-
准噶尔盆地南缘(以下简称准南地区)位于天山北麓,在北天山的挤压推覆作用下,形成了大量成排成带的大型构造(Tapponnier and Molnar,1979; Hendrix et al.,1994; Guan Shuwei et al.,2016; Li Yiquan et al.,2016; Wang Yanjun et al.,2018; Zhou Yanxi et al.,2020)。南缘发育多套良好烃源岩,现今均已达到成熟,具有良好的生油气能力(陈建平等,2016a,2016b)。在白垩系吐谷鲁群、古近系安集海河组和新近系塔西河组3套主力区域泥岩盖层的遮挡下,形成了下、中、上3套储盖(成藏)组合(李学义等,2003)。在这3套主要成藏组合的控制下,聚集了大量南缘生成的油气。早期勘探,主要聚焦于准噶尔盆地南缘中、上组合,发现了独山子、卡因迪克和齐古等油田,以及玛河和呼图壁等气田,并在霍尔果斯、安集海河吐谷鲁等构造取得了油气发现。通过多年勘探,探明原油地质储量可达2719.5×104 t,探明天然气地质储量可达329.6×108 m3(杜金虎等,2019)。由于上组合埋藏相对较浅,且在喜马拉雅造山活动期遭受了强烈的改造和调整(Allegre et al.,1984; Harrison et al.,1992; 贾承造等,2007; Jia Chengzao et al.,2013),因此认为中浅层油藏规模相对有限。
-
随着勘探进程的深化,逐渐向准南地区下组合深层推进,并在大丰1井、独山1井和西湖1井取得了良好的油气显示,但由于工程技术或者圈闭不落实等原因导致钻井失利,通过失利井的地质分析认为深部下组合具有较大的勘探潜力。通过进一步精细的油藏解剖与勘探目标评价,在准噶尔盆地南缘西段四棵树凹陷高泉地区、中段呼图壁和东湾地区取得了重要突破。其中高探1井取得了日产原油1213 m3和日产天然气32.17×104 m3的勘探成果(杜金虎等,2019)。进一步在高泉构造西南部钻探高泉5井,目的层清水河组(K1q)主要为干层或含油水层,确定为失利井。而在高探1井东南侧的高泉6井却又取得了工业油流。这种复杂的成藏差异性给准南西段勘探蒙上了一层阴影,因此需要进一步剖析该地区造成这种成藏差异性的原因,为四棵树凹陷下一步勘探指明方向。本文通过对高泉地区构造演化、深层流体活动过程、烃源岩热演化和油气运聚特点进行分析,并对比局部构造的差异性,阐明高泉地区的构造演化过程和油气成藏过程,进一步指出该地区的下一步勘探方向,这对明确准噶尔盆地南缘西段下组合勘探具有重要意义。
-
1 地质背景
-
准南地区位于天山以北,随着天山的隆升,该地区经历了多期沉积和构造变形(Carroll et al.,1995; Shu Liangshu et al.,2004; Han Baofu et al.,2010; Chen Ke et al.,2015; Yang Yongtai et al.,2015),南缘褶皱冲断带的形成主要受控于印度板块和欧亚板块新生代以来碰撞的远程效应(Tapponnier and Molnar,1979; Hendrix et al.,1994; Sun Jimin et al.,2007; Charreau et al.,2018)。准南地区发育的成排成带的大型圈闭(图1a),大多与晚期挤压构造相关,它们对油气的聚集和逸散具有关键控制作用(Guan Shuwei et al.,2009,2012; Li Yiquan et al.,2016; Wu Hai et al.,2022a)。在垂向地层中(图2),上二叠统、三叠系、侏罗系、下白垩统和古近系为准南地区可能的5套烃源岩地层,其中上二叠统和侏罗系烃源岩质量较好,为南缘西段主力烃源岩,古近系安集海河组次之,下白垩统烃源岩品质较差(姜福杰和武丽,2010)。南缘西段下组合原油主要来自侏罗系,古近系烃源岩对中、上组合具有一定贡献(陈建平等,2016a)。其中,侏罗系八道湾组的煤系烃源岩和湖相烃源岩、三工河组和西山窑组的湖相烃源岩为该地区的供烃主力层系(孔祥星,2007),二叠系的湖相烃源岩生成的油气通过断裂疏导,对下组合的油气成藏也具有一定贡献(张闻林等,2003)。目前准南地区尚未发现三叠系烃源岩生成的油气(陈建平等,2016b),但三叠系仍可能发育潜在的烃源岩(魏力,2018;杜金虎等,2019),这将进一步提升南缘的生烃量和资源总量。准南下组合规模有效储集层主要发育在白垩系清水河组(K1q)、侏罗系头屯河组(J2t)和侏罗系喀拉扎组(J3k)(雷德文等,2012)。高探1井揭示的清水河组储层主要为粉细砂岩、含砾细砂岩,测井揭示储层孔隙度为13.4%~18.4%,孔隙度相对较好。头屯河组和喀拉扎组主要发育中低孔隙度储层,渗透率体现的非均质性也比较强(杜金虎等,2019)。白垩系吐谷鲁群泥岩为下组合区域盖层,普遍发育异常高压,为深层侏罗系圈闭内的油气提供了有效的遮挡。高泉地区构造受到了喜马拉雅造山运动影响,断层发育且对圈闭切割严重(图1b),深层圈闭完整性受到强烈改造,进一步对油气成藏与调整改造过程造成关键影响。
-
2 样品与方法
-
2.1 构造演化恢复方法
-
选取过准南高泉和高泉西构造的地震解释剖面进行构造演化恢复,厘定高泉地区构造演化与圈闭形成过程(剖面位置见图1)。借助于Midland Vally Move软件,通过设置各个层位的岩性以及孔隙压实曲线来计算各个地质时期地层的厚度,同时通过地层回剥法恢复各个时期的地质剖面。经典的地层厚度压实恢复方法有3种(Dickinson,1953; Baldwin,1971; Sclater and Christie,1980),该3种方法各有自身适用性问题。Baldwin压实曲线能够很好解决常规的泥岩和灰岩地层压实减孔计算(Baldwin,1971;Baldwin and Butler,1985);Dickinson压实曲线是对墨西哥湾沿岸第三纪页岩研究而总结出来的规律,比较适合用于泥岩单层厚度不超过200 m的地层(Dickinson,1953);而Sclater方法(Sclater and Christie,1980)适合砂岩地层的压实计算。Move软件可综合运用3种压实曲线进行地层回剥回弹计算。由于准南地区下侏罗统、吐谷鲁群和安集海河组泥岩通常超过200 m,因此选择Baldwin压实曲线进行泥岩厚度恢复,而砂岩含量较高的地层选择Sclater压实曲线进行恢复。通过统计高101井钻井揭示的地层中不同岩性含量,运用Move软件计算出岩性的杨氏模量和泊松比等数据(表1),同时借助地壳挠曲均衡理论(Turcotte and Schubert,2002),Move软件可以较为准确地恢复出地质历史时期的地层回弹量情况。
-
图1 准噶尔盆地南缘侏罗系顶面构造深度、主要圈闭分布(a)与高泉地区构造剖面(b)(据杜金虎等,2019修改)
-
Fig.1 The tectonic depth of Jurassic, distribution of traps (a) and the tectonic profile of Gaoquan area (b) in the southern margin of Junggar basin (modified from Du Jinhu et al., 2019)
-
2.2 流体包裹体岩相学
-
