en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

代明月,女,1984年生。副教授,硕士生导师,主要从事沉积地质学、地球生物学、遗迹学的教学和研究工作。E-mail: daimy@hpu.edu.cn。

通讯作者:

齐永安,男,1963年生。教授,博士生导师,主要从事古生物地层学、遗迹学和沉积学的教学和研究工作。E-mail: qiya@hpu.edu.cn。

参考文献
Berkeley A, Perry C T, Smithers S G, Horton B P, Taylor K G. 2007. A review of the ecological and taphonomic controls on foraminiferal assemblage development in intertidal environments. Earth-Science Reviews, 83(3-4): 205~230.
参考文献
Bischoff W D. 1985. Magnesian Calcites: Physical and Chemical Properties and Stabilities in Aqueous Solution of Synthetic and Biogenic Phases. Evanston: Northwestern University.
参考文献
Bottjer D J, Hagadorn J W, Dornbos S Q. 2000. The Cambrian substrate revolution. GSA Today, 10(9): 1~7.
参考文献
Brasier M D, Antcliffe J B, Callow R H T. 2011. Evolutionary trends in remarkable fossil preservation across the Ediacaran-Cambrian transition and the impact of metazoan mixing. In: Allison P A, Bottjer D J, eds. Taphonomy: Process and Bias Through Time. Berlin: Springer, 519~567.
参考文献
Brett C E, Liddell W D. 1978. Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology, 4(3): 329~348.
参考文献
Cherns L, Wheeley J R, Wright V P. 2011. Taphonomic bias in shelly faunas through time: Early aragonitic dissolution and its implications for the fossil record. In: Allison P A, Bottjer D J, eds. Taphonomy: Process and Bias Through Time. Berlin: Springer, 79~105.
参考文献
Christ N, Immenhauser A, Wood R A, Darwich K, Niedermayr A. 2015. Petrography and environmental controls on the formation of Phanerozoic marine carbonate hardgrounds. Earth-Science Reviews, 151: 176~226.
参考文献
Dai Mingyue, Zhang Huashan, Zheng Wei, Qi Yongan, Xing Zhifeng, Zhang Zhen. 2022. Giant ooids of microbial origin from the Zhangxia Formation (Cambrian Miaolingian Series) in North China. Journal of Palaeogeography, 11(1): 52~68.
参考文献
Dornbos S Q, Bottjer D J, Chen Junyuan. 2005. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: Evidence for the Cambrian substrate revolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1-2): 47~67.
参考文献
Dravis J. 1979. Rapid and widespread generation of recent oolitic hardgrounds on a high energy Bahamian Platform, Eleuthera Bank, Bahamas. Journal of Sedimentary Research, 49(1): 195~207.
参考文献
Droser M L, Bottjer D J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology, 16(3): 233~236.
参考文献
Feng Zengzhao, Wang Yinghua, Zhang Jisen, Zuo Wenqi, Zhang Xiulian, Hong Guoliang, Chen Jixin, Wu Shenghe, Chen Yutian, Chi Yuanling, Yang Chengyun. 1990. Lithofacies Paleogeography of the Early Paleozoic of North China Platform. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Friedman G M. 1959. Identification of carbonate minerals by staining methods. Journal of Sedimentary Research, 29(1): 87~97.
参考文献
Golonka J. 2009. Phanerozoic paleoenvironment and paleolithofacies maps. Early Paleozoic. Geologia, 35(4): 589~654.
参考文献
Hips K, Haas J. 2009. Facies and diagenetic evaluation of the Permian-Triassic boundary interval and basal Triassic carbonates: Shallow and deep ramp sections, Hungary. Facies, 55(3): 421~442.
参考文献
James N P, Choquette P W. 1983. Diagenesis 6. Limestones—The sea floor diagenetic environment. Geoscience Canada, 10(4): 162~179.
参考文献
Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1~4): 27~49.
参考文献
Kim J C, Lee Y I. 1996. Marine diagenesis of Lower Ordovician carbonate sediments (Dumugol Formation), Korea: Cementation in a calcite sea. Sedimentary Geology, 105(3-4): 241~257.
参考文献
Lee J H, Chen Jitao, Woo J. 2015. The earliest Phanerozoic carbonate hardground (Cambrian Stage 5, Series 3): Implications to the paleoseawater chemistry and early adaptation of hardground fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 172~179.
参考文献
Li Wenzheng, Zhang Jianyong, Hao Yi, Ni Chao, Tian Han, Zeng Yiyang, Yao Qianying, Shan Shujiao, Cao Jixiang, Zou Qian. 2019. Characteristics of carbon and oxygen isotopic, paleoceanographic environment and their relationship with reservoirs of the Xixiangchi Formation, southeastern Sichuan Basin. Acta Geologica Sinica, 93(2): 487~500 (in Chinese with English abstract).
参考文献
Liu Bingchen, Qi Yongan, Dai Mingyue, Bai Wanbei, Fan Yuchao, Qing Guoshuai. 2021. Benthic ecosystem engineer after the Cambrian Explosion: An example from Henan Province. Earth Science, 46(1): 148~161(in Chinese with English abstract).
参考文献
Liu Yongqing, Meng Xianghua, Ge Ming. 1999. The sea-level change forcing cycles of oolitic carbonate and cyclochrological applications. Scientia Geologica Sinica, 34(4): 442~450 (in Chinese with English abstract).
参考文献
McIlroy D, Logan G A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic-Cambrian transition. Palaios, 14(1): 58~72.
参考文献
Mckenzie N R, Hughes N C, Myrow P M, Choi D K, Park T. 2011. Trilobites and zircons link north China with the eastern Himalaya during the Cambrian. Geology, 39(6): 591~594.
参考文献
Meng Xianghua, Ge Ming, Tucker M E. 1997. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114(1): 189~222.
参考文献
Palmer T, Wilson M. 2004. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia, 37(4): 417~427.
参考文献
Paton T R, Brett C E, Kampouris G E. 2019. Genesis, modification, and preservation of complex Upper Ordovician hardgrounds: Implications for sequence stratigraphy and the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 526: 53~71.
参考文献
Pei Fang, Zhang Haiqing, Yan Guoshun, Xi Yunhong. 2008. Stratigraphic Paleontology Research of Henan Province, Early Paleozoic Era. Zhengzhou: Yellow River Water Resources Press (in Chinese with English abstract).
参考文献
Qi Yongan, Yang Xiaowei, Dai Mingyue, Li Da, Wang Min, Xing Zhifeng. 2014. Evolution of ooids and oolitic limestones and their significance from the Cambrian Series 3 in Dengfeng area, western Henan Province. Journal of Palaeogeography, 16(1): 55~64 (in Chinese with English abstract).
参考文献
Rasmussen B, Krapež B, Muhling J R. 2015. Seafloor silicification and hardground development during deposition of 2. 5 Ga banded iron formations. Geology, 43(3): 235~238.
参考文献
Reid R P, Macintyre I G, James N P. 1990. Internal precipitation of microcrystalline carbonate: A fundamental problem for sedimentologists. Sedimentary Geology, 68(3): 163~170.
参考文献
Reid R P, Macintyre I G. 1998. Carbonate recrystallization in shallow marine environments: A widespread diagenetic process forming micritized grains. Journal of Sedimentary Research, 68(5): 928~946.
参考文献
SandersD. 2003. Syndepositional dissolution of calcium carbonate in neritic carbonate environments: Geological recognition, processes, potential significance. Journal of African Earth Sciences, 36(3): 99~134.
参考文献
Shinn E A. 1969. Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology, 12(1-2): 109~144.
参考文献
Tarhan L G, Droser M L, Planavsky N J, Johnston D T. 2015. Protracted development of bioturbation through the early Palaeozoic Era. Nature Geoscience, 8(11): 865~869.
参考文献
Taylor P D, Wilson M A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62(1-2): 1~103.
参考文献
Tucker M E, Wright V P. Translated by Shen Anjiang, Wang Xiaofang. 2015. Carbonate Sedimentology. Beijing: Petroleum Industry Press.
参考文献
Van Lith Y, Warthmann R, Vasconcelos C, Mckenzie J A. 2003. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology, 1(1): 71~79.
参考文献
Vasconcelos C, Mckenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research, 67(3): 378~390.
参考文献
Wang Hongzhen, Shi Xiaoying, Wang Xunlian, Yin Honghu, Qiao Xiufu, Liu Benpei, Li Sitian, Chen Jianqiang. 2000. Research on the Sequence Stratigraphy of China. Guangzhou: Guangdong Science and Technology Press (in Chinese with English abstract).
参考文献
Wilson M A, Palmer T J. 1992. Hardgrounds and Hardground Faunas. University of Wales, Aberystwyth: Institute of Earth Studies Publications.
参考文献
Wright V P, Cherns L. 2016. How far did feedback between biodiversity and early diagenesis affect the nature of Early Palaeozoic sea floors? Palaeontology, 59 (6): 753~765.
参考文献
Xiang Liwen, Zhu Zhaoling, Li Shanji, Zhou Zhiqiang. 1999. Stratigraphical Lexicon of China-Cambrian. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
冯增昭, 王英华, 张吉森, 左文岐, 张秀莲, 洪国良, 陈继新, 吴胜和, 陈玉田, 迟元苓, 杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 地质出版社.
参考文献
李文正, 张建勇, 郝毅, 倪超, 田瀚, 曾乙洋, 姚倩颖, 山述娇, 曹脊翔, 邹倩. 2019. 川东南地区洗象池组碳氧同位素特征、古海洋环境及其与储集层的关系. 地质学报, 93(2): 487~500.
参考文献
刘炳辰, 齐永安, 代明月, 白万备, 樊钰超, 庆国帅. 2021. 寒武纪生物大爆发之后的底栖生态系统工程建造者: 以河南地区为例. 地球科学, 46(1): 148~161.
参考文献
柳永清, 孟祥化, 葛铭. 1999. 华北地台中寒武世鲕滩碳酸盐旋回沉积、古海平面变动控制及旋回年代学研究. 地质科学, 34(4): 442~450.
参考文献
裴放, 张海清, 阎国顺, 席运宏. 2008. 河南省地层古生物研究, 早古生代(华北型). 郑州: 黄河水利出版社.
参考文献
齐永安, 杨小伟, 代明月, 李妲, 王敏, 刑智峰. 2014. 豫西登封地区寒武系第三统鲕粒和鲕粒灰岩演化及其意义. 古地理学报, 16(1): 55~64.
参考文献
塔克, 赖特著, 沈安江, 王小芳, 郑剑锋, 乔占峰, 郑兴平, 张建勇译. 2015. 碳酸盐岩沉积学. 北京: 石油工业出版社.
参考文献
王鸿祯, 史晓颖, 王训练, 殷鸿福, 乔秀夫, 刘本培, 李思田, 陈建强. 2000. 中国层序地层研究. 广州: 广东科技出版社.
参考文献
项礼文, 朱兆玲, 李善姬, 周志强. 1999. 中国地层典: 寒武系. 北京: 地质出版社.
目录contents

    摘要

    华北地台南缘寒武系苗岭统碳酸盐岩硬底发育在核形石灰岩和鲕粒灰岩之上,并明显截断下伏的碳酸盐沉积物。本文通过对硬底界面之下颗粒间的放射纤维状方解石胶结物和等厚环边的微晶胶结物分析,表明其形成于早期海底胶结作用,该时期早期胶结区靠近沉积物—水界面,易受潮汐和波浪冲刷而暴露海底,并在持续搅动的高能环境中经历磨蚀和平整,形成硬底。由于硬底形成后几乎没有受到强烈改造和持续生物侵蚀的影响,通常表现出简单、平坦的表面形态。研究区馒头组二段含硬底层段形成于低、高能交替的潮间—潮下水道环境,以微晶方解石为主要的胶结剂沉淀;张夏组含硬底层段形成于台内鲕粒滩高速建造期,以物理化学沉淀和早期海底胶结作用为主。研究区出现的硬底表明,该时期海水化学条件和海底生态环境利于碳酸盐沉积物的早期胶结。硬底作为早期海底胶结作用的突出证据,对于研究碳酸盐沉积物的早期成岩作用及岩化特征具有重要意义,其形成过程及成因也为古海洋化学条件和底栖生态系统的变化提供了主要依据。

    Abstract

    Carbonate hardgrounds, developed upon oncolitic wackestone and oolitic grainstone in the Cambrian Miaolingian of the southern North China platform, exhibit a sharp truncation of underlying carbonate deposits. This study demonstrates that the presence of radial fibrous calcite cements and microcrystalline cements with a thin isopachous rim, observed between carbonate grains beneath the hardground surfaces, indicates early marine cementation.During the Cambrian, the early cementation zone was sufficiently close to the sediment-water interface to be susceptible to erosional reworking caused by tidal currents and wavescour, producing carbonate hardgrounds. Simple, planar hardgrounds represent early cemented surfaces that were subsequently exhumed during a periodof submarine erosion. These surfaces exhibit minimal modification and bioturbation post-exposure. In the study area, the hardground interval from the second member of the Mantou Formation (Cambrian Miaolingian) developed within an intertidal-subtidal channel characterized by alternation low and high-water energy. Microcrystalline calcite precipitation was the main cementing agent in this environment. Conversely, another hardground interval, from the Zhangxia Formation (Cambrian Miaolingian), formed during the construction of high-energy oolitic shoals along the platform margins. In this setting, physicochemical precipitation and early seafloor cementation were more active. The occurrence of hardgrounds in the study area provides evidence suggesting that seawater chemistry and benthic ecology were conducive to the early cementation of carbonate sediments during this period. As a prominent manifestation of early seafloor cementation, hardgrounds play a pivotal role in understanding the early diagenesis and lithification characteristics of carbonate sediments. Moreover, their formation process and genesis provide significant insights into shifts in palaeoceanographic conditions and benthic ecosystems.

  • 碳酸盐岩硬底是由海底碳酸盐沉积物通过同沉积岩化作用形成,指示原生孔隙中胶结物的快速固化,其地质记录始于古元古代(Wilson et al.,1992Rasmussen et al.,2015)。显生宙期间,碳酸盐海底的早期岩化在方解石海时期分布广泛(如奥陶纪、侏罗纪),方解石的同沉积、无机沉淀占主导地位(Wilson et al.,1992Taylor et al.,2003Palmer et al.,2004Christ et al.,2015)。研究表明,硬底作为同沉积海底岩化的突出证据,通常发育在温暖、浅层、动荡以及碳酸钙饱和的(亚)热带水域,较强的海水循环和碳酸钙过饱和是其形成的主控因素(Shinn,1969James et al.,1983Wilson et al.,1992Christ et al.,2015;沈安江等,2015;Paton et al.,2019)。硬底的形成、分布以及丰度是非生物或生物成因控制与环境相互作用的结果,通常可以反映沉积物的沉淀和侵蚀速率、海水化学条件以及水动力条件(James et al.,1983Wilson et al.,1992Christ et al.,2015)。此外,硬底通常会保留暴露初期的特征,并在埋藏后几乎不会发生压实或重塑,可为底栖生物提供稳定栖居环境,对古生态系统分析及恢复具有重要意义(Wilson et al.,1992Christ et al.,2015Paton et al.,2019)。

  • 古生代早期,扰动生物对沉积底质的改造直接影响沉积物的性质及沉积物与海水的地球化学循环(McIlroy et al.,1999Bottjer et al.,2000Dornbos et al.,2005刘炳辰等,2021),进而影响海底沉积物的早期岩化。寒武纪生物扰动深度相对较浅(<6 cm,通常为毫米级),早期形成的碳酸盐胶结层靠近沉积物—水界面,其厚度薄且易被风暴作用破坏,使硬底的形成和识别变得困难(Droser et al.,1988Brasier et al.,2011Tarhan et al.,2015Wright et al.,2016)。但随着奥陶纪后生动物垂向扰动能力增强,使早期胶结区的深度加深,降低了其暴露和剥蚀的频率,进而形成了连续、稳定的胶结层,使硬底较易识别(Wilson et al.,1992Wright et al.,2016Paton et al.,2019)。寒武纪至奥陶纪中期,硬底面表现为从简单、平坦的状态演变为表面具结壳和钻孔生物群造成的不平整或剥蚀的状态(Brett et al.,1978Wilson et al.,1992Christ et al.,2015Paton et al.,2019)。然而奥陶纪中晚期以后,后生动物掘穴深度和扰动强度的持续增加加大了沉积物混合的深度和程度,在一定程度上阻止了海底早期胶结和薄的岩化层的形成;与此同时,生物扰动和生物灌溉的深度和强度增加使得早期碳酸盐胶结区的深度不断下降以至于难以被剥露,从而导致中奥陶世后硬底发育丰度下降(Brasier et al.,2011Wright et al.,2016Paton et al.,2019)。虽然,以往对硬底生物群生态学有较好的研究,但对早期海底胶结环境和沉积底质性质的描述尚不充分,且在特定时期内(如寒武纪和二叠纪—三叠纪之交),钻孔和结壳生物的相对稀缺也会导致古硬底的识别变得困难(James et al.,1983Wilson et al.,1992Hips et al.,2009Christ et al.,2015Lee et al.,2015)。因此,对寒武纪硬底的识别,分析其形成过程和成因,对了解寒武纪早期海底胶结与海底生态环境的相关性具有重要意义。

  • 本文以河南卫辉、淇县地区华北地台南缘寒武系苗岭统碳酸盐岩硬底为实例,探讨寒武系碳酸盐岩硬底的形成原因及过程,强调其早期海底胶结作用特殊性在于缺乏底栖生物扰动的侵蚀改造。

  • 1 地质背景与地层概况

  • 华北板块寒武纪位于Gondwana大陆的印度和澳大利亚边缘,北纬30°至赤道之间,以陆表浅海相碎屑岩-碳酸盐岩沉积为主(冯增昭等,1990Golonka,2009;McKenzie et al.,2011);地层序列与沉积构造受海底深度变化的控制(冯增昭等,1990Meng Xianghua et al.,1997王鸿祯等,2000)。研究区处华北板块南缘,寒武系以浅海碳酸盐岩沉积为主,缺失纽芬兰统和第二统下部,第二世开始的海侵主要以陆源碎屑岩-碳酸盐岩混合相为主(冯增昭等,1990项礼文等,1999裴放等,2008)(图1)。在研究剖面上,馒头组与下伏中元古界汝阳群云梦山组厚层变余石英砂岩呈不整合接触。第二统馒头组一段由潮坪相—局限台地相页岩夹薄层粉屑白云岩、泥晶白云岩或砂屑泥晶白云质灰岩组成,含暴露构造,反映潮上泥坪环境;苗岭统馒头组二段为潮坪相泥质粉砂岩、粉砂质页岩,上部为开阔台地相碳酸盐岩—潮坪相砂岩和页岩,反映潮上—潮间泥坪、灰泥坪和砂泥混合坪环境;苗岭统馒头组三段为潮坪相粉砂岩、粉砂质页岩,其上部为台缘浅滩相亮晶鲕粒灰岩,反映潮间带砂泥混合坪、灰泥坪逐渐向碳酸盐岩台地演化趋势;苗岭统张夏组为滨—浅海相鲕粒灰岩、鲕粒白云岩、生物碎屑灰岩和微生物岩沉积,反映高能鲕粒滩环境(裴放等,2008)。馒头组二段和张夏组上部可识别出硬底界面,其中馒头组二段的硬底发育在含灰泥条带核形石灰岩与核形石-叠层石灰岩组合之间,张夏组上部的硬底发育于厚层鲕粒灰岩夹少量薄层微晶灰岩中。

  • 2 材料与方法

  • 本文所研究的样品采自河南卫辉、淇县地区寒武系苗岭统碳酸盐岩。在露头剖面观察其宏观特征。于室内,将样品用环氧树脂浸泡,制备薄片,薄片半区域茜素红染色(Friedman,1959),利用Axio Imager M2偏光显微镜观察其微观特征。

  • 制备X射线衍射仪(XRD)粉末样品和稳定碳氧同位素粉末样品。16个样品取样位置集中在硬底面附近和碳酸盐颗粒间充填的区域。在Rigaku Ultima Ⅳ X射线衍射仪上使用CuKα射线通过粉末X射线衍射(XRD)测定样品的矿物组成。步长设置0.02°2θ,扫描范围10°~80°2θ,扫描速度2°/min。使用Jade6软件对样品的XRD图谱进行物相检索和半定量分析。稳定碳氧同位素测试使用Thermo-Finnigan Deltaplus XP连续气流同位素质谱仪分析粉末样品的碳、氧同位素组成。随机选取两组样品进行重复测量,δ13C的误差为0.05‰,δ18O的误差为0.1‰。所有同位素测试结果以维也纳白垩纪Pee Dee组箭石(V-PDB)为标准,分析时采用碳酸盐同位素标准物质NBS-19、NBS-23进行校准,测试标准偏差分别为δ13C<0.01‰、δ18O<0.05‰。

  • 3 苗岭统硬底

  • 3.1 馒头组硬底特征

  • 馒头组二段的硬底发育在含灰泥条带核形石灰岩与核形石-叠层石灰岩组合之间(图2a、b)。硬底界面的下伏地层为含灰泥条带核形石灰岩。核形石近水平分布,呈椭圆状,核心和纹层不规则,其间发育不连续状泥质条带,少见其他颗粒。以此可判断硬底之下为低、高能交替的潮间水道环境。硬底界面的上覆地层为核形石-叠层石灰岩。叠层石呈缓波状,纹层发育规则,横向连续性较好,其间为砾屑、生物碎屑与土黄色泥质填充;核形石形状呈帽状—圆状,核心和纹层结构较为规则,表明该层段形成于低、高能交替的潮间—潮下水道环境。岩性组合与沉积特征表明,馒头组二段含硬底层段的沉积环境和沉积相序受控于海平面升降和水体能量变化(图6,A处)。

  • 图1 华北地台早—中寒武世沉积古地理(a)(据冯增昭等,1990修改)与河南卫辉、淇县地区寒武系第二统—苗岭统地层序列(b)(据裴放等,2008修改)

  • Fig.1 Paleogeography of Early-Middle Cambrian in North China platform (a) (modified from Feng Zengzhao et al., 1990) ,and strgraphic sequence of Cambrian Series 2-Miaolingian in Weihui and Qixian of northern Henan Province (b) (modified from Pei Fang et al., 2008)

  • 在微观尺度上,核形石明显被硬底界面截断,其间充填泥晶或微晶方解石基质,少见鲕粒等颗粒(图2c~e)。硬底界面下方的凝块状颗粒边缘可见薄的等厚微晶胶结物(图2e);其上方可见由微晶方解石内部沉淀形成的示顶沉积物(图2c)。XRD结果显示,该层段沉积物由方解石和石英组成(图3a)。为进一步明确基质中胶结物和微晶沉淀的矿物组成,在 Mg-Ca系列的碳酸盐矿物体系中,可以根据以下经验公式计算其中 MgCO3的摩尔百分含量,即MgCO3(%)=(-363.96d+1104.05)(Bischoff,1985),其中d代表三方晶系碳酸盐矿物(104)晶面的衍射峰位置。一般认为,在Mg-Ca系列的碳酸盐矿物中,MgCO3(%)<4%时为低镁方解石(Christ et al.,2015);在35%~52%时则为钙白云石或白云石(Vasconcelos et al.,1997Van Lith et al.,2003)。计算结果显示,该层段样品MgCO3摩尔含量均小于4%(图4),表明基质中胶结物和微晶沉淀由低镁方解石组成。

  • 碳酸盐岩样品氧同位素测试结果显示,其氧同位素比值(δ18O)为-10.71‰~-9.99‰(表1),平均值为-10.337‰(小于-10‰),表明该层段遭受了剧烈的成岩蚀变作用(Kaufman et al.,1995)。该结果也可用于解释由于受早期重结晶作用和晚期成岩作用的影响,导致该层段缺乏明显的海水胶结物,其同沉积或早期成岩特征并不明显(James et al.,1983Reid et al.,1998Christ et al.,2015)。

  • 图2 寒武系苗岭统馒头组二段核形石灰岩上发育的硬底面,河南卫辉地区池山河剖面

  • Fig.2 The hardground surface developed on oncolitic wackestone in the second member of Mantou Formation of Cambrian Miaolingian from the Chishanhe section in Weihui, Henan Province

  • (a)—硬底层段的露头剖面特征,红色箭头标记硬底面位置;(b)—图2a的局部放大,硬底之上被缓波状叠层石覆盖(蓝色箭头标记);(c)—核形石被硬底面截断,其上可见由微晶方解石内部沉淀形成的示顶沉积(黑色箭头标记);(d)—硬底面截断下伏的核形石,其上覆缓波状叠层石,围岩中充填有砾屑、生物碎屑和鲕粒;(e)—图2d中红色方框部分的放大,可见暗色凝块状颗粒边缘形成的等厚环边的微晶方解石;(a、b)为野外照片;(c、d、e)为薄片显微照片

  • (a) —outcrop profile characteristics of the hardground interval, where the hardground surface is marked by red arrow; (b) —a close up view of Fig.2a, the hardground surface is covered by wavy stromatolites (marked by blue arrow) ; (c) —oncoids are sharply cut by hardground surface, above which is visible as geopetal sediments formed by internal precipitation of microcrystalline calcite (marked by black arrow) ; (d) —oncoids are sharply truncated by hardground surface, which are overlain by wavy stromatolites, and the surrounding rocks are filled with gravels, bioclasts, and ooids; (e) —a close up view of red rectangle in Fig.2d, visible microcrystalline calcite may fringe dark clotted grains forming a thin isopachous rim; (a, b) field photographs; (c, d, e) thin section microphotographs

  • 宏观和微观观察之间的不一致可以通过证明馒头组二段沉积物中的海水成岩作用存在微晶方解石沉淀来加以解释。考虑到水力等效性,粗颗粒(内碎屑和生物碎屑)和泥晶化沉积物不能同时堆积(Reid et al.,1990Kim et al.,1996)。如果在粗粒内碎屑和生物碎屑沉积后通过渗透带入泥晶,则其成分必须与上覆泥质沉积物的成分相似,但在暗色凝块状颗粒边缘明显可见薄的等厚微晶层(图2e),表明颗粒周围的泥晶质主要为原始沉淀而非渗透而来。海底胶结作用结束后,硬底上部仍可能保留大量的原生孔隙(Wilson et al.,1992)。通常,内部沉淀形成的微晶覆盖在早期胶结物上,使硬底上部的孔隙显示出示顶的沉积特征(图2c)。这些早期岩化特征大部分由泥晶沉积物组成,可以推断是以微晶方解石为岩化剂通过泥晶沉积物的岩化而形成(即海水胶结物)(Kim et al.,1996)。由于孔隙尺寸较小,在低、高能交替的潮间—潮下水道环境中,大量的细粒沉积物(泥质沉积物和沉淀的泥晶)也有利于微晶方解石作为主要的胶结剂沉淀(Wilson et al.,1992)。

  • 3.2 张夏组上部硬底特征

  • 张夏组上部含硬底层段发育于中厚层鲕粒灰岩夹少量薄层微晶灰岩中,可见硬底面位于鲕粒灰岩层上部,并明显截断下伏鲕粒(图5a)。硬底界面之下,鲕粒含量较高,以白云化的同心鲕、微晶鲕为主,粒径极小,鲕粒边缘可见放射纤维状方解石胶结物,颗粒间可见块状亮晶方解石胶结物 (图5c~e)。由此,可以推断该时期处于持续动荡的高能环境,以物理化学沉淀和海底胶结作用为主。硬底界面之上为柱状叠层石灰岩,叠层石间为泥质填充,未观察到其他颗粒(图5b)。沉积物从颗粒灰岩转变为微晶灰岩,表明水动力条件减弱,沉积环境由滩相环境演变为低能的滩后环境(图6,B处)。

  • 图3 河南卫辉、淇县地区部分碳酸盐岩样品的XRD图谱

  • Fig.3 X-ray diffraction patterns of partial carbonate samples in Weihui and Qixian of northern Henan Province

  • (a)—馒头组二段部分碳酸盐岩样品,主要物相为方解石,含少量石英,池山河剖面;(b)—张夏组部分碳酸盐岩样品,主要物相为方解石和白云石,云梦山景区

  • (a) —the partial carbonate samples of the second member of Mantou Formation in Chishanhe section, in which calcite is the main phase, with a small amount of quartz; (b) —the partial carbonate samples of Zhangxia Formation in Yunmengshan scenic area, in which calcite and dolomite are the main phases

  • XRD结果显示,该层段沉积物以低镁方解石和白云石为主,局部含少量石英(图3b、图4)。白云石含量从底部的25.9%增加到顶部的45.95%,在中部和上部层段急剧增加。鲕粒颗粒与亮晶胶结物之间的差异性白云化现象较为常见。该组样品的氧同位素比值(δ18O)为-8.88‰~-6.99‰(均大于-10‰),在均值-8.09‰处波动(表1);碳同位素比值(δ13C)为-0.734‰~0.677‰,处于正常海相碳酸盐岩的δ13C值范围(0±2‰),其自下而上表现为先降低后增高,体现出海平面先下降后上升的过程(李文正等,2019)。海平面升降引起的海水深度变化和动荡程度,控制了海底碳酸盐沉积物沉积速率,进而影响海底的早期岩化。

  • 表1 河南卫辉、淇县地区馒头组二段(池山河剖面)和张夏组(云梦山景区)碳酸盐岩样品碳氧同位素测试数据和古盐度指数Z

  • Table1 Testing results of carbon and oxygen isotopes of carbonate samples from the second member of Mantou Formation (Chishanhe section) and Zhangxia Formation (Yunmengshan scenic area) in Weihui and Qixian of northern Henan Province, and the resulting paleosalinity index Z values

  • 受华北地台跷跷板式抬升隆起以及相对平缓的海退作用影响,张夏组沉积晚期研究区处于台内鲕粒滩高速建造阶段,其特点为活跃的物理化学沉淀和强烈的海底胶结(柳永清等,1999齐永安等,2014)。垂直于鲕粒生长的放射纤维状方解石胶结物表明其形成于早期海底胶结作用(塔克等,2015)。在等厚环边的低镁方解石胶结物形成之后,块状亮晶方解石胶结物填充剩余的粒间孔隙。粒间胶结是主要的胶结过程,它将松散的碳酸盐沉积物与粒间沉淀的方解石胶结物相互结合,从而形成胶结的碳酸盐沉积层(Dravis,1979Wilson et al.,1992)。通常情况下,在碳酸盐海底环境中,逐渐生长的胶结物会迅速堵塞孔隙,使得孔隙水循环速率和沉积物渗透性降低,从而将海水胶结作用限制在海底以下的特定深度(早期胶结区)(Shinn,1969Wright et al.,2016)。由于该时期鲕粒滩持续处于正常浪基面之上,波浪、潮汐水体的双向运动在有效阻止沉积物沉积的同时,也提高了沉积物-水界面处的水循环速率,为碳酸盐沉积层的早期胶结和随后的侵蚀剥露提供了理想条件(Shinn,1969Wilson et al.,1992Christ et al.,2015Paton et al.,2019)。

  • 图4 河南卫辉、淇县地区馒头组二段(池山河剖面)和张夏组(云梦山景区)碳酸盐岩样品中 MgCO3(%)摩尔百分含量和各种矿物组分的相对含量

  • Fig.4 Amount of MgCO3 (%, mole percent) and the relative content of various mineral components within carbonate samples from the second member of Mantou Formation (Chishanhe section) and Zhangxia Formation (Yunmengshan scenic area) in Weihui and Qixian of northern Henan Province

  • XRD—X射线衍射;d104—碳酸盐矿物(104)晶面的衍射峰位置

  • XRD—X-ray diffraction; d104—diffraction peak positions of the (104) crystal face of carbonate minerals

  • 4 讨论

  • 4.1 硬底成因

  • 在低纬度浅海碳酸盐环境中,海底成岩作用主要包括胶结物沉淀、微生物泥晶化对颗粒的改造和其他生物对其钻孔(塔克等,2015)。通常,海底的早期岩化可以通过一些宏观的识别标准进行确定,如颗粒边缘等厚环边的胶结物、颗粒或胶结物被截断、表面被矿物浸染或被生物结壳或钻孔等,也可以通过海水胶结物进行识别(James et al.,1983Wilson et al.,1992Christ et al.,2015塔克等,2015)。硬底作为早期海底岩化的突出证据,是由原生孔隙中碳酸盐胶结物沉淀并在原地固化而成,其形成受周围海水和孔隙水碳酸钙饱和度以及流体交换速率的强烈影响(James et al.,1983; Wilson et al.,1992Kim et al.,1996Christ et al.,2015Lee et al.,2015)。在水体较为动荡的浅海区域,水流在阻止沉积物沉积的同时,还可以增强沉积物-水界面处的水循环速率,为早期胶结提供碳酸钙离子,有利于硬底发育(Shinn,1969Wilson et al.,1992Christ et al.,2015)。

  • Wright et al.(2016)提出,古生代浅—中等深度的生物扰动与硬底丰度之间存在相关性。在古生代早期,底栖生物扰动对沉积底质的改造强烈地影响着沉积物—水界面处的物质交换、氧化还原不连续界面的深度(McIlroy et al.,1999Bottjer et al.,2000Dornbos et al.,2005),进而影响浅层沉积物中的早期胶结区(图7)。扰动生物对沉积物的混合增加了沉积物的渗透性及沉积物与海水的地球化学循环,在一定程度上提高了碳酸盐胶结物的沉淀速率,对碳酸盐沉积层的早期胶结有一定的积极影响(Droser et al.,1988Bottjer et al.,2000Paton et al.,2019; 刘炳辰等,2021)。然而,随着扰动生物掘穴深度和强度的增加,沉积物的生物混合将阻止早期海底胶结和薄的岩化层的形成,并对早期胶结区产生不同程度的改造和侵蚀破坏(Christ et al.,2015Wright et al.,2016Paton et al.,2019)。当生物扰动和生物灌溉的深度和强度继续增加时,早期碳酸盐胶结区的深度下降至无法被剥露,导致中奥陶世之后硬底丰度下降(图8)(Brasier et al.,2011Wright et al.,2016Paton et al.,2019)。

  • 图5 寒武系苗岭统张夏组鲕粒灰岩上发育的硬底面,河南淇县云梦山景区

  • Fig.5 The hardground surface developed on oolitic grainstone in Zhangxia Formation of Cambrian Miaolingian from the Yunmengshan scenic area in Qixian, Henan Province

  • (a)—硬底层段的露头剖面特征,红色箭头标记硬底面位置;(b)—图5a的局部放大,硬底面被柱状叠层石覆盖(黑色箭头标记);(c)—鲕粒被硬底面截断,其上被微晶灰岩覆盖;(d)—垂直于鲕粒生长的纤维状胶结物,一些鲕粒被微晶质和/或亮晶质取代;(e)—鲕粒内形成的硬底面;红色虚线指示硬底面,(a、b)为野外照片,(c、d、e)为薄片显微照片

  • (a) —outcrop profile characteristics of the hardground interval, where thehardground surface is marked by red arrow; (b) —a close up view of Fig.5a, the hardground surface is covered by small columnar stromatolites (marked by black arrow) ; (c) —ooids are sharply truncated by hardground surface, and overlain by micrites; (d) —radial fibrous cements growing perpendicular to the ooids, and some ooids are replaced by micrites and/or sparites; (e) —a hardground surface developed within oolite; red dotted line marks the hardground surface, (a, b) are field photographs, (c, d, e) are the thin section microphotographs

  • 研究区寒武系苗岭统识别出的硬底表明,沉积环境利于碳酸盐沉积物的早期胶结,并在其被侵蚀剥露后形成硬底:首先,寒武纪低且浅的生物扰动在增加海底表层沉积物孔隙度和含氧量的同时,并不会对早期碳酸盐胶结区构成破坏(Droser et al.,1988Wright et al.,2016),使得该区域碳酸盐沉积物得以积累并岩化;其次,海平面升降引起的水体动荡在阻止沉积物沉积的同时,还提高了沉积物-水界面处的水循环速率,从而为碳酸盐沉积层的早期岩化提供足够的碳酸钙离子。在风暴间歇期,形成的碳酸盐胶结层受水流和波浪冲刷而暴露在海底,经磨蚀、平整后形成硬底(James et al.,1983Wilson et al.,1992Wright et al.,2016Paton et al.,2019)。此外,由于寒武纪很少出现结壳和大型钻孔生物,硬底形成后几乎没有受到强烈的生物改造和破坏,通常表现出简单、平坦的表面形态(Wilson et al.,1992Lee et al.,2015Paton et al.,2019)。

  • 图6 河南卫辉、淇县地区硬底沉积环境示意图(据Dai Mingyue et al.,2022修改)

  • Fig.6 Schematic diagram showing depositional environment of hardgrounds in Weihui and Qixian of northern Henan Province (modified from Dai Mingyue et al., 2022)

  • A、B—两种硬底的形成环境

  • A, B—the formation environment of two types of hardgrounds

  • 4.2 硬底的形成过程

  • 在研究区域,硬底发育于颗粒灰岩/粒泥灰岩层上部,其形成过程主要分为两个阶段:碳酸盐沉积层的早期胶结和侵蚀剥露。起初,碳酸盐颗粒(如鲕粒和核形石)在动荡的浅水环境中沉淀,并在浅埋过程中形成未固结的碳酸盐沉积层。与此同时,同沉积的成岩作用会引起碳酸钙转移,使得孔隙水中碳酸钙过饱和(来自硫酸盐还原代谢和埋藏活动带(TAZ)中溶解释放的碳酸钙),导致其作为早期胶结物在颗粒间沉淀(Sanders,2003;Berkeley et al.,2007Cherns et al.,2011Wright et al.,2016Paton et al.,2019)。TAZ中溶解释放的碳酸钙很大程度上是由H2S氧化而导致孔隙水的酸性增强,虽然大部分从孔隙水回流到水体中,但有些仍通过扩散转移至TAZ下方的早期胶结区,并以方解石的形式重新沉淀(图7)(Sanders 2003;Wright et al.,2016)。早期胶结区一般很薄(<1 m),通常位于沉积物-水界面下相对恒定的深度。如果其上覆沉积物的沉积速率较高,该区域将会随着沉积物的积累而不断向上移动,从而导致碳酸盐沉积物岩化时间不足,无法形成胶结层(Wright et al.,2016Paton et al.,2019)。因此,若使早期胶结区保持在沉积物内相对恒定的位置,极少或没有沉积物积累十分关键(Wilson et al.,1992Christ et al.,2015Paton et al.,2019)。就寒武纪而言,早期胶结区相对较浅,足够靠近沉积物-水界面。由于生物扰动强度较低,较浅的早期胶结区没有或很少被破坏。加之,海平面升降引起水体较为动荡,使其上覆沉积物的积累速率十分缓慢,有利于碳酸盐沉积层的岩化,形成早期胶结层(图9a)。在随后的海底侵蚀期,波浪和潮汐水体冲刷并剥蚀了其上覆未完全岩化的沉积物,最终导致早期胶结层暴露在海底。在此期间,早期胶结层在持续搅动的高能环境中经历磨蚀和平整,从而形成平坦的、截断下伏沉积物的硬底面(图9b、c)。停积期结束后,硬底面之上开始接受沉积,微生物岩在其上开始发育(图9d、e)。

  • 图7 碳酸盐海底附近的成岩环境(据Cherns et al.,2011修改)

  • Fig.7 Diagenetic environment near a carbonate seafloor (modified from Cherns et al., 2011)

  • 埋藏活动带(TAZ)的生物扰动沉积物通过有机物质分解和再氧化(如产生H2S)使其酸性提高,导致文石质和高镁方解石质壳的溶解,从而释放碳酸盐并留下铸模; 早期溶解释放的碳酸盐通过扩散转移至TAZ下方的早期胶结区,并以方解石的形式重新沉淀

  • Increased acidity of bioturbated sediments in the TAZ through decay of organic matter and reoxidation, for example producing H2S, leads to dissolution of aragonite and high-Mg calcite shells, which releases carbonate and leaves moulds; carbonate liberated from early dissolution is transferred by diffusion to the early cementation zone below the TAZ and reprecipitates as calcite

  • 5 结论

  • (1)华北地台南缘寒武系苗岭统碳酸盐岩硬底发育于鲕粒灰岩和核形石灰岩之上,并明显截断下伏碳酸盐颗粒。研究区寒武纪苗岭世地层中可以识别出两组含硬底层段:①馒头组二段硬底形成于低、高能交替的潮间—潮下水道环境。硬底面发育在海平面频繁变化的时期,以微晶方解石为主要岩化剂,为泥晶沉积物岩化而成,其上可见由微晶方解石内部沉淀形成的示顶沉积物。②张夏组含硬底层段形成于台内鲕粒滩高速建造期,物理化学沉淀和海底胶结较为活跃,颗粒边缘可识别出纤维状低镁方解石胶结物,其后发育块状亮晶方解石胶结物。

  • 图8 早古生代浅海碳酸盐沉淀的成岩模式(据Wright et al.,2016修改)

  • Fig.8 Diagenetic model for shallow marine carbonate precipitation in the early Palaeozoic (modified from Wright et al., 2016)

  • SWI—沉积物水界面;TAZ—埋藏活动带;图中显示了早古生代浅海海底碳酸盐相的变化;随着生物扰动和生物灌溉的深度和强度持续增加,埋藏活动带(TAZ)下方的早期碳酸盐胶结区不断下移和增厚

  • SWI—the sediment-water interface; TAZ—the taphonomically active zone; this figure shows changes in the carbonate facies of the shallow seafloor in the Early Palaeozoic; as the depth and intensity of bioturbation and biological irrigation continue to increase, the early carbonate cementation zone beneath the taphonomically active zone (TAZ) is continuously deepening and thickening

  • 图9 寒武系碳酸盐岩硬底的形成过程

  • Fig.9 Models of the formation of carbonate hardgrounds in the Cambrian

  • (a)—碳酸盐沉积层早期胶结;(b、c)—岩化碳酸盐沉积层经历剥蚀改造,硬底形成;(d、e)—硬底之上发育微生物岩;SWI—沉积物—水界面;TAZ—埋藏活动带

  • (a) —early cementation of carbonate sedimentary layers; (b, c) —lithified carbonate experienced erosional reworking, which made hardgrounds formation; (d, e) —microbialite develops above hardgrounds; SWI—the sediment-water interface; TAZ—the taphonomically active zone

  • (2)研究区寒武系苗岭统中出现的硬底表明,该时期海水化学条件和海底生态环境利于碳酸盐沉积物的早期胶结和随后的侵蚀剥露。寒武纪低且浅的生物扰动在增加海底表层沉积物孔隙度和含氧量的同时,并没有破坏早期碳酸盐胶结区,使得该区域碳酸盐沉积物得以积累并岩化;此外,海平面升降引起水体较为动荡,使其上覆沉积物的积累速率十分缓慢,有利于碳酸盐沉积层的岩化,形成早期胶结层。在随后的海底侵蚀期,波浪和潮汐水体冲刷并剥蚀了其上覆未完全岩化的沉积物,导致早期胶结层暴露在海底,而后经历磨蚀、平整,形成硬底。由于寒武纪缺乏结壳和大型钻孔生物,硬底形成后几乎没有受到强烈的生物改造和破坏,通常表现出简单、平坦的表面形态。缺乏底栖生物扰动的侵蚀和改造是寒武纪硬底形成的重要特征。

  • 参考文献

    • Berkeley A, Perry C T, Smithers S G, Horton B P, Taylor K G. 2007. A review of the ecological and taphonomic controls on foraminiferal assemblage development in intertidal environments. Earth-Science Reviews, 83(3-4): 205~230.

    • Bischoff W D. 1985. Magnesian Calcites: Physical and Chemical Properties and Stabilities in Aqueous Solution of Synthetic and Biogenic Phases. Evanston: Northwestern University.

    • Bottjer D J, Hagadorn J W, Dornbos S Q. 2000. The Cambrian substrate revolution. GSA Today, 10(9): 1~7.

    • Brasier M D, Antcliffe J B, Callow R H T. 2011. Evolutionary trends in remarkable fossil preservation across the Ediacaran-Cambrian transition and the impact of metazoan mixing. In: Allison P A, Bottjer D J, eds. Taphonomy: Process and Bias Through Time. Berlin: Springer, 519~567.

    • Brett C E, Liddell W D. 1978. Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology, 4(3): 329~348.

    • Cherns L, Wheeley J R, Wright V P. 2011. Taphonomic bias in shelly faunas through time: Early aragonitic dissolution and its implications for the fossil record. In: Allison P A, Bottjer D J, eds. Taphonomy: Process and Bias Through Time. Berlin: Springer, 79~105.

    • Christ N, Immenhauser A, Wood R A, Darwich K, Niedermayr A. 2015. Petrography and environmental controls on the formation of Phanerozoic marine carbonate hardgrounds. Earth-Science Reviews, 151: 176~226.

    • Dai Mingyue, Zhang Huashan, Zheng Wei, Qi Yongan, Xing Zhifeng, Zhang Zhen. 2022. Giant ooids of microbial origin from the Zhangxia Formation (Cambrian Miaolingian Series) in North China. Journal of Palaeogeography, 11(1): 52~68.

    • Dornbos S Q, Bottjer D J, Chen Junyuan. 2005. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: Evidence for the Cambrian substrate revolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1-2): 47~67.

    • Dravis J. 1979. Rapid and widespread generation of recent oolitic hardgrounds on a high energy Bahamian Platform, Eleuthera Bank, Bahamas. Journal of Sedimentary Research, 49(1): 195~207.

    • Droser M L, Bottjer D J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology, 16(3): 233~236.

    • Feng Zengzhao, Wang Yinghua, Zhang Jisen, Zuo Wenqi, Zhang Xiulian, Hong Guoliang, Chen Jixin, Wu Shenghe, Chen Yutian, Chi Yuanling, Yang Chengyun. 1990. Lithofacies Paleogeography of the Early Paleozoic of North China Platform. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Friedman G M. 1959. Identification of carbonate minerals by staining methods. Journal of Sedimentary Research, 29(1): 87~97.

    • Golonka J. 2009. Phanerozoic paleoenvironment and paleolithofacies maps. Early Paleozoic. Geologia, 35(4): 589~654.

    • Hips K, Haas J. 2009. Facies and diagenetic evaluation of the Permian-Triassic boundary interval and basal Triassic carbonates: Shallow and deep ramp sections, Hungary. Facies, 55(3): 421~442.

    • James N P, Choquette P W. 1983. Diagenesis 6. Limestones—The sea floor diagenetic environment. Geoscience Canada, 10(4): 162~179.

    • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1~4): 27~49.

    • Kim J C, Lee Y I. 1996. Marine diagenesis of Lower Ordovician carbonate sediments (Dumugol Formation), Korea: Cementation in a calcite sea. Sedimentary Geology, 105(3-4): 241~257.

    • Lee J H, Chen Jitao, Woo J. 2015. The earliest Phanerozoic carbonate hardground (Cambrian Stage 5, Series 3): Implications to the paleoseawater chemistry and early adaptation of hardground fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 172~179.

    • Li Wenzheng, Zhang Jianyong, Hao Yi, Ni Chao, Tian Han, Zeng Yiyang, Yao Qianying, Shan Shujiao, Cao Jixiang, Zou Qian. 2019. Characteristics of carbon and oxygen isotopic, paleoceanographic environment and their relationship with reservoirs of the Xixiangchi Formation, southeastern Sichuan Basin. Acta Geologica Sinica, 93(2): 487~500 (in Chinese with English abstract).

    • Liu Bingchen, Qi Yongan, Dai Mingyue, Bai Wanbei, Fan Yuchao, Qing Guoshuai. 2021. Benthic ecosystem engineer after the Cambrian Explosion: An example from Henan Province. Earth Science, 46(1): 148~161(in Chinese with English abstract).

    • Liu Yongqing, Meng Xianghua, Ge Ming. 1999. The sea-level change forcing cycles of oolitic carbonate and cyclochrological applications. Scientia Geologica Sinica, 34(4): 442~450 (in Chinese with English abstract).

    • McIlroy D, Logan G A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic-Cambrian transition. Palaios, 14(1): 58~72.

    • Mckenzie N R, Hughes N C, Myrow P M, Choi D K, Park T. 2011. Trilobites and zircons link north China with the eastern Himalaya during the Cambrian. Geology, 39(6): 591~594.

    • Meng Xianghua, Ge Ming, Tucker M E. 1997. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114(1): 189~222.

    • Palmer T, Wilson M. 2004. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia, 37(4): 417~427.

    • Paton T R, Brett C E, Kampouris G E. 2019. Genesis, modification, and preservation of complex Upper Ordovician hardgrounds: Implications for sequence stratigraphy and the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 526: 53~71.

    • Pei Fang, Zhang Haiqing, Yan Guoshun, Xi Yunhong. 2008. Stratigraphic Paleontology Research of Henan Province, Early Paleozoic Era. Zhengzhou: Yellow River Water Resources Press (in Chinese with English abstract).

    • Qi Yongan, Yang Xiaowei, Dai Mingyue, Li Da, Wang Min, Xing Zhifeng. 2014. Evolution of ooids and oolitic limestones and their significance from the Cambrian Series 3 in Dengfeng area, western Henan Province. Journal of Palaeogeography, 16(1): 55~64 (in Chinese with English abstract).

    • Rasmussen B, Krapež B, Muhling J R. 2015. Seafloor silicification and hardground development during deposition of 2. 5 Ga banded iron formations. Geology, 43(3): 235~238.

    • Reid R P, Macintyre I G, James N P. 1990. Internal precipitation of microcrystalline carbonate: A fundamental problem for sedimentologists. Sedimentary Geology, 68(3): 163~170.

    • Reid R P, Macintyre I G. 1998. Carbonate recrystallization in shallow marine environments: A widespread diagenetic process forming micritized grains. Journal of Sedimentary Research, 68(5): 928~946.

    • SandersD. 2003. Syndepositional dissolution of calcium carbonate in neritic carbonate environments: Geological recognition, processes, potential significance. Journal of African Earth Sciences, 36(3): 99~134.

    • Shinn E A. 1969. Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology, 12(1-2): 109~144.

    • Tarhan L G, Droser M L, Planavsky N J, Johnston D T. 2015. Protracted development of bioturbation through the early Palaeozoic Era. Nature Geoscience, 8(11): 865~869.

    • Taylor P D, Wilson M A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62(1-2): 1~103.

    • Tucker M E, Wright V P. Translated by Shen Anjiang, Wang Xiaofang. 2015. Carbonate Sedimentology. Beijing: Petroleum Industry Press.

    • Van Lith Y, Warthmann R, Vasconcelos C, Mckenzie J A. 2003. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology, 1(1): 71~79.

    • Vasconcelos C, Mckenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research, 67(3): 378~390.

    • Wang Hongzhen, Shi Xiaoying, Wang Xunlian, Yin Honghu, Qiao Xiufu, Liu Benpei, Li Sitian, Chen Jianqiang. 2000. Research on the Sequence Stratigraphy of China. Guangzhou: Guangdong Science and Technology Press (in Chinese with English abstract).

    • Wilson M A, Palmer T J. 1992. Hardgrounds and Hardground Faunas. University of Wales, Aberystwyth: Institute of Earth Studies Publications.

    • Wright V P, Cherns L. 2016. How far did feedback between biodiversity and early diagenesis affect the nature of Early Palaeozoic sea floors? Palaeontology, 59 (6): 753~765.

    • Xiang Liwen, Zhu Zhaoling, Li Shanji, Zhou Zhiqiang. 1999. Stratigraphical Lexicon of China-Cambrian. Beijing: Geological Publishing House (in Chinese with English abstract).

    • 冯增昭, 王英华, 张吉森, 左文岐, 张秀莲, 洪国良, 陈继新, 吴胜和, 陈玉田, 迟元苓, 杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 地质出版社.

    • 李文正, 张建勇, 郝毅, 倪超, 田瀚, 曾乙洋, 姚倩颖, 山述娇, 曹脊翔, 邹倩. 2019. 川东南地区洗象池组碳氧同位素特征、古海洋环境及其与储集层的关系. 地质学报, 93(2): 487~500.

    • 刘炳辰, 齐永安, 代明月, 白万备, 樊钰超, 庆国帅. 2021. 寒武纪生物大爆发之后的底栖生态系统工程建造者: 以河南地区为例. 地球科学, 46(1): 148~161.

    • 柳永清, 孟祥化, 葛铭. 1999. 华北地台中寒武世鲕滩碳酸盐旋回沉积、古海平面变动控制及旋回年代学研究. 地质科学, 34(4): 442~450.

    • 裴放, 张海清, 阎国顺, 席运宏. 2008. 河南省地层古生物研究, 早古生代(华北型). 郑州: 黄河水利出版社.

    • 齐永安, 杨小伟, 代明月, 李妲, 王敏, 刑智峰. 2014. 豫西登封地区寒武系第三统鲕粒和鲕粒灰岩演化及其意义. 古地理学报, 16(1): 55~64.

    • 塔克, 赖特著, 沈安江, 王小芳, 郑剑锋, 乔占峰, 郑兴平, 张建勇译. 2015. 碳酸盐岩沉积学. 北京: 石油工业出版社.

    • 王鸿祯, 史晓颖, 王训练, 殷鸿福, 乔秀夫, 刘本培, 李思田, 陈建强. 2000. 中国层序地层研究. 广州: 广东科技出版社.

    • 项礼文, 朱兆玲, 李善姬, 周志强. 1999. 中国地层典: 寒武系. 北京: 地质出版社.

  • 参考文献

    • Berkeley A, Perry C T, Smithers S G, Horton B P, Taylor K G. 2007. A review of the ecological and taphonomic controls on foraminiferal assemblage development in intertidal environments. Earth-Science Reviews, 83(3-4): 205~230.

    • Bischoff W D. 1985. Magnesian Calcites: Physical and Chemical Properties and Stabilities in Aqueous Solution of Synthetic and Biogenic Phases. Evanston: Northwestern University.

    • Bottjer D J, Hagadorn J W, Dornbos S Q. 2000. The Cambrian substrate revolution. GSA Today, 10(9): 1~7.

    • Brasier M D, Antcliffe J B, Callow R H T. 2011. Evolutionary trends in remarkable fossil preservation across the Ediacaran-Cambrian transition and the impact of metazoan mixing. In: Allison P A, Bottjer D J, eds. Taphonomy: Process and Bias Through Time. Berlin: Springer, 519~567.

    • Brett C E, Liddell W D. 1978. Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology, 4(3): 329~348.

    • Cherns L, Wheeley J R, Wright V P. 2011. Taphonomic bias in shelly faunas through time: Early aragonitic dissolution and its implications for the fossil record. In: Allison P A, Bottjer D J, eds. Taphonomy: Process and Bias Through Time. Berlin: Springer, 79~105.

    • Christ N, Immenhauser A, Wood R A, Darwich K, Niedermayr A. 2015. Petrography and environmental controls on the formation of Phanerozoic marine carbonate hardgrounds. Earth-Science Reviews, 151: 176~226.

    • Dai Mingyue, Zhang Huashan, Zheng Wei, Qi Yongan, Xing Zhifeng, Zhang Zhen. 2022. Giant ooids of microbial origin from the Zhangxia Formation (Cambrian Miaolingian Series) in North China. Journal of Palaeogeography, 11(1): 52~68.

    • Dornbos S Q, Bottjer D J, Chen Junyuan. 2005. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: Evidence for the Cambrian substrate revolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1-2): 47~67.

    • Dravis J. 1979. Rapid and widespread generation of recent oolitic hardgrounds on a high energy Bahamian Platform, Eleuthera Bank, Bahamas. Journal of Sedimentary Research, 49(1): 195~207.

    • Droser M L, Bottjer D J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology, 16(3): 233~236.

    • Feng Zengzhao, Wang Yinghua, Zhang Jisen, Zuo Wenqi, Zhang Xiulian, Hong Guoliang, Chen Jixin, Wu Shenghe, Chen Yutian, Chi Yuanling, Yang Chengyun. 1990. Lithofacies Paleogeography of the Early Paleozoic of North China Platform. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Friedman G M. 1959. Identification of carbonate minerals by staining methods. Journal of Sedimentary Research, 29(1): 87~97.

    • Golonka J. 2009. Phanerozoic paleoenvironment and paleolithofacies maps. Early Paleozoic. Geologia, 35(4): 589~654.

    • Hips K, Haas J. 2009. Facies and diagenetic evaluation of the Permian-Triassic boundary interval and basal Triassic carbonates: Shallow and deep ramp sections, Hungary. Facies, 55(3): 421~442.

    • James N P, Choquette P W. 1983. Diagenesis 6. Limestones—The sea floor diagenetic environment. Geoscience Canada, 10(4): 162~179.

    • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1~4): 27~49.

    • Kim J C, Lee Y I. 1996. Marine diagenesis of Lower Ordovician carbonate sediments (Dumugol Formation), Korea: Cementation in a calcite sea. Sedimentary Geology, 105(3-4): 241~257.

    • Lee J H, Chen Jitao, Woo J. 2015. The earliest Phanerozoic carbonate hardground (Cambrian Stage 5, Series 3): Implications to the paleoseawater chemistry and early adaptation of hardground fauna. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 172~179.

    • Li Wenzheng, Zhang Jianyong, Hao Yi, Ni Chao, Tian Han, Zeng Yiyang, Yao Qianying, Shan Shujiao, Cao Jixiang, Zou Qian. 2019. Characteristics of carbon and oxygen isotopic, paleoceanographic environment and their relationship with reservoirs of the Xixiangchi Formation, southeastern Sichuan Basin. Acta Geologica Sinica, 93(2): 487~500 (in Chinese with English abstract).

    • Liu Bingchen, Qi Yongan, Dai Mingyue, Bai Wanbei, Fan Yuchao, Qing Guoshuai. 2021. Benthic ecosystem engineer after the Cambrian Explosion: An example from Henan Province. Earth Science, 46(1): 148~161(in Chinese with English abstract).

    • Liu Yongqing, Meng Xianghua, Ge Ming. 1999. The sea-level change forcing cycles of oolitic carbonate and cyclochrological applications. Scientia Geologica Sinica, 34(4): 442~450 (in Chinese with English abstract).

    • McIlroy D, Logan G A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic-Cambrian transition. Palaios, 14(1): 58~72.

    • Mckenzie N R, Hughes N C, Myrow P M, Choi D K, Park T. 2011. Trilobites and zircons link north China with the eastern Himalaya during the Cambrian. Geology, 39(6): 591~594.

    • Meng Xianghua, Ge Ming, Tucker M E. 1997. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114(1): 189~222.

    • Palmer T, Wilson M. 2004. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia, 37(4): 417~427.

    • Paton T R, Brett C E, Kampouris G E. 2019. Genesis, modification, and preservation of complex Upper Ordovician hardgrounds: Implications for sequence stratigraphy and the Great Ordovician Biodiversification Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 526: 53~71.

    • Pei Fang, Zhang Haiqing, Yan Guoshun, Xi Yunhong. 2008. Stratigraphic Paleontology Research of Henan Province, Early Paleozoic Era. Zhengzhou: Yellow River Water Resources Press (in Chinese with English abstract).

    • Qi Yongan, Yang Xiaowei, Dai Mingyue, Li Da, Wang Min, Xing Zhifeng. 2014. Evolution of ooids and oolitic limestones and their significance from the Cambrian Series 3 in Dengfeng area, western Henan Province. Journal of Palaeogeography, 16(1): 55~64 (in Chinese with English abstract).

    • Rasmussen B, Krapež B, Muhling J R. 2015. Seafloor silicification and hardground development during deposition of 2. 5 Ga banded iron formations. Geology, 43(3): 235~238.

    • Reid R P, Macintyre I G, James N P. 1990. Internal precipitation of microcrystalline carbonate: A fundamental problem for sedimentologists. Sedimentary Geology, 68(3): 163~170.

    • Reid R P, Macintyre I G. 1998. Carbonate recrystallization in shallow marine environments: A widespread diagenetic process forming micritized grains. Journal of Sedimentary Research, 68(5): 928~946.

    • SandersD. 2003. Syndepositional dissolution of calcium carbonate in neritic carbonate environments: Geological recognition, processes, potential significance. Journal of African Earth Sciences, 36(3): 99~134.

    • Shinn E A. 1969. Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology, 12(1-2): 109~144.

    • Tarhan L G, Droser M L, Planavsky N J, Johnston D T. 2015. Protracted development of bioturbation through the early Palaeozoic Era. Nature Geoscience, 8(11): 865~869.

    • Taylor P D, Wilson M A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62(1-2): 1~103.

    • Tucker M E, Wright V P. Translated by Shen Anjiang, Wang Xiaofang. 2015. Carbonate Sedimentology. Beijing: Petroleum Industry Press.

    • Van Lith Y, Warthmann R, Vasconcelos C, Mckenzