en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张神功,男,1997年生。硕士研究生,主要从事古生物学与地层学方面的研究。E-mail:shengong_zhang@foxmail.com。

通讯作者:

陈雷,男,1988年生。教授,主要从事古生物学与地层学方面研究。E-mail:leichen@sdust.edu.cn。

参考文献
Bailey J V, Joye S B, Kalanetra K M, Flood B E, Corsetti F A. 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445(7124): 198~201.
参考文献
Briggs D E G, Mcmahon S. 2015. The role of experiments in investigating the taphonomy of exceptional preservation. Palaeontology, 59(1): 1~11.
参考文献
Butler A D, Cunningham J A, Budd G E, Donoghue P C J. 2015. Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization. Philosophical Transactions of the Royal Society B: Biological Science, 282: 20150476.
参考文献
Butterfield N J. 2011. Terminal developments in Ediacara embryology. Science, 334: 1655~1656.
参考文献
Cai Yaoping. 2011. Taphonomy and paleoecology of Ediacaran tubular fossil Conotubus hemiannulatus and Gaojiashania cyclus from the Gaojiashan Lagerstätte in southern Shaanxi Province, South China. Doctoral dissertation of Northwest University (in Chinese with English abstract).
参考文献
Cai Yaoping, Schiffbauer J D, Hua Hong, Xiao Shuhai. 2011. Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstatte of southern Shaanxi Province, South China. Precambrian Research, 191: 46~57.
参考文献
Chen Fang, Dong Xiping. 2008. The internal structure of Early Cambrian fossil embryo Olivooides revealed in the light of synchrotron X-ray tomographic microscopy. Chinese Science Bulletin, 53(24): 3860~3865.
参考文献
Chen Junyuan, Bottjer D J, Davidson E H, Li Gang, Gao Feng, Cameron R A, Hadfield M G, Xian Dingchang, Tafforeau P, Jia Quanjie, Sugiyama H, Tang Rui. 2009a. Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Research, 173: 191~200.
参考文献
Chen Junyuan, Bottjer D J, Li Gang, Michael G H, Gao Feng, Andrew R C, Zhang Chenyu, Xian Dingchang, Paul T, Liao Xin, Yin Zongjun. 2009b. Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China. Proceedings of the National Academy of Sciences of the United States of America, 106(45): 19056~19060.
参考文献
Chen Lei, Xiao Shuhai, Pang Ke, Zhou Chuanming, Yuan Xunlai. 2014. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils. Nature, 516(7530): 238~241.
参考文献
Chen Menge. 1982. The new knowledge of the fossil assemblages from Maidiping section, Emei County, Sichuan with reference to the Simian-Cambrian boundary. Scientia Geologica Sinica, 3: 253~262(in Chinese with English abstract).
参考文献
Chen Menge, Liu Kuiwu. 1986. Discovery of microfossils in the Doushantuo phosphorite block of the Late Sinian and their geological significance. Chinese Journal of Geology, 1: 46~53(in Chinese with English abstract).
参考文献
Chen Xiaozheng, Wang Wei, Liu Xinchun, Xu Honghe, Liu Xiaolei, Meng Fanwei, Cheng Jinhui. 2007. Simulation experiment of microbial silicification. Acta Micropalaeontologica Sinica, 3: 261~266(in Chinese with English abstract).
参考文献
Cunningham J A, Thomas C W, Bengtson S, Marone F, Stampanoni M, Turner F R, Bailey J V, Raff R A, Raff E C, Donoghue P C J. 2012. Experimental taphonomy of giant sulfur bacteria: Implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils. Proceedings of the Royal Society, London, Series B; Biological Sciences, 279(1734): 1857~1864.
参考文献
Donoghue P C J, Bengtson S, Dong Xiping, Gostling N J, Huldtgren T, Cunningham J A, Yin Chongyu, Yue Zhao, Peng Fan, Stampanoni M. 2006. Synchrotron X-ray tomographic microscopy of fossil embryos. Nature, 442: 682~683.
参考文献
Gostliing N J, Thomas Ceri-Wyn, Greenwood J M, Dong Xiping, Bengtson S, Raff E C, Raff R A, Degnan B M, Stampanoni M, Donoghue P C J. 2008. Deciphering the fossil record of early Bilaterian embryonic development in light of experimental taphonomy. Evolution and Development, 10(3): 339~349.
参考文献
Hagadorn J W, Xiao S, Donoghue P C, Bengtson S, Gostling N J, Pawlowska M, Raff E C, Raff R A, Turner F R, Chongyu Y, Zhou C, Yuan X, McFeely M B, Stampanoni M, Nealson K H. 2006. Cellular and subcellular structure of Neoproterozoic animal embryos. Science, 314(5797): 291~294.
参考文献
Hippler D, Hu Nanjie, Steiner M, Scholtz G, Franz G. 2011. Experimental mineralization of crustacean eggs leads to surprising tissue conservation: New implications for the fossilization of Precambrian Cambrian embryos. Biogeosciences Discussion, 8: 12051~12077.
参考文献
Hua Hong, Zhang Luyi, Zhang Zifu, Wang Jingping. 2001. Assemblage zones of Gaojiashan biota and their characteristics. Journal of Stratigraphy, 25(1): 13~17(in Chinese with English abstract).
参考文献
Hua Hong, Wang Wei, Han Hongguang. 2015. Decomposition experiments on embyros of Artemia salina (Crustacea): An enlightment on the early phosphatized fossil embyros. Acta Micropalaeontologica Sinica, 32(1): 20~27(in Chinese with English abstract).
参考文献
Martin D, Briggs D E G, Parkes R J. 2005. Decay and mineralization of invertebrate eggs. Palaios, 20: 562~572.
参考文献
Qian Yi. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucun Stage in central and SW China. Acta Palaeontologiga Sinica, 16(2): 255~275(in Chinese with English abstract).
参考文献
Qian Yi, Bengtson S. 1989. Paleontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossil Strata, 24: 1~156.
参考文献
Raff E C, Villinski J T, Turenr F R, Donoghue P C J, Raff R A. 2006. Experimental taphonomy shows the feasibility of fossil embryos. Proceedings of the National Academy of Sciences of the United States of America, 103(15): 5846~5851.
参考文献
Ren Jinjie, Hua Hong. 2016. Experimental taphonomy of modern fish embryos through silicate simulation. Acta Micropalaeontologica Sinica, 33(3): 272~279(in Chinese with English abstract).
参考文献
Wilby P R, Briggs D E G. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios, 30(97): 493~502.
参考文献
Xiao Shuhai, Zhang Yun, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391: 553~558.
参考文献
Xiao Shuhai, Knoll A H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China. Lethaia, 32: 219~240.
参考文献
Xiao Shuhai, Knoll A H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74(5): 767~788.
参考文献
Xiao Shuhai, Knoll A H, Schiffbauer J D, Zhou Chuanming, Yuan Xunlai. 2012. Comment on “fossilized nuclei and germination structures identify ediacaran ‘animal embryos’ as encysting protists”. Science, 335(6073): 1696~1699.
参考文献
Xiao Shuhai, Muscente A D, Chen Lei, Zhou Chuanming, Schiffbauer J D, Wood A D, Polys N F, Yuan Xunlai. 2014. The Weng'an biota and the Ediacaran radiation of multicellular eukaryotes. National Science Review, 1(4): 498~520.
参考文献
Xue Yaosong, Tang Tianfu, Yu Congliu, Zhou Chuanming. 1995. Large spheroidal chlorophyta fossils from Doushantuo Formation phosphoric sequence (Late Sinian), central Guizhou, South China. Acta Palaeontologica Sinica, 34(6): 688~706(in Chinese with English abstract).
参考文献
Xue Yaosong, Zhou Chuanming, Tang Tianfu. 1999. “Animal embryos”, a misinterpretation of Neoproterozoic microfossils. Acta Micropalaeontologica Sinica, 16(1): 1~4(in Chinese with English abstract).
参考文献
Yin Zongjun, Zhu Maoyan, Tafforeau P, Chen Junyuan, Liu Pengju, Li Gang. 2013. Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng'an biota, South China. Precambrian Research, 225: 44~57.
参考文献
Yin Zongjun, Liu Pengju, Li Guoxiang, Tafforeau P, Zhu Maoyan. 2014. Biological and taphonomic implications of Ediacaran fossil embryos undergoing cytokinesis. Gondwana Research, 25: 1019~1026.
参考文献
Yin Zongjun, Sun Weichen, Liu Pengju, Chen Junyuan, Bottjer David J, Li Jinhua, Zhu Maoyan. 2022. Diverse and complex developmental mechanisms of early Ediacaran embryo-like fossils from the Weng'an biota, Southwest China. Philosophical Transactions of the Royal Society B: Biological Science, 377: 20210032.
参考文献
Yuan Xunlai, Xiao Shuhai, Yin Leiming, Knoll A H, Zhou Chuanming, Mu Xinan. 2002. Doushantuo Fossils: Life on the Eve of Animal Radiation. Hefei: University of Science and Technology of China Press, 1~171(in Chinese).
参考文献
Yuan Xunlai, Chen Zhe, Xiao Shuhai, Zhou Chuanming, Hua Hong. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470(7334): 390~393.
参考文献
Yuan Xunlai, Chen Zhe, Xiao Shuhai, Wan Bin, Guan Chengguo, Wang Wei, Zhou Chuanming, Hua Hong. 2013. The Lantian biota: A new window onto the origin and early evolution of multicellular organisms. Chinese Science Bulletin, 58(7): 701~707.
参考文献
Yue Zhao. 1986. Microstructure and systematic position of the genus Olivooides. Institute of Geology, Chinese Academy of Geological Sciences, 14: 147~162(in Chinese with English abstract).
参考文献
Yue Zhao, Bengtson S. 1998. Phosphatized embryo fossils from the Cambrian explosion. Chinese Science Bulletin, 17: 1858~1862(in Chinese).
参考文献
Zhang Jian, Hua Hong. 2014. A simulation experiment on phosphatized spherical microfossils. Chinese Science Bulletin, 59: 344~348(in Chinese with English abstract).
参考文献
Zhang Yuan, Zhang Xingliang. 2017. New Megasphaera-like microfossils reveal their reproductive strategies. Precambrian Research, 300: 141~150.
参考文献
Zhang Yun, Yuan Xunlai, Yin Leiming. 1998. Interpreting Late Precambrian microfossils. Science, 282: 1783.
参考文献
蔡耀平. 2011. 陕西宁强埃迪卡拉纪晚期高家山生物群中的 Conotubus hemiannulatusGaojiashania cyclus: 化石埋藏学与古生态学研究. 西北大学博士学位论文.
参考文献
陈孟莪. 1982. 四川峨眉麦地坪剖面震旦系—寒武系界线的新认识及有关化石群的记述. 地质科学, 3: 253~262.
参考文献
陈孟莪, 刘魁梧. 1986. 晚震旦世陡山沱期磷块岩中微体化石的发现及其地质意义. 地质科学, 1: 46~53.
参考文献
陈孝政, 王伟, 刘欣春, 徐洪河, 刘小雷, 孟凡巍, 程金辉. 2007. 微生物硅化作用模拟实验. 微体古生物学报, 3: 261~266.
参考文献
华洪, 张录易, 张子福, 王静平. 2001. 高家山生物群化石组合面貌及其特征. 地层学杂志, 25(1): 13~17.
参考文献
华洪, 王伟, 韩宏光. 2015. 现代丰年虾卵的腐解实验——对早期化石胚胎研究的启示. 微体古生物学报, 32(1): 20~27.
参考文献
钱逸. 1977. 华中西南区早寒武世梅树村阶软舌螺及其它化石. 古生物学报, 16(2): 255~275.
参考文献
任津杰, 华洪. 2016. 现代鱼卵硅磷盐化模拟实验. 微体古生物学报, 33(3): 272~279.
参考文献
薛耀松, 唐天福, 俞从流, 周传明. 1995. 贵州瓮安—开阳地区陡山沱期含磷岩系的大型球形绿藻化石. 古生物学报, 34(6): 688~706.
参考文献
薛耀松, 周传明, 唐天福. 1999. “动物胚胎”——对瓮安地区陡山沱组微体化石的错误解释. 微体古生物学报, 16(1): 1~4.
参考文献
袁训来, 肖书海, 尹磊明, 安德鲁·诺尔, 周传明, 穆西南. 2002. 陡山沱期生物群: 早期动物辐射前夕的生命. 合肥: 中国科学技术大学出版社, 1~171.
参考文献
岳昭. 1986. Olivooides属的微结构及其系统位置. 中国地质科学院地质研究所所刊, 14: 147~162.
参考文献
岳昭, Bengtson S. 1998. 寒武纪大爆发中的磷酸盐化胚胎化石. 科学通报, 17: 1858~1862.
参考文献
张剑, 华洪. 2014. 微体球状化石磷酸盐化模拟实验. 科学通报, 59(Z1): 351~354.
目录contents

