-
以揭示伟晶岩型锂矿深部结构与成因机制为目的的甲基卡伟晶岩型锂矿科学钻探工程(JSD),依托南京大学卓越研究计划,首席科学家许志琴院士和朱文斌教授带领的南京大学大陆动力学团队联合四川省地质调查院和山东省第三地质矿产勘查院,在四川省甘孜州雅江县政府的大力支持下,于2020~2022年在海拔4500 m的川西高原先后实施了三口科学钻井,包括3211.21 m深的JSD-1井、1000 m深的JSD-2井和1000 m深的JSD-3井,获得包括变质沉积岩、花岗岩和伟晶岩在内的5211 m的全孔定向岩芯。在JSD-1井中,50%的岩芯为伟晶岩,最厚一条伟晶岩脉的视厚度达到286 m。我们还获取4.5 m长的中国科钻最长花岗岩岩芯(中国第一口科学深钻CCSD的最长岩芯为4.25 m),并建成了中国第一座开放式的“大陆科学钻探岩芯馆”。
-
经过近3年多的努力,南京大学大陆动力学科研团队在建立系列地学剖面(岩性、构造、测井、地球化学、成矿元素、热结构、同位素和年代学等)基础上,取得一系列重要的研究进展:发现上部泥质围岩经历中低压高温巴罗-巴肯式变质作用,伟晶岩型锂矿带赋存在低压-高温型巴肯式变质带中;厘定了伟晶岩结构、分带与侵位样式;估算成矿元素在不同深度伟晶岩中的丰度;建立变质-变形-岩浆-成矿的时间序列;确定伟晶岩形成的多期岩浆-热液作用;利用Li-B-Fe-Nd同位素示踪了岩浆的演化、流体出熔过程及成矿元素富集机制等。
-
长期以来,伟晶岩型锂矿的形成被认为与S 型花岗岩岩基的结晶分异有关(Trueman et al.,1982; Galeschuk et al.,2007; London,2008,2018; Dittrich et al.,2019)。与甲基卡伟晶岩锂矿有成因联系的马颈子花岗岩一直被认为底辟成因的无成矿潜力花岗岩基,构成片麻岩穹隆核部,花岗岩与伟晶岩之间为“父子关系”(付小方等,2014,2017,2021; 许志琴等,2016,2020)。甲基卡伟晶岩锂矿科学钻探的研究则表明,马颈子“S”型花岗岩体并不是前人所认为的一个具深根的花岗岩基(许志琴等,2020; Wang et al.,2020; Huang et al.,2020),而是由若干“无根”的花岗岩岩席和变质岩及侵位其中的富稀有金属伟晶岩脉构成的“多层三明治”结构。这个发现打破了传统的锂矿成矿概念,提出了甲基卡伟晶岩型锂矿的”多层次穹状花岗岩席”控矿理论。另外,对甲基卡伟晶岩中锂元素的富集机制目前存在不同的认识:有观点认为高成熟度陆壳物质组成的变质沉积岩直接深熔形成富锂伟晶岩(Zhao et al.,2021),另一种观点则认为花岗岩浆中发生的“熔体不混溶”是含矿伟晶岩的主要形成模式(Li et al.,2023)。也有观点强调锂在黏土矿物沉积和变质过程中已发生显著富集(Wang et al.,2020)。我们的研究发现,岩浆高度结晶分异和流体不混溶是甲基卡含锂伟晶岩形成的关键,其形成经历了复杂的岩浆-热液过程,最后在岩浆后期的富含挥发分熔体中结晶。这一认识不支持甲基卡沉积岩直接深熔形成含矿伟晶岩的论断。
-
1 甲基卡锂矿科学钻探的背景
-
在青藏高原北部近东-西向延伸的松潘甘孜地体全长2800 km。它被NE-SW 向阿尔金断裂切成两段:西段为NE帕米尔—甜水海段,东段为巴颜喀拉—松潘甘孜段。松潘甘孜地体因三陆块(华北、华南和羌塘)汇聚而形成,是一条具有东西向条带形和倒三角形复合几何形态的古特提斯造山带。它以昆仑-阿尼玛卿古特提斯缝合带为北界与昆仑-柴达木地体拼接,以金沙江古特提斯缝合带为西南界与北羌塘地体为邻,东南以龙门山与华南陆块相隔(Sengör,1985; Mattauer et al.,1992; 许志琴等,1992; Nie et al.,1994; Yin et al.,2000; Roger et al.,2010)。松潘甘孜地体的东段是在扬子陆块的基础上发育的,下部发育新元古代基底和古生代—早中三叠世盖层,其上广布晚三叠世巨厚(5~15 km)的浊积岩。在古特提斯洋盆闭合(~230 Ma)之后松潘甘孜地体经历了晚三叠世—早中侏罗世的基墨里造山作用,形成松潘甘孜巨型造山带(许志琴等,2020; Xu et al.,2020b,2023; Sengör et al.,2023)。强烈的变形是以上部盖层中发育向南突出的弧形褶皱-逆冲带和新元古代基底与盖层之间的深部向南运动的大型滑脱剪切带为特征,并有广泛中生代(226~180 Ma; Roger et al.,2004,2010; Zhang et al.,2006,2007; Xiao et al.,2007; Yuan et al.,2010; de Sigoyer et al.,2014)多类型的花岗岩(S型、埃达克型、I型、A型和高Ba-Sr型; Li et al.,2021)和含锂-贫锂伟晶岩脉的侵位(Xu et al.,2020b,2023)。此外,大量片麻岩穹隆构造样式存在于造山带中(许志琴等,2016; Xu et al.,2020b),如鲜水河断裂带西南的雅江片麻岩穹隆群包括长征、容须卡、甲基卡、塔公、西雅村和南真寺等片麻岩穹隆,它们由224~190 Ma的核部花岗岩为和幔部晚三叠世浊积岩组成(Gao et al.,2023)。由于在松潘甘孜地体东段先后发现了甲基卡、可尔因、扎乌隆等大型—超大型伟晶岩型锂矿,西段又发现白龙山、大红柳滩等大型—超大型伟晶岩型锂矿(图1; 付小方等,2014,2015,2017; 王核等,2017,2021;王登红等,2017; Zhao et al.,2019; Yan et al.,2020; Xu et al.,2020b; Zheng et al.,2020),松潘甘孜地体成为中国大陆伟晶岩型锂矿的超常富集带(许志琴等,2016; Xu et al.,2020b)。
-
位于松潘甘孜地体东南部的甲基卡超大型伟晶岩型锂矿是中国大陆最大的硬岩型锂矿床。甲基卡已发现500多条地表或近地表的伟晶岩脉。在伟晶岩区已经实施了小于300 m的近数百口浅钻,氧化锂预测远景资源量达500万t。四川省地质调查院在前人基础上为甲基卡做了重要贡献(付小方等,2017),使甲基卡矿区被列为国家级能源资源基地,前景巨大、增储可观、具有广阔的开发前景。但是,由于处在高海拔高原的甲基卡伟晶岩型锂矿区被第四系大面积覆盖,其深部埋藏状态仍然不清楚,找矿靶区的寻找受到制约。甲基卡伟晶岩型锂矿科学钻探的实施,体现了前沿科学和尖端技术结合,是国家新能源战略的重要工程,是服务于关键性矿产资源找矿突破的战略行动。
-
图1 青藏高原北部松潘甘孜地体的构造简图及产出在晚三叠世浊积岩中的大型锂矿床位置示意(据Xu et al.,2020b)
-
Fig.1 Simplified tectonic map of the Songpan-Ganze terrane, northern Tibet and locations of the large-scale lithium deposits in Triassic turbidites (modified after Xu et al., 2020b)
