en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赵青,女,1999年生。硕士研究生,主要从事海相碳酸盐岩储层地质研究。E-mail: qzhao@stu.pku.edu.cn。

通讯作者:

刘波,男,1965年生。研究员,博士生导师,长期从事盆地构造演化、储层沉积学、层序地层学、碳酸盐岩沉积-成岩作用研究。E-mail: bobliu@pku.edu.cn。;

石开波,男,1988年生。博士,主要从事碳酸盐岩沉积、成岩作用研究。E-mail: shikaibo@pku.edu.cn。

参考文献
Adachi M, Yamamoto K, Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1-2): 125~148.
参考文献
Aitchison J C, Flood P G. 1990. Geochemical constraints on the depositional setting of Palaeozoic cherts from the New England orogen, NSW, eastern Australia. Marine Geology, 94(1): 79~95.
参考文献
Boström K, Kraemer T, Gartner S. 1973. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chemical Geology, 11(2): 123~148.
参考文献
Chen Youzhi, Fu Xiaofei, Xiao Ancheng, Yu Long, Tang Yong, Mao Liguang. 2016. Type and evolution of carbonate platforms in Jixian Period Mesoproterozoic: Southwestern margin of Ordos basin. Journal of Petroleum Exploration and Production Technology, 6(4): 555~568.
参考文献
Choquette P W, Pray L C. 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54(2): 207~250.
参考文献
Deng Kun, Hang Shaonan, Zhou Lifa, Liu Zhe, Li Wenhou. 2009. Depositional environment and hydrocarbon-generating potential of the Mesoproterozoic Jixian System in the southwest margin of Ordos basin. Natural Gas Industry, 29(3): 21~24 (in Chinese with English abstract).
参考文献
Ding Tongping, Gao Jianfeng, Tian Shuhua, Fan Chunfang, Zhao Yan, Wan Dafang, Zhou Jianxing. 2017. The δ30Si peak value discovered in middle Proterozoic chert and its implication for environmental variations in the ancient ocean. Scientific Reports, 7: 1~15.
参考文献
Feng Juanping, Ouyang Zhengjian, Li Wenhou. 2021. Study on sedimentary characteristics of the Meso-Proterozoic Jixianian System in Ordos area. Journal of Northwest University (Natural Science Edition), 51(2): 325~332 (in Chinese with English abstract).
参考文献
Gunnarsson I, Arnórsson S. 2000. Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0℃ to 350℃ at Psat. Geochimica et Cosmochimica Acta, 64(13): 2295~2307.
参考文献
Guo Hua, Du Yuansheng, Kah L C, Huang Junhua, Hu Chaoyong, Huang Hu, Yu Wenchao. 2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution. Precambrian Research, 224: 169~183.
参考文献
Hesse R. 1989. Silica diagenesis: origin of inorganic and replacement cherts. Earth-Science Reviews, 26(1-3): 253~284.
参考文献
Hunter D R. 1981. Arcrean greenstone belts. In: Condie K C, ed. Developments in Precambrian Geology, 3. New York: Elsevier Scientific Publishing Company.
参考文献
Jones B, Renaut R W, Konhauser K O. 2005. Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand. Sedimentology, 52(6): 1229~1252.
参考文献
Kametaka M, Takebe M, Nagai H, Zhu Sizhao, Takayanagi Y. 2005. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: A continental shelf radiolarian chert. Sedimentary Geology, 174(3-4): 197~222.
参考文献
Knauth L P. 1992. Origin and Diagenesis of Cherts: An Isotopic Perspective. Berlin: Springer.
参考文献
Kuznetsov V G, Skobeleva N M. 2005. Silicification of Riphean carbonate sediments (Yurubcha-Tokhomo Zone, Siberian Craton). Lithology & Mineral Resources, 40(6): 552~563.
参考文献
Lu Songnian. 1996. Position and role of Precambrian geology in earth sciences. Geological Review, 42(4): 311~316 (in Chinese with English abstract).
参考文献
Maliva R G. 2001. Silicification in the belt supergroup (Mesoproterozoic), Glacier National Park, Montana, USA. Sedimentology, 48(4): 887~896.
参考文献
Maliva R G, Siever K R. 2012. Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle. Palaios, 4(6): 519~532.
参考文献
Mclennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169~200.
参考文献
Mei Minxiang. 2014. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography (Chinese Edition), 16(3): 285~304 (in Chinese with English abstract).
参考文献
Moore K R, Daye M, Gong J, Williford K, Konhauser K, Bosak T. 2023. A review of microbial-environmental interactions recorded in Proterozoic carbonate-hosted chert. Geobiology, 21(1): 3~27.
参考文献
Murchey B L, Jones D L. 1992. A mid-Permian chert event: Widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins. Palaeogeography Palaeoclimatology Palaeoecology, 96(1): 161~174.
参考文献
Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology, 90(3-4): 213~232.
参考文献
Murray R W, Buchholtz T, Brink M R, Jones D L, Gerlach D C, Iii G P R. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18(3): 268~271.
参考文献
Murray R W, Brink M R B T, Gerlach D C, Iii G P R, Jones D L. 1991. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta, 55(7): 1875~1895.
参考文献
Pan Xing. 2021. Sedimentary environments and mechanism of organic matter enrichment of the Meso-Neoproterozoic Era in the southern margin of Ordos basin. Doctoral dissertation of Northwest University (in Chinese with English abstract).
参考文献
Peng Xiaotong, Zhou Huaiyang, Wu Zhijun, Jiang Lei, Tang Song, Yao Huiqiang, Chen Guangqian. 2007. Biomineralization of phototrophic microbes in silica-enriched hot springs in South China. Chinese Science Bulletin, 52(3): 367~379.
参考文献
Perry E C, Lefticariu L. 2003. Formation and geochemistry of Precambrian cherts. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier.
参考文献
Perry E C. Lefticariu L. 2014. 9. 5-formation and geochemistry of Precambrian cherts. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (Second Edition). Oxford: Elsevier.
参考文献
Pesonen L J, Evans D, Veikkolainen T, Salminen J, Elming S K. 2021. Precambrian supercontinents and supercycles—An overview. Ancient Supercontinents and the Paleogeography of Earth.
参考文献
Qu Hongjun, Li Wenhou, Yao Tianxing, Wu Longfa, Wang Yanxin, Hu Jiasen, Cheng Yishan. 2021. Characteristics, origin and significance of strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country, Shaanxi Province. Journal of Palaeogeography (Chinese Edition), 23(4): 651~677 (in Chinese with English abstract).
参考文献
Ren Guoxuan, Meng Xianghua, Ge Ming, Wang Dehai, Guo Feng. 2007. Origin of siliceous rock in Wumishan Formation, Jixian, Tianjin. Geological Science and Technology Information, 26(5): 11~16 (in Chinese with English abstract).
参考文献
Shen Bing, Ma Haoran, Ye Heqing, Lang Xianguo, Pei Haoxiang, Zhou Chuanming, Zhang Shihong, Yang Runyu. 2018. Hydrothermal origin of syndepositional chert bands and nodules in the Mesoproterozoic Wumishan Formation: Implications for the evolution of Mesoproterozoic cratonic basin, North China. Precambrian Research, 310: 213~228.
参考文献
Siever R. 1957. The silica budget in the sedimentary cycle. American Mineralogist, 42(11): 821~841.
参考文献
Simonson B M. 1985. Sedimentology of cherts in the Early Proterozoic Wishart Formation, Quebec-Newfoundland, Canada. Blackwell Publishing Ltd, 32(1): 23~40.
参考文献
Simonson B M. 2010. Sedimentology of cherts in the Early Proterozoic Wishart Formation, Quebec-Newfoundland, Canada. Sedimentology, 32(1): 23~40.
参考文献
Su Zhongtang, Chen Anqing, van Loonc A J T, Yang Shuai, Zhang Chenggong, Xu Shenglin. 2022. Depositional model and diagenetic evolution of hydrocarbon reservoirs in deep dolomites of the Ordos basin, China. In: Yang R, van Loonc A J T, eds. The Ordos Basin. Elsevier.
参考文献
Sun Dazhong. 1998. The Archean in China. Geochimica, 27(4): 309~318 (in Chinese with English abstract).
参考文献
Sun Haoxuan, Chaussidon M, Robert F, Tian Shengyu, Deng Zhengbin, Moynier F. 2023. Triple silicon isotope insights into the formation of Precambrian cherts. Earth and Planetary Science Letters, 607: 1~11.
参考文献
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications.
参考文献
Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12~32.
参考文献
van den Boorn S H J M, van Bergen M J, Vroon P Z, de Vries S T, Nijman W. 2010. Silicon isotope and trace element constraints on the origin of ~3. 5 Ga cherts: Implications for Early Archaean marine environments. Geochimica et Cosmochimica Acta, 74(3): 1077~1103.
参考文献
Westall F, Boni L, Guerzoni E. 1995. The experimental silicification of microorganisms. Palaeontology, 38: 495~528.
参考文献
Williams L A, Crerar D A. 1985. Silica diagenesis; II, General mechanisms. Journal of Sedimentary Research, 55(3): 312~321.
参考文献
Yamamoto K. 1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1-2): 65~108.
参考文献
Ye Yan. 2022. Study on the coevolution between early siliceous organisms and oceanic environment during late Ediacaran-early Cambrian. Doctoral dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).
参考文献
Yee N, Phoenix V R, Konhauser K O, Benning L G, Ferris F G. 2003. The effect of cyanobacteria on silica precipitation at neutral pH: Implications for bacterial silicification in geothermal hot springs. Chemical Geology, 199: 83~90.
参考文献
Zhang Jing, Zhang Baomin. 2022. Microscopic fabrics and microbial lithogenous processes of Mesoproterozoic carbonate rocks in the Ordos basin. Acta Geologica Sinica, 96(4): 1937~1411 (in Chinese with English abstract).
参考文献
Zhao Chenglin. 1997. Petroleum Geology and Sedimentology of the Middle and New. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Zhao Wenzhi, Hu Suyun, Wang Zecheng, Zhang Shuichang, Wang Tongshan. 2018. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China. Petroleum Exploration and Development, 45(1): 1~13 (in Chinese with English abstract).
参考文献
Zhao Yue, Li Yanhe, Fan Chanfu, Hu Bin, Gao Jianfei. 2019. Formation mechanism of chert bands in the Mesoproterozoic Jixian section evidence from boron isotopes and silicon isotopes. Acta Geologica Sinica, 93(8): 2055~2067 (in Chinese with English abstract).
参考文献
Zheng Xiucai. 2011. Geochemical characteristics and sedimentary environment of siliceous rocks in Wumishan Formation, Chicheng, northern Hebei Province. Journal of Oil and Gas Technology, 33(6): 53~58+7 (in Chinese with English abstract).
参考文献
邓昆, 张哨楠, 周立发, 刘哲, 李文厚. 2009. 鄂尔多斯盆地西南缘蓟县系沉积环境与生烃潜力. 天然气工业, 29(3): 21~24.
参考文献
冯娟萍, 欧阳征健, 李文厚. 2021. 鄂尔多斯地区中元古界蓟县系沉积特征研究. 西北大学学报(自然科学版), 51(2): 325~332.
参考文献
陆松年. 1996. 前寒武纪地质学在当代地球科学中的地位与作用. 地质论评, 42(4): 311~316.
参考文献
梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 285~304.
参考文献
潘星. 2021. 鄂尔多斯盆地南缘中-新元古代成源环境与有机质富集机制. 西北大学博士学位论文.
参考文献
屈红军, 李文厚, 姚天星, 武龙发, 王妍心, 胡佳森, 成倚山. 2021. 陕西洛南县蓟县系洛南群层控玉化硅质岩特征、成因及意义. 古地理学报, 23(4): 651~677.
参考文献
任国选, 孟祥化, 葛铭, 王德海, 郭峰. 2007. 蓟县地区雾迷山组风暴硅质岩沉积序列. 地质科技情报, 26(5): 11~16.
参考文献
孙大中. 1998. 中国太古宙. 地球化学, 27(4): 309~318.
参考文献
叶炎. 2022. 卡拉纪末期—寒武纪早期硅质生物与古海洋环境协同演化研究. 中国地质大学(武汉)博士学位论文.
参考文献
张静, 张宝民. 鄂尔多斯盆地中元古界碳酸盐岩微观组构与微生物造岩作用. 地质学报, 96(4): 1397~1411.
参考文献
赵澄林. 1997. 华北中新元古界油气地质与沉积学. 北京: 地质出版社.
参考文献
赵文智, 胡素云, 汪泽成, 张水昌, 王铜山. 2018. 中国元古界—寒武系油气地质条件与勘探地位. 石油勘探与开发, 45(1): 1~13.
参考文献
赵悦, 李延河, 范昌福, 胡斌, 高建飞. 2019. 华北蓟县中元古界剖面中燧石条带的形成机制——硼硅同位素证据. 地质学报, 93(8): 2055~2067.
参考文献
郑秀才. 2011. 冀北赤城雾迷山组硅质岩地球化学特征及沉积环境. 石油天然气学报, 33(6): 53~58+7.
目录contents