选取准南地区高泉构造的高101井、GHW001井、高泉5井和高102井白垩系清水河组和侏罗系头屯河组岩芯样品进行包裹体和储层铸体薄片制作。通过Zeiss Axiom Imager M2 光学显微镜进行观测,分别观测单偏光、正交光和荧光下的薄片岩石学特点以及原油包裹体的荧光特点。显微镜搭配了HBO-100 epi的荧光光源,荧光光源波长为365±5 nm。对流体包裹体在矿物颗粒内部的赋存状态、交切关系、气液比以及荧光颜色等信息进行观测,可初步定性判识流体形成的先后顺序(Goldstein,2001; Munz,2001; Wu Hai et al.,2016a,2022b)。同时通过矿物鉴定,观察储层沥青、孔隙、裂缝以及与矿物之间的赋存关系,定性判识储层沥青形成的先后,推测储层是否遭遇构造活动等地质作用改造。
-
2.3 流体包裹体显微测温与定年技术
-
单期流体活动被矿物捕获后会在矿物内部形成流体包裹体集合,通过测试油气包裹体伴生盐水包裹体的均一温度,结合单井埋藏史和热史可确定流体活动的时间(Goldstein,2001; Munz,2001; Wu Hai et al.,2016b)。不同期次形成的流体的均一温度、冰点温度和盐度具有较大差别,因此除了运用均一温度以外,包裹体的冰点温度和初熔温度等参数也是区分不同期次流体活动的良好证据。通过单井实钻数据进行埋藏史恢复,同时借助实钻井温对单井热史进行校正,使得热史结果与实际地质情况相吻合。本文主要选取高101井、GHW001井和呼探1井进行包裹体均一温度和冰点温度分析。
-
图2 准噶尔盆地南缘地层综合柱状图(据Guan Shuwei et al.,2016; Zhou Yanxi et al.,2020修改)
-
Fig.2 Comprehensive stratigraphic column for the southern margin of Junggar basin (modified from Guan Shuwei et al., 2016; Zhou Yanxi et al., 2020)
-
2.4 盆地模拟技术
-
本文运用PetroMod软件进行盆地模拟研究,同时运用先进的“Block”断块模块对前陆逆冲挤压构造区进行断块切割建模处理,使得逆冲断层两盘地层叠加重合处能够顺利网格化和模拟。本文主要针对高泉地区进行一维和二维盆地模拟,一维模拟主要针对单井进行埋藏史和热史模拟,用于包裹体定年分析。二维盆地模拟主要针对高泉地区进行烃源岩热演化和油气运聚模拟。通过选取过高泉构造的二维地震剖面,构建二维地质格架和地质模型,对各个地质单元的岩性、烃源岩TOC、氢指数(HI)、有机质类型和生烃动力学模型等进行选取和赋值,同时对各个地质时期的古大地热流、古水深和沉积物水接触界面温度(SWIT)等边界条件进行赋值,选取合适的参数和流体运移模型进行模拟分析,最后对模拟结果进行调整和校正使其与实际地质情况相吻合。
-
3 结果
-
3.1 高泉地区构造演化过程
-
平衡地质剖面恢复的关键时期构造演化结果如图3所示。前侏罗纪高泉地区就已经存在微幅古构造,且该古构造总体闭合高度较低、圈闭面积较大,背斜总体较为宽缓。在高泉构造斜坡带存在右行走滑断层,通过对比断层两侧的地层厚度发现,断层两侧的三叠系厚度具有较大的差异,西南侧的地层厚度较为一致,并非早期地层抬升差异剥蚀导致,且侏罗系八道湾组(J1b)在该断层两侧地层厚度较为一致,表明该走滑断层在前侏罗纪具有明显的活动。从前人(Yu Yangli et al.,2016)对准噶尔盆地南缘西段构造活动研究表明,该走滑断裂系统在侏罗纪也具有一定的活动特点。三叠纪至早、中侏罗世准南地区整体构造活动较弱,主要处于缓慢沉降的弱伸展构造背景(Zhou Yanxi et al.,2020),导致准南地区在该时期广泛分布煤系地层,并且在野外露头可见正断层的存在(Morin et al.,2018)。西山窑组(J2x)和头屯河组(J2t)之间存在盆地级别不整合面表明中侏罗世至晚侏罗世之间存在强烈的构造反转(白斌等,2010; Wang Yanjun et al.,2018)。上侏罗统齐古组(J3q)在地震剖面上发生局部地层缺失、喀拉扎组(J3k)全部缺失反映了强烈的挤压构造运动。新生代印度板块与欧亚板块发生强烈碰撞,准南地区发生强烈挠曲折皱,古近纪早期宽缓的高泉背斜逐步被褶皱复杂化,分割出了高泉背斜和高泉5背斜(图3c)。新近纪之后,喜马拉雅造山运动加剧,侧向挤压作用使得古近系泥岩内部发生滑脱,高泉构造浅层上组合内部形成隆起构造(图3d、e)。因此高泉构造总体形成时间较早,为前侏罗纪形成的古隆起,新生代被构造分割复杂化,圈闭幅度加大,单圈闭闭合面积缩小,可聚集晚期形成的成熟油气。
-
3.2 流体包裹体岩相学特征
-
通过显微岩相学观察,认为高泉地区主要发育3类烃包裹体集合以及部分井段的储层残余沥青。第一类为石英颗粒内部黄色荧光油包裹体集合,该类包裹体部分为纯油包裹体,部分为低气液比油包裹体,气液比范围为5%~10%。包裹体发育在石英颗粒内部或者晶格缺陷内部,呈片状分布,体现出烃源岩处于低成熟时期生成原油的特点(图4a、b)。第二类包裹体为斜长石晶格缺陷内部生长的蓝色烃类包裹体集合(图4c),以及石英颗粒愈合缝中呈线性分布的蓝色荧光包裹体集合(图4d、e)。第三类包裹体为石英颗粒愈合缝中呈线性分布的气烃包裹体集合(图4f、g),该类包裹体气液比较高,同时液态烃部分在紫外光下具有微弱的荧光,体现出少量高成熟烃类特点,为烃源岩处于高成熟时期生成的产物。同时,在高102井的头屯河组储层中发现大量的黑色沥青(图4h、i),部分沿着裂缝分布,部分沿着石英颗粒溶蚀的孔洞中分布,该井未发现烃类包裹体信息,体现出晚期构造作用对油藏的改造或破坏作用。
-
3.3 流体包裹体显微测温结果
-
对高泉地区主要井位的关键层位包裹体进行均一温度和冰点温度测温,结果显示,高101井黄色荧光油包裹体集合伴生盐水包裹体均一温度分布范围较广,主体集中在85~90℃(图5a),体现出石英矿物颗粒早期结晶记录的原油充注特征,为第一期原油充注。同样在高泉构造上位于高101井西南部的GHW001井所记录的蓝色荧光包裹体集合伴生盐水包裹体均一温度比高101井稍高,主要温度范围为116~120℃(图5b),体现第二期原油充注特征。GHW001井记录的气烃包裹体集合伴生盐水包裹体均一温度明显较高,普遍超过了150℃,体现了晚期高成熟凝析气充注的结果。
-
图3 准噶尔盆地南缘四棵树凹陷高泉地区构造演化过程(剖面位置见图1中A—A′)
-
Fig.3 Tectonic evolution process of Gaoquan area in Sikeshu sag, southern margin of Junggar basin (profile location refer to A—A′ in Fig.1)
-
图4 准噶尔盆地南缘高泉构造包裹体显微岩相学特征
-
Fig.4 Microscopic petrographic characteristics of inclusions in Gaoquan structure, southern margin of Junggar basin
-
(a)—高101井,石英颗粒内部黄色、黄白色荧光油包裹体集合呈条带状分布,UV,J1b,6901.7 m;(b)—高101井,石英颗粒内部黄色荧光油包裹体集合,UV,J1b,6901.7 m;(c)—GHW001井,斜长石内部蓝色荧光油包裹体集合,UV,K1q,5841.6 m;(d)—GHW001井,石英颗粒愈合缝内部发育蓝色荧光油包裹体集合,呈线性分布,UV,K1q,5842.4 m;(e)—GHW001井,石英颗粒愈合缝内部发育蓝色荧光油包裹体集合,呈线性分布,单偏光+UV,K1q,5842.4 m;(f)—GHW001井,石英颗粒愈合缝内黑色气烃包裹体集合呈线性分布,单偏光,K1q,5837.1 m;(g)—GHW001井,石英颗粒愈合缝内气烃包裹体集合呈线性分布,UV,K1q,5837.1 m;(h)—高102井,粉砂质泥岩内部裂缝和石英溶蚀孔被黑色沥青充填,单偏光,J2t,6033.3 m;(i)—高102井,粉砂质泥岩内部裂缝被黑色沥青充填,单偏光,J2t,6033.3 m;FIA—流体包裹体集合
-
(a) —well Gao 101, yellow and yellow-white fluorescent oil inclusions assemblage in quartz grains distributed in stripes, UV, J1b, 6901.7 m; (b) —well Gao 101, yellow fluorescent oil inclusions assemblage aggregated in quartz grains, UV, J1b, 6901.7 m; (c) —well GHW001, blue fluorescent oil inclusions assemblage aggregated in plagioclase grains, UV, K1q, 5841.6 m; (d) —well GHW001, blue fluorescent oil inclusions assemblage aggregated in healed fractures of quartz grains, distributed linearly, UV, K1q, 5842.4 m; (e) —well GHW001, blue fluorescent oil inclusions assemblage aggregated in healed fractures of quartz grains, distributed linearly, plane polarized light + UV, K1q, 5842.4 m; (f) —well GHW001, gas inclusions assemblage aggregated in healed fractures of quartz grains, distributed linearly, plane polarized light, K1q, 5837.1 m; (g) —well GHW001, gas inclusions aggregated in healed fractures of quartz grains, distributed linearly, UV, K1q, 5837.1 m; (h) —well Gao 102, fractures and dissolution pores in silty shale filled with black bitumen, plane polarized light, J2t, 6033.3 m; (i) —well Gao 102, fractures in silty shale filled with black bitumen, plane polarized light, J2t, 6033.3 m; FIA—fluid inclusions assemblage
-
图5 准噶尔盆地南缘流体包裹体均一温度直方图
-
Fig.5 Histogram of fluid inclusion homogenization temperatures in the southern margin of Junggar basin
-
(a)—高101井黄色荧光原油包裹体伴生盐水包裹体均一温度,6901.7 m,J1b;(b)—GHW001井蓝色荧光原油包裹体伴生盐水包裹体均一温度,K1q,气包裹体伴生盐水包裹体样品深度为5837.1 m,蓝色荧光原油包裹体及其伴生盐水包裹体样品深度为5842.4 m;FI—流体包裹体
-
(a) —the homogenization temperature of saline inclusions accompanying yellow fluorescent crude oil inclusions in well Gao 101, 6901.7 m, J1b; (b) —the homogenization temperature of saline inclusions accompanying blue fluorescent crude oil inclusions in well GHW001, K1q, the depth of the sample with gas inclusions associated saline inclusions is 5837.1 m, while the depth of the sample with blue fluorescent oil inclusions and their associated saline inclusions is 5842.4 m; FI—fluid inclusion
-
对比包裹体均一温度、冰点温度、初熔温度和盐度等数据,结果显示高101井黄色荧光原油包裹体集合伴生盐水包裹体与GHW001井蓝色荧光原油包裹体伴生盐水包裹体均一温度、冰点温度和盐度具有较大差别。高101、GHW001和呼探1井的伴生盐水包裹体温度和盐度数据显示主体存在3个温度聚集区,呼探1井的温度范围较大,部分温度点与高101井温度点重合(图6a),因其为多期流体充注结果。高101井初熔点温度主要集中在-55~-45℃,盐度主要集中在5%NaCleq以下,且均一温度处于较低范围(图6a、d)。GHW001井发育的气烃包裹体伴生盐水包裹体初熔点温度、冰点温度和盐度较为集中(图6b、c),表现出明显同期流体活动特点。值得注意的是,高101井和呼探1井原油包裹体伴生盐水包裹体均一温度与盐度呈现明显的正相关关系(图6b),GHW001井的盐度和冰点温度数据较为集中,但数据点却偏离了这种正相关关系,其盐度数据明显偏低(图6b),冰点温度明显偏高(图6c),表现出流体遭遇低盐度水稀释的特征。
-
图6 准噶尔盆地南缘流体包裹体均一温度、初熔点温度、冰点温度及盐度交汇图
-
Fig.6 Intersection diagram of homogenization temperature, initial melting point temperature, freezing point temperature and salinity of fluid inclusions in the southern margin of Junggar basin
-
3.4 油气成藏时间与期次厘定
-
通过绘制高101井和GHW001井埋藏史和热史图件(图7a、c),并运用实钻井温数据进行热史校正(图7b、d),使得结果与实际地质情况较为吻合。结合单井热史和包裹体均一温度可确定流体充注时间,高101井黄色荧光原油包裹体伴生盐水包裹体均一温度集中在85~90℃,对应在埋藏史上可以投射出两个数据点,分别为89 Ma和16 Ma。由烃源岩热演化史认为89 Ma难以发生大规模的原油充注,因为在89 Ma左右,高泉地区主力烃源岩成熟度Ro为0.42%~0.59%(图8a),主体处于未成熟阶段,难以达到规模生油的热演化程度。此外,白垩纪末期经历了明显的抬升,烃源岩不再继续埋藏,更加难以进一步热演化生烃,同时该时期盖层缺失,即使生油也无法规模聚集。因此,认为该期原油为16 Ma以来的充注,侏罗系主力烃源岩成熟度Ro为0.52%~0.66%(图8a),16 Ma以来地层持续埋藏,烃源岩快速演化成熟达到生成规模原油的成熟度。第二期原油充注主要由GHW001井记录,对应的蓝色荧光原油包裹体。该期原油包裹体伴生盐水包裹体均一温度最低为116℃,对应7 Ma的油气充注(图7c)。第三期天然气充注由GHW001井记录,对应石英颗粒愈合缝内黑色凝析气烃包裹体集合。该期包裹体伴生盐水包裹体对应的均一温度均超过150℃,但该样本点对应的清水河组(K1q)的埋藏史和热史在整个地质历史时期都未能达到150℃,且该井八道湾组(J1b)烃源岩埋藏最深部位成熟度Ro为1.03%(图8b),并未达到生成凝析气阶段,因此该期天然气充注为邻近的四棵树凹陷通过断裂或不整合面等通道运移而来,为深部的高温流体,这也表明四棵树凹陷晚期具有强大的供烃能力,可成为凹陷周边圈闭的主力烃源灶。