-
NCB—华北陆块;YZB—扬子陆块;TRM—塔里木陆块;EKL-QDM-QL—东昆仑-柴达木-祁连地体;WKL—西昆仑地体;QT—羌塘地体;BYKL—巴颜喀拉雅地体; SP-GZ—松潘甘孜亚地体;TSH—甜水海地体;N.PMR—北帕米尔地体;NQLT—北祁连逆冲断层;ATF—阿尔金断层;EKL-ANMQSZ—东昆仑-阿尼玛卿缝合带;JSSZ—金沙江缝合带;LMST—龙门山逆冲断层;XSHF—鲜水河断层
-
NCB—North China block; YZB—Yangzi block; TRM—Tarim block; EKL-QDM-QL—East Kunlun-Qaidam-Qilian terrane; WKL—West Kunlun terrane; QT—Qiantang terrane; BYKL—Bayankala subterrane; SP-GZ—Sopan-Ganze subterrane; TSH—Tanshuihai subterrane; N.PMR—North Pamir subterrane; NQLT—North Qilian thrust; ATF—Altin-Tagh fault; EKL-ANMQSZ—East Kunlun-Animaqen suture zone; JSSZ—Jingsha suture zone; LMST—Longmenshan thrust; XSHF—Xianshuihe fault
-
在南京大学卓越计划的资助下,我们在2020~2022年先后在甲基卡矿区实施了三口定向和全取芯的5211 m科学钻井,其中JSD-1钻孔(3211.21 m)打在马颈子花岗岩东北角的晚三叠世变质浊积岩中(30°17′16.31″N,101°16′39.34″ E,高程4425 m);JSD-2井(1000 m)位于马颈子花岗岩体的中心部位(30°16′0.26″N,101°15′58.86″E,高程4562 m);JSD-3井(1000 m)位于马颈子花岗岩体的南部(30°15′32.40″ N,101°15′29.5″E,高程4430 m)。JSD-2井和JSD-3井均在花岗岩体中(图2)。
-
JSD-1的钻探目的是探索甲基卡锂矿区的3 km内的深部结构、深部成矿潜力以及伟晶岩型锂矿的成矿过程;位于马颈子花岗岩内的JSD-2井和JSD-3井,钻探的初始目的是为了探索花岗岩浆分异作用对伟晶岩型锂矿的制约。前人一般认为,控制甲基卡伟晶岩型锂矿的马颈子花岗岩体是一个深达15 km的花岗岩基(许志琴等,2020; Wang et al.,2020; Huang et al.,2020)。这是施行JSD-2 和JSD-3钻探的依据。
-
2 甲基卡锂矿科学钻探的主要创新成果
-
南京大学大陆动力学研究院团队承担甲基卡科钻的编录、扫描以及岩石、构造、成矿元素、热结构、地球化学、稳定同位素和年代学等系列剖面的建立和多学科研究的任务。在此基础上建立了由JSD-1井、JSD-2井和JSD-3井组成的7 km南北向联合勘探剖面,揭示了甲基卡矿区意想不到的深部结构,从而提出甲基卡伟晶岩型锂矿的新的成矿模式。
-
2.1 揭示变质岩深部结构,发现巴罗-巴肯式高温中低压变质岩系
-
在JSD-1井的3211.21 m构造剖面中,0~900 m的围岩由上三叠统西康群新都桥组变质浊积岩组成,900~3211 m 围岩以上三叠统西康群侏倭组钙硅酸岩为主(图3)。在0~900 m 深度范围内,变质沉积岩面理以向东缓倾和正向下滑的拆离构造为特征,并具有石英的高温变形组构(> 650℃),指示甲基卡片麻岩穹隆上升过程形成的穹状构造(图4;许志琴等,2020a,Xu et al.,2023)。在0~400 m深度的岩芯中,首次发现巴罗-巴肯式变质岩,其中巴罗式变质岩矿物组合为黑云母+白云母+石英+斜长石+石榴子石+十字石+蓝晶石+矽线石,形成的P-T条件为600~700℃和约0.8 GPa;巴肯式变质岩矿物组合为黑云母+白云母+斜长石+石榴子石+十字石+红柱石+矽线石+堇青石,形成的P-T条件为约600℃和约0.3 GPa(图4;Xu et al.,2023);在900~3211 m的深度范围内岩石变形保留三叠纪早期区域变质形成的西康式陡倾紧闭褶皱,石英组构主要显示低温变形的特征(Xu et al.,2023)。
-
图2 甲基卡伟晶岩型锂矿地质图(据付小方等,2017)
-
Fig.2 Geological map of the Jiajika pegmatitic lithium deposit (after Fu Xiaofang et al., 2017)
-
1 —二云母花岗岩;2—钠长石伟晶岩;3—钠长石锂辉石伟晶岩;4—微斜长石伟晶岩;5—微斜长石-钠长石伟晶岩;6—伟晶岩脉编号;7—不同类型伟晶岩的界线;8—不同伟晶岩带的代号;A—B 线为X03脉—JSD-1井—JSD-2井—JSD-3井联合剖面位置
-
1 —two-mica granite; 2—albite-type pegmatite; 3—albite-spodumene-type pegmatite; 4—microcline-type pegmatite; 5—microcline albite-type pegmatite; 6—serial number of pegmatites; 7—boundary of different types of pegmatites; 8—zone of different types of pegmatites; A—B line indicates location of X03—JSD-1—JSD-2—JSD-3 profile
-
2.2 揭示深部成矿潜力
-
根据 JSD-1钻井伟晶岩和花岗岩岩芯的全岩主微量元素测量及矿物学分析,获得深部的成矿潜力:0~1200 m为Li-Be矿化带、0~1800 m为Nb-Ta矿化带,Rb的富集遍及全孔(图5;Xu et al.,2023; Jin et al.,2023)。JSD-1钻井中富含锂辉石的成矿伟晶岩出现在0~100 m的深度范围。结合地表伟晶岩带的浅钻资料,揭示富锂伟晶岩带出现在花岗岩之上约1 km的范围内。锂伟晶岩富集的地表标志为十字石-红柱石片岩带(Xu et al.,2023)。在含锂伟晶岩富集域之下,深部稀有金属的成矿潜力(Be、Nb、Ta、Rb)远远超出以往的想象。
-
图3 甲基卡伟晶岩型锂矿科学钻探JSD-1构造剖面(据Xu et al.,2023)
-
Fig.3 Structural profile of the JSD-1 (after Xu et al., 2023)
-
I区代表上部构造带(0∼900 m); II区代表下部构造带(900∼3211 m); 黄色圆圈代表伟晶岩年龄,红色圆圈代表花岗岩年龄; Cas一锡石; Mnz一独居石
-
Zone I is the upper tectonic zone (0∼900 m) ; zone II is the lower tectonic zone (900∼3211 m) ; the yellow circles represent the ages of the pegmatites, the red circles represent the ages of the granites; Cas-cassiterite; Mnz-monazite
-
图4 JSD-1钻探剖面0~400 m岩芯中巴罗-巴肯式变质作用的矿物组合及显微构造(修改自Xu et al.,2023)
-
Fig.4 Mineral assemblages and microstructures of the Barrovian-Buchan metamorphism in 0~400 m depth of the JSD-1 (modified after Xu et al., 2023)
-
(a、c)—含矽线石-石榴子石-十字石黑云母片岩;(b)—含红柱石黑云母片岩;(d)—含蓝晶石-矽线石黑云母片岩;Sil—矽线石;Ky—蓝晶石;St—十字石;And—红柱石;Bt—黑云母;Grt—石榴子石;Qtz—石英; σ型碎斑变形指示顶部向东剪切的韧性拆离构造
-
(a, c) —sillimanite-garnet-staurolite-bearing biotite schist; (b) —andalusite-bearing biotite schist; (d) —kynite-sillimanite-bearing biotite schist; Sil—sillimanite; Ky—kyanite; St—staurolite; And—andalusite; Bt—biotite; Grt—garnet; Qtz—quartz; σ-type porphyroclasts show top to the east shear sense, indicating top to the east shearing in ductile detachment
-
2.3 伟晶岩形成的两期岩浆活动
-
JSD-1钻井3200 m深度范围内的伟晶岩空间分带从浅到深为:钠长石伟晶岩、钠长石-微斜长石伟晶岩、微斜长石伟晶岩。锂辉石主要分布在浅部的钠长石伟晶岩中。伟晶岩的LA-ICP-MS独居石U-Pb年龄揭示两期的岩浆活动(图3; Xu et al.,2023):210~204 Ma(~2568 m)和193~192 Ma(3100 m之下)。早期伟晶岩的形成年龄(208~205 Ma)与花岗岩的独居石U-Pb年龄一致,它们的地球化学特征:SiO2-(Na2O+K2O)图解、A/NK-A/CNK图解、REE图解和原始地幔标准化蛛网图解也一致(Xu et al.,2023),代表它们具有同时形成和温度接近的物理条件的关系,两者之间可能是 “兄弟”关系,而非“父子”关系。第二期年龄(约193~192 Ma)产出在岩芯深部(3100 m之下)的伟晶岩带中,与Nb-Ta矿化伴随(Jin et al.,2023),可能是深部另一期新的矿化事件的产物。
-
与深层伟晶岩和花岗岩相比,浅层伟晶岩和花岗岩中的独居石更富集Li、Th、U,说明随着花岗岩岩浆的不断演化,残余熔体更富集各种稀有金属元素。我们认为,高度演化的花岗质岩浆在甲基卡伟晶岩脉的形成中起了重要作用。
-
图5 JSD-1钻井伟晶岩和花岗岩样品中主要成矿元素的全岩含量(据Xu et al.,2023)
-
Fig.5 Whole rock concentrations of major metallogenic elements in the pegmatitic and granitic samples in the JSD-1 borehole (after Xu et al., 2023)
-
2.4 通过流体包裹体和Li-B-Fe-Nd同位素的研究,揭示伟晶岩形成经历岩浆高度结晶分异和流体不混溶等复杂岩浆-热液过程,含锂伟晶岩不是地壳深熔作用的直接产物
-
伟晶岩的石英包裹体研究揭示含锂伟晶岩脉形成过程中发生了广泛的流体不混溶作用。LA-ICP-MS包裹体显微分析表明,含锂伟晶岩中流体包裹体的碱性元素(Li、Na、K、Rb、Cs)和挥发性元素(B、As)的富集明确指示含锂伟晶岩是高度结晶分异的产物。母岩浆的高度结晶分异和强烈的流体不混溶作用促进了巨大的甲基卡锂矿床的形成(Wang et al.,2023)。
-
JSD-1钻井岩芯的Li-B-Fe-Nd同位素示踪了岩浆的演化、流体出溶过程及成岩成矿机制(图6)。放射成因Nd同位素组成(εNd)结果表明,地表花岗岩、二云母花岗岩和伟晶岩具有共同的岩浆来源。花岗岩、细晶岩、伟晶岩和三叠系浊积岩的Li同位素组成揭示分异程度最高的富锂伟晶岩的δ7Li值略高于贫锂伟晶岩和二云母花岗岩。晚期岩浆结晶过程中重Li同位素在分馏到富挥发熔体中,富含挥发分的晚期熔体进一步结晶分异产生富锂伟晶岩。因而富锂伟晶岩是连续岩浆演化的产物( Gao et al.,2023)。不同深度岩石δ56Fe的显著变化是黑云母分离结晶、热液蚀变(电气石化)以及石榴子石堆积等多阶段岩浆-热液过程的共同结果。全孔岩浆演化程度与δ56Fe值间显著的相关性表明浅部伟晶岩富含挥发分具有较高的演化程度(魏海珍等,2023)。花岗岩和伟晶岩中电气石的B同位素证据判断其为S型花岗岩,根据熔体结晶分异和流体出溶过程锂配分和B同位素分馏行为推断,花岗质岩浆的分异过程遵循平衡结晶模型,且花岗质岩浆极端分化不能达到熔体中锂辉石过饱和(魏海珍等,2023)。JSD-1钻井岩芯Li-B-Fe-Nd同位素研究揭示甲基卡伟晶岩型锂矿床的花岗岩岩浆演化过程中,岩浆结晶分异和流体的出溶都促进了锂的富集。因此,富锂伟晶岩不是地壳深熔作用的直接产物,其形成经历了复杂的岩浆-热液过程,即钠长石锂辉石伟晶岩为主的矿体来自后期的富含挥发分的熔体。这一认识与前人“地壳深熔”观点不同。
-
2.5 甲基卡伟晶岩型锂矿的”多层次穹状花岗岩席”控矿新理论的提出
-
JSD-1、JSD-2和JSD-3的钻井联合剖面(图7)揭示了甲基卡锂矿区的3 km深部结构:JSD-2井揭示0~255 m 和624~1000 m 的两个花岗岩席;JSD-3井揭示了0~475 m的一个花岗岩席。这些花岗岩席均为含电气石的二云母花岗岩,可以和JSD-1井中所揭示的418 m左右和1245~1455 m两个花岗岩席连接。结合JSD-1井和甲基卡地表穹状构造的研究,以及3000 m 以下与Nb-Ta矿化伴随的第二期独居石U-Pb年龄(193~192 Ma),推测更深部可能有更多花岗岩席。由此推测,甲基卡锂矿区的深部是以“多层次穹状花岗岩席”和晚三叠世变质岩及侵位其中的含稀有金属伟晶岩组成的“多层三明治结构”。这一新的模式颠覆了前人关于马颈子S型花岗岩基(根部抵达15 km深度)的观点(Huang et al.,2020),实现了含稀有金属伟晶岩控矿模式的重大突破。
-
图6 JSD-1钻井剖面中的全岩Li丰度、电气石中B同位素及富锂-贫锂伟晶岩云母花岗岩、片岩和钙镁硅酸盐变质岩中全岩Li同位素、Nd 同位素和Fe同位素组成变化(据魏海珍等,2023)
-
Fig.6 Variations of Li abundance in the bulk rock, B isotope in tourmaline and whole-rock Li isotope, Nd isotope and Fe isotope in the Li-rich, Li-poor pegmatites, two-mica granites, schists and calc-silicate rocks with depth along the 3 km Jiajika scientific drilling borehole (after Wei Haizhen et al., 2023)
-
2.6 甲基卡伟晶岩型锂矿的构造成矿过程
-
① 230~220 Ma(造山作用早期):以早古生代—三叠纪大规模褶皱和逆冲断裂引起的地壳缩短为特征,受向南剪切的基底和盖层之间的大规模滑脱剪切带(SPGZD)控制(图8a; Mattauer et al.,1992; 许志琴等,1992; Roger et al.,2004,2010; Harrowfield et al.,2005)。② 约220~213 Ma(造山作用中期):来自深部的上升花岗岩浆沿着早已存在的晚三叠世浊积岩中的逆冲断裂系统侵位,在深度10 km内的地壳半脆性变形域中形成S型二云母花岗岩席以及伴随围岩产生巴罗式变质作用(图8b)。③ 约213~190 Ma(造山作用晚期):由于花岗岩浆上升造成的减压形成花岗岩席的穹状构造,伴随巴肯式变质作用。同时在多阶段的岩浆-热液作用的驱动下,大量富稀有金属伟晶岩形成(图8c)。
-
2.7 花岗岩席的成因及岩浆源区的假设
-
随着甲基卡伟晶岩型锂矿与多层次穹状花岗岩席控矿模式的提出,穹状花岗岩席的成因和岩浆的源区成为松潘甘孜造山带花岗岩研究的重要问题。
-
主流观点认为甲基卡产出的S型花岗质岩浆是由下地壳的混合岩的深熔作用形成的,其后汇集并上升到未来的岩浆储库中(Moyen et al.,2021)。为此,我们提出甲基卡锂矿有关的花岗岩席成因和岩浆源区的假设:深熔作用可能沿着矿区深部沉积盖层和新元古代混合岩基底之间的深部韧性滑脱剪切带发生。事实上,在松潘甘孜地体的东缘出露有丹巴新元古代(864~824 Ma; Zhou et al.,2002)混合岩穹隆群,包括了春牛场、巴旺、青杠林和公差穹隆,幔部岩石经历强烈的深熔作用和巴罗-巴肯式变质作用(深熔带、矽线石带、蓝晶石带、红柱石-十字石带、石榴子石带和黑云母带,图9)分别产生在约210~205 Ma 和约204~190 Ma(Huang et al.,2003a,2003b; Billerot et al.,2017)。这些年龄和分带和甲基卡穹状花岗岩席穹隆一致。因此,形成甲基卡花岗岩席的岩浆可能是深部地壳深熔的产物,深熔过程与丹巴混合岩类似的。花岗岩浆从下地壳部分熔融的基底中萃取和上升,最终沿着地壳上部的断裂或剪切带侵入形成二云母花岗岩席。诚然,这一假设尚需进一步证明。
-
图7 JSD-1—JSD-2—JSD-3钻井联合剖面显示甲基卡锂矿区深部为多层次穹状花岗岩席(GS-1和GS-2)和侵入变质沉积岩(T3)的伟晶岩脉(Pg)群组成的多层三明治结构(据Xu et al.,2023)
-
Fig.7 JSD-1—JSD-2—JSD-3 profile showing multi-layer domal granitic sheets (GS-1 and GS-2) and pegmatites (Pg) intruded in the metasediments (T3) (after Xu et al., 2023)
-
红色、粉色和橙色圆圈分别代表花岗岩、贫锂伟晶岩和锂矿伟晶岩的年龄,黑虚线推测构造带I 和II的分界;两条绿虚线之间为推测富锂伟晶岩带;BR-BC—巴罗-巴肯变质带
-
The red, orange and pink circles represent the ages of granite, Li-rich pegmatite and lithium-bearing pegmatite in the JSD-1, respectively; black and green dotted lines are inferred boundaries of tectonic zones I and II and the Li-rich pegmatitic domain, respectively; BR-BC—Barrovian-Buchan metamorphism
-
2.8 甲基卡矿区的剥蚀速率和锂矿保存条件
-
JSD-1钻探岩芯的低温年代学反演结果表明甲基卡矿区存在三个阶段的剥露速率变化,分别为:约90~60 Ma,约45~20 Ma和<15 Ma。热历史模拟显示甲基卡穹隆自约120 Ma以来经历了三期的快速冷却/剥露过程,分别在白垩纪中期(约120~88 Ma)、晚始新世(约43~30 Ma)、和早中新世以来(<18~14 Ma)。Liu et al.(2023)估算了甲基卡锂矿区成矿(<200~190 Ma)以来的总体剥蚀厚度为5±1 km;其中约190~120 Ma剥蚀厚度为1.5±0.5 km,120~88 Ma剥蚀厚度为2.65±0.65 km,88~14 Ma剥蚀厚度为0.47±0.2 km,约14 Ma至今剥蚀厚度为0.4±0.13 km;其中白垩纪的剥蚀占了绝大部分,剥蚀厚度约>2.7±0.7 km(图10)。甲基卡穹隆前白垩纪的伟晶岩深度保持在5 km左右,新生代以来较低的剥蚀速率为该区锂矿的保存提供了重要条件。
-
2.9 甲基卡式富锂伟晶岩的找矿标志
-
(1)甲基卡式富锂伟晶岩侵位在晚三叠世以泥质变质岩为主的巨厚浊积岩中。
-
(2)甲基卡式富锂伟晶岩赋存在基墨里造山期(T3-J1)形成的片麻岩穹隆中,以S型二云母花岗岩为核部的穹状构造是重要的构造特征。
-
图8 甲基卡伟晶岩型锂矿的构造成矿过程(据Xu et al.,2023)
-
Fig.8 Tectono-metallogenic processes of the Jiajika pegmatite-type lithium deposit (after Xu et al., 2023)
-
SPGZD—松潘甘孜滑脱带; BR—巴罗式变质作用;BC—巴肯式变质作用
-
SPGZD—Songpan-Ganze decollement; BR—Barrovian-type metamorphism; BC—Buchan-type metamorphism
-
图9 丹巴地区片麻岩穹隆群地质简图,穹隆由深熔的新元古代基底核部和经历巴罗-巴肯变质的古生代幔部变质岩组成的(据Huang et al.,2003a,2003b)
-
Fig.9 Geological map of the Danba gneiss domes, which are composed of partical-melted Neoproterozoic basement in the cores and Paleozoic-Triassic Barrovian-Bachan metamorphic sediments in the mantles (modified after Huang et al., 2003a, 2003b)
-
Bt—黑云母;Gt—石榴子石;St—十字石;Ky—蓝晶石;Sil—矽线石;Melt—深熔作用;CNC—春牛场穹隆;BW—巴旺穹隆;QGL—青杠林穹隆;GC—公差穹隆;GZ—格宗穹隆
-
Bt—biotite; Gt—garnet; St—staurolite; Ky—kyanite; Sil—sillimanite; Melt—partial melting; CNC—Chunniuchang dome; BW—Bawang dome; QGL—Qinggangling dome; GC—Gongcai dome; GZ—Gezong dome
-
图10 约120 Ma以来甲基卡片麻岩穹隆剥蚀厚度估计
-
Fig.10 Estimated denudations of the Jiajika gneiss dome since ca.120 Ma
-
(3)甲基卡式富锂伟晶岩普遍伴随围岩的巴罗-巴肯式变质作用,地表出露的十字石-红柱石变质片岩是重要的找矿标志。
-
(4)在钠长石-石英伟晶岩脉中寻找锂辉石是最佳途径。
-
(5)多层次穹状花岗岩岩席是甲基卡富锂伟晶岩的控矿母岩。
-
(6)富锂伟晶岩赋存于最浅部穹状花岗岩席之上1 km的的空间范围内。
-
3 讨论与结论
-
(1)甲基卡伟晶岩型锂矿成因和花岗岩席源区的探讨依然是难题,进一步对比松潘甘孜地体内不同伟晶岩型锂矿类型十分重要。应深入调查造山带中剥露的深部混合岩基底的深熔作用、变质作用与锂(铍)矿成矿作用,厘清这些作用是否可以为甲基卡花岗岩席和锂矿提供物质来源。
-
(2)松潘甘孜地体为中国大陆最大的伟晶岩锂矿链,大量(上百个)中生代花岗岩侵位在晚三叠世的巨厚沉积岩系中。花岗岩的分类、构造侵位方式、花岗岩的成因与源区,以及与富稀有金属伟晶岩与花岗岩关系,是在新能源战略和找矿突破行动中,我们迫切需要解决的关键科学问题。
-
(3)科学钻探是深入地下的显微镜,是揭示地球深部结构的最佳科学手段。为了验证甲基卡型多层次穹状花岗岩席在松潘甘孜造山带中的其他锂矿区是否存在,经二次专家评审,南京大学卓越计划“川西伟晶岩型锂矿科学钻探”项目组决定于2023~2024年在马尔康伟晶岩型锂矿区实施科学钻探,以探求马尔康锂矿区的深部结构、花岗岩与伟晶岩型锂矿的关系,以及花岗岩的成因和源区,并与甲基卡锂矿区进行对比。
-
甲基卡科钻项目是全球首次利用科学钻探技术对伟晶岩型锂矿区进行了深部结构的探测,揭示了在3 km的深度范围内,与富锂伟晶岩有关的花岗岩并非有深根之花岗岩基。多层次的穹状花岗岩席与晚三叠世变质沉积岩系及侵位在其中的富稀有金属伟晶岩构成 “多层三明治”结构。我们进一步提出“多层次穹状花岗岩席”的伟晶岩型锂矿控矿理论,并揭示了深部的伟晶岩具有稀有金属的找矿潜力。甲基卡富锂伟晶岩有关的花岗岩席可能是类似丹巴式深地壳混合岩基底的深熔作用的产物,这一作用与松潘甘孜造山早期的基底与盖层之间的深地壳滑脱剪切有关。
-
致谢:研究过程中与陈衍景教授、张辉研究员、吴福元院士和毛景文院士等进行有益的讨论。科学钻探的实施得到四川省甘孜州雅江县政府的大力支持。
-
参考文献
-
Billerot A, Duchene S, Vanderhaeghe O, de Sigoyer J. 2017. Gneiss domes of the Danba Metamorphic Complex, Songpan Ganze, eastern Tibet. Journal of Asian Earth Sciences, 140: 48~74.
-
de Sigoyer J, Vanderhaeghe O, Duchêne S, Billerot A. 2014. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, eastern Tibetan Plateau, China. Journal of Asian Earth Sciences, 88: 192~216.
-
Dittrich T, Seifert T, Schulz B, Hagemann S, Gerdes A, Pfänder J. 2019. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia: Geology and Metallogeny of Pollucite Mineralisations. Berlin: Springer.
-
Fu Xiaofang, Hou Liwei, Wang Denghong, Yuan Linping, Liang Bin, Hao Xuefeng, Pan Meng. 2014. Achievements in the investigation and evaluation of spodumene resources at Jiajika in Sichuan, China. Geological Survey of China, 1(3): 37~43 (in Chinese with English abstract).
-
Fu Xiaofang, Yuan Linping, Wang Denghong, Hou Liwei, Pan Meng, Hao Xuefeng, Liang Bin, Tang Yi. 2015. Mineralization charecteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan. Mineral Deposits, 34(6): 1172~1186 (in Chinese with English abstract).
-
Fu Xiaofang, Hou Liwei, Liang Bin. 2017. Jiajika-type Granite-pegmatite Lithium Deposit: Metallogenic Model and Three-dimensional Prospecting Model. Beijing: Science Press (in Chinese).
-
Fu Xiaofang, Liang Bin, Zou Fuge, Hao Xuefeng, Hou Liwei. 2021. Discussion on metallogenic geological characteristics and genesis of rare polymetallic ore fields in western Sichuan. Acta Geologica Sinica, 95(10): 3054~3068 (in Chinese with English abstract).
-
Galeschuk C, Vanstone P. 2007. Exploration techniques for rare-element pegmatites in the Bird River greenstone belt, southeastern Manitoba. In: Milkereit B, ed. Proceedings of Exploration 07. Fifth Decennial International Conference on Mineral Exploration, 5: 823~839.
-
Gao Jianguo, Xu Zhiqin, Li Guangwei, Ding Feng, Das Souvik, Lian Dongyang, Zheng Bihai, Yan Haoyu, Pan Meng, Jiang Xiufang, Lu Yuxiao. 2023. Sources and petrogenesis of LateTriassic granitoids in the Yajiang gneiss dome group (eastern Songpan-Ganze orogenic belt) with tectonic implications. Ore Geology Reviews, 161: 105623.
-
Harrowfield M J, Wilson C J L. 2005. Indosinian deformation of the Songpan Garzêfold belt, northeast Tibetan Plateau. Journal of Structural Geology, 27(1): 101~117.
-
Huang M H, Buick I S, Hou L W. 2003a. Tectonometamorphic evolution of the eastern Tibet Plateau: Evidence from the central Songpan-Garzê orogenic belt, western China. Journal of Petrology, 44(2): 255~278.
-
Huang M, Maas R, Buick I S, Williams I S. 2003b. Crustal response to continental collisions between the Tibet, Indian, South China and North China blocks: Geochronological constraints from the Songpan-Garzê orogenic belt, western China. Journal of Metamorphic Geology, 21(3): 223~240.
-
Huang Tao, Fu Xiaofang, Ge Liangquan, Zou Fuge, Hao Xuefeng, Yang Rong, Xiao Ruiqing, Fan Junbo. 2020. The genesis of giant lithium pegmatite veins in Jiajika, Sichuan, China: Insights from geophysical, geochemical as well as structural geology approach. Ore Geology Reviews, 124: 103557.
-
Jin Wenkai, Che Xudong, Wang Rucheng, Xu Zhiqin, Hu Huan, Zhang Rongqing, Li Guangwei, Zheng Bihai. 2023. The deep rare metal metallogenic characteristics of the Jiajika lithium polymetallic deposit in Sichuan Province, China: Revealed by the Jiajika scientific drilling. Ore Geology Reviews, 160: 105579.
-
Li Jiankang, Li Peng, Yan Qinggao, Wang Denghong, Ren Guangli, Ding Xin. 2023. Geology and mineralization of the Songpan-Ganze-West Kunlun pegmatite-type rare-metal metallogenic belt in China: An overview and synthesis. Science China Earth Sciences, 66(8): 1702~1724.
-
Li S, Miller C F, Tao W, Xiao W, Chew D. 2021. Role of sediment in generating contemporaneous, diverse “type” granitoid magmas. Geology, 50(4): 427~431.
-
Liu Danyang, Li Guangwei, Xu Zhiqin, Zhu Wenbin, Gao Jianguo, Zheng Bihai, Yan Haoyu, Qin Yulong, Hao Xuefeng, Meng Pan. 2023. Exhumation of Jiajika lithium deposit in the eastern Tibetan Plateau: Insights from low-temperature thermochronology of the JJK scientific drilling borehole. Ore Geology Reviews, 160: 105575.
-
London D. 2008. Pegmatites. Canadian Mineralogist, Special Publication, 10, 368.
-
London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.
-
Mattauer M, Malavielle J, Calassou S, Lancelot J, Roger F, Hao Z, Xu Z, Hou L. 1992. La chaine triasique de Songpan—Ganze (oust Sichun at est Tibet): Une chaine de plissment-decollement sur marge passive. Comptes Rendus De L'Academie Des Sciences Paris, 6(314): 619~626.
-
Moyen J, Janoušek V, Laurent O, Bachmann O, Jacob J, Farina F, Fiannacca P, Villaros A. 2021. Crustal melting vs. fractionation of basaltic magmas: Part 1, granites and paradigms. Lithos, 402-403: 106291.
-
Nie S, Yin A, Rowley D B, Jin Y. 1994. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi flysch sequence, central China. Geology, 22(11): 999~1002.
-
Roger F, Malavieille J, Leloup P H, Calassou S, Xu Z. 2004. Timing of granite emplacement and cooling in the Songpan-Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences, 22(5): 465~481.
-
Roger F, Jolivet M, Malavieille J. 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic topresent: A synthesis. Journal of Asian Earth Sciences, 39(4): 254~269.
-
Şengör A M C. 1985. Tectonic subdivisons and evolution of Asia. Bulletin of Technical University of Istanbul, 46: 355~435.
-
Şengör A M C, Alt1ner D, Zabc1C, Sunal G, Lom N, Aylan E, Öner T. 2023. On the nature of the Cimmerian continent. Earth-Science Reviews, 104520.
-
Trueman D L, Černý P. 1982. Exploration for Rare-Element Granitic Pegmatites. In: Černý P, ed. Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada Short Course Handbook 8, 463~494.
-
Wang Denghong, Liu Lijun, Dai Hongzhang, Liu Shanbao, Hou Jianglong, Wu Xishun. 2017. Discussion on particularity and prospecting direction of large and super-large spodumene deposit. Earth Science, 42(12): 2243~2257 (in Chinese with English abstract).
-
Wang Denghong, Dai Hongzhang, Liu Shanbao, Wang Chenghui, Yu Yang, Dai Jingjing, Liu Lijun, Yang Yueqing, Ma Shengchao. 2020. Research and exploration progress on lithium deposits in China. China Geology, 3(1): 137~152.
-
Wang Guoguang, Zheng Fanbo, Ni Pei, Wu Yanwei, Qi Wenxiang, Li Zi'ang. 2023. Fluid properties and ore-forming process of the giant Jiajika pegmatite Li deposit, western China. Ore Geology Reviews, 160: 105613.
-
Wang He, Li Pei, Ma Hua Dong, Zhu Bing Yu, Qiu Lin, Zhang Xiao Yu, Dong Rui, Zhou Kai Lin, Wang Min, Wang Qian, Yan Qing He, Wei Xiao Peng, He Bin, Lu Hong, Gao Hao. 2017. Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum, Hetian, Xinjiang, and its prospecting implication. Geotectonica et Metallogenia. 41(6): 1053~1062 (in Chinese with English abstract).
-
Wang He, Xu Yigang, Yan Qinghe, Zhang Xiaoyu. 2021. Research progress on Bailongshan pegmatite type lithium deposit, Xinjiang. Acta Geologica Sinica, 95(10): 3085~3098 (in Chinese with English abstract).
-
Wei Haizhen, Li Weiqiang, Gao Jianguo, Wei Guangyi, Luo Xianglong, Huan Chun, Zuo Dasheng, Zhu Wenbin, Xu Zhiqin. 2023. Insights of Li-B-Fe-Nd isotopes in the JSD-1 scientific drill core to the paragenisis of the Jiajika granitic pegmatite type lithium deposit in eastern Tibetan Plateau. Acta Geologica Sinica, 97(10): 3147~3167 (in Chinese with English abstract).
-
Xiao L, Zhang H F, Clemens J D, Wang Q W, Kan Z Z, Wang K M, Ni P Z, Liu X M. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution. Lithos, 96(3-4): 436~452.
-
Xu Zhiqin, Hou Liwei, Wang Zongxiu. 1992. Orogenic Process of Songpan-Ganze Orogenic Belt of China. Beijing: Geological Publishing House, 190 (in Chinese).
-
Xu Zhiqin, Fu Xiaofang, Ma Xuxuan, Qi Xuexiang, Wu Chan, Hou Liwei, Zhao Zhongbao. 2016. The gneiss domes in Tibetan Plateau and their potential for prospecting. Acta Geologica Sinica, 90(11): 2971~2981 (in Chinese with English abstract).
-
Xu Zhiqin, Wang Ru Cheng, Zhu Wenbin, Qin Yulong, Fu Xiaofang, Li Guangwei. 2020a. Scientific drilling project of granite-pegmatite-type lithium deposit in western Sichuan: Scientific problems and significance. Acta Geologica Sinica, 94(8): 2177~2189 (in Chinese with English abstract).
-
Xu Zhiqin, Fu Xiaofang, Wang Rucheng, Li Guangwei, Zheng Yilong, Zhao Zhongbao, Lian Dongyan. 2020b. Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos, 354-355: 105281.
-
Xu Zhiqin, Zheng Bihai, Zhu Wenbin, Chen Yanjing, Li Guangwei, Gao Jianguo, Che Xudong, Zhang Rongqing, Wei Haizhen, Li Weiqiang, Wang Guoguang, Wei Guangyi, Yan Haoyu. 2023. Geologic scenario from granitic sheet to Li-rich pegmatite uncovered by Scientific Drilling at the Jiajika lithium deposit in eastern Tibetan Plateau. Ore Geology Reviews, 161: 105636.
-
Yan Qinggao, Li Jiankang, Li Xingjie, Liu Yongchao, Li Peng, Xiong Xin. 2020. Source of the Zhawulong granitic pegmatite-type lithium deposit in the Songpan-Ganzê orogenic belt, western Sichuan, China: Constrants from Sr-Nd-Hf isotopes and petrochemistry. Lithos, 378-379: 105828.
-
Yin A, Harrison T M. 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
-
Yuan C, Zhou M, Sun M, Zhao Y, Wilde S, Long X, Yan D. 2010. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 290(3-4): 481~492.
-
Zhang H, Zhang L, Harris N, Jin L, Yuan H. 2006. U-Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan-Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement. Contributions to Mineralogy and Petrology, 152(1): 75~88.
-
Zhang H, Parrish R, Zhang L, Xu W, Yuan H, Gao S, Crowley Q G. 2007. A-type granite and adakitic magmatism association in Songpan-Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 97(3-4): 323~335.
-
Zhao Hui, Chen Bin, Huang Chao, Bao Chuang, Yang Qian, Cao Rui. 2021. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: Implications for Li mineralization. Contributions to Mineralogy and Petrology, 177(1): 4.
-
Zhao Z B, Du J X, Liang F H, Wu C, Liu X J. 2019. Structure and Metamorphism of Markam gneiss dome from the eastern Tibetan Plateau and its implications for crustal thickening, metamorphism, and exhumation. Geochemistry, Geophysics, Geosystems, 20(1): 24~45.
-
Zheng Yilong, Xu Zhiqin, Li Guangwei, Lian Dongyang, Zhao Zhongbao, Ma Zeliang, Gao Wenqi. 2020. Genesis of the Markam gneiss dome within the Songpan-Ganzi orogenic belt, eastern Tibetan Plateau. Lithos, 362-363: 105475.
-
Zhou M, Yan D, Kennedy A K, Li Y, Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1): 51~67.
-
付小方, 侯立玮, 王登红, 袁蔺平, 梁斌, 郝雪峰, 潘蒙. 2014. 四川甘孜甲基卡锂辉石矿矿产调查评价成果. 中国地质调查, 1(3): 37~43.
-
付小方, 袁蔺平, 王登红, 侯立玮, 潘蒙, 郝雪峰, 梁斌, 唐屹. 2015. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型. 矿床地质, 34(6): 1172~1186.
-
付小方, 侯立玮, 梁斌. 2017. 甲基卡式花岗伟晶岩型锂矿床成矿模式与三维勘查找矿模型. 北京: 科学出版社, 1~227.
-
付小方, 梁斌, 邹付戈, 郝雪峰, 侯立玮. 2021. 川西甲基卡锂等稀有多金属矿田成矿地质特征与成因分析. 地质学报, 95(10): 3054~3068.
-
王登红, 刘丽君, 代鸿章, 刘善宝, 侯江龙, 吴西顺. 2017. 试论国内外大型超大型锂辉石矿床的特殊性与找矿方向. 地球科学, 42(12): 2243~2257.
-
王核, 李沛, 马华东, 朱炳玉, 邱林, 张晓宇, 董瑞, 周楷麟, 王敏, 王茜, 闫庆贺, 魏小鹏, 何斌, 卢鸿, 高昊. 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义. 大地构造与成矿学, 41(6): 1053~1062.
-
王核, 徐义刚, 闫庆贺, 张晓宇. 2021. 新疆白龙山伟晶岩型锂矿床研究进展. 地质学报, 95(10): 3085~3098.
-
魏海珍, 李伟强, 高建国, 魏广祎, 罗祥龙, 环淳, 左达昇, 朱文斌, 许志琴. 2023. 西甲基卡伟晶岩型锂矿科学钻探(JSD-1)岩芯Li-B-Fe-Nd同位素对成岩成矿作用的指示意义. 地质学报, 97(10): 3147~3167.
-
许志琴, 侯立玮, 王宗秀. 1992. 中国松潘-甘孜造山带的造山过程. 北京: 地质出版社: 190.
-
许志琴, 付小方, 马绪宣, 戚学祥, 吴婵, 侯立伟, 赵中宝. 2016. 青藏高原片麻岩穹窿与找矿前景. 地质学报, 90(11): 2971~2981.
-
许志琴, 王汝成, 朱文斌, 秦宇龙, 付小方, 李广伟. 2020. 川西花岗-伟晶岩型锂矿科学钻探: 科学问题和科学意义. 地质学报, 94(8): 2177~2189.
-
摘要
川西甲基卡伟晶岩型锂矿是中国大陆最大的硬岩型锂矿床。以揭示伟晶岩型锂矿深部结构和成因机制为目的的甲基卡伟晶岩型锂矿科学钻探工程(JSD)实施了一口3211.21 m (JSD-1)和两口各1000 m(JSD-2和JSD-3)的科学钻探,取得如下的创新性研究成果:① 首次发现JSD-1 中0~900 m深度的晚三叠世浊积岩经历中低压-高温巴罗-巴肯式叠加变质作用和穹状构造特征;② 揭示JSD-1的100 m深度范围的含锂辉石伟晶岩存在,以及估算了在3211 m 深度伟晶岩中的稀有金属丰度及成矿潜力;③ 利用锡石、铌钽矿和独居石的精确定年,确定JSD-1深部伟晶岩形成的两期岩浆-热液事件(210~204 Ma 和193~192 Ma);④ 流体包裹体的碱性元素(Li、Na、K、Rb、Cs)和挥发性元素 (B、As)的富集指示富锂伟晶岩高度结晶分异。利用JSD-1岩芯Li-B-Fe-Nd同位素示踪了岩浆的演化、流体出熔过程及成矿机制,揭示甲基卡伟晶岩型锂矿床的花岗岩岩浆演化过程中,岩浆结晶分异促进大量流体的出熔,从而在浅部形成钠长石锂辉石伟晶岩为主的矿体。这些结果不支持含锂伟晶岩是地壳深熔作用的直接产物;⑤ 揭示与甲基卡伟晶岩锂矿有密切成因关系的马颈子S型花岗岩体,并非前人所认为的是一个具有深根的大花岗岩基,而是由若干“无根”的穹状花岗岩席与岩席之间的变质岩及侵入其中的含矿伟晶岩群组成的“多层三明治”结构。由此我们提出了甲基卡伟晶岩型锂矿的“多层次穹状花岗岩席”颠覆性的控矿理论;⑥ 提出了在松潘甘孜造山带基墨里造山过程中(晚三叠世—早侏罗世)伟晶岩型锂矿的形成过程:经历230~190 Ma 以来的深部剪切熔融、岩浆沿裂隙向上注入、在半塑性上地壳域中沿已存在的逆冲断裂(或剪切带)生成花岗岩席岩浆库、伴随岩浆上升减压造成岩席的穹状隆起,以及围岩中伴随巴罗-巴肯式变质作用,造成在多期岩浆-热液的作用下的伟晶岩成矿过程;⑦ 提出甲基卡锂矿区的下部类似丹巴式深地壳混合岩化基底的深熔作用是甲基卡花岗岩席的成因和岩浆源区的假设;⑧ 岩芯的低温年代学反演结果表明甲基卡矿区存在三个阶段的剥露速率变化,并估算了甲基卡锂矿区成矿(<200~190 Ma)以来的总体剥蚀厚度为5±1 km,推断新生代以来甲基卡穹隆较低的剥蚀速率为该区锂矿的保存提供了重要条件;⑨ 提出甲基卡式富锂伟晶岩成矿的6大找矿标志。
Abstract
The Jiajika pegmatite-type lithium deposit in Western Sichuan is the largest hard-rock lithium deposit in China. The “Jiajika Pegmatite-type Lithium Deposit Scientific Drilling Project ”(JSD) was conducted with the aim of revealing the deep structure and ore-forming mechanism of the pegmatite-type lithium deposit. This project involved three scientific drill boreholes: a 3211.21 m borehole (JSD-1) and two 1000 m boreholes (JSD-2 and JSD-3). The following innovative research findings were obtained: ① It was discovered that the Late Triassic turbidite within the depth of 0~900 m in JSD-1 experienced medium-to-low pressure and high-temperature Barrovian-Buchan-type metamorphism, as well as deformation related to gneiss dome formation. ② Lithium-bearing pegmatites were identified within 0~100 m depth of JSD-1. The rare element abundances and mineralization potential in the pegmatites of the 3211 m deep borehole were estimated. ③ Precise isotopic dating of cassiterite, columbite-tantalite, and monazite reveals two magmatic-hydrothermal events (ca. 210~204 Ma and ca. 193~192 Ma) of the pegmatites in JSD-1. ④ The enrichment of alkaline elements (Li, Na, K, Rb, Cs) and volatile elements (B, As) in fluid inclusions indicates highly fractional crystallization of the pegmatites. Li-B-Fe-Nd isotopes of JSD-1 core samples revealed the magmatic evolution, fluid exsolution process, and ore-forming mechanism. It showed that during the magmatic evolution of the Jiajika pegmatite-type lithium deposit, magma differentiation promoted extensive fluid exsolution, leading to the formation of albite-spodumene pegmatite bodies in shallow depths, refuting the idea that the pegmatites were derived from in-situ melting of sedimentary rocks. ⑤ The study revealed the Marjinzi S-type granite body closely related to the Jiajika pegmatite lithium deposit is not a deep-seated large granite batholith, contrary to previous assumptions. Instead, it is composed of several “rootless” dome-like granitic sheets separated by multilayered metamorphic rocks and rare-element pegmatites, forming a “multi-layer sandwich” structure. This proposes a groundbreaking ore-controlling theory of “multilayered domal granitic sheets” for the Jiajika pegmatite-type lithium deposit. ⑥ The formation process of the Jiajika pegmatite-type lithium deposit during the Late-Triassic to-Early-Jurassic Cimmeria Orogeny (230~190 Ma) was outlined. It involved shear-induced melting in deep crust, magmatic ascending, forming of granitic sheets along pre-existing reverse faults (or shear zones), doming of the sheets due to magma ascent and decompression, as well as Barrovian-Buchan-type metamorphism, leading to the mineralization of the pegmatites through multiple magmatic-hydrothermal events. ⑦ Danba-type migmatization in deep crust was proposed to have provided the magma for the Jiajika granite sheets and the lithium bearing pegmatites. ⑧ Low-temperature thermochronological results from the borehole samples indicated three stages of exhumations in the Jiajika lithium deposit. The overall amount of exhumation since the mineralization (<200~190 Ma) was estimated to be 5±1 km. The lower exhumation rate of the Jiajika dome since the Cenozoic might have been a favorable condition for the preservation of the lithium deposit. ⑨ Six exploration indicators for the Jiajika-type lithium-bearing pegmatites were proposed.
关键词
甲基卡伟晶岩型锂矿 ; 科学钻探 ; 巴罗-巴肯式变质作用 ; 穹状花岗岩席 ; 多阶段岩浆-热液作用