    摘要

    产于贵州瓮安埃迪卡拉系陡山沱组磷块岩中的“瓮安生物群”是认识早期生命起源与演化的重要窗口。因为其特殊的磷酸盐化作用,其中的球状化石内部保存了大量精细的细胞甚至亚细胞结构,但保存这些化石的磷酸盐化作用机理尚不清楚。因此,本文采用绿藻门下团藻和空球藻为实验对象,通过改变pH、温度、氧气含量等实验条件,探索藻类在不同埋藏环境下的保存状况,为早期磷酸盐化化石的埋藏机制提供证据。实验结果显示藻类在不同实验条件下的保存潜力差距较大,相同环境下两种藻类所体现的保存潜力也不一致,但都具备足够的保存潜力;空球藻细胞在埋藏过程中出现褶皱变形,但在不同条件下的形态学差异并不明显;团藻的繁殖体形态与瓮安生物群中的一类多细胞球状化石的细胞分裂形式十分相似;早期状态一致的同种藻类不管在相同还是不同的实验条件下其个体直径大小均表现出较强的差异性。本次实验模拟自然状态下的埋藏环境,因此实验现象可能在现实埋藏过程中重现,通过实验得出以下结论:磷酸盐化的埋藏环境中藻类具备足够的保存潜力;磷酸盐化会导致生物获得自身以外的形态学信息;在不同的埋藏学环境下保存的磷酸盐化球状化石的直径大小会有差异;胚胎状化石与磷酸盐化的现生藻类并不完全相同,它们之间的相似性可能来自于趋同演化,因此不能直接将它们等同看待。

    Abstract

    The Weng'an biota in the Ediacaran Doushantuo Formation phosphorus block in Weng'an, Guizhou is an important window to understand the origin and evolution of early life. Because of their special phosphosalination, globular fossils preserve a great deal of fine cellular and even subcellular structures. However, the mechanism by which these fossils are preserved is unclear. Therefore, in this paper, Volvox and Eudorina were used as experimental objects to explore the preservation status of algae under different burial environments by changing the pH, temperature and oxygen availability, to simulate the burial environment of early phosphate fossils. The results showed that there was a large difference in the conservation potential of algae under different experimental conditions. Though the conservation potential of the two species of algae under the same environment was not consistent, both had sufficient conservation potential. During the burial process, the cells of Chlorella were folded and deformed, but the morphological changes were not obvious under different conditions. The morphology of Volvox blooms is very similar to the cell division form of a kind of multicellular globular fossil in the Weng'an biota. Under the same or different experimental conditions, the individual diameter of the same species of algae with the same early state showed a strong difference. The experimental conditions were set to simulate the natural burial environment, so the experimental phenomenon may be reproduced in the real burial process. The experimental results show that the algae in the phosphate burial environment also have sufficient preservation potential. Phosphorylation can lead to the acquisition of morphological information outside the organism itself. We should be careful to classify the properties of phosphate globular fossils because the classification based on the diameter may not be reliable. Embryoid fossils are not directly equivalent to phosphatized algae, and their similarities may result from convergent evolution.