-
图7 准南地区高泉构造高101井和GHW001井埋藏史、热史(a、c)及地温校正图(b、d)
-
Fig.7 Burial and thermal histories (a, c) and geotemperature calibration (b, d) for well Gao 101 and well GHW001 in Gaoquan structure, southern Junggar basin
-
图8 准南地区高泉构造高101井(a)、GHW001井(b) 和四棵树凹陷区(c)烃源岩热演化史图
-
Fig.8 The thermal evolution history of source rocks in well Gao 101 (a) , well GHW001 (b) and Sikeshu sag area (c) of Gaoquan structure in southern Junggar basin
-
3.5 二维油气运聚模拟结果
-
选取过高泉构造、四棵树凹陷和西湖构造的二维地震剖面,构建地质模型,通过赋予相关边界条件进行烃源岩热演化和油气运聚数值模拟。设置主力烃源岩为八道湾组、三工河组和西山窑组,同时由于地震剖面显示四棵树凹陷内部具有较厚的二叠纪地层,因此在模型内定义二叠系也发育有烃源岩,具有一定的生烃能力。热演化模拟结果(图9)显示四棵树凹陷内部侏罗系主力烃源岩主要处于生湿气到干气阶段,而高泉构造下伏侏罗系烃源岩主体处于主要生油阶段,并未进入生气窗,这也进一步说明了高泉构造的GHW001井包裹体记录的天然气充注主要来自于四棵树凹陷区。
-
为厘定凝析气主要充注时间,本文在四棵树凹陷中部选取一口虚拟井,通过精细的烃源岩热演化分析,确定主要凝析气生成时间。选取的虚拟井位置如图9所示,通过对该井的埋藏史和热史(图8c)进行分析,侏罗系八道湾组、三工河组和西山窑组等主力烃源岩层段完全进入生凝析气阶段大约为3 Ma以来,此时西山窑组烃源岩顶部成熟度Ro为1.25%~1.48%,而底部八道湾组开始进入生干气阶段,靠近高泉圈闭的斜坡带主要以生湿气为主(图9),此时四棵树凹陷供烃能力较强,可能形成一次天然气充注高峰期,为凹陷周边的圈闭(如高泉构造、西湖构造)提供规模天然气充注。
-
油气运聚模拟结果(图10)显示四棵树凹陷区率先达到生烃门限,生成的油气不仅通过断层或高渗层向浅部地层运移,同时也通过砂体进行侧向运移。从二维剖面上看,由凹陷带中部生成的油气不仅向东北方向侧向运移至西湖构造,同时向西南方向运移至高泉构造。现今剖面由于原高泉背斜被褶皱复杂化,切割为高泉构造和高泉5构造,且供烃能力和充注动力原因,四棵树凹陷带新生代生成的油气只能运移至高泉构造,无法进一步向高泉5圈闭运移,因此高泉5构造晚期聚集的原油主要为原地下伏烃源岩生成。由于断裂对地层的切割作用和深部圈闭高压水力压裂作用,导致圈闭聚集的油气会发生不同程度的泄露,下组合聚集的油气会向浅部地层调整,可能在部分地区中、上组合圈闭中聚集形成次生油气藏(图10)。
-
图9 准噶尔盆地南缘高泉地区烃源岩热演化二维模拟剖面图(剖面位置见图1 A—A′)
-
Fig.9 Two-dimensional simulation profile of source rock thermal evolution in Gaoquan area, southern margin of Junggar basin (profile location refers to A—A′ in Fig.1)
-
4 讨论
-
4.1 失利井分析
-
流体的盐度一般随着冰点温度的上升而下降(Fall and Bodnar,2018),一般情况下随着地层埋藏加深,地层流体逐渐脱离大气淡水环境,多期流体充注叠加,储层孔隙流体盐度逐渐上升,冰点温度逐渐下降。晚期充注的油气为烃源岩高成熟阶段产物,这导致晚期捕获的包裹体均一温度也相对较高,因此均一温度与盐度应表现为一种近似正相关关系,与冰点温度表现为近似的负相关关系。而由准噶尔盆地南缘高泉和呼图壁构造的古流体盐度和均一温度数据对比看,高泉构造GHW001井的凝析气充注阶段属于高均一温度阶段,但盐度却发生了断崖式地骤降,冰点温度出现了异常的上升(图6b、c),这表明晚期可能发生过油藏次生改造,构造活动形成的断层沟通了浅层或其他构造带地层,发生了明显的低盐度流体的交换,使得储层流体发生了一定稀释作用,同时这也表明圈闭中的油气发生了不同程度的泄露。
-
高102井在头屯河组(J2t)发育大量的裂缝,并且裂缝中不同程度地被黑色沥青所充填(图11a~c、h、i),裂缝多为穿岩石颗粒发育,这可能是早期聚集的原油发生泄露的证据。前人(吴林等,2022)通过构造应力场和构造裂缝分析,制作出高泉背斜的裂缝发育概率预测剖面,指出高泉背斜内断层和裂缝较为发育,这也表明了高泉背斜经过了一定程度的改造与后期调整。高泉地区的供烃凹陷主要位于东北部的四棵树凹陷,其烃源岩发育较厚,生烃能力较强,能够成为高泉构造的主力供烃灶。高泉构造本地侏罗系烃源岩发育较薄,具有一定生烃能力,但供烃能力较为有限,主要依靠四棵树凹陷区。高102井位于高泉背斜远离四棵树凹陷供烃翼(图12),本身具有供烃劣势,同时又由于喜马拉雅构造运动期断层的切割和构造裂缝的发育,早期聚集的原油发生一定程度泄露,导致该井的钻探失利。高泉5构造也具有类似的晚期改造特征,储层被断层和裂缝改造(图11d~g),早期充注的原油发生泄露,且圈闭距离四棵树凹陷区较远,持续补充供烃能力有限,导致现今油藏难以取得规模突破。
-
图10 准噶尔盆地南缘高泉地区油气运聚二维模拟剖面图(剖面位置见图1A—A′)
-
Fig.10 Two-dimensional simulation profile of hydrocarbon migration and accumulation in Gaoquan area, southern margin of Junggar basin (profile location refers to A—A′ in Fig.1)
-
4.2 构造演化与成藏过程
-
由构造演化过程看,高泉地区在前侏罗纪已形成了微幅古隆起构造,构造宽缓、闭合面积较大。高泉构造与四棵树凹陷相比二叠纪地层明显较薄,这种地层突然变薄可能由于地层走滑和剥蚀导致,即使二叠系烃源岩具备一定生烃潜力,但前侏罗纪也难以达到规模油气形成条件,同时由于此时并未形成良好的储盖组合,因此也不具备良好的油气聚集条件。新生代喜马拉雅造山运动对准南地区进行强烈改造,高泉地区受构造褶皱和断层切割作用影响,形成多个断背斜构造,如高泉构造、高泉5和高泉6构造等,且这些构造位于下组合较深部位,白垩系吐谷鲁群泥岩为下组合区域盖层,为深层油气提供了良好的遮挡。随着新生代侏罗系烃源岩埋藏加深,热演化程度升高,达到规模生烃阶段,在塔西河组(N1t)沉积时期(始于16 Ma),高泉构造捕获低成熟原油充注(图12b),此时高泉构造原地侏罗系烃源岩成熟度Ro为0.51%~0.66%,但四棵树凹陷西南斜坡部位八道湾组烃源岩成熟度Ro已超过1.0%,该期原油充注对应石英颗粒内部记录的黄色荧光包裹体集合。高探1井钻井揭示独山子组顶部与第四系出现明显的不整合面,表明独山子组沉积晚期具有一定的地层抬升,指示该时期构造活动作用加剧,在前陆挤压挠曲作用下埋藏速度逐渐加快,高泉构造在独山子组沉积早期(约7 Ma)接收轻质原油充注(图12c),此时侏罗系烃源岩成熟度Ro为0.72%~0.87%(图8b),处于主要生油阶段,该期原油充注对应石英颗粒愈合缝内部呈线性分布的蓝色荧光包裹体。独山子组(N2d)沉积末期(约3 Ma)以来,四棵树凹陷区烃源岩主体达到生凝析气和干气阶段,具备大规模供烃能力,高泉构造本地烃源岩并未进入生气窗,凹陷区生成的烃类向斜坡区和邻近斜坡部位的圈闭运移,对高泉构造和西湖构造的油气成藏具有明显贡献(图12d)。
-
图11 准噶尔盆地南缘高泉构造储层残余沥青发育特征
-
Fig.11 Characteristics of residual bitumen in reservoir of Gaoquan structure in the southern margin of Junggar basin
-
(a)—粉砂质泥岩内部含沥青脉,高102井,6033.32 m;(b)—粉砂质泥岩内部含残余沥青脉体,高102井,6033.32 m;(c)—砂岩被沥青脉体切穿,高102井,6033.32 m;(d)—石英颗粒内部裂缝中残余沥青,高泉5井,6125.56 m;(e)—砂质泥岩内部裂缝中残余沥青,高泉5井,6125.56 m;(f)—砂质泥岩内部裂缝和溶蚀孔中残余沥青,高泉5井,6125.56 m;(g)—砂质泥岩内部裂缝中残余沥青,高泉5井,6053.00 m;(h)—砂质泥岩内部裂缝中残余沥青,高102井,6030.20 m;(i)—砂质泥岩内部剪切裂缝中残余沥青,高102井,6030.20 m;Bi—沥青;F—裂缝
-
(a) —bitumen veins within silty shale, well Gao 102, 6033.32 m; (b) —residual bitumen veins within silty shale, well Gao 102, 6033.32 m; (c) —sandstone cut through by bitumen veins, well Gao 102, 6033.32 m; (d) —residual bitumen in fractures within quartz grains, well Gaoquan 5, 6125.56 m; (e) —residual bitumen in fractures within sandy shale, well Gaoquan 5, 6125.56 m; (f) —residual bitumen in fractures and dissolution pores within sandy shale, well Gaoquan 5, 6125.56 m; (g) —residual bitumen in fractures within sandy shale, well Gaoquan 5, 6053.00 m; (h) —residual bitumen in fractures within sandy shale, well Gao 102, 6030.20 m; (i) —residual bitumen in shear fractures within sandy shale, well Gao 102, 6030.20 m; Bi—bitumen; F—fracture
-
4.3 勘探启示
-
由于新生代晚期喜马拉雅造山活动达到高峰期,北天山隆起加剧,导致山前冲断褶皱带产生大量断层和裂缝,对高泉地区局部构造进行改造和破坏。圈闭内的油气发生不同程度的泄露,深层盐水等流体与浅层发生交换和稀释,导致部分地区如GHW001井清水河组所记录的天然气伴生盐水包裹体冰点温度上升和盐度发生明显下降的异常现象,这也印证在天然气大规模充注时期高泉地区圈闭已经出现了一定程度的流体泄露。高探1井所在的高泉构造是距离四棵树凹陷较近的一排构造,具有供烃的天然优势,因此现今高泉构造内部的流体是凹陷区优势供烃和圈闭局部泄露的一个动态平衡结果,且供大于散,因此圈闭内仍聚集有大量油气,特别是背斜靠近四棵树凹陷区一翼勘探潜力巨大,靠近凹陷的斜坡区可成为未来油气(特别是天然气和轻质油)勘探的主攻方向之一(图12d)。
-
图12 准噶尔盆地南缘高泉地区超深层油气成藏演化过程
-
Fig.12 Evolution of ultra-deep hydrocarbon accumulation in Gaoquan area, southern margin of Junggar basin
-
新生代构造活动将原高泉古背斜切割(图12a、b),高泉5构造晚期只能接受原地烃源岩供烃,凹陷区烃源岩生成的油气难以运移至此,一旦出现圈闭泄露,其本地烃源岩供烃能力难以弥补泄露所带来的烃类逸散损失,导致勘探潜力降低。因此,未来四棵树凹陷地区的勘探应聚焦在凹陷区邻近圈闭,特别是靠近凹陷区一翼和斜坡区的圈闭,它们具有靠近烃源灶和优先供烃等优势,这也是高探1井、高泉6井和西湖构造具有工业油气流发现的原因。远离凹陷区的圈闭若被分割,则主要依靠本地烃源岩供烃,成藏规模相对较小,且勘探风险较大。
-
5 结论
-
(1)准噶尔盆地南缘高泉地区下组合具有古隆起发育背景,发育时期为前侏罗纪。白垩纪晚期,四棵树凹陷具有古斜坡发育背景,为凹陷区生成的原油提供侧向运移的地质背景。新生代喜马拉雅造山运动对高泉古构造进行改造,构造挤压和断层切割导致原高泉背斜分割成两个次级圈闭,圈闭形成时间相对较早,具有捕获多期油气的能力。
-
(2)高泉地区下组合经历了3期油气充注和晚期的调整改造。第一期原油充注时间为塔西河组沉积时期(约16 Ma),对应黄色荧光包裹体集合;第二期为独山子组沉积时期的成熟原油充注(7 Ma左右),对应蓝色荧光原油包裹体集合;第三期为天然气充注,气源主要来自于凹陷区,充注时间约为3 Ma以来,对应黑色气烃包裹体。
-
(3)高泉地区下组合具有古构造发育背景,具有持续捕获油气的能力,喜马拉雅构造运动早期(古近纪)将原高泉背斜挤压褶皱切割为多个断块圈闭,断块距离四棵树凹陷区的远近会对勘探潜力造成关键影响。凹陷区近端的圈闭具有持续捕获凹陷区运移而来的油气,成藏潜力和勘探前景较大。凹陷区远端的圈闭或背斜一翼由于供烃不足或者晚期改造作用,原生油气藏被强烈改造或破坏,勘探潜力降低,改造后的油气可能往浅部圈闭调整,可在中、上组合形成油气藏。
-
参考文献
-
Allegre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J, Achache J, Scharer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariepy C, Gopel C, Li Tindong, Xiao Xuchang, Chang Chenfa, Li Guangqin, Lin Baoyu, Teng Jiwen, Wang Naiwen, Chen Guoming, Han Tonglin, Xu Ronghua. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17~22.
-