    摘要

    鄂尔多斯盆地及周缘中元古界蓟县系白云岩中广泛发育硅质,硅质被认为是这套白云岩致密化的主要因素。但对硅质赋存特征及其矿物相态关系缺乏详细研究,进而影响了对这套硅质白云岩的硅化和致密化机理的合理解释。野外剖面观测和室内岩石学及地球化学研究表明,白云岩中赋存的硅质以层纹状/条带状、结核状/团块状和弥散状产出。层纹状/条带状硅质以大规模硅质和白云岩相互叠置发育为特征,微观光学显微镜下表现为隐/微晶石英,具有低稀土元素含量、弱Ce负异常、微弱Eu正异常、高Al2O3和TiO2含量等特征,是由海水中SiO2在大陆边缘浅水区域直接沉淀和海水中微生物诱导SiO2在含氧光合生物蓝细菌周围进行沉淀形成。结核状/团块状硅质常以不规则的形式分布在基岩中,主要硅质相态为玉髓、微晶石英,其LaN/CeN值接近1,伴随着弱Ce负异常、微弱Eu负异常,是由海水中的SiO2和陆源碎屑输入的SiO2在晚成岩阶段充填于铸模孔、格架孔形成。弥散状硅质在宏观上不具明显组构特征,微观光学显微镜下以隐/微晶石英为主,具有较高Eu正异常的特征,是由SiO2对白云石进行交代形成。蓟县系白云岩中硅化具有明显的选择性和旋回性,从而导致该套硅质白云岩致密化,致使岩石孔隙度降低,对优质储层的发育不具有建设性作用。

    Abstract

    Siliceous dolostone from the Middle Proterozoic Jixian System is broadly distributed in the Ordos basin and adjacent areas. Although silica is well-known as the principal factor tightening the dolostone, less attention has been paid to its various characteristics and the relationships between mineral phases. This lack of understanding has hindered the rational interpretation of the silicification and densification mechanisms of these rocks. Field observations, along with petrological and geochemical studies, reveal three distinct forms of silica within the dolostone: layered/banded, nodular/agglomerated, and dispersed. Layered and banded silica formations involve large-scale amalgamation of silica and dolostone. Microscopically, these formations consist of cryptocrystalline/microcrystalline quartz, with low rare earth element content, faint negative Ce anomalies, subtle positive Eu anomalies, and elevated Al2O3 and TiO2 content. They originate from direct silica precipitation in shallow continental margin waters, facilitated by oxygen-rich, photosynthetic cyanobacteria induced by marine microorganisms. Nodular/agglomerated silica has an irregular spatial distribution within the bedrock matrix. It is predominantly composed of chalcedony and microcrystalline quartz. The LaN/CeN ratio approximates unity, accompanied by subtle negative anomalies in Ce and Eu. These entities form during late diagenesis through silica infusion from seawater and terrestrial detritus, filling voids such as mold and framework cavities. Dispersed silica lacks distinctive structural attributes. Under microscopic observation, it is mainly composed of cryptocrystalline/microcrystalline quartz. Importantly, it presents a conspicuous and elevated positive Eu anomaly, resulting from the metasomatic replacement of dolomite with silica. The silicification in the Jixian System dolostone displays selective, cyclical patterns, resulting in compaction and reduced rock porosity. However, these processes do not contribute positively to the formation of high-grade reservoirs.

  • 前寒武纪海洋的二氧化硅浓度可能比显生宙高,主要的硅质沉积包括条带状建造及浅水碳酸盐岩地层中的硅质结核(Maliva et al.,20012012)。前人研究表明前寒武纪海洋二氧化硅浓度预估为60×10-6甚至更高(Ding Tongping et al.,2017);现代海洋中大部分地区的二氧化硅浓度受控于分泌二氧化硅的生物,浓度值为1×10-6甚至更低,最高仅为15×10-6Perry et al.,2003,2014)。与现代海洋不同的是,前寒武纪没有硅质生物但有大量硅质沉积,前人研究认为海洋溶解硅浓度可能要达到无定型二氧化硅的饱和度才能发生无机沉淀形成硅质岩(Gunnarsson et al.,2000Ding Tongping et al.,2017叶炎,2022)。Sun Haoxuan et al.(2023)认为前寒武纪硅质的形成涉及三种不同来源的二氧化硅,分别是来自大陆的碎屑石英、靠近海水和海洋地壳界面的热液流体动态沉淀的热液石英以及从海水中平衡沉淀的无定形二氧化硅。然而,不同地区前寒武纪二氧化硅来源仍然存在较大争议。这个问题的解决对于我们更好地理解前寒武纪的海洋环境和生物演化具有重要意义。

  • 华北中元古界蓟县系海相碳酸盐岩地层中发育多种类型硅质。在华北板块南缘蓟县系洛南群巡检司组顶部,发育似层状玉髓及透镜状硅质(屈红军等,2021)。研究认为这些硅质组分主要来源为陆源输入,在后期部分硅质可能受到了热液作用的影响。在东部蓟县地区雾迷山组白云岩中也发现了大量层状硅质条带,具有明显的沉积韵律(Guo Hua et al.,2013赵悦等,2019),认为蓟县地区雾迷山组白云岩中硅质来源于海底热水活动(任国选等,2007)。目前,关于蓟县系广泛分布的硅质成因机制和来源尚未达成共识。本次研究以鄂尔多斯盆地西南缘蓟县系碳酸盐岩中硅质为对象,基于野外露头和岩芯观察,通过岩石学,主、微量元素分析等地球化学方法,对蓟县系白云岩中硅质的发育特征、成因及硅质来源进行分析,探讨硅质导致的蓟县系白云岩致密化机制,以期对鄂尔多斯盆地蓟县系碳酸盐岩油气勘探提供指导。

  • 1 区域地质背景

  • 鄂尔多斯盆地位于哥伦比亚超大陆内的华北克拉通西缘(图1a、b),与吕梁山脉、秦岭造山带、贺兰山、六盘山、兴安-蒙古造山带相邻(Su Zhongtang et al.,2022)。鄂尔多斯盆地是中元古代以来长期发展和演化的典型克拉通边缘叠合盆地,经历了复杂的构造演化,基底是太古宙杂岩以及古元古代变质岩系(Chen Youzhi et al.,2016)。在古—中太古代,经历阜平运动,陆壳普遍褶皱上升,鄂尔多斯盆地古陆核形成(Hunter,1981;孙大中,1991;陆松年,1996)。中—新元古代是地壳伸展时期,盆地开始裂解,形成了一系列北东向的克拉通内裂陷槽。鄂尔多斯盆地内部及东西两侧发育了两种不同类型的中元古代地质特征,西南缘为裂陷地带而东北缘为隆起地带(邓昆,2009)。至新元古代末(800 Ma),晋宁运动导致鄂尔多斯地区整体上升成陆,造成长期的沉积间断。震旦纪鄂尔多斯古陆范围进一步扩大,只有西南缘沉积了大陆边缘冰川相冰碛角砾岩与冰水页岩。

  • 鄂尔多斯盆地中—新元古代经历了4期大的构造沉积变革,形成了长城系、蓟县系及震旦系3套巨厚的以裂陷槽为代表的早期盖层沉积体系(图1c、d)。长城系经历了由结晶基底向沉积盖层的构造变革,岩性主要为石英岩和石英砂岩。蓟县系受渣尔泰运动和地壳抬升的影响,只在地块边缘沉积,发育了厚层硅质结核/硅质条带白云岩、叠层石白云岩、纹层状白云岩、泥粉晶白云岩,垂向上相互叠置发育。由于蓟县纪末的地壳上升导致西缘缺失青白口系,蓟县系平行不整合伏于震旦系或寒武系之下。研究区内蓟县系至下而上发育龙家园组、巡检司组、杜关组和冯家湾组,其中王家坡岐山剖面龙家园组总厚度达300 m以上。

