geological Society of China, Chinese Society of Mineralogy, Petrology and Geochemistry, China Mining Association (in Chinese).

    • Stone W E, Crocket J H, Fleet M E. 1990. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200℃. Geochimica et Cosmochimica Acta, 54(8): 2341~2344.

    • Su Shangguo, Zhou Meifu, Qi Liang, Li Chusi, Tang Zhongli, Geng Ke. 2006. Enrichment mechanism of platinum and palladium in Jinchuan Cu-Ni-PGE deposit, Gansu Province. National Conference on Mineral Deposits. Geological Society of China, Chinese Society of Mineralogy, Petrology and Geochemistry, China Mining Association (in Chinese).

    • Su Shangguo, Shen Cunli, Deng Jinfu, Tang Zhongli, Geng Ke. 2007. Geochemistry behavior of platinum group elements (PGE) and main types of PGE deposits in the world. Geoscience, 21 (2): 361 (in Chinese with English abstract).

    • Su Shangguo, Li Chusi, Zhou Meifu, Edward M R, Qi Liang. 2008. Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China.Mineralium Deposita, 43(6): 609~622.

    • Su Shangguo, Lu Xin, Santosh M, Hou Jianguang, Cui Ying, Cui Xiaoliang. 2021. Geochemical and Fe-isotope characteristics of the largest Mesozoic skarn deposit in China: Implications for the mechanism of Fe skarn formation. Ore Geology Reviews, 138: 104400.

    • Sun He, Tang Dongmei, Qin Kezhang, Fan Xin, Xiao Qinghua, Su Benxun. 2009. Advances of geochemical behavior of chalcophile elements and applications in metallogeny of magmatic Cu-Ni-PGE sulfide deposits. Geological Review, 55(6): 840~850 (in Chinese with English abstract).

    • Tang Zhongli. 1993. Genetic model of the Jinchuan nickel-copper deposit. Geological Association of Canada Special Paper, 40: 389~401.

    • Tang Zhongli. 1993. Model and regional metallogenic prediction of Jinchuan Cu-Ni sulfide (platinum-bearing) deposit. Gansu Provincial Bureau of Geology and Mineral Resources, Jinchuan Nonferrous Metal Company (in Chinese).

    • Tang Zhongli, Li Wenyuan. 1995. The Metallogenetic Model and Geological Contrast of the Jinchuan Platinum Bearing Cu-Ni Sulfide Deposit. Beijing: Geological Publishing House (in Chinese).

    • The Sixth Geological Team of Gansu Provincial Bureau of Geology and Mineral Resources. 1984. Geology of Baijiazuizi Cu-Ni Sulfide Deposit. Beijing: Geological Publishing House (in Chinese).

    • Tonnelier N J. 2010. Geology and genesis of the Jinchuan Ni-Cu-(PGE) deposit, China. Doctoral dissertation of Laurentian University.

    • Vatin-Perignon N, Amosse J, Radelli L, Keller F, Leyva T C. 2000. Platinum group element behaviour and thermochemical constraints in the ultrabasic-basic complex of the Vizcaino Peninsula, Baja California Sur, Mexico. Lithos, 53(1): 59~80.

    • Wang Yan, Zhong Hong, Cao Yonghua, Wei Bo, Chen Chen. 2020. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review. Chinese Science Bulletin, 65(33): 3825~3838 (in Chinese with English abstract).

    • Webster J D, Tappen C M, Mandeville C W. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200 MPa. Geochimica et Cosmochimica Acta, 73: 559~581.

    • Wood S A, Williams-Jones A E. 2007. Speciation and solubility of Co (II) in the system Co-O-H-Cl-S at saturated water vapor pressure up to 300℃. In: Bullen T D, Wang Y, eds. Water-Rock Interaction(Vols. 1 and 2). London: Taylor and Francis Ltd, 395~398.

    • Xiong Xiaolin, Ni Huaiwei, Chen Wei, Ruan Mengfei, Wang Jintuan, Liu Xingchen, Li Li. 2020. Element migration of supercritical fluids in subduction zones: Progress and problems of experimental researches. Bulletin of Mineralogy, Petrology and Geochemistry, 39(3): 502~508 (in Chinese with English abstract).

    • Yang Jingsui, Zheng Xinhua, Wang Xibin, Shi Rendeng. 1999. New progress on genesis of Cu-Co-Zn sulfide deposit in Derni-also on the surrounding rock of the deposit being ophiolite mantle peridotite rather than ultrabasic volcanic rock. Earth Science Frontiers, 16(1): 2(in Chinese).

    • Yang Xuanzhu, Ishihara S, Zhao D H. 2006. Genesis of the Jinchuan PGE, deposit, China: Evidence from fluid inclusions, mineralogy and geochemistry of precious elements. Mineralogy and Petrology, 86(1-2): 109~128.

    • Zeng Renyu, Lai Jianqing, Mao Xiancheng, Zhao Yin, Liu Pin, Zhu Jiawei, Yue Bin, Ai Qixing. 2016. Distinction of platinum group elements geochemistry in Jinchuan Cu-Ni sulfide deposit and its implication for magmatic evolution. The Chinese Journal of Nonferrous Metals, 26(1): 149~163 (in Chinese with English abstract).

    • Zhang Mingjie, Tang Qingyan, Li Wenyuan, Yu Ming, Hu Peiqing, Li Jianping. 2015. The roles of volatiles in mineralizations of magmatic Ni-Cu-PGE sulfide deposits-implications for potential metallogenic mechanism of super-large scale magmatic deposits in small magma. Engineering Science, 17(2): 40~49 (in Chinese with English abstract).

    • Zhu Wenfeng, Liang Youbin. 2000. Occurrence state and distribution of platinum group elements in the Jinchuan Cu-Ni sulphide deposit. Geology and Prospecting, 36(1): 26~28 (in Chinese with English abstract).

    • 陈列锰, 宋谢炎, Danyushevsky L V. 2015. 金川铜镍矿床金属硫化物中铂族元素赋存状态及成因. 矿物学报, 35(S1): 142.

    • 董宇, 魏博, 王焰. 2021. 金川铜镍硫化物矿床中铂族矿物的主要类型和产出特征: 热液蚀变过程中铂族元素的富集机理. 岩石学报, 37(9): 2875~2888.

    • Hulbert L J. 1991. 铂族金属的地质环境. 沈承珩, 刘道荣, 卢军, 等译. 北京: 地质出版社.

    • 甘肃省地质矿产局第六地质队. 1984. 白家咀子硫化铜镍矿床地质. 北京: 地质出版社.

    • 江金进, 宋谢炎, 陈列锰, 王亮, 符志强. 2014. 金川铜镍矿床龙首矿区半金属元素与铂族金属地球化学特征及成因意义. 矿物岩石地球化学通报, 33(6): 882~892.

    • 焦建刚, 汤中立, 闫海卿, 徐刚, 何克, 段俊. 2012. 金川铜镍硫化物矿床中富铜矿石铂族金属特征及矿床成因. 西北地质, 45(2): 242~253.

    • 刘美玉, 苏尚国, 宋晨, 蔡楠. 2015. 甘肃金川铜镍(铂)硫化物矿床岩浆通道前进方向探讨. 中国工程科学, 17(2): 12.

    • 宋晨. 2015. 金川铜镍(铂)硫化物矿床岩浆通道成矿系统. 中国地质大学(北京)博士学位论文.

    • 宋谢炎, 佘余伟, 陈列锰. 2016. 峨眉大火成岩省层状岩体铂族元素地球化学特征及其意义. 中国地质学会, 中国矿物岩石地球化学学会, 中国矿业联合会.

    • 苏尚国, 周美夫, 漆亮, 李楚斯, 汤中立, 耿科. 2006. 甘肃金川铜镍铂矿床铂钯富集体富集机理. 全国矿床会议. 中国地质学会, 中国矿物岩石地球化学学会, 中国矿业联合会.

    • 苏尚国, 沈存利, 邓晋福, 汤中立, 耿科. 2007. 铂族金属的地球化学行为及全球主要铂族金属矿床类型. 现代地质, 21 (2): 361.

    • 孙赫, 唐冬梅, 秦克章, 范新, 肖庆华, 苏本勋. 2009. 亲铜元素的地球化学行为研究进展及其在岩浆硫化物矿床中的应用. 地质论评, 55(6): 840~850.

    • 汤中立. 1993. 甘肃金川铜镍硫化物(含铂)矿床模式及区域成矿预测. 甘肃省地矿局, 金川有色金属公司.

    • 汤中立, 李文渊. 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比. 北京: 地质出版社.

    • 王焰, 钟宏, 曹勇华, 魏博, 陈晨. 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制. 科学通报, 65(33): 3825~3838.

    • 熊小林, 倪怀玮, 陈伟, 阮梦飞, 王锦团, 刘星成, 李立. 2020. 俯冲带超临界流体的元素迁移: 实验研究进展和存在的问题. 矿物岩石地球化学通报, 39(3): 502~508.

    • 杨经绥, 郑新华, 王希斌, 史仁灯. 1999. 德尔尼Cu-Co-Zn硫化物矿床的成因探讨新进展——兼论矿床围岩是蛇绿岩地幔橄榄岩而不是超基性火山岩. 地学前缘, 16(1): 2.

    • 张铭杰, 汤庆艳, 李文渊, 余明, 胡沛青, 李建平. 2015. 岩浆镍铜铂族矿床成矿过程中流体的作用: 对小岩体超大型矿床的启示. 中国工程科学, 17(2): 40~49.

    • 曾认宇, 赖健清, 毛先成, 赵莹, 刘嫔, 朱佳玮, 岳斌, 艾启兴. 2016. 金川铜镍硫化物矿床铂族金属地球化学差异及其演化意义. 中国有色金属学报, 26(1): 149~163.

    • 朱文凤, 梁有彬. 2000. 金川铜镍硫化物矿床铂族元素的赋存状态及分布规律. 地质与勘探, 36(1): 26~28.