Bai Bin, Zhou Lifa, Zou Caineng, Liu Haowei, Liu Zhe, Gao Jianpin. 2010. Definition of some unconformities in the south margin of Junggar basin, NW China. Petroleum Exploration and Development, 37(3): 270~280 (in Chinese with English abstract).
-
Baldwin B. 1971. Ways of deciphering compacted sediments. Journal of Sedimentary Petrology, 41(1): 293~301.
-
Baldwin B, Butler C. 1985. Compaction Curves. AAPG Bulletin, 69(4): 622~626.
-
Carroll A R, Graham S A, Hendrix M S, Ying D, Zhou D. 1995. Late Paleozoic tectonic amalgamation of northwestern China: sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins. Geological Society of America Bulletin, 107(5): 571~594.
-
Charreau J, Saint-Carlier D, Lavé J, Dominguez S, Blard P, Avouac J, Brown N, Malatesta L, Wang Shengli, Rhodes E. 2018. Late Pleistocene acceleration of deformation across the northern Tianshan piedmont (China) evidenced from the morpho-tectonic evolution of the Dushanzi anticline. Tectonophysics, 730: 132~140.
-
Chen Jianping, Wang Xulong, Deng Chunping, Zhao Zhe, Ni Yiquan, Sun Yongge, Yang Haibo, Wang Huitong Liang Digang. 2016a. Investigation of typical reservoirs and occurrence regularity of crude oils in the southern margin of Junggar basin, northwestern China. Acta Petrolei Sinica, 37(4): 415~429 (in Chinese with English abstract).
-
Chen Jianping, Wang Xulong, Deng Chunping, Zhao Zhe, Ni Yiquan, Sun Yongge, Yang Haibo, Wang Huitong, Liang Digang. 2016b. Oil-source correlation of typical crude oils in the southern margin, Junggar basin, northwestern China. Acta Petrolei Sinica, 37(2): 160~171 (in Chinese with English abstract).
-
Chen Ke, Wei Lin, Wang Qingchen. 2015. The Bogeda Shan uplifting: Evidence from multiple phases of deformation. Journal of Asian Earth Sciences, 99: 1~12.
-
Dickinson G. 1953. Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana. AAPG Bulletin, 37: 410~432.
-
Du Jinhu, Zhi Dongming, Li Jianzhong, Yang Disheng, Tang Yong, Qi Xuefeng, Xiao Lixin, Wei Lingyun. 2019. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar basin, NW China. Petroleum Exploration and Development, 46(2): 205~215 (in Chinese with English abstract).
-
Fall A, Bodnar R J. 2018. How precisely can the temperature of a fluid event be constrained using fluid inclusions?. Economic Geology, 113(8): 1817~1843.
-
Goldstein R H. 2001. Fluid inclusions in sedimentary and diagenetic systems. Lithos, 55(1): 159~193.
-
Guan Shuwei, Li Benliang, He Dengfa, Shawn J H, Chen Zhuxin. 2009. Recognition and exploration of structural wedges—A case study in the southern margin of Junggar basin, China. Earth Science Frontiers, 16(3): 129~137.
-
Guan Shuwei, Chen Zhuxin, Fang Shihu. 2012. Three potential exploration areas of southern Junggar basin, NW China: Arguments from structural modeling. Petroleum Exploration and Development, 39(1): 43~50.
-
Guan Shuwei, Stockmeyer J M, Shaw J H, Plesch A, Zhang Jian. 2016. Structural inversion, imbricate wedging, and out-of-sequence thrusting in the southern Junggar fold-and-thrust belt, northern Tian Shan, China. AAPG Bulletin, 100(9): 1443~1468.
-
Han Baofu, Guo Zhaojie, Zhang Zhicheng, Zhang Lei, Chen Jiafu, Song Biao. 2010. Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. GSA Bulletin, 122(3-4): 627~640.