  • 2 样品与分析方法

  • 本研究通过野外和岩芯观察,对蓟县系硅质白云岩255件样品进行了光学显微镜薄片(或矿物)鉴定和地球化学分析。野外样品采集自岐山王家坡剖面(WJP;34°28′57.99″N,107°39′25.06″E),洛南石坡剖面(SP;34°3′52.58″N,110°35′35.47″E),岩芯样品取自中国石油长庆油田西安和庆阳岩芯库。本研究制备了255个厚度近100 μm、长3.5 cm的薄片用于岩相观测。岩石薄片观察与分析在北京大学造山带与地壳演化重点实验室进行,使用日本Nikon公司Nikon ECLIPSE LV100N POL偏光显微镜、Nikon Di-Ri1显微摄像头和NIS-Elements F4.3.00软件系统。地球化学分析样品粉末的制备均使用玛瑙研钵研磨,并用200目筛子进行筛选。主量元素分析在廊坊市中铁资源集团勘察设计有限公司实验室完成,使用波长色散X荧光光谱仪完成,仪器型号为ARL AdvantXP+,误差小于0.5%。微量元素(含稀土元素)在北京大学造山带与地壳演化重点实验室进行了分析,首先用0.5 mL浓HNO3溶解并干燥50 mg样品粉末,将干燥的样品溶解在5 mL浓度为1.42 g/mL的HNO3中,并加热3 h(在130°C下),再加入超纯H2O将加热的溶液稀释至60 mL后上机测试。微量元素含量采用电感耦合等离子体质谱仪(ICP-MS,Agilent 7500,美国)测定,并使用归一化到太古宙后澳大利亚页岩(PAAS;McLennan,1989)的元素浓度来计算稀土元素的异常。Eu和Ce的异常由以下公式计算:Ce/Ce*=CeSN/(0.5LaSN+0.5PrSN)和Eu/Eu*=EuSN/(0.67SmSN+0.33TbSN)。

  • 3 结果

  • 3.1 白云岩中硅质相态特征

  • 蓟县系中各种形态的硅质是由SiO2组成的各种硅质矿物的集合体(图2)。镜下常见构成硅质的二氧化硅主要矿物种类有玉髓和石英两种,根据其岩相和纹理特征可划分为5种硅质相态:隐/微晶石英(qtz-mc)、玉髓覆盖层(qtz-c1)、球状玉髓(qtz-c2)、镶嵌/早期细—粗晶石英(qtz-I)、镶嵌/晚期细—粗晶石英(qtz-II)。

  • 隐/微晶石英(qtz-mc):隐/微晶石英取代了形成硅化带的前驱体白云石,完全由等粒隐晶石英(>99%)组成(图2a)。通常以结核状和条带状的形式出现(图2b),有时含有残余白云石斑块(图2c)。条带状的隐/微晶石英其晶粒大小一般<5~10 μm(图2d),主要为半自形晶结构,这些石英晶粒具有不规则的锯齿状边界和统一的消光。在薄片尺度观察到的这些硅质中,裂缝、溶蚀孔的最大尺寸0.1 mm的海绵状空隙也不是很常见(根据Choquette and Pray,1970年的定义,归类为<1/16 mm范围内的微孔),在手样本上也观察不到明显的孔隙。

  • 图1 鄂尔多斯盆地中元古界蓟县系的古地理、构造和地层背景图(据张静和张宝民,2022;Pesonen et al.,2020)

  • Fig.1 The paleogeography, tectonic and stratigraphic background of the Mesoproterozoic Jixian System in the Ordos basin (modified from Zhang Jing and Zhang Baomin, 2009; Pesonen et al., 2020)

  • (a)—中元古代中期(1.5 Ga)Columbia超大陆格局及推测华北克拉通位置图(Columbia超大陆格局引自Pesonen et al.,2020):L—Laurentia, B—Baltica,I—India,A—Amazonia,C—Congo,SF—São Francisco,S—Siberia,NC—North China,NA—North Australia,M+G—Mawson+ Gawler,WA—West Africa,K—Kalahari;(b)—华北克拉通中—新元古代古构造简图(据赵文智等,2018);(c)—鄂尔多斯盆地前寒武纪地层出露范围(据张静等,2022);(d)—华北克拉通蓟县系地层格架(据潘星,2021

  • (a) —middle Mesoproterozoic (1.5 Ga) Columbia supercontinent pattern and speculated location map of North China craton (Columbia supercontinent pattern modified from Pesonen et al., 2020) ; (b) —Meso-Neoproterozoic paleostructure diagram of North China craton (after Zhao Wenzhi et al., 2018) ; (c) —the exposed range of Precambrian strata in Ordos basin (after Zhang Jing et al., 2022) ; (d) —stratigraphic framework of Jixian System in North China craton (after Pan Xing et al., 2021)

  • 图2 鄂尔多斯盆地中元古界蓟县系白云岩中硅质微观特征

  • Fig.2 Microscopic silica features in the dolostone of the Mesoproterozoic Jixian System in the Ordos basin

  • (a)—结核状/团块状硅质,隐/微晶石英取代原来的白云石,岐山王家坡剖面(WJP),正交偏光;(b)—层纹状/条带状硅质,隐/微晶石英和白云石组成明暗纹层,WJP,正交偏光;(c)—结核状/团块状硅质,隐/微晶石英中残余白云石斑块,镇探1井,正交偏光;(d)—微晶硅质颗粒集合体,WJP,SEM;(e)—结核状/团块状硅质,具有扇状纹理的玉髓/镶嵌石英,镇探1井,正交偏光;(f)—结核状/团块状硅质,溶孔中充填的二氧化硅矿物序列,镇探1井,正交偏光;(g)—纤维状硅质集合体,WJP,SEM;(h)—结核状/团块状硅质,微晶石英和纤维玉髓组成明暗纹层,暗纹层含藻类化石,有机质丰富,镇探1井,正交偏光;(i)—结核状/团块状硅质,残余白云石部分被二氧化硅取代,由玉髓/镶嵌石英、早期细—粗晶石英、晚期细—粗晶石英组成的序列填充溶孔,镇探1井,正交偏光;(j)—弥散状硅质,硅质充填在鲕粒之间,镇探1井,4822.6 m,正交偏光;(k)—图2j区域阴极发光特征,硅质不发光,镇探1井,4822.6 m,阴极发光;(l)—条带状硅质,宁探1井,3925.5 m,SEM;(m)—图2l区域Mg元素分布图;(n)—图2l区域Si元素分布图;(o)—图2l区域Ca元素分布图;qtz-mc—隐-微晶石英;qtz-c1—玉髓覆盖层;qtz-c2—球状玉髓;qtz-I—镶嵌/早期细—粗晶石英;qtz-II—镶嵌/晚期细—粗晶石英

  • (a) —nodular/agglomerated silica, cryptocrystalline/microcrystalline quartz replaces the original dolomite and forms siliceous nodules, section Wangjiapo (WJP) , crossed polarized light; (b) —layered and banded silica, cryptocrystalline/microcrystalline quartz and dolomite constitute distinct light and dark layers, macroscopically appearing as siliceous bands, WJP, crossed polarized light; (c) —nodular/agglomerated silica, residual dolomite plaques in cryptocrystalline/microcrystalline quartz, well ZT1, crossed polarized light; (d) —aggregates of microcrystalline siliceous particles, WJP, SEM; (e) —nodular/agglomerated silica, fan-shaped texture of chalcedony/mosaic quartz, well ZT1, crossed polarized light; (f) —nodular/agglomerated silica, the sequence of silica minerals filled in the dissolved pores, well ZT1, crossed polarized light; (g) —fibrous siliceous aggregates, WJP, SEM; (h) —nodular/agglomerated silica, hicrocrystalline quartz and fiber chalcedony are composed of light and dark laminae, which contain algae fossils and rich in organic matter, well ZT1, crossed polarized light; (i) —nodular/agglomerated silica, the residual dolomite is partially replaced by silica, and the sequence composed of chalcedony/mosaic quartz, early fine-coarse quartz, and late fine-coarse quartz fills the dissolved pores, well ZT1, crossed polarized light; (j) —distributed silica, oolitic siliceous dolostone, well ZT1, 4822.6 m, crossed polarized light; (k) —cathodoluminescence characteristics of Fig.2j, silicious is nonluminescence, well ZT1, 4822.6 m, cathodoluminescence; (l) —landed silica, microcrystalline siliceous, well NT1, 3925.5 m, SEM; (m) —Mg elemental distribution in Fig.2l, SEM; (n) —Si elemental distribution in Fig.2l, SEM; (o) —Ca elemental distribution in Fig.2l, SEM; qtz-mc—cryptocrystalline-microcrystalline quartz; qtz-c1—chalcedony overlay; qtz-c2—spherically chalcedony; qtz-I—mosaic/early-stage fine-coarse quartz; qtz-II—mosaic/late-stage fine-coarse quartz

  • 玉髓覆盖层(qtz-c1)和球状玉髓(qtz-c2):镜下一般为无色或深浅不一的棕色,可见微细的石英单体呈纤维状,其延伸方向垂直于层面或自由面,这些纤维状单体平行或近于平行排列成板状或近球状的集合体(图2e~i)。通常在硅化粒屑周围形成边缘,或者可能发育在沉积物中的初级或次级空隙中,连续的玉髓覆盖层表现为棕色色带。覆盖层的厚度可能从100~2000 μm不等,通常较厚的玉髓覆盖层会显示出胶体的特征。玉髓覆盖层呈纤维状,“纤维”的消光方向大致垂直于覆盖层的方向(图2e)。球状玉髓单个聚集体的大小从50~500 μm不等,“纤维”仅从一个中心辐射开来,具有纤维状消光、十字消光、放射状消光(图2f)。玉髓覆盖层通常与镶嵌石英、球状玉髓相伴生长。在扫描电镜下均呈小于1 μm的粒状集合体(图2g),因而常呈细小粒状、纤维状及放射球粒状的特征。玉髓石英通常以平行或球形方式排列,组成扇形或横向连续成皮亮状(图2h)。多填充硅质结核中的裂缝和溶孔中,并在硅质和白云岩过渡带中填充了细—粗晶石英(图2i)。

  • 镶嵌/早期细—粗晶石英(qtz-I):由具有混浊核心和胶状羽状结构的细—粗晶石英晶体组成(图2h、i)。这种纹理通常出现在早期细—粗晶石英晶体的内部区域,一般呈球状镶嵌,粒径在10~50 μm之间,表面浑浊。常与玉髓覆盖层衔接生长一起充填于孔洞中,晶粒尺寸从边缘到胶结物中心逐渐增加,在阴极发光下常常表现为不发光(图2j、k),具有统一的消光,当胶结物与各种玉髓融合在一起时,会发生不规则消光,有时可见比较细长的颗粒,通常在横向上可逐渐过渡为玉髓覆盖层—隐/微晶石英。有时,镶嵌石英存在于较大石英晶体的核心中(图2i)。玉髓、镶嵌石英和细—粗晶石英之间的过渡通常是渐变和弥散的(图2i),通过扫描电镜观察,玉髓、镶嵌石英和细—粗晶石英的Mg、Si、Ca元素无明显变化,且最外层的玉髓与白云岩界线清晰(图2l~o)。在蓟县系中它是组成硅质条带、团块或结核的主要成分,是二氧化硅充填交代白云石的主要矿物形式,岩石中微晶玉髓部位里常有交代残留的白云石。

  • 镶嵌/晚期细—粗晶石英(qtz-II)代表共生序列中结晶的最后一幕(图2h、i)。主要呈块状大的晶体(0.2~5 mm),是硅质的主要矿物,通常无色,可能包含流体包裹体。常因包裹有杂质而呈现不同的颜色,如浅褐色、绿色等。粒状晶粒,晶粒大小在50~1000 μm之间。

  • 3.2 白云岩中硅质赋存状态

  • 根据白云岩中的硅质在野外展现出不同的特征,可分为层纹状/条带状(图3a~i)、结核状/团块状(图3j~l)和弥散状硅质(图3m~o)。

  • 层纹状硅质层厚约几毫米至几十毫米,岩芯呈灰黑色,常出现软沉积变形的特征。白云岩内常发育叠层石(图3a~c)、泥质白云岩含同沉积硅质形成水平纹层以及波状纹层和锥状纹层等(图3d~f)。条带状硅质颜色在白色/浅灰色和深灰色之间变化,使硅质呈现出乳白色到斑驳的外观(图3g~i)。该条带状硅质层厚约几毫米至几十毫米,表现为浅灰色和深灰色至黑色,两种颜色交替出现,新鲜切面的浅色硅质呈半透明状,条带状硅质层反映了其平行至波状层理,相邻层通常具有相同的厚度。硅质层与上下层的接触是不规则到波浪状,两种岩石性质差别较大,硅质的沉积厚度小,横向延伸远。在蓟县系龙家园组中硅质叠层石白云岩可占80%,其中的暗色层富含泥及有机质(碳质、沥青质)。

  • 结核状硅质在野外常表现为白色、灰色、黄褐色至黑色(图3j),其特征是在浅灰色和黄褐色层之间具有明显的小规模颜色分层,浅色层通常呈现半透明的特征,而黄褐色层则表现出颗粒状杂质,结核直径约为5~50 cm(图3j)。结核状硅质与层纹状硅质不同,部分岩石可不同程度地表现出玛瑙条纹构造;硅质结核多分布于同一层面上,由于数量不够而不能连成层。团块状硅质(图3k、l)多为白色、灰色、黄褐色至黑色,形状多样、大小不一,主要分布于泥质白云岩及泥—粉晶白云岩中。

  • 弥散状硅质主要分布于厚层白云岩中,在蓟县系沉积单元的中部白云岩呈弥散状分布(图3m~o)。硅质和白云岩交替出现,边界模糊,表明沉积后期交代作用占据主要地位。

  • 3.3 白云岩中硅质分布特征

  • 中、新元古界普遍见有硅质,如蓟县系中可见到各种形态的硅质,其不同组段硅质发育程度不同,产于各种类型的白云岩,其成分含量不易估计。这些硅质新鲜面的颜色为浅白色、灰白色和黑色等,大多数为顺层产出,也有呈杂乱状分布的硅质,其产状、分布和形态都受周围白云岩的结构和构造特征所控制。鄂尔多斯盆地西南缘陕西岐山王家坡剖面蓟县系沉积了一组浅海潮坪相沉积物,主要出露地层为龙家园组,以微生物白云岩和硅质白云岩发育为主要特征(图4)。通过野外露头观察,查清了蓟县系硅质的分布特征(一级旋回和二级旋回时间尺度分别约为200 Ma、50 Ma),从下至上可以分为3个段:

  • 图3 鄂尔多斯盆地周缘中元古界蓟县系白云岩中硅质产出特征

  • Fig.3 Silica existence characteristics in the dolostone of the Mesoproterozoic Jixian System in the Ordos basin

  • (a)—平整连续层纹状硅质,洛南石坡剖面(SP);(b)—断续层纹状硅质,SP;(c)—锥状层纹硅质,SP;(d)—平整连续层纹状硅质,宁探1井,3952.50 m;(e)—平整连续层纹状硅质,镇探1井,4509.47 m;(f)—锥状层纹硅质,镇探1井,4515.85 m;(g)—长条带状硅质,岐山王家坡剖面(WJP);(h)—短条带状硅质,WJP;(i)—具纹层的条带状硅质,WJP;(j)—结核状硅质,WJP;(k)—团块状硅质,WJP;(l)—团块状硅质,旬探1井,4403.10 m;(m)—弥散状硅质,WJP;(n)—弥散状硅质,镇探1井,4824.60 m;(o)—弥散状硅质,银探1井,2506.30 m

  • (a) —smooth continuous layered silica, section Shipo (SP) ; (b) —intermittent layered silica, SP; (c) —conical layered silica, SP; (d) —smooth continuous layered silica, well NT1, 3952.50 m; (e) —smooth continuous layered silica, well ZT1, 4509.47 m; (f) —conical layered silica, well ZT1, 4515.85 m; (g) —long banded silica, section Wangjiapo (WJP) ; (h) —short banded silica, WJP; (i) —nodular silica with laminae, WJP; (j) —nodular silica, WJP; (k) —agglomerated silica, WJP; (l) —agglomerated silica, well XT1, 4403.10 m; (m) —dispersed silica, WJP; (n) —dispersed silica, well ZT1, 4824.60 m; (o) —dispersed silica, well YT1, 2506.30 m

  • 下段:蓟县系下段硅质为浅灰、灰白色,呈层纹状/条带状和结核状/团块状分布于白云岩中,由底至顶层纹状/条带状硅质含量增多,呈变厚的趋势。

  • 中段:硅质为浅灰、青灰色,一类呈细脉状分布于白云岩中,细脉较薄且延伸不远,另一类呈结核状产出;结核状硅质呈现出边缘为黄褐色,中心为青灰色的颜色分带,往上硅质颜色过渡为深灰色,与白云岩呈互层状渐变过渡产出,通常认为颜色较深的硅质与正常海水沉积有关。中部为浅灰色团块状硅质,层纹状/条带状硅质在叠层石格架中产出。顶部出现深灰色硅质分布在白云岩中,表现出软沉积构造特征,表明在水-沉积物界面处或附近发生了沉积。

  • 图4 鄂尔多斯盆地陕西岐山蓟县系龙家园组地层沉积柱状图

  • Fig.4 Stratigraphic and sedimentary column of the Jixian System Longjiayuan Formation in Qishan, Shaanxi, Ordos basin

  • 上段:灰白色条带状硅质通常在叠层石格架中生成。厚度从1~2 cm逐渐增加到2~4 cm,然后过渡为深灰色细脉条带状硅质,再向上过渡为黄色条带状硅质,厚度约0.5~2 cm。中部有灰白色厚层层纹状/条带状硅质、黄褐色结核状/团块状硅质。顶部有灰白色结核状/团块状硅质,断续条带状硅质,以及黄褐色团块状硅质。

  • 总体来说,出露层段的白云岩以中厚层至薄层的旋回层序不断叠置。白云岩中夹杂多种产状硅质,硅质相态的分布与其产出的层段有相对较弱的相关性,与其赋存围岩的岩性无明显相关性,与沉积相和沉积旋回没有明显的相关性。

  • 3.4 白云岩和白云岩中硅质地球化学特征

  • 地球化学数据表明,白云岩中硅质的SiO2含量介于73.20%~88.48%之间,平均值为82.02%(表1)。Al2O3含量范围为0.20%~1.97%(平均值=0.44%)。Al/(Al+Fe+Mn)值在0.55~0.92之间变化(平均值=0.77),Si/(Si+Fe+Al)值在0.97~0.98之间变化(平均值=0.97),Mn/Ti值从0.13~8.83不等(平均值=2.85)。总稀土元素(∑REE)含量范围为0.007×10-6~0.675×10-6(平均值=0.260×10-6),Ce异常值介于0.32~1.11(平均值=0.85),Eu异常值介于0.79~1.14(平均值=1.02),LaN/CeN值范围为0.87~3.37(均值=1.23),LaN/YbN值范围为0.48~1.59(均值=0.90),Y/Ho值范围为1.58~9.31(均值=4.22)。

  • 表1 鄂尔多斯盆地中元古界蓟县系硅质和白云岩地球化学资料

  • Table1 Geochemical data of siliceous rocks and dolostone from the Mesoproterozoic Jixian System in the Ordos basin

  • 4 讨论

  • 4.1 二氧化硅的来源

  • 二氧化硅的来源、沉积环境和形成机制是硅质岩研究中感兴趣的3个基本领域(Murchey and Jones,1992Murray,1994)。海水来源硅质(Kametaka et al.,2005)、地球深部热液来源硅质(Shen Bing et al.,2018)、上升洋流来源硅质及陆源输入来源硅质(Siever,1957Knauth,1992)被认为是硅质最常见的来源。前寒武纪硅质主要是由无定型二氧化硅发生无机沉淀形成(Simonson,19852010)。前人研究表明Al含量随硅质碎屑输入多少而变化(Boström et al.,1973)。Al/(Al+Fe+Mn)值>0.6表示正常海水来源,<0.01表示热液来源(Yamamoto,1987)。在本研究中,来自鄂尔多斯盆地南部陕西岐山王家坡剖面的所有硅质样品的Al/(Al+Fe+Mn)值均>0.6,表明二氧化硅为正常海水来源。

  • 为了进一步判断陆源碎屑对主量元素含量的贡献,笔者采用相关系数判断两者亲缘性。图5显示SiO2与CaO、MgO、LOI(烧失量)呈显著的负相关,相关系数(R)绝对值大于0.9,主要是由于海洋pH值的变化影响了硅质岩和白云岩的沉淀。Al2O3、K2O和TiO2之间呈弱相关,表明硅质的形成受陆源物质影响微弱。MnO和Fe2O3呈弱相关,不具备典型热水成因硅质的特征。

  • 图5 鄂尔多斯盆地中元古界蓟县系所有硅质样品部分元素相关系数

  • Fig.5 The correlation coefficients of some elements of all siliceous rock samples from the Mesoproterozoic Jixian System in the Ordos basin

  • 硅质的Eu*(Eu异常)在0.79~1.04之间变化(平均值=1.02),表明蓟县系硅质在形成过程中未受热液活动的影响(Murray et al.,1991;van den Boorn et al.,2001)。一般而言,Al和Ti在海水中的溶解度很低,在成岩过程中不易移动,而陆源碎屑则含有大量的Al和Ti。因此,Al和Ti通常代表陆源来源(Tribovillard et al.,2006),其含量的多少主要取决于在沉积过程中陆源物质供给的程度,其中含有高浓度Al2O3和TiO2的岩石表明它们受到碎屑输入的强烈影响(Aitchison et al.,1990)。蓟县系硅质的Al2O3含量(平均值=0.75%)远低于PAAS(Post Archean Australia Shales)标准的18.09%(Taylor et al.,1985),表明陆源物质的加入量较少,主要是由海水来源硅质形成的。但是在王家坡剖面和镇探1井有个别样品Al2O3值约为1.97%,说明鄂尔多斯盆地蓟县系硅质可能受到陆源碎屑输入的影响,导致矿物成分发生进一步变化,如碎屑石英、黏土等富集。根据Al/(Al+Fe+Mn)、Al-Fe-Mn、Si/(Si+Fe+Al)数据和Eu异常,表明硅质主要是正常海水来源,部分地区存在陆源碎屑输入,前人研究表明热液作用也起到了一定的影响(屈红军等,2021)(图6)。

  • 4.2 二氧化硅形成环境分析

  • 硅质的REE成分可以指示形成环境(Murray et al.,1990),例如,Ce异常可用于识别与陆地沉积物输入的相对距离。硅质在稀土元素构成上更接近显生宙海水和元古宙海洋白云岩(图7),说明硅化流体和海洋中的生物化学作用关系密切。蓟县系硅质的Ce异常为0.32~1.11(均值=0.85),LaN/CeN值接近1(见表1),表明该硅质形成于大陆边缘与洋盆之间(Murray et al.,199019911994)。此外,LaN/CeN为0.81~3.37(均值=1.23)也表明,硅质形成于大陆边缘环境。

  • 图6 鄂尔多斯盆地中元古界蓟县系硅质来源判别图解(底图引自Adachi,1986屈红军等,2021

  • Fig.6 Diagram for silica source discrimination of the Mesoproterozoic Jixian System in the Ordos basin (base map referenced from Adachi, 1986; Qu Hongjun et al., 2021

  • 图7 鄂尔多斯盆地中元古界蓟县系白云岩(a)和硅质(b)的PAAS标准化REE模式 (标准化数据据 McLennan,1989;屈红军等,2021

  • Fig.7 REE pattern of analyzed samples normalized to PAAS of dolostone (a) and silica (b) from the Mesoproterozoic Jixian System in the Ordos basin (normalization data is from McLennan, 1989; Qu Hongjun et al., 2021)

  • Fe2O3/TiO2-Al2O3/(Al2O3+Fe2O3)判别图解可以指示形成环境,冀北赤城雾迷山组硅质样品均落在洋中脊附近硅质岩区(郑秀才,2011),而形成在具有显著陆源输入的大陆边缘环境中的硅质Al2O3/(Al2O3+Fe2O3)值通常>0.50和Fe2O3/TiO2值<50。综上所述,我们认为鄂尔多斯盆地蓟县系碳酸盐岩中硅质主要形成于大陆边缘(图8),大陆边缘地区常常受到板块构造活动的影响,使Al2O3/(Al2O3+Fe2O3)值略有升高。

  • 前人研究表明,在中—新元古代地层中,早期硅质的形成主要局限于潮间带环境中(Maliva et al.,2012)。早期成岩的硅质通常以层纹状/条带状或结核状/团块状的形式出现在具有类似沉积结构的碳酸盐岩地层中。鄂尔多斯盆地蓟县系主要为潮坪沉积(冯娟萍等,2021),可以推断,在蓟县系龙家园期和巡检司期富含Mg2+和Ca2+的海水中同时具有一定量的SiO2赵澄林,1997),伴随陆源硅质的输入,当碳酸盐通过无机或有机化学作用沉淀之后,SiO2的浓度相对增大,这时便有利于SiO2沉淀并交代白云石矿物(图9)。

  • 图8 鄂尔多斯盆地中元古界蓟县系硅质Al2O3/(Al2O3+Fe2O3)-Fe2O3/TiO2判别图解 (底图据 Murray,1994郑秀才,2011

  • Fig.8 Discrimination diagram for Al2O3/ (Al2O3+Fe2O3) -Fe2O3/TiO2 ratios in silica of the Mesoproterozoic Jixian System in the Ordos Basin (base maps from Murray, 1994; Zheng Xiucai, 2011)

  • 4.3 白云岩中硅质成因模式

  • 4.3.1 二氧化硅无机沉淀

  • 硅的沉积方式主要分为有机沉积和无机沉积,前者是生物吸收海洋中溶解硅转化为生物硅,生物死亡后生物硅直接沉积到海水—沉积物界面;后者指二氧化硅由于饱和直接从水体中沉积下来,Fe2+、Mg2+、蓝细菌表面的胞外聚合物等可以在无机沉淀中起促进/催化作用(Yee et al.,2003Peng Xiaotong et al.,2007)。除此之外,现代研究表明菌藻类表面暴露的有机官能团可以与硅酸形成氢键,诱导二氧化硅沉淀(Westall et al.,1995)。pH、温度或液体体积(通过蒸发)的急剧下降将导致溶液中的二氧化硅突然变得过饱和(Williams et al.,1985)。同时,前人研究表明无定形二氧化硅也可以从相对于A型蛋白石(opal-A)过饱和的溶液中以非生物方式沉积,不饱和溶液中的二氧化硅与Zn、Al、Fe、Mn和Mg的氢氧化物共同沉淀(图10)。

  • 图9 鄂尔多斯盆地中元古界蓟县系硅质来源地质模型

  • Fig.9 Geological model of silica sources in the Mesoproterozoic Jixian System in the Ordos basin

  • 图10 海水中二氧化硅无机沉淀模式(据Williams et al.,1985修改)(MOH代表Zn、Al、Fe、Mn和Mg的氢氧化物)

  • Fig.10 Inorganic precipitation model of silica in seawater (modified from Williams et al., 1985) (MOH represented Zn, Al, Fe, Mn and Mg hydroxides)

  • 在蓟县纪时期,大多硅质沉积以浅海碳酸盐岩中的条带或结核形式产出(图11:(a)→(b)→(c)),在浅埋藏期地层压力使部分硅质发生塑性形变,进而形成了断续层状硅质(图11:(d)→(e)→(f))。说明整体海洋还没有达到二氧化硅饱和,只在浅水由于蒸发作用造成局部饱和。

  • 4.3.2 二氧化硅充填孔隙以及交代白云岩

  • 在二氧化硅交代白云岩的过程中,二氧化硅以相同体积取代白云岩,交代成因的硅质呈微晶或隐晶质(<10 μm)。常见溶解的二氧化硅充填孔隙的充填型,这是交代型的伴生形式。在硅质充填过程中,白云岩被溶蚀而产生大小不等、沿层理方向发育的孔洞,有两种不同的表现形式,一种是呈现出放射状、球状具有波状消光的玉髓形成一个闭合的环带(图2e);另一种是呈现出圆环状,从外环向内环石英颗粒逐渐增大,中间有结晶较好的细—粗晶石英(图2h、i)。这两种形式可同时存在,由交代到充填是硅化作用由弱到强、由简单到复杂的过程。

  • 各种类型的白云岩均可发生不同程度的硅化,从泥晶、细粉晶到重结晶形成的各级晶粒,从叠层石白云岩到内碎屑白云岩、球团粒白云岩均可发生硅质交代白云岩的作用。通过扫描电镜观察(图2l~o),白云石的重结晶对周围的Mg、Ca等元素的分布没有影响。SiO2的交代具有明显的选择性,一般总是优先交代富含有机质的部分,如叠层石白云岩从叠层石的泥晶纹层(基本层)开始交代,层状、波状、柱状叠层石中的硅化作用往往沿其基本纹层方向进行(图2b),然而有时这种选择性并不固定,选择性交代的原因可能如下:① 有机质的分解可造成周围弱酸性微环境,有利于硅质的沉淀和交代;② 多孔隙、渗透好的部位由于孔隙流体交换速率快而有利于硅化的进行(图11:(g)→(h)→(i))。

  • 4.3.3 海水中微生物诱导发生硅化

  • 中元古代蓟县纪时期,华北地块地处低纬度热带气候区(Pesonen et al.,2021)。这种环境的特点是气候炎热,有利于微生物的繁殖生长。此外,由于其古地理位置,沉积时期以强烈的上升流为特征。上升流会向地表带来丰富的营养物质,例如Si、Mo、Ni、Cu、Zn和P。富含营养和富含硅的海水有利于硅质沉积,并可能通过冷热水混合或微生物积累加速硅沉淀(Kametaka et al.,2005)。

  • 前人研究表明,只有在微生物死亡后10~12天发生硅化作用,微生物才能被保存下来(Jones et al.,2005)。总体来说,二氧化硅和碳酸盐岩同时沉淀,通过微生物垫层分层,白云石在微生物席的缺氧部分形成,而二氧化硅在含氧光合生物蓝细菌周围进行沉淀(图12)。异养型细菌会不断降解蓝细菌有机物,且旱季期间的蒸发会浓缩SiO2、Mg2+和其他阳离子,并促进二氧化硅在由蓝细菌主导的微生物席沉淀。同时,由于在开阔潮坪中不可预测的沉积作用事件,可能会影响被埋藏的微生物席之间所沉淀或形成的矿物层厚度的变化(梅冥相,2014)。从而形成蓟县系厚层条带状的硅质和层纹状的硅质。

  • 4.4 硅质白云岩的致密化机制

  • 在华北板块中元古界和新元古界白云岩中,可见各种规模的硅化。观察到鄂尔多斯盆地蓟县系硅化具有明显的选择性特征,且具有三段式的旋回性(图13)。上段:旋回的顶部发育厚层的条带状硅质(图13a),质脆易发生破裂,且薄片中可见干裂缝(图13b)。中部硅质叠层石最为发育,是硅质交代发育的主要层段,硅化作用最为强烈。交代作用发生的过程较为缓慢,是上升流和海水在逐渐渗透下去的过程中在微观结构中发生了交代作用,所有相态类型的硅质在此段均有发育。下部硅质充填较为发育,硅质充填的区域本身就发育有较大的孔隙,硅质流体能够比较快速渗透下来,在逐渐冷却的过程中在格架孔或溶孔中发生硅质充填作用(图13c、d)。中段:以叠层石白云岩为主,与内碎屑、鲕粒、凝块白云岩交替出现(图13e)。下段:可见碎屑沉积物和白云岩混积,内碎屑大部分发生硅化,被泥晶、叠层石、凝块白云岩覆盖(图13f、g)。

  • 图11 鄂尔多斯盆地中元古界蓟县系硅质形成机制

  • Fig.11 Formation mechanism of silica in the Mesoproterozoic Jixian System in the Ordos basin

  • (a)→(b)→(c):硅质在同沉积期接受沉淀,最后接受埋藏压实,从而形成层状纹/条带状硅质;(d)→(e)→(f):浅埋藏期地层压力使部分硅质发生塑性形变,进而形成了团块状/透镜状硅质;(g)→(h)→(i):沉积后准同生阶段,硅质过饱和流体在铸模孔、格架孔内形成镶嵌状晶粒石英和和玉髓

  • (a) → (b) → (c) : silica accepts precipitation in the syndepositional period, and accepts burial compaction, thus forming layered/banded silica; (d) → (e) → (f) : during the shallow burial period, the formation pressure caused plastic deformation of some silica, thus forming agglomerated/alenticular silica; (g) → (h) → (i) : in the quasi-contemporaneous stage after deposition, the siliceous supersaturated fluid forms mosaic grain quartz and chalcedony in the mold hole and lattice hole

  • 图12 微生物诱导硅化成因模式(据Moore et al.,2022修改)

  • Fig.12 Microbially-induced silicification genesis model (modified from Moore et al., 2022)

  • 图13 鄂尔多斯盆地中元古界蓟县系白云岩中硅化旋回序列(据Kuznetsov and Skobeleva,2005修改)

  • Fig.13 Silicification cyclical sequences in the dolostone of the Mesoproterozoic Jixian System in the Ordos basin (modified from Kuznetsov and Skobeleva, 2005

  • (a)—条带状硅质,旬探1井,4403.00 m;(b)—条带状硅质,旬探1井,4403.00 m;(c)—结核状硅质,镇探1井,4763.37m;(d)—硅质充填,镇探1井,4763.37 m;(e)—混积岩,镇探1井,4763.58 m;(f)—混积岩,镇探1井,4763.58 m;(g)—混积岩,镇探1井,4763.58 m;(h)—硅化旋回序列

  • (a) —banded silica, well XT1, 4403.00 m; (b) —banded silica, well XT1, 4403.00 m; (c) —nodular silica, well ZT1, 4763.37 m; (d) —silica filling,well ZT1, 4763.37 m; (e) —mixed rock,well ZT1, 4763.58 m; (f) —mixed rock,well ZT1, 4763.58 m; (g) — mixed rock,well ZT1, 4763.58 m; (h) —silicification cycle sequence

  • 同时,蓟县系白云岩化发生在准同生—浅埋藏阶段,开放或者半开放成岩体系中。在开放体系下,外来CO32-加入交代反应,无Ca2+的输出,白云岩化作用并不产生孔隙。硅化作用和白云岩成岩作用之间的相对时间表明,几乎所有理论上可能的沉积序列都会发生硅化作用。因此,碳酸盐宿主沉积物的硅化作用可能发生在早、中或晚成岩作用期间,甚至发生在重结晶作用期间(Hesse,1989)。硅化作用形成的含硅质岩类致密坚硬,孔隙稀少,硅质交代及充填作用使得硅质白云岩中的孔隙有所降低,不利于储层的发育。

  • 5 结论

  • 鄂尔多斯盆地岐山蓟县系碳酸盐岩层系中发育较多的硅质,根据硅质白云岩中的SiO2在野外展现出不同的特征,可分为层纹状/条带状、结核状/团块状和弥散状硅质。在镜下常表现为隐/微晶石英、玉髓覆盖层、球状玉髓、镶嵌/早期细—粗晶石英、镶嵌/晚期细—粗晶石英。

  • 蓟县系中的大部分硅化发生在压实作用开始之后,但在白云岩化的主要阶段之前。蓟县系硅质可能具有CT型蛋白石(opal-CT)前体,其形成方式与显生宙硅质相同。微生物对于蓟县系硅质的形成具有重要的作用,它既为硅质的形成提供有利的沉积环境,同时还为层纹状硅质的形成提供原始骨架。不同产状硅质微观结构的相似性证明硅化过程在很大程度上受控于成岩作用过程中的主体碳酸盐岩成分和溶解的二氧化硅浓度,而与二氧化硅的来源无关。

  • 鄂尔多斯盆地蓟县系硅质白云岩主要形成于潮坪环境中,二氧化硅的来源以正常海水成因为主,并受碎屑输入、上升洋流的辅助影响。蓟县系硅质白云岩的沉积包括:海水中SiO2的直接沉淀、二氧化硅对孔隙的充填以及对碳酸盐岩的交代作用、海水中微生物引起的硅化作用。

  • 参考文献

    • Adachi M, Yamamoto K, Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1-2): 125~148.

    • Aitchison J C, Flood P G. 1990. Geochemical constraints on the depositional setting of Palaeozoic cherts from the New England orogen, NSW, eastern Australia. Marine Geology, 94(1): 79~95.

    • Boström K, Kraemer T, Gartner S. 1973. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chemical Geology, 11(2): 123~148.

    • Chen Youzhi, Fu Xiaofei, Xiao Ancheng, Yu Long, Tang Yong, Mao Liguang. 2016. Type and evolution of carbonate platforms in Jixian Period Mesoproterozoic: Southwestern margin of Ordos basin. Journal of Petroleum Exploration and Production Technology, 6(4): 555~568.

    • Choquette P W, Pray L C. 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54(2): 207~250.

    • Deng Kun, Hang Shaonan, Zhou Lifa, Liu Zhe, Li Wenhou. 2009. Depositional environment and hydrocarbon-generating potential of the Mesoproterozoic Jixian System in the southwest margin of Ordos basin. Natural Gas Industry, 29(3): 21~24 (in Chinese with English abstract).

    • Ding Tongping, Gao Jianfeng, Tian Shuhua, Fan Chunfang, Zhao Yan, Wan Dafang, Zhou Jianxing. 2017. The δ30Si peak value discovered in middle Proterozoic chert and its implication for environmental variations in the ancient ocean. Scientific Reports, 7: 1~15.

    • Feng Juanping, Ouyang Zhengjian, Li Wenhou. 2021. Study on sedimentary characteristics of the Meso-Proterozoic Jixianian System in Ordos area. Journal of Northwest University (Natural Science Edition), 51(2): 325~332 (in Chinese with English abstract).

    • Gunnarsson I, Arnórsson S. 2000. Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0℃ to 350℃ at Psat. Geochimica et Cosmochimica Acta, 64(13): 2295~2307.

    • Guo Hua, Du Yuansheng, Kah L C, Huang Junhua, Hu Chaoyong, Huang Hu, Yu Wenchao. 2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution. Precambrian Research, 224: 169~183.

    • Hesse R. 1989. Silica diagenesis: origin of inorganic and replacement cherts. Earth-Science Reviews, 26(1-3): 253~284.

    • Hunter D R. 1981. Arcrean greenstone belts. In: Condie K C, ed. Developments in Precambrian Geology, 3. New York: Elsevier Scientific Publishing Company.

    • Jones B, Renaut R W, Konhauser K O. 2005. Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand. Sedimentology, 52(6): 1229~1252.

    • Kametaka M, Takebe M, Nagai H, Zhu Sizhao, Takayanagi Y. 2005. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: A continental shelf radiolarian chert. Sedimentary Geology, 174(3-4): 197~222.

    • Knauth L P. 1992. Origin and Diagenesis of Cherts: An Isotopic Perspective. Berlin: Springer.

    • Kuznetsov V G, Skobeleva N M. 2005. Silicification of Riphean carbonate sediments (Yurubcha-Tokhomo Zone, Siberian Craton). Lithology & Mineral Resources, 40(6): 552~563.

    • Lu Songnian. 1996. Position and role of Precambrian geology in earth sciences. Geological Review, 42(4): 311~316 (in Chinese with English abstract).

    • Maliva R G. 2001. Silicification in the belt supergroup (Mesoproterozoic), Glacier National Park, Montana, USA. Sedimentology, 48(4): 887~896.

    • Maliva R G, Siever K R. 2012. Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle. Palaios, 4(6): 519~532.

    • Mclennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169~200.

    • Mei Minxiang. 2014. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography (Chinese Edition), 16(3): 285~304 (in Chinese with English abstract).

    • Moore K R, Daye M, Gong J, Williford K, Konhauser K, Bosak T. 2023. A review of microbial-environmental interactions recorded in Proterozoic carbonate-hosted chert. Geobiology, 21(1): 3~27.

    • Murchey B L, Jones D L. 1992. A mid-Permian chert event: Widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins. Palaeogeography Palaeoclimatology Palaeoecology, 96(1): 161~174.

    • Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology, 90(3-4): 213~232.

    • Murray R W, Buchholtz T, Brink M R, Jones D L, Gerlach D C, Iii G P R. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18(3): 268~271.

    • Murray R W, Brink M R B T, Gerlach D C, Iii G P R, Jones D L. 1991. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta, 55(7): 1875~1895.

    • Pan Xing. 2021. Sedimentary environments and mechanism of organic matter enrichment of the Meso-Neoproterozoic Era in the southern margin of Ordos basin. Doctoral dissertation of Northwest University (in Chinese with English abstract).

    • Peng Xiaotong, Zhou Huaiyang, Wu Zhijun, Jiang Lei, Tang Song, Yao Huiqiang, Chen Guangqian. 2007. Biomineralization of phototrophic microbes in silica-enriched hot springs in South China. Chinese Science Bulletin, 52(3): 367~379.

    • Perry E C, Lefticariu L. 2003. Formation and geochemistry of Precambrian cherts. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier.

    • Perry E C. Lefticariu L. 2014. 9. 5-formation and geochemistry of Precambrian cherts. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (Second Edition). Oxford: Elsevier.

    • Pesonen L J, Evans D, Veikkolainen T, Salminen J, Elming S K. 2021. Precambrian supercontinents and supercycles—An overview. Ancient Supercontinents and the Paleogeography of Earth.

    • Qu Hongjun, Li Wenhou, Yao Tianxing, Wu Longfa, Wang Yanxin, Hu Jiasen, Cheng Yishan. 2021. Characteristics, origin and significance of strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country, Shaanxi Province. Journal of Palaeogeography (Chinese Edition), 23(4): 651~677 (in Chinese with English abstract).

    • Ren Guoxuan, Meng Xianghua, Ge Ming, Wang Dehai, Guo Feng. 2007. Origin of siliceous rock in Wumishan Formation, Jixian, Tianjin. Geological Science and Technology Information, 26(5): 11~16 (in Chinese with English abstract).

    • Shen Bing, Ma Haoran, Ye Heqing, Lang Xianguo, Pei Haoxiang, Zhou Chuanming, Zhang Shihong, Yang Runyu. 2018. Hydrothermal origin of syndepositional chert bands and nodules in the Mesoproterozoic Wumishan Formation: Implications for the evolution of Mesoproterozoic cratonic basin, North China. Precambrian Research, 310: 213~228.

    • Siever R. 1957. The silica budget in the sedimentary cycle. American Mineralogist, 42(11): 821~841.

    • Simonson B M. 1985. Sedimentology of cherts in the Early Proterozoic Wishart Formation, Quebec-Newfoundland, Canada. Blackwell Publishing Ltd, 32(1): 23~40.

    • Simonson B M. 2010. Sedimentology of cherts in the Early Proterozoic Wishart Formation, Quebec-Newfoundland, Canada. Sedimentology, 32(1): 23~40.

    • Su Zhongtang, Chen Anqing, van Loonc A J T, Yang Shuai, Zhang Chenggong, Xu Shenglin. 2022. Depositional model and diagenetic evolution of hydrocarbon reservoirs in deep dolomites of the Ordos basin, China. In: Yang R, van Loonc A J T, eds. The Ordos Basin. Elsevier.

    • Sun Dazhong. 1998. The Archean in China. Geochimica, 27(4): 309~318 (in Chinese with English abstract).

    • Sun Haoxuan, Chaussidon M, Robert F, Tian Shengyu, Deng Zhengbin, Moynier F. 2023. Triple silicon isotope insights into the formation of Precambrian cherts. Earth and Planetary Science Letters, 607: 1~11.

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications.

    • Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12~32.

    • van den Boorn S H J M, van Bergen M J, Vroon P Z, de Vries S T, Nijman W. 2010. Silicon isotope and trace element constraints on the origin of ~3. 5 Ga cherts: Implications for Early Archaean marine environments. Geochimica et Cosmochimica Acta, 74(3): 1077~1103.

    • Westall F, Boni L, Guerzoni E. 1995. The experimental silicification of microorganisms. Palaeontology, 38: 495~528.

    • Williams L A, Crerar D A. 1985. Silica diagenesis; II, General mechanisms. Journal of Sedimentary Research, 55(3): 312~321.

    • Yamamoto K. 1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1-2): 65~108.

    • Ye Yan. 2022. Study on the coevolution between early siliceous organisms and oceanic environment during late Ediacaran-early Cambrian. Doctoral dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    • Yee N, Phoenix V R, Konhauser K O, Benning L G, Ferris F G. 2003. The effect of cyanobacteria on silica precipitation at neutral pH: Implications for bacterial silicification in geothermal hot springs. Chemical Geology, 199: 83~90.

    • Zhang Jing, Zhang Baomin. 2022. Microscopic fabrics and microbial lithogenous processes of Mesoproterozoic carbonate rocks in the Ordos basin. Acta Geologica Sinica, 96(4): 1937~1411 (in Chinese with English abstract).

    • Zhao Chenglin. 1997. Petroleum Geology and Sedimentology of the Middle and New. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Zhao Wenzhi, Hu Suyun, Wang Zecheng, Zhang Shuichang, Wang Tongshan. 2018. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China. Petroleum Exploration and Development, 45(1): 1~13 (in Chinese with English abstract).

    • Zhao Yue, Li Yanhe, Fan Chanfu, Hu Bin, Gao Jianfei. 2019. Formation mechanism of chert bands in the Mesoproterozoic Jixian section evidence from boron isotopes and silicon isotopes. Acta Geologica Sinica, 93(8): 2055~2067 (in Chinese with English abstract).

    • Zheng Xiucai. 2011. Geochemical characteristics and sedimentary environment of siliceous rocks in Wumishan Formation, Chicheng, northern Hebei Province. Journal of Oil and Gas Technology, 33(6): 53~58+7 (in Chinese with English abstract).

    • 邓昆, 张哨楠, 周立发, 刘哲, 李文厚. 2009. 鄂尔多斯盆地西南缘蓟县系沉积环境与生烃潜力. 天然气工业, 29(3): 21~24.

    • 冯娟萍, 欧阳征健, 李文厚. 2021. 鄂尔多斯地区中元古界蓟县系沉积特征研究. 西北大学学报(自然科学版), 51(2): 325~332.

    • 陆松年. 1996. 前寒武纪地质学在当代地球科学中的地位与作用. 地质论评, 42(4): 311~316.

    • 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 285~304.

    • 潘星. 2021. 鄂尔多斯盆地南缘中-新元古代成源环境与有机质富集机制. 西北大学博士学位论文.

    • 屈红军, 李文厚, 姚天星, 武龙发, 王妍心, 胡佳森, 成倚山. 2021. 陕西洛南县蓟县系洛南群层控玉化硅质岩特征、成因及意义. 古地理学报, 23(4): 651~677.

    • 任国选, 孟祥化, 葛铭, 王德海, 郭峰. 2007. 蓟县地区雾迷山组风暴硅质岩沉积序列. 地质科技情报, 26(5): 11~16.

    • 孙大中. 1998. 中国太古宙. 地球化学, 27(4): 309~318.

    • 叶炎. 2022. 卡拉纪末期—寒武纪早期硅质生物与古海洋环境协同演化研究. 中国地质大学(武汉)博士学位论文.

    • 张静, 张宝民. 鄂尔多斯盆地中元古界碳酸盐岩微观组构与微生物造岩作用. 地质学报, 96(4): 1397~1411.

    • 赵澄林. 1997. 华北中新元古界油气地质与沉积学. 北京: 地质出版社.

    • 赵文智, 胡素云, 汪泽成, 张水昌, 王铜山. 2018. 中国元古界—寒武系油气地质条件与勘探地位. 石油勘探与开发, 45(1): 1~13.

    • 赵悦, 李延河, 范昌福, 胡斌, 高建飞. 2019. 华北蓟县中元古界剖面中燧石条带的形成机制——硼硅同位素证据. 地质学报, 93(8): 2055~2067.

    • 郑秀才. 2011. 冀北赤城雾迷山组硅质岩地球化学特征及沉积环境. 石油天然气学报, 33(6): 53~58+7.

  • 参考文献

    • Adachi M, Yamamoto K, Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1-2): 125~148.

    • Aitchison J C, Flood P G. 1990. Geochemical constraints on the depositional setting of Palaeozoic cherts from the New England orogen, NSW, eastern Australia. Marine Geology, 94(1): 79~95.

    • Boström K, Kraemer T, Gartner S. 1973. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chemical Geology, 11(2): 123~148.

    • Chen Youzhi, Fu Xiaofei, Xiao Ancheng, Yu Long, Tang Yong, Mao Liguang. 2016. Type and evolution of carbonate platforms in Jixian Period Mesoproterozoic: Southwestern margin of Ordos basin. Journal of Petroleum Exploration and Production Technology, 6(4): 555~568.

    • Choquette P W, Pray L C. 1970. Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54(2): 207~250.

    • Deng Kun, Hang Shaonan, Zhou Lifa, Liu Zhe, Li Wenhou. 2009. Depositional environment and hydrocarbon-generating potential of the Mesoproterozoic Jixian System in the southwest margin of Ordos basin. Natural Gas Industry, 29(3): 21~24 (in Chinese with English abstract).

    • Ding Tongping, Gao Jianfeng, Tian Shuhua, Fan Chunfang, Zhao Yan, Wan Dafang, Zhou Jianxing. 2017. The δ30Si peak value discovered in middle Proterozoic chert and its implication for environmental variations in the ancient ocean. Scientific Reports, 7: 1~15.

    • Feng Juanping, Ouyang Zhengjian, Li Wenhou. 2021. Study on sedimentary characteristics of the Meso-Proterozoic Jixianian System in Ordos area. Journal of Northwest University (Natural Science Edition), 51(2): 325~332 (in Chinese with English abstract).

    • Gunnarsson I, Arnórsson S. 2000. Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0℃ to 350℃ at Psat. Geochimica et Cosmochimica Acta, 64(13): 2295~2307.

    • Guo Hua, Du Yuansheng, Kah L C, Huang Junhua, Hu Chaoyong, Huang Hu, Yu Wenchao. 2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution. Precambrian Research, 224: 169~183.

    • Hesse R. 1989. Silica diagenesis: origin of inorganic and replacement cherts. Earth-Science Reviews, 26(1-3): 253~284.

    • Hunter D R. 1981. Arcrean greenstone belts. In: Condie K C, ed. Developments in Precambrian Geology, 3. New York: Elsevier Scientific Publishing Company.

    • Jones B, Renaut R W, Konhauser K O. 2005. Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand. Sedimentology, 52(6): 1229~1252.

    • Kametaka M, Takebe M, Nagai H, Zhu Sizhao, Takayanagi Y. 2005. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: A continental shelf radiolarian chert. Sedimentary Geology, 174(3-4): 197~222.

    • Knauth L P. 1992. Origin and Diagenesis of Cherts: An Isotopic Perspective. Berlin: Springer.

    • Kuznetsov V G, Skobeleva N M. 2005. Silicification of Riphean carbonate sediments (Yurubcha-Tokhomo Zone, Siberian Craton). Lithology & Mineral Resources, 40(6): 552~563.

    • Lu Songnian. 1996. Position and role of Precambrian geology in earth sciences. Geological Review, 42(4): 311~316 (in Chinese with English abstract).

    • Maliva R G. 2001. Silicification in the belt supergroup (Mesoproterozoic), Glacier National Park, Montana, USA. Sedimentology, 48(4): 887~896.

    • Maliva R G, Siever K R. 2012. Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle. Palaios, 4(6): 519~532.

    • Mclennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169~200.

    • Mei Minxiang. 2014. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography (Chinese Edition), 16(3): 285~304 (in Chinese with English abstract).

    • Moore K R, Daye M, Gong J, Williford K, Konhauser K, Bosak T. 2023. A review of microbial-environmental interactions recorded in Proterozoic carbonate-hosted chert. Geobiology, 21(1): 3~27.

    • Murchey B L, Jones D L. 1992. A mid-Permian chert event: Widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins. Palaeogeography Palaeoclimatology Palaeoecology, 96(1): 161~174.

    • Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology, 90(3-4): 213~232.

    • Murray R W, Buchholtz T, Brink M R, Jones D L, Gerlach D C, Iii G P R. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18(3): 268~271.

    • Murray R W, Brink M R B T, Gerlach D C, Iii G P R, Jones D L. 1991. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta, 55(7): 1875~1895.

    • Pan Xing. 2021. Sedimentary environments and mechanism of organic matter enrichment of the Meso-Neoproterozoic Era in the southern margin of Ordos basin. Doctoral dissertation of Northwest University (in Chinese with English abstract).

    • Peng Xiaotong, Zhou Huaiyang, Wu Zhijun, Jiang Lei, Tang Song, Yao Huiqiang, Chen Guangqian. 2007. Biomineralization of phototrophic microbes in silica-enriched hot springs in South China. Chinese Science Bulletin, 52(3): 367~379.

    • Perry E C, Lefticariu L. 2003. Formation and geochemistry of Precambrian cherts. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier.

    • Perry E C. Lefticariu L. 2014. 9. 5-formation and geochemistry of Precambrian cherts. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (Second Edition). Oxford: Elsevier.

    • Pesonen L J, Evans D, Veikkolainen T, Salminen J, Elming S K. 2021. Precambrian supercontinents and supercycles—An overview. Ancient Supercontinents and the Paleogeography of Earth.

    • Qu Hongjun, Li Wenhou, Yao Tianxing, Wu Longfa, Wang Yanxin, Hu Jiasen, Cheng Yishan. 2021. Characteristics, origin and significance of strata-bound chalcedonization siliceous rocks of the Jixianian Luonan Group in Luonan Country, Shaanxi Province. Journal of Palaeogeography (Chinese Edition), 23(4): 651~677 (in Chinese with English abstract).

    • Ren Guoxuan, Meng Xianghua, Ge Ming, Wang Dehai, Guo Feng. 2007. Origin of siliceous rock in Wumishan Formation, Jixian, Tianjin. Geological Science and Technology Information, 26(5): 11~16 (in Chinese with English abstract).

    • Shen Bing, Ma Haoran, Ye Heqing, Lang Xianguo, Pei Haoxiang, Zhou Chuanming, Zhang Shihong, Yang Runyu. 2018. Hydrothermal origin of syndepositional chert bands and nodules in the Mesoproterozoic Wumishan Formation: Implications for the evolution of Mesoproterozoic cratonic basin, North China. Precambrian Research, 310: 213~228.

    • Siever R. 1957. The silica budget in the sedimentary cycle. American Mineralogist, 42(11): 821~841.

    • Simonson B M. 1985. Sedimentology of cherts in the Early Proterozoic Wishart Formation, Quebec-Newfoundland, Canada. Blackwell Publishing Ltd, 32(1): 23~40.

    • Simonson B M. 2010. Sedimentology of cherts in the Early Proterozoic Wishart Formation, Quebec-Newfoundland, Canada. Sedimentology, 32(1): 23~40.

    • Su Zhongtang, Chen Anqing, van Loonc A J T, Yang Shuai, Zhang Chenggong, Xu Shenglin. 2022. Depositional model and diagenetic evolution of hydrocarbon reservoirs in deep dolomites of the Ordos basin, China. In: Yang R, van Loonc A J T, eds. The Ordos Basin. Elsevier.

    • Sun Dazhong. 1998. The Archean in China. Geochimica, 27(4): 309~318 (in Chinese with English abstract).

    • Sun Haoxuan, Chaussidon M, Robert F, Tian Shengyu, Deng Zhengbin, Moynier F. 2023. Triple silicon isotope insights into the formation of Precambrian cherts. Earth and Planetary Science Letters, 607: 1~11.

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications.

    • Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12~32.

    • van den Boorn S H J M, van Bergen M J, Vroon P Z, de Vries S T, Nijman W. 2010. Silicon isotope and trace element constraints on the origin of ~3. 5 Ga cherts: Implications for Early Archaean marine environments. Geochimica et Cosmochimica Acta, 74(3): 1077~1103.

    • Westall F, Boni L, Guerzoni E. 1995. The experimental silicification of microorganisms. Palaeontology, 38: 495~528.

    • Williams L A, Crerar D A. 1985. Silica diagenesis; II, General mechanisms. Journal of Sedimentary Research, 55(3): 312~321.

    • Yamamoto K. 1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1-2): 65~108.

    • Ye Yan. 2022. Study on the coevolution between early siliceous organisms and oceanic environment during late Ediacaran-early Cambrian. Doctoral dissertation of China University of Geosciences (Wuhan) (in Chinese with English abstract).

    • Yee N, Phoenix V R, Konhauser K O, Benning L G, Ferris F G. 2003. The effect of cyanobacteria on silica precipitation at neutral pH: Implications for bacterial silicification in geothermal hot springs. Chemical Geology, 199: 83~90.

    • Zhang Jing, Zhang Baomin. 2022. Microscopic fabrics and microbial lithogenous processes of Mesoproterozoic carbonate rocks in the Ordos basin. Acta Geologica Sinica, 96(4): 1937~1411 (in Chinese with English abstract).

    • Zhao Chenglin. 1997. Petroleum Geology and Sedimentology of the Middle and New. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Zhao Wenzhi, Hu Suyun, Wang Zecheng, Zhang Shuichang, Wang Tongshan. 2018. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China. Petroleum Exploration and Development, 45(1): 1~13 (in Chinese with English abstract).

    • Zhao Yue, Li Yanhe, Fan Chanfu, Hu Bin, Gao Jianfei. 2019. Formation mechanism of chert bands in the Mesoproterozoic Jixian section evidence from boron isotopes and silicon isotopes. Acta Geologica Sinica, 93(8): 2055~2067 (in Chinese with English abstract).

    • Zheng Xiucai. 2011. Geochemical characteristics and sedimentary environment of siliceous rocks in Wumishan Formation, Chicheng, northern Hebei Province. Journal of Oil and Gas Technology, 33(6): 53~58+7 (in Chinese with English abstract).

    • 邓昆, 张哨楠, 周立发, 刘哲, 李文厚. 2009. 鄂尔多斯盆地西南缘蓟县系沉积环境与生烃潜力. 天然气工业, 29(3): 21~24.

    • 冯娟萍, 欧阳征健, 李文厚. 2021. 鄂尔多斯地区中元古界蓟县系沉积特征研究. 西北大学学报(自然科学版), 51(2): 325~332.

    • 陆松年. 1996. 前寒武纪地质学在当代地球科学中的地位与作用. 地质论评, 42(4): 311~316.

    • 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 285~304.

    • 潘星. 2021. 鄂尔多斯盆地南缘中-新元古代成源环境与有机质富集机制. 西北大学博士学位论文.

    • 屈红军, 李文厚, 姚天星, 武龙发, 王妍心, 胡佳森, 成倚山. 2021. 陕西洛南县蓟县系洛南群层控玉化硅质岩特征、成因及意义. 古地理学报, 23(4): 651~677.

    • 任国选, 孟祥化, 葛铭, 王德海, 郭峰. 2007. 蓟县地区雾迷山组风暴硅质岩沉积序列. 地质科技情报, 26(5): 11~16.

    • 孙大中. 1998. 中国太古宙. 地球化学, 27(4): 309~318.

    • 叶炎. 2022. 卡拉纪末期—寒武纪早期硅质生物与古海洋环境协同演化研究. 中国地质大学(武汉)博士学位论文.

    • 张静, 张宝民. 鄂尔多斯盆地中元古界碳酸盐岩微观组构与微生物造岩作用. 地质学报, 96(4): 1397~1411.

    • 赵澄林. 1997. 华北中新元古界油气地质与沉积学. 北京: 地质出版社.

    • 赵文智, 胡素云, 汪泽成, 张水昌, 王铜山. 2018. 中国元古界—寒武系油气地质条件与勘探地位. 石油勘探与开发, 45(1): 1~13.

    • 赵悦, 李延河, 范昌福, 胡斌, 高建飞. 2019. 华北蓟县中元古界剖面中燧石条带的形成机制——硼硅同位素证据. 地质学报, 93(8): 2055~2067.

    • 郑秀才. 2011. 冀北赤城雾迷山组硅质岩地球化学特征及沉积环境. 石油天然气学报, 33(6): 53~58+7.