  • 时代上处于隐生宙至显生宙过渡时期的埃迪卡拉纪无疑是寒武纪生命大爆发前夕的一个关键节点,众多化石证据表明这一时期的多细胞真核生命已经进化到了相当高的水平(Yuan Xunlai et al.,2011; Xiao Shuhai et al.,2014),无论是化石丰度,还是物种的多样性都已经有了质的飞跃。因此,关于埃迪卡拉纪化石的研究一直是古生物学、进化生物学等研究领域的热点所在。

  • 在我国华南地区的埃迪卡拉系中保存了多个特异埋藏库,如“布尔吉斯”型碳质压膜保存的蓝田生物群和庙河生物群(Yuan Xunlai,20112013)、磷酸盐化保存的瓮安生物群(Zhang Yun et al.,1998; Xiao Shuhai and Knoll,1999; Cai Yaoping et al.,2011)、磷酸盐化和碳质压膜等多种保存方式并存的高家山生物群(华洪等,2001; 蔡耀平,2011)等。其中,瓮安生物群以其独特的埋藏机制保存了大量精美的立体化石,一经发现就成为了研究焦点,磷酸盐化球状化石更是因其具有较大争议的生物属性问题而一直受到相关学者的广泛关注。

  • 作为一种特异埋藏形式,磷酸盐化能够较为精细地在化石中保存生物的细胞乃至亚细胞结构(Wilby and Briggs,1997; Briggs and Mcmahon,2015)。这种特殊的保存机制使得瓮安生物群中的球状化石保留了大量的超微细结构,这也为探究这些球状化石的亲缘关系提供了微结构信息。

  • 1 研究背景

  • 关于磷酸盐化球状化石的研究源自于二十世纪七十年代,钱逸(1977)对早寒武世梅树村阶地层中的球状化石进行了系统分类,其后又陆续有更多三维立体保存的球状化石的报道(陈孟莪,1982; 岳昭,1986; Qian Yi and Bengtson,1989),并描述了这些磷酸盐化化石与现生动植物在结构上的相似性。随着瓮安生物群的发现,其精美的保存状态和丰富的物种多样性立刻引起广大研究者的密切关注,为多细胞生命的起源研究提供了全新的窗口。

  • 在瓮安生物群的研究初期,陈孟莪和刘魁梧(1986)将首次在贵州瓮安地区埃迪卡拉地层中发现的磷酸盐化微体球状化石归为大型球藻化石。随后,薛耀松等(1995)将部分瓮安地区陡山沱组球状化石归于绿藻纲。其他一些学者则认为这些球状化石很可能是磷酸盐化的动物胚胎(Xiao Shuhai et al.,1998; Xiao Shuhai and Knoll,1999; Martin et al.,2005; Hagadorn et al.,2006; Yin Zongjun et al.,2014,2021),并从多样化的形态和发育阶段等角度进行了解释,但这个解释依旧存在异议,部分学者认为除藻类(薛耀松,1999; Butterfield,2011)与两侧对称动物(Chen Junyuan et al.,2009b; Yin Zongjun et al.,2013)外,这些球状化石也可能与细菌(Bailey et al.,2007)密切相关。

  • 随着研究的不断深入,对磷酸盐化球状化石的研究已经不再局限于对表面形态的描述分析,MicroCT扫描等先进技术的应用实现了对化石内部细胞的分生排列等形态构造的深入剖析(Donoghue et al.,2006; Chen Fang and Dong Xiping,2008; Chen Junyuan et al.,2009a; Yin Zongjun et al.,2013),在国内外学者的共同努力下,埃迪卡拉系磷酸盐化球状化石的研究取得了很大的进展,但时至今日,关于这些球状化石的生物归属及其能否对后生动物的起源做出解释等问题依旧争议不断。在其生物归属这一问题的探讨上,我们必须注意到一点,即生物个体从死亡埋藏到石化作用形成化石的过程中,会失去部分生物学信息,同时增加由于微生物对成岩作用的影响、自溶作用、死亡环境等影响而产生的埋藏学信息(Butler et al.,2015)。比如,细菌或病毒会加速或减缓生物死后的腐解过程,生物体内自身的自溶酶也会在死后第一时间分解生物组织,同时温度、pH以及死后埋藏过程来自于围岩的压力都会致使生物体结构发生不可逆的转变,从而导致形成化石后不同形态的假象,这些都会对化石生物属性的判定带来困扰,而现代实验埋藏学实验或许可以提供佐证。

  • 到目前为止,国内外学者针对磷酸盐化球状化石设计了一系列的埋藏学实验(Martin et al.,2005; Raff et al.,2006; 陈孝政等,2007; Gostling et al.,2008; Hippler et al.,2011; Cunningham et al.,2012; 张剑和华洪,2014; 华洪等,2015; 任津杰等,2016),通过模拟化石形成初期的沉积环境,来观察现生生物在不同埋藏环境或埋藏阶段中所表现出的差异性,并为早寒武世胚胎类球状化石的研究提供实证依据。但以往所进行的磷酸盐化球状化石埋藏模拟实验主要以动物胚胎为实验对象,有关藻类的埋藏学实验研究尚很缺乏。为了探究藻类在磷酸盐化过程中发生的变化特征,本文选取现代绿藻门下团藻和空球藻为实验材料,设计了一系列磷酸盐埋藏学实验,通过对其磷酸盐化前后的形态特征的差异性进行分析,来探讨埋藏环境对藻类磷酸盐化的影响,为早期磷酸盐化化石的埋藏机制提供证据。

  • 2 实验部分

  • 2.1 实验材料

  • 空球藻(Eudorina),绿藻门、团藻科、空球藻属。空球藻由16、32或64个衣藻型的细胞排列在球面上组成,球体中央是一个空腔,内部充满液体,空腔内无细胞分布,所以叫做空球藻。空球藻在性别上有雌、雄之分。群体前后端产生分化。无性生殖时,空球藻每个母细胞发育形成一个新群体。单个细胞大小较为均一,群体特征明显,藻体比较稳定,便于观察和对比。

  • 团藻(Volvox),绿藻门、团藻属。团藻的群体从卵形到球形不等,2000~6000个细胞排列成单层,所有细胞都排列在球体表面的无色胶被中,球体中央为充满液体的空腔。每个群体都包含大量体细胞和少量的生殖细胞。自从与单细胞祖先分化以来,团藻已经进化为一种高度整合的多细胞生物,复杂的发育程序和细胞之间的高度协调,能够依靠伸出体外的鞭毛游动。

  • 实验所用空球藻和团藻藻种及其培养基均购置于中国科学院淡水藻种库,编号分别为FACHB-529、FACHB-2041。后均在实验室SE培养基25℃ 2000lux 2M条件下培养,经多次转接获得大量藻体。选取其中生长状况良好,藻体密度较大藻体备用。

  • 2.2 实验过程

  • 因为化石形成过程和磷酸盐化受到多种条件的制约,为进一步明确不同环境变量的影响,故实验采用单一变量法,并选取温度、pH值、氧气作为变量。

  • 团藻和空球藻分别独立进行实验,采取以下相同处理:将培养完成后的藻体经高温灭活后,每2 mL藻液(空球藻数量约为106 个/mL,团藻数量约为105 个/mL)用塑料滴管(已做灭菌处理)吸出,经孔径为3 μm滤膜过滤,将过滤后的藻细胞与20 mL实验溶液装入40 mL锥形瓶中,共计40个,分4组,每组10个。实验溶液为饱和磷酸钙混合溶液,由磷酸钙经孔径为0.22 μm滤菌器过滤的黄岛南辛安河河水配制而成,溶液中磷酸盐浓度约为20×10-6 mol/L,远高于藻类生活水体的正常浓度。上述过程均在无菌环境下进行。① 第1组设置实验温度为3℃。② 第2组用液体石蜡进行封闭,创造缺氧环境。③ 第3、4组分别加入HCl和NaOH改变其pH,溶液最终标定pH为6和8,pH的测定使用0.5 mm直径的针电极(实验前已作无菌处理),链接到的pH计测定,校准以及标准的pH缓冲液均在在室温下(25℃)配制。上述步骤完成后将锥形瓶密封,除低温条件外的其他组置于25℃恒温条件下避光保存。每天对锥形瓶中的藻类进行肉眼观察,每隔5天用一次性吸管吸取少量藻类样品在显微镜下观察,记录其颜色、形态、大小等变化情况,并采集相关图像。

  • 在以上处置条件之外设置对照组,将灭活后的藻类加入正常培养液中,置于室温下观察变化。

  • 电镜样品制作:① 固定:使用0.1 mol/L磷酸缓冲液漂洗后,加入浓度为2.5%戊二醛,4℃冰箱静置固定12 h。② 清洗:将固定完成的藻液摇匀后用5 mL注射器从锥形瓶中小心吸出部分样品,之后过滤到内膜孔径为3 μm的针头过滤器中。通过注射器缓慢向针头过滤器中注射0.1 mol/L磷酸缓冲液来漂洗固定样品3次,每次2 min。③ 脱水:依次使用15%、30%、50%、70%、80%、90%、95%、100%(2次)浓度酒精浸泡各5 min,进行梯度脱水。④ 干燥:将滤膜取出置于恒温恒压干燥箱内,进行20 min干燥处理。乙醇极性很小,易从样品中挥发使样品脱水,且对样品形态影响较小,所以烘干处理不会影响实验结果。⑤ 喷金导电:将干燥后的样品用导电胶粘到样品台上,经喷金仪喷金后在扫描电镜(SEM)上观察。

  • 3 实验结果

  • 3.1 空球藻磷酸盐化埋藏实验结果

  • 对同种条件下10个离心管中的空球藻样品做统一收集观察。因空球藻个体微小且数量较多,故采用等比例面积法对其进行计数,以下计量均为约数。具体操作为:划定一个分布均匀的单位面积,确定单位面积内的藻体数量,随后采用等比例计算方法粗略地得出样品总量。结果显示,酸性条件下的空球藻保存数量最多,约为243428个;碱性条件次之,约为188495个;缺氧条件下保存数量约为172755个;低温条件保存数量最少,约为133493个。

  • 本研究使用ImageJ软件测量了四组环境中的藻细胞直径(n=600)。并用SPSS软件进行参数检测,四组数据总体均服从正态分布(图1)。统计结果显示,空球藻在不同环境对藻细胞直径大小产生了影响(ANOVA检验p<0.01)。在低温环境下保存的空球藻的外周直径大小与其他三组对比均存在显著差异(雪费检验p<0.01)其中细胞外周平均直径最大的是碱性条件,约为7.01 μm;为最小的是低温条件,约为5.96 μm;其标准值差距也较为明显,分别为1.59和1.33。另外两组样品缺氧和pH=6酸性环境下的细胞外周平均长度约为6.68 μm和6.73 μm。标准差在这两个环境下分别为1.45和1.34。由图1可知,在低温条件下个体细胞外周直径相差最小为5.57 μm;而在碱性环境下个体细胞外周直径相差最大,其最大值为11.07 μm,最小值为3.45 μm。

  • 图2为扫描电镜下经不同条件磷酸盐化处理20天的空球藻样品。所有获得的样品中,藻细胞都有明显的收缩并发生褶皱变形,表面出现瘤状结构,大部分细胞壁都能完整保存下来。在低温条件下,大部分藻细胞之间较为分散,个别可见细胞之间通过胞间质相连,细胞壁产生收缩变形,小球体整体形态基本不变,仍然为球形(图2a、b);缺氧条件下,细胞聚集紧密,表面纹饰较少,相对其他条件更为光滑,细胞壁保存基本完整(图2c、d)的酸性条件下,细胞聚集紧密,据细胞壁收缩程度判断,整体中间空腔很可能已经消失,球形基本保持完整,细胞壁收缩褶皱(图2e、f);碱性条件下,细胞聚拢成一团,细胞球形呈扁平,变形较为严重,细胞壁完整(图2g、h)。

  • 图1 不同环境下空球藻球体外周直径的分布图

  • Fig.1 Distribution of circumferential diameter of Eudorina spheres in different environments

  • 左侧同色曲线为外周直径大小正态分布曲线,右侧为箱型图,箱型图中白色方框代表平均值,黑色实线代表中值线(单位:μm)

  • The curve on the left shows the normal distribution of the diameter; the box plot on the right shows the average value of the outer circumference; the white box represents the mean value; the black solid line represents the median (unit: μm)

  • 实验结果显示,在不同的埋藏条件下,空球藻的大部分细胞都能保存完整形态,仅在细胞收缩变形程度和细胞数量方面存在较大差异,且外部的胞间质均不能明显的保存。在保存下来的样品中,不同实验条件对空球藻形态影响差异不明显,这可能与保护能力较强的塑性细胞壁有关。只要植物细胞存在完整的细胞壁,其在埋藏过程中就可以保持较为固定的形态,内部物质也可以得到较好的保护。细胞壁主要成分为果胶和多糖,其塑性特征在埋藏挤压过程中能够使其抵抗一定的破坏作用,从而仅在表面出现褶皱收缩的现象。空球藻细胞的这种形态与瓮安生物群中表面带装饰的球状化石具有一定的相似特征。

  • 3.2 团藻磷酸盐化埋藏实验结果

  • 对同种条件下10个离心管中的团藻样品做统一收集观察。因团藻个体微小且数量较多,故采用等比例面积法对团藻进行计数。具体操作为:划定一个分布均匀的单位面积,确定单位面积内的藻体数量,随后采用等比例计算方法粗略地得出样品总量。团藻保存情况与空球藻有明显的不同,其中低温条件下保存数量最多为15843个;缺氧条件次之,为13426;酸性条件下的团藻保存数量相对较少,为8521;而碱性环境中几乎没有团藻能够保存下来。

  • 同种条件下保存的团藻球体,直径差异特征显著(图3),酸性条件下的球体直径差异最大,最大球体直径为157 μm,最小球体直径为49 μm,相差三倍之多。可能是由于团藻在埋藏实验后不同程度地失水皱缩。四组标准差十分相近,分别为92.12 μm、93.02 μm、93.23 μm、92.92 μm;同条件下所保存的球体平均直径相差不大,由于碱性条件中几乎找不到完整保存的球体,所以未统计球体直径大小。

  • 相比空球藻,团藻整体更大,但内部营养细胞及生殖细胞却相对微小,不同条件下保存的团藻样品很难识别出明显差异。因此,这里选取团藻中保存数量最多,保存质量较好的低温条件下样品,观察其无性生殖过程不同生命周期内的形态变化(图4)。团藻群体主要由两部分细胞组成,个体较大、数量较少的是生殖细胞,个体较小、数量较多的为营养细胞。所有细胞均被胶质包被所包裹,细胞之间通过胶质包被或者胞间连丝相互连接。在磷酸盐化的实验过程中,在电镜观察下,团藻基本保持原有形态,并且可以很好地保存团藻各个生殖阶段的状态。可以发现实验藻类缺少了许多生物学信息,同时增加许多矿化交代所产生的沉积噪声。团藻营养细胞在现生条件下具有两条鞭毛结构,但是磷酸盐化保存后,此特征明显丢失(图4a)。其次,团藻失水皱缩无法保持立体形态,但是其生殖细胞和营养细胞可以基本保持其立体形态,也能够对团藻繁殖的各个阶段进行有效保存(图4b~f)。