-
Harrison T M, Copeland P, Kidd W S F, Yin An. 1992. Raising Tibet. Science, 255(5052): 1663~1670.
-
Hendrix M S, Dumitru T A, Graham S A. 1994. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan: An early effect of the India-Asia collision. Geology, 22(6): 487~490.
-
Jia Chengzao. 2007. The characteristics of intra-continental deformation and hydrocarbon distribution controlled by the Himalayan tectonic movements in China. Earth Science Frontiers, 14(4): 96~104 (in Chinese with English abstract).
-
Jia Chengzao, Li Benliang, Lei Yongliang, Chen Zhuxin. 2013. The structure of Circum-Tibetan Plateau Basin-Range System and the large gas provinces. Science China Earth Sciences, 56(11): 1853~1863.
-
Jiang Fujie, Wu Li. 2010. Geochemistry of the source rocks in the Zhunnan foreland thrust zone. Sedimentary Geology and Tethyan Geology, 30(2): 47~49 (in Chinese with English abstract).
-
Kong Xiangxing. 2007. Oil source of foothill fault-fold structural belt in western part of the southern margin, Junggar basin. Petroleum Exploration and Development, 34(4): 413~418 (in Chinese with English abstract).
-
Lei Dewen, Chen Nenggui, Li Xueyi, Zhang Yingchun. 2012. The major reservoirs and distribution of lower Combination in southern margin of Jungar basin. Xinjiang Petroleum Geology, 33(6): 648~650 (in Chinese with English abstract).
-
Li Xueyi, Shao Yu, Li Tianming. 2003. Three oil-reservoir combinations in south marginal of Jungar basin, Northwest China basin. Petroleum Exploration and Development, 30(6): 32~34 (in Chinese with English abstract).
-
Li Yiquan, Wei Dongtao, Chen Zhuxin, Jia Dong, Ma Delong, Wang Yanjun, Cui Jian, Shen Shuxin. 2016. Multiphase deformation deduced from 3D construction and restoration: Implication for the hydrocarbon exploration in the mountain front of the northern Tianshan. Marine and Petroleum Geology, 77: 916~930.
-
Morin J, Jolivet M, Robin C, Heilbronn G, Barrier L, Bourquin S, Jia Y. 2018. Jurassic paleogeography of the Tian Shan: An evolution driven by far-field tectonics and climate. Earth-Science Reviews, 187: 286~313.
-
Munz I A. 2001. Petroleum inclusions in sedimentary basins: Systematics, analytical methods and applications. Lithos, 55(1): 195~212.
-
Sclater J G, Christie P. 1980. Continental stretching: An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research, 85(B7): 3711~3939.
-
Shu Liangshu, Yu Jinhai, Charvet J, Laurent-Charvet S, Sang Haiqing, Zhang Rengu. 2004. Geological, geochronological and geochemical features of granulites in the eastern Tianshan, NW China. Journal of Asian Earth Sciences, 24(1): 25~41.
-
Sun Jimin, Xu Qinghai, Huang Baochun. 2007. Late Cenozoic magnetochronology and paleoenvironmental changes in the northern foreland basin of the Tian Shan Mountains. Journal of Geophysical Research: Solid Earth, 112(B4): 1~14.
-
Tapponnier P, Molnar P. 1979. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions. Journal of Geophysical Research: Solid Earth, 84(B7): 3425~3459.
-
Turcotte D L, Schubert G. 2002. Geodynamics. Cambridge: Cambridge University Press.
-
Wang Yanjun, Jia Dong, Pan Jianguo, Tang Yong, Wang Guodong, Wei Cairu, Ma Delong. 2018. Multiple-phase tectonic superposition and reworking in the Junggar basin of northwestern China—Implications for deep-seated petroleum exploration. AAPG Bulletin, 102(8): 1489~1521.
-
Wei Li. 2018. Evaluation of upper Triassic hydrocarbon source rock in Sikeshu sag, the southern margin of Junggar basin. Journal of Xi'an Shiyou University (Natural Science Edition), 33(2): 9~15 (in Chinese with English abstract).
-
Wu Hai, Zhao Mengjun, Zhuo Qingong, Lu Xuesong, Zeng Fang, Zhao Aiwen. 2016a. Palaeofluid evolution process in well block Tubei 1 in the Kuqa depression, Tarim basin. Natural Gas Industry, 36(2): 26~35 (in Chinese with English abstract).
-
Wu Hai, Zhao Mengjun, Zhuo Qingong, Lu Xuesong, Gui Lili, Li Weiqiang, Xu Zuxin. 2016b. Quantitative analysis of the effect of salt on geothermal temperature and source rock evolution: A case study of Kuqa foreland basin, Western China. Petroleum Exploration and Development, 43(4): 550~558 (in Chinese with English abstract).
-
Wu Hai, Zhang Ziyu, Liu Shaobo, Zhuo Qingong, Lu Xuesong, Liu Hui. 2022a. Controlling factors of hydrocarbon accumulation and differential distribution in the western Qaidam basin, Tibet Plateau. Australian Journal of Earth Sciences, 69(4): 591~604.
-
Wu Hai, Liu Hui, Wang Long, Gui Lili, Yang Cheng, Wang Lixin. 2022b. Mixed carbonate-siliciclastic reservoir characterization and hydrocarbon accumulation process of the Ganchaigou area in the western Qaidam basin, Tibet Plateau. Carbonates Evaporites, 37(26): 1~17.
-
Wu Lin, Zhu Ming, Feng Xingqiang, Ji Dongsheng, Zhou Lei, Liu Shengxin, Zhang Linyan, Tan Yuanlong, Qian Zhuliang, Yang Zhen. 2022. Interpretation on tectonic stress and deformation of Sikeshu sag in Junggar basin. Acta Petrolei Sinca, 43(4): 494~506 (in Chinese with English abstract).
-
Yang Yongtai, Song Chuanchun, He Sheng. 2015. Jurassic tectonostratigraphic evolution of the Junggar basin, NW China: A record of Mesozoic intraplate deformation in Central Asia. Tectonics, 34(1): 86~115.
-
Yu Yangli, Wang Xin, Rao Gang, Wang Renfu. 2016. Mesozoic reactivated transpressional structures and multi-stage tectonic deformation along the Hong-Che fault zone in the northwestern Junggar basin, NW China. Tectonophysics, 679: 156~168.
-
Zhang Wenlin, Zhang Shaonan, Wang Shiqian. 2003. Geochemical characteristics of oil and correlation of oil to resource rock in the southern edge of Junggar basin. Journal of Chengdu University of Technology, 30(4): 374~377 (in Chinese with English abstract).
-
Zhou Yanxi, Wu Chaodong, Yuan Bo, Wang Jialin, Zhou Tianqi, Wang Yizhe, Tang Xueying. 2020. Cenozoic tectonic patterns and their controls on growth strata in the northern Tianshan fold and thrust belt, northwest China. Journal of Asian Earth Sciences, 198: 104237.
-
白斌, 周立发, 邹才能, 朱如凯, 刘昊伟, 刘哲, 高建平. 2010. 准噶尔盆地南缘若干不整合界面的厘定. 石油勘探与开发, 37(3): 270~280.
-
陈建平, 王绪龙, 邓春萍, 赵喆, 倪云燕, 孙永革, 杨海波, 王汇彤. 2016a. 准噶尔盆地南缘油气生成与分布规律——典型油藏油源解剖与原油分布规律. 石油学报, 37(4): 415~429.
-
陈建平, 王绪龙, 邓春萍, 赵喆, 倪云燕, 孙永革, 杨海波, 王汇彤. 2016b. 准噶尔盆地南缘油气生成与分布规律——典型类型原油油源对比. 石油学报, 37(2): 160~171.
-
杜金虎, 支东明, 李建忠, 杨迪生, 唐勇, 齐雪峰, 肖立新, 魏凌云. 2019. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望. 石油勘探与开发, 46(2): 205~215.
-
贾承造. 2007. 中国喜马拉雅构造运动的陆内变形特征与油气矿藏富集. 地学前缘, (4): 96~104.
-
姜福杰, 武丽. 2010. 准南前陆冲断带烃源岩地质地球化学特征. 沉积与特提斯地质, 30(2): 47~49.
-
孔祥星. 2007. 准噶尔盆地南缘西部山前断褶带油源分析. 石油勘探与开发, 34(4): 413~418.
-
雷德文, 陈能贵, 李学义, 张迎春. 2012. 准噶尔盆地南缘下部成藏组合储集层及分布特征. 新疆石油地质, 33(6): 648~650.
-
李学义, 邵雨, 李天明. 2003. 准噶尔盆地南缘三个油气成藏组合研究. 石油勘探与开发, (6): 32~34.
-
魏力. 2018. 准噶尔盆地南缘四棵树凹陷上三叠统烃源岩评价. 西安石油大学学报(自然科学版), 33(2): 9~15.
-
吴海, 赵孟军, 卓勤功, 鲁雪松, 李伟强, 曾芳, 赵爱文. 2016a. 库车坳陷吐北1井区古流体演化过程. 天然气工业, 36(2): 26~35.
-
吴海, 赵孟军, 卓勤功, 鲁雪松, 桂丽黎, 李伟强, 徐祖新. 2016b. 膏盐岩对地层温度及烃源岩热演化的影响定量分析——以塔里木库车前陆盆地为例. 石油勘探与开发, 43(4): 550~558.
-
吴林, 朱明, 冯兴强, 冀冬生, 周磊, 刘圣鑫, 张林炎, 谭元隆, 钱竹良, 杨珍. 2022. 准噶尔盆地四棵树凹陷构造应力场与构造变形解析. 石油学报, 43(4): 494~506.
-
张闻林, 张哨楠, 王世谦. 2003. 准噶尔盆地南缘西部地区原油地球化学特征及油源对比. 成都理工大学学报(自然科学版), (4): 374~377.
-
摘要
准噶尔盆地南缘下组合近年取得了重要勘探突破,随着勘探持续深化,在工业油气流圈闭附近的构造却钻探失利,下组合区域差异较大,成藏过程复杂。通过对高泉地区构造进行平衡地质剖面恢复,结合流体包裹体、埋藏史、热史和油气运聚数值模拟研究,揭示了高泉地区下组合的构造演化与成藏过程,并分析了部分井失利的原因。结果表明,高泉构造在前侏罗纪已经存在,为一宽缓古隆起,新生代早期受喜马拉雅造山运动影响,分割为若干断块构造,分割后的圈闭成藏过程具有差异性。高泉构造总体经历了3期油气充注和晚期的调整改造:第一期为中新统塔西河组沉积时期(约16 Ma)的低熟原油充注,对应包裹体荧光为黄色;第二期为独山子组沉积中期的成熟原油充注(约7 Ma),对应的是石英颗粒愈合缝内蓝色、蓝白色荧光油包裹体;第三期为上新世(约3 Ma)以来的天然气充注,天然气来源主要为四棵树凹陷,高泉地区本地烃源岩主体并未进入生气阶段。四棵树凹陷近端和远端圈闭成藏潜力和勘探远景具有较大差别,凹陷周边圈闭晚期多经历改造和调整,近端圈闭具有距离油源近、供烃充足等优势,应作为优先勘探目标,远端圈闭改造后油气源补充不足,具有较大勘探风险。
Abstract
Recent years have witnessed significant advancements in the exploration of deep-seated reservoir plays within the southern margin of the Junggar basin. Despite these successes, drilling operations in structures adjacent to industrial petroleum traps have resulted in a number of unsuccessful ventures. This study investigates the tectonic evolution and hydrocarbon accumulation processes of the deep play in the Gaoquan area to understand the causes behind these drilling failures. A comprehensive approach, incorporating the restoration of the balanced geological profile, fluid inclusion analysis, burial and thermal history reconstructions, and numerical simulation techniques, provides a detailed understanding of the structural development and hydrocarbon migration in the Gaoquan area. The results show that the Gaoquan structure originated as a wide, gentle paleo-uplift during the pre-Jurassic era. The Himalayan orogeny in the early Cenozoic resulted in its division into several fault-block structures, leading to distinct trapping and accumulation processes. The Gaoquan structure underwent three distinct stages of hydrocarbon charging and subsequent modification. During the deposition of the Miocene Taxihe Formation (16 Ma), the initial stage involved the charging of low-maturity crude oil, as evidenced by yellow fluorescence in inclusions. The second stage, coinciding with the middle Dushanzi Formation (7 Ma), witnessed the charging of mature crude oil, characterized by blue and blue-white inclusions observed in quartz grain healing fractures. The final stage, commencing during the Pliocene (3 Ma), involved the charging of natural gas, primarily sourced from the Sikeshu sag, as the local source rock in the Gaoquan area has not yet reached the gas generation window. The proximity of the Gaoquan structure to the Sikeshu sag significantly influences its trappotential and overall exploration prospects. Traps surrounding the sag have undergone significant reformation and adjustment during later stages. Proximal traps, characterized by their proximity to oil sources and abundant hydrocarbon supply, present the most favorable exploration targets, highlighting their potential for successful hydrocarbon discoveries.
Keywords
deep strata ; hydrocarbon accumulation ; fluid inclusion ; Gaoquan area ; Sikeshu sag ; Junggar basin