  • 图2 扫描电镜下磷酸盐化保存的空球藻

  • Fig.2 Phosphating-preserved Eudorina under SEM

  • (a、b)—低温环境保存;(c、d)—缺氧环境保存;(e、f)—酸性条件保存;(g、h)—碱性条件保存(图中比例尺均为10 μm)

  • (a, b) —low temperature environment preservation; (c, d) —hypoxic environment preservation; (e, f) —acidic conditions preservation; (g, h) —alkaline conditions preservation (scale bars are10 μm)

  • 图3 不同环境下团藻球体外周直径的分布图

  • Fig.3 Distribution of circumferential diameter of Volvox spheres in different environments

  • 左侧同色曲线为外周直径大小正态分布曲线,右侧为箱型图,箱型图中白色方框代表平均值,黑色实线代表中值线(单位:μm)

  • The curve on the left shows the normal distribution of the diameter; the box plot on the right shows the average value of the outer circumference; the white box represents the mean value; the black solid line represents the median (unit: μm)

  • 通过扫描电镜获得的团藻照片,与Chen Lei et al.(2014)在瓮安岩石切片中报道过一类正在发生细胞分化的化石标本十分类似,内部分为正常的体细胞和聚集在一起的细胞团状结构,所不同的是化石中组成细胞团的细胞直径比正常体细胞要小很多,而在团藻中这两种细胞直径大小是一致的。因此它们之间既有相似之处又存在明显不同,不过这种相似性可以为我们了解球状化石的起源与演化提供参考。

  • 4 讨论

  • 生物的非矿化组织腐烂分解的速度比较快,一般来讲只需要几天的时间便可以降解完成。从目前已发现的球状化石标本来看,它们内部许多细微结构大多能够精致地保存下来,因此现在的观点普遍认为这些球状化石在开始腐烂之前就已经被矿化交代,并且这种矿化交代的过程发生得十分迅速,可能只需要几天甚至几个小时的时间,只有这样才能将球状化石细胞级甚至细胞亚级的结构如此精美地保存下来(袁训来等,2002)。因此,生物在埋藏过程中的保存潜力对化石形成显得十分重要。实验结果显示了藻类在不同条件的磷酸盐环境下的保存潜力,且空球藻和团藻都能相对完整地保存细胞级结构。但两种藻类在相同的埋藏环境中,所表现出的保存潜力并不一致,偏酸性条件下的空球藻保存潜力最大,而团藻的最大保存潜力则是在低温条件下。保存于同一地层中的化石所处的埋藏环境应当是一致的,但其不同的保存潜力无疑会造成其保存丰度的差异,对不同类别化石含量的统计并不能真实反映当时的生物面貌。

  • 本次实验中,空球藻在磷酸盐化埋藏早期表面形态发生了明显改变,塑形的细胞壁在埋藏过程中出现了不规则的褶皱变形。但这种褶皱并不是空球藻本身所具有的生物属性,而是死亡埋藏后的失水皱缩或后期磷酸盐化作用所赋予的。瓮安生物群中也保存了一类表面带装饰的球状化石,其外表面形态不一的纹饰形状可能代表了不同的发育阶段(Zhang Yuan and Zhang Xingliang,2017)。但据本次实验结果而言,这种纹饰可能并非其本身所具备的生物属性,而是埋藏过程中的次生作用所造成的。

  • 团藻在磷酸盐化埋藏实验中保存了较为完整的生殖细胞与增殖过程,其在发育到一定程度后,营养细胞继续执行原有功能,而生殖细胞分化形成一个多细胞球状结构的繁殖体,这与瓮安生物群中发生细胞分化的胚胎状化石Megaclonophycus十分相似。但不同于团藻的空心球状结构和大小一致的营养细胞与生殖细胞,Megaclonophycus的内部充满细胞且分化细胞的直径远小于其他细胞。二者之间虽有差异,但团藻的磷酸盐化实验显然可以很好地对球状化石内部的细胞分化做出解释,支持了胚胎状化石很可能是一种原始多细胞真核藻类的观点。

  • 图4 扫描电镜下磷酸盐化保存的不同发育阶段的团藻

  • Fig.4 Phosphating-preserved Volvox at different developmental stages under SEM

  • (a)—未增殖的团藻;(b)—生殖细胞分裂产生胚胎,营养细胞停止分裂;(c)—生殖细胞分裂完成后收缩并开始反转;(d)—反转完成后,子群体从母体释放;(e、f)—子群体继续分裂形成新群体(图中比例尺均为50 μm)

  • (a) —unproliferated Volvox; (b) —germ cells divide to generate embryos, whileas vegetative cells stop dividing; (c) —germ cells shrink and begin to reverse after division; (d) —after the inversion is completed, the subpopulation is released from the parent; (e, f) —subpopulation continue to split into new subpopulation (scale bars are50 μm)

  • 此外,本次埋藏学的实验数据也表明,即使生物个体早期状态一致,在不同的埋藏环境中也会产生巨大的尺寸差异。无论是空球藻还是团藻,即使是在完全相同的埋藏环境下也会出现个体直径相差很大的结果。因此,我们完全有理由推测在没有骨骼或壳体等硬质结构的情况下,生物遗体在埋藏过程中直径大小可能会因为埋藏环境等因素而产生较大变化,化石的个体大小并不能完全反映生物的实际大小。因而,瓮安生物群似胚胎化石中个体直径的巨大差异可能并不代表不同类型胚胎的各自发育阶段,还需要结合形态学等因素进行综合判断。

  • 5 结论

  • 本文通过对现代藻类进行磷酸盐埋藏学实验研究,期望能够为解决胚胎状化石的归属问题和磷酸盐化机制提供实验依据。实验结果显示,两种藻类的保存潜力受环境因素影响较大,同一环境下不同物种的保存潜力也不一致。因此,不同类型似胚胎化石之间保存丰度的差异也很可能是由环境因素造成的。实验也证实了藻类在不同磷酸盐环境下的保存潜力,且空球藻和团藻都能相对完整地保存细胞级结构,但实验也导致样品出现了一定程度的形变,获得了非生物形态学信息。根据实验结果,我们也完全有理由推测在没有骨骼或壳体等硬质结构的情况下,生物遗体在埋藏过程中直径大小可能会因为埋藏环境等因素而产生较大变化,化石的个体大小并不能完全反映生物的实际大小,在不同的埋藏条件下,相同种藻类直径仍会产生畸变。通过磷酸盐化实验,现生团藻显示出了许多与瓮安磷酸盐化保存的胚胎状球状化石相似的特征,通过对于多细胞藻类细胞的埋藏实验,对其统计学及形态特征为胚胎状化石的生物学属性的确定提供了全新的信息。

  • 致谢:在研究过程中得到了山东科技大学地球科学与工程学院韩作振教授实验室提供的帮助,在此表示衷心感谢!

  • 参考文献

    • Bailey J V, Joye S B, Kalanetra K M, Flood B E, Corsetti F A. 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445(7124): 198~201.

    • Briggs D E G, Mcmahon S. 2015. The role of experiments in investigating the taphonomy of exceptional preservation. Palaeontology, 59(1): 1~11.

    • Butler A D, Cunningham J A, Budd G E, Donoghue P C J. 2015. Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization. Philosophical Transactions of the Royal Society B: Biological Science, 282: 20150476.

    • Butterfield N J. 2011. Terminal developments in Ediacara embryology. Science, 334: 1655~1656.

    • Cai Yaoping. 2011. Taphonomy and paleoecology of Ediacaran tubular fossil Conotubus hemiannulatus and Gaojiashania cyclus from the Gaojiashan Lagerstätte in southern Shaanxi Province, South China. Doctoral dissertation of Northwest University (in Chinese with English abstract).

    • Cai Yaoping, Schiffbauer J D, Hua Hong, Xiao Shuhai. 2011. Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstatte of southern Shaanxi Province, South China. Precambrian Research, 191: 46~57.

    • Chen Fang, Dong Xiping. 2008. The internal structure of Early Cambrian fossil embryo Olivooides revealed in the light of synchrotron X-ray tomographic microscopy. Chinese Science Bulletin, 53(24): 3860~3865.

    • Chen Junyuan, Bottjer D J, Davidson E H, Li Gang, Gao Feng, Cameron R A, Hadfield M G, Xian Dingchang, Tafforeau P, Jia Quanjie, Sugiyama H, Tang Rui. 2009a. Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Research, 173: 191~200.

    • Chen Junyuan, Bottjer D J, Li Gang, Michael G H, Gao Feng, Andrew R C, Zhang Chenyu, Xian Dingchang, Paul T, Liao Xin, Yin Zongjun. 2009b. Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China. Proceedings of the National Academy of Sciences of the United States of America, 106(45): 19056~19060.

    • Chen Lei, Xiao Shuhai, Pang Ke, Zhou Chuanming, Yuan Xunlai. 2014. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils. Nature, 516(7530): 238~241.

    • Chen Menge. 1982. The new knowledge of the fossil assemblages from Maidiping section, Emei County, Sichuan with reference to the Simian-Cambrian boundary. Scientia Geologica Sinica, 3: 253~262(in Chinese with English abstract).

    • Chen Menge, Liu Kuiwu. 1986. Discovery of microfossils in the Doushantuo phosphorite block of the Late Sinian and their geological significance. Chinese Journal of Geology, 1: 46~53(in Chinese with English abstract).

    • Chen Xiaozheng, Wang Wei, Liu Xinchun, Xu Honghe, Liu Xiaolei, Meng Fanwei, Cheng Jinhui. 2007. Simulation experiment of microbial silicification. Acta Micropalaeontologica Sinica, 3: 261~266(in Chinese with English abstract).

    • Cunningham J A, Thomas C W, Bengtson S, Marone F, Stampanoni M, Turner F R, Bailey J V, Raff R A, Raff E C, Donoghue P C J. 2012. Experimental taphonomy of giant sulfur bacteria: Implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils. Proceedings of the Royal Society, London, Series B; Biological Sciences, 279(1734): 1857~1864.

    • Donoghue P C J, Bengtson S, Dong Xiping, Gostling N J, Huldtgren T, Cunningham J A, Yin Chongyu, Yue Zhao, Peng Fan, Stampanoni M. 2006. Synchrotron X-ray tomographic microscopy of fossil embryos. Nature, 442: 682~683.

    • Gostliing N J, Thomas Ceri-Wyn, Greenwood J M, Dong Xiping, Bengtson S, Raff E C, Raff R A, Degnan B M, Stampanoni M, Donoghue P C J. 2008. Deciphering the fossil record of early Bilaterian embryonic development in light of experimental taphonomy. Evolution and Development, 10(3): 339~349.

    • Hagadorn J W, Xiao S, Donoghue P C, Bengtson S, Gostling N J, Pawlowska M, Raff E C, Raff R A, Turner F R, Chongyu Y, Zhou C, Yuan X, McFeely M B, Stampanoni M, Nealson K H. 2006. Cellular and subcellular structure of Neoproterozoic animal embryos. Science, 314(5797): 291~294.

    • Hippler D, Hu Nanjie, Steiner M, Scholtz G, Franz G. 2011. Experimental mineralization of crustacean eggs leads to surprising tissue conservation: New implications for the fossilization of Precambrian Cambrian embryos. Biogeosciences Discussion, 8: 12051~12077.

    • Hua Hong, Zhang Luyi, Zhang Zifu, Wang Jingping. 2001. Assemblage zones of Gaojiashan biota and their characteristics. Journal of Stratigraphy, 25(1): 13~17(in Chinese with English abstract).

    • Hua Hong, Wang Wei, Han Hongguang. 2015. Decomposition experiments on embyros of Artemia salina (Crustacea): An enlightment on the early phosphatized fossil embyros. Acta Micropalaeontologica Sinica, 32(1): 20~27(in Chinese with English abstract).

    • Martin D, Briggs D E G, Parkes R J. 2005. Decay and mineralization of invertebrate eggs. Palaios, 20: 562~572.

    • Qian Yi. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucun Stage in central and SW China. Acta Palaeontologiga Sinica, 16(2): 255~275(in Chinese with English abstract).

    • Qian Yi, Bengtson S. 1989. Paleontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossil Strata, 24: 1~156.

    • Raff E C, Villinski J T, Turenr F R, Donoghue P C J, Raff R A. 2006. Experimental taphonomy shows the feasibility of fossil embryos. Proceedings of the National Academy of Sciences of the United States of America, 103(15): 5846~5851.

    • Ren Jinjie, Hua Hong. 2016. Experimental taphonomy of modern fish embryos through silicate simulation. Acta Micropalaeontologica Sinica, 33(3): 272~279(in Chinese with English abstract).

    • Wilby P R, Briggs D E G. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios, 30(97): 493~502.

    • Xiao Shuhai, Zhang Yun, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391: 553~558.

    • Xiao Shuhai, Knoll A H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China. Lethaia, 32: 219~240.

    • Xiao Shuhai, Knoll A H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74(5): 767~788.

    • Xiao Shuhai, Knoll A H, Schiffbauer J D, Zhou Chuanming, Yuan Xunlai. 2012. Comment on “fossilized nuclei and germination structures identify ediacaran ‘animal embryos’ as encysting protists”. Science, 335(6073): 1696~1699.

    • Xiao Shuhai, Muscente A D, Chen Lei, Zhou Chuanming, Schiffbauer J D, Wood A D, Polys N F, Yuan Xunlai. 2014. The Weng'an biota and the Ediacaran radiation of multicellular eukaryotes. National Science Review, 1(4): 498~520.

    • Xue Yaosong, Tang Tianfu, Yu Congliu, Zhou Chuanming. 1995. Large spheroidal chlorophyta fossils from Doushantuo Formation phosphoric sequence (Late Sinian), central Guizhou, South China. Acta Palaeontologica Sinica, 34(6): 688~706(in Chinese with English abstract).

    • Xue Yaosong, Zhou Chuanming, Tang Tianfu. 1999. “Animal embryos”, a misinterpretation of Neoproterozoic microfossils. Acta Micropalaeontologica Sinica, 16(1): 1~4(in Chinese with English abstract).

    • Yin Zongjun, Zhu Maoyan, Tafforeau P, Chen Junyuan, Liu Pengju, Li Gang. 2013. Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng'an biota, South China. Precambrian Research, 225: 44~57.

    • Yin Zongjun, Liu Pengju, Li Guoxiang, Tafforeau P, Zhu Maoyan. 2014. Biological and taphonomic implications of Ediacaran fossil embryos undergoing cytokinesis. Gondwana Research, 25: 1019~1026.

    • Yin Zongjun, Sun Weichen, Liu Pengju, Chen Junyuan, Bottjer David J, Li Jinhua, Zhu Maoyan. 2022. Diverse and complex developmental mechanisms of early Ediacaran embryo-like fossils from the Weng'an biota, Southwest China. Philosophical Transactions of the Royal Society B: Biological Science, 377: 20210032.

    • Yuan Xunlai, Xiao Shuhai, Yin Leiming, Knoll A H, Zhou Chuanming, Mu Xinan. 2002. Doushantuo Fossils: Life on the Eve of Animal Radiation. Hefei: University of Science and Technology of China Press, 1~171(in Chinese).

    • Yuan Xunlai, Chen Zhe, Xiao Shuhai, Zhou Chuanming, Hua Hong. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470(7334): 390~393.

    • Yuan Xunlai, Chen Zhe, Xiao Shuhai, Wan Bin, Guan Chengguo, Wang Wei, Zhou Chuanming, Hua Hong. 2013. The Lantian biota: A new window onto the origin and early evolution of multicellular organisms. Chinese Science Bulletin, 58(7): 701~707.

    • Yue Zhao. 1986. Microstructure and systematic position of the genus Olivooides. Institute of Geology, Chinese Academy of Geological Sciences, 14: 147~162(in Chinese with English abstract).

    • Yue Zhao, Bengtson S. 1998. Phosphatized embryo fossils from the Cambrian explosion. Chinese Science Bulletin, 17: 1858~1862(in Chinese).

    • Zhang Jian, Hua Hong. 2014. A simulation experiment on phosphatized spherical microfossils. Chinese Science Bulletin, 59: 344~348(in Chinese with English abstract).

    • Zhang Yuan, Zhang Xingliang. 2017. New Megasphaera-like microfossils reveal their reproductive strategies. Precambrian Research, 300: 141~150.

    • Zhang Yun, Yuan Xunlai, Yin Leiming. 1998. Interpreting Late Precambrian microfossils. Science, 282: 1783.

    • 蔡耀平. 2011. 陕西宁强埃迪卡拉纪晚期高家山生物群中的 Conotubus hemiannulatusGaojiashania cyclus: 化石埋藏学与古生态学研究. 西北大学博士学位论文.

    • 陈孟莪. 1982. 四川峨眉麦地坪剖面震旦系—寒武系界线的新认识及有关化石群的记述. 地质科学, 3: 253~262.

    • 陈孟莪, 刘魁梧. 1986. 晚震旦世陡山沱期磷块岩中微体化石的发现及其地质意义. 地质科学, 1: 46~53.

    • 陈孝政, 王伟, 刘欣春, 徐洪河, 刘小雷, 孟凡巍, 程金辉. 2007. 微生物硅化作用模拟实验. 微体古生物学报, 3: 261~266.

    • 华洪, 张录易, 张子福, 王静平. 2001. 高家山生物群化石组合面貌及其特征. 地层学杂志, 25(1): 13~17.

    • 华洪, 王伟, 韩宏光. 2015. 现代丰年虾卵的腐解实验——对早期化石胚胎研究的启示. 微体古生物学报, 32(1): 20~27.

    • 钱逸. 1977. 华中西南区早寒武世梅树村阶软舌螺及其它化石. 古生物学报, 16(2): 255~275.

    • 任津杰, 华洪. 2016. 现代鱼卵硅磷盐化模拟实验. 微体古生物学报, 33(3): 272~279.

    • 薛耀松, 唐天福, 俞从流, 周传明. 1995. 贵州瓮安—开阳地区陡山沱期含磷岩系的大型球形绿藻化石. 古生物学报, 34(6): 688~706.

    • 薛耀松, 周传明, 唐天福. 1999. “动物胚胎”——对瓮安地区陡山沱组微体化石的错误解释. 微体古生物学报, 16(1): 1~4.

    • 袁训来, 肖书海, 尹磊明, 安德鲁·诺尔, 周传明, 穆西南. 2002. 陡山沱期生物群: 早期动物辐射前夕的生命. 合肥: 中国科学技术大学出版社, 1~171.

    • 岳昭. 1986. Olivooides属的微结构及其系统位置. 中国地质科学院地质研究所所刊, 14: 147~162.

    • 岳昭, Bengtson S. 1998. 寒武纪大爆发中的磷酸盐化胚胎化石. 科学通报, 17: 1858~1862.

    • 张剑, 华洪. 2014. 微体球状化石磷酸盐化模拟实验. 科学通报, 59(Z1): 351~354.

  • 参考文献

    • Bailey J V, Joye S B, Kalanetra K M, Flood B E, Corsetti F A. 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445(7124): 198~201.

    • Briggs D E G, Mcmahon S. 2015. The role of experiments in investigating the taphonomy of exceptional preservation. Palaeontology, 59(1): 1~11.

    • Butler A D, Cunningham J A, Budd G E, Donoghue P C J. 2015. Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization. Philosophical Transactions of the Royal Society B: Biological Science, 282: 20150476.

    • Butterfield N J. 2011. Terminal developments in Ediacara embryology. Science, 334: 1655~1656.

    • Cai Yaoping. 2011. Taphonomy and paleoecology of Ediacaran tubular fossil Conotubus hemiannulatus and Gaojiashania cyclus from the Gaojiashan Lagerstätte in southern Shaanxi Province, South China. Doctoral dissertation of Northwest University (in Chinese with English abstract).

    • Cai Yaoping, Schiffbauer J D, Hua Hong, Xiao Shuhai. 2011. Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstatte of southern Shaanxi Province, South China. Precambrian Research, 191: 46~57.

    • Chen Fang, Dong Xiping. 2008. The internal structure of Early Cambrian fossil embryo Olivooides revealed in the light of synchrotron X-ray tomographic microscopy. Chinese Science Bulletin, 53(24): 3860~3865.

    • Chen Junyuan, Bottjer D J, Davidson E H, Li Gang, Gao Feng, Cameron R A, Hadfield M G, Xian Dingchang, Tafforeau P, Jia Quanjie, Sugiyama H, Tang Rui. 2009a. Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Research, 173: 191~200.

    • Chen Junyuan, Bottjer D J, Li Gang, Michael G H, Gao Feng, Andrew R C, Zhang Chenyu, Xian Dingchang, Paul T, Liao Xin, Yin Zongjun. 2009b. Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China. Proceedings of the National Academy of Sciences of the United States of America, 106(45): 19056~19060.

    • Chen Lei, Xiao Shuhai, Pang Ke, Zhou Chuanming, Yuan Xunlai. 2014. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils. Nature, 516(7530): 238~241.

    • Chen Menge. 1982. The new knowledge of the fossil assemblages from Maidiping section, Emei County, Sichuan with reference to the Simian-Cambrian boundary. Scientia Geologica Sinica, 3: 253~262(in Chinese with English abstract).

    • Chen Menge, Liu Kuiwu. 1986. Discovery of microfossils in the Doushantuo phosphorite block of the Late Sinian and their geological significance. Chinese Journal of Geology, 1: 46~53(in Chinese with English abstract).

    • Chen Xiaozheng, Wang Wei, Liu Xinchun, Xu Honghe, Liu Xiaolei, Meng Fanwei, Cheng Jinhui. 2007. Simulation experiment of microbial silicification. Acta Micropalaeontologica Sinica, 3: 261~266(in Chinese with English abstract).

    • Cunningham J A, Thomas C W, Bengtson S, Marone F, Stampanoni M, Turner F R, Bailey J V, Raff R A, Raff E C, Donoghue P C J. 2012. Experimental taphonomy of giant sulfur bacteria: Implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils. Proceedings of the Royal Society, London, Series B; Biological Sciences, 279(1734): 1857~1864.

    • Donoghue P C J, Bengtson S, Dong Xiping, Gostling N J, Huldtgren T, Cunningham J A, Yin Chongyu, Yue Zhao, Peng Fan, Stampanoni M. 2006. Synchrotron X-ray tomographic microscopy of fossil embryos. Nature, 442: 682~683.

    • Gostliing N J, Thomas Ceri-Wyn, Greenwood J M, Dong Xiping, Bengtson S, Raff E C, Raff R A, Degnan B M, Stampanoni M, Donoghue P C J. 2008. Deciphering the fossil record of early Bilaterian embryonic development in light of experimental taphonomy. Evolution and Development, 10(3): 339~349.

    • Hagadorn J W, Xiao S, Donoghue P C, Bengtson S, Gostling N J, Pawlowska M, Raff E C, Raff R A, Turner F R, Chongyu Y, Zhou C, Yuan X, McFeely M B, Stampanoni M, Nealson K H. 2006. Cellular and subcellular structure of Neoproterozoic animal embryos. Science, 314(5797): 291~294.

    • Hippler D, Hu Nanjie, Steiner M, Scholtz G, Franz G. 2011. Experimental mineralization of crustacean eggs leads to surprising tissue conservation: New implications for the fossilization of Precambrian Cambrian embryos. Biogeosciences Discussion, 8: 12051~12077.

    • Hua Hong, Zhang Luyi, Zhang Zifu, Wang Jingping. 2001. Assemblage zones of Gaojiashan biota and their characteristics. Journal of Stratigraphy, 25(1): 13~17(in Chinese with English abstract).

    • Hua Hong, Wang Wei, Han Hongguang. 2015. Decomposition experiments on embyros of Artemia salina (Crustacea): An enlightment on the early phosphatized fossil embyros. Acta Micropalaeontologica Sinica, 32(1): 20~27(in Chinese with English abstract).

    • Martin D, Briggs D E G, Parkes R J. 2005. Decay and mineralization of invertebrate eggs. Palaios, 20: 562~572.

    • Qian Yi. 1977. Hyolitha and some problematica from the Lower Cambrian Meishucun Stage in central and SW China. Acta Palaeontologiga Sinica, 16(2): 255~275(in Chinese with English abstract).

    • Qian Yi, Bengtson S. 1989. Paleontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossil Strata, 24: 1~156.

    • Raff E C, Villinski J T, Turenr F R, Donoghue P C J, Raff R A. 2006. Experimental taphonomy shows the feasibility of fossil embryos. Proceedings of the National Academy of Sciences of the United States of America, 103(15): 5846~5851.

    • Ren Jinjie, Hua Hong. 2016. Experimental taphonomy of modern fish embryos through silicate simulation. Acta Micropalaeontologica Sinica, 33(3): 272~279(in Chinese with English abstract).

    • Wilby P R, Briggs D E G. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios, 30(97): 493~502.

    • Xiao Shuhai, Zhang Yun, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391: 553~558.

    • Xiao Shuhai, Knoll A H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China. Lethaia, 32: 219~240.

    • Xiao Shuhai, Knoll A H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74(5): 767~788.

    • Xiao Shuhai, Knoll A H, Schiffbauer J D, Zhou Chuanming, Yuan Xunlai. 2012. Comment on “fossilized nuclei and germination structures identify ediacaran ‘animal embryos’ as encysting protists”. Science, 335(6073): 1696~1699.

    • Xiao Shuhai, Muscente A D, Chen Lei, Zhou Chuanming, Schiffbauer J D, Wood A D, Polys N F, Yuan Xunlai. 2014. The Weng'an biota and the Ediacaran radiation of multicellular eukaryotes. National Science Review, 1(4): 498~520.

    • Xue Yaosong, Tang Tianfu, Yu Congliu, Zhou Chuanming. 1995. Large spheroidal chlorophyta fossils from Doushantuo Formation phosphoric sequence (Late Sinian), central Guizhou, South China. Acta Palaeontologica Sinica, 34(6): 688~706(in Chinese with English abstract).

    • Xue Yaosong, Zhou Chuanming, Tang Tianfu. 1999. “Animal embryos”, a misinterpretation of Neoproterozoic microfossils. Acta Micropalaeontologica Sinica, 16(1): 1~4(in Chinese with English abstract).

    • Yin Zongjun, Zhu Maoyan, Tafforeau P, Chen Junyuan, Liu Pengju, Li Gang. 2013. Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng'an biota, South China. Precambrian Research, 225: 44~57.

    • Yin Zongjun, Liu Pengju, Li Guoxiang, Tafforeau P, Zhu Maoyan. 2014. Biological and taphonomic implications of Ediacaran fossil embryos undergoing cytokinesis. Gondwana Research, 25: 1019~1026.

    • Yin Zongjun, Sun Weichen, Liu Pengju, Chen Junyuan, Bottjer David J, Li Jinhua, Zhu Maoyan. 2022. Diverse and complex developmental mechanisms of early Ediacaran embryo-like fossils from the Weng'an biota, Southwest China. Philosophical Transactions of the Royal Society B: Biological Science, 377: 20210032.

    • Yuan Xunlai, Xiao Shuhai, Yin Leiming, Knoll A H, Zhou Chuanming, Mu Xinan. 2002. Doushantuo Fossils: Life on the Eve of Animal Radiation. Hefei: University of Science and Technology of China Press, 1~171(in Chinese).

    • Yuan Xunlai, Chen Zhe, Xiao Shuhai, Zhou Chuanming, Hua Hong. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470(7334): 390~393.

    • Yuan Xunlai, Chen Zhe, Xiao Shuhai, Wan Bin, Guan Chengguo, Wang Wei, Zhou Chuanming, Hua Hong. 2013. The Lantian biota: A new window onto the origin and early evolution of multicellular organisms. Chinese Science Bulletin, 58(7): 701~707.

    • Yue Zhao. 1986. Microstructure and systematic position of the genus Olivooides. Institute of Geology, Chinese Academy of Geological Sciences, 14: 147~162(in Chinese with English abstract).

    • Yue Zhao, Bengtson S. 1998. Phosphatized embryo fossils from the Cambrian explosion. Chinese Science Bulletin, 17: 1858~1862(in Chinese).

    • Zhang Jian, Hua Hong. 2014. A simulation experiment on phosphatized spherical microfossils. Chinese Science Bulletin, 59: 344~348(in Chinese with English abstract).

    • Zhang Yuan, Zhang Xingliang. 2017. New Megasphaera-like microfossils reveal their reproductive strategies. Precambrian Research, 300: 141~150.

    • Zhang Yun, Yuan Xunlai, Yin Leiming. 1998. Interpreting Late Precambrian microfossils. Science, 282: 1783.

    • 蔡耀平. 2011. 陕西宁强埃迪卡拉纪晚期高家山生物群中的 Conotubus hemiannulatusGaojiashania cyclus: 化石埋藏学与古生态学研究. 西北大学博士学位论文.

    • 陈孟莪. 1982. 四川峨眉麦地坪剖面震旦系—寒武系界线的新认识及有关化石群的记述. 地质科学, 3: 253~262.

    • 陈孟莪, 刘魁梧. 1986. 晚震旦世陡山沱期磷块岩中微体化石的发现及其地质意义. 地质科学, 1: 46~53.

    • 陈孝政, 王伟, 刘欣春, 徐洪河, 刘小雷, 孟凡巍, 程金辉. 2007. 微生物硅化作用模拟实验. 微体古生物学报, 3: 261~266.

    • 华洪, 张录易, 张子福, 王静平. 2001. 高家山生物群化石组合面貌及其特征. 地层学杂志, 25(1): 13~17.

    • 华洪, 王伟, 韩宏光. 2015. 现代丰年虾卵的腐解实验——对早期化石胚胎研究的启示. 微体古生物学报, 32(1): 20~27.

    • 钱逸. 1977. 华中西南区早寒武世梅树村阶软舌螺及其它化石. 古生物学报, 16(2): 255~275.

    • 任津杰, 华洪. 2016. 现代鱼卵硅磷盐化模拟实验. 微体古生物学报, 33(3): 272~279.

    • 薛耀松, 唐天福, 俞从流, 周传明. 1995. 贵州瓮安—开阳地区陡山沱期含磷岩系的大型球形绿藻化石. 古生物学报, 34(6): 688~706.

    • 薛耀松, 周传明, 唐天福. 1999. “动物胚胎”——对瓮安地区陡山沱组微体化石的错误解释. 微体古生物学报, 16(1): 1~4.

    • 袁训来, 肖书海, 尹磊明, 安德鲁·诺尔, 周传明, 穆西南. 2002. 陡山沱期生物群: 早期动物辐射前夕的生命. 合肥: 中国科学技术大学出版社, 1~171.

    • 岳昭. 1986. Olivooides属的微结构及其系统位置. 中国地质科学院地质研究所所刊, 14: 147~162.

    • 岳昭, Bengtson S. 1998. 寒武纪大爆发中的磷酸盐化胚胎化石. 科学通报, 17: 1858~1862.

    • 张剑, 华洪. 2014. 微体球状化石磷酸盐化模拟实验. 科学通报, 59(Z1): 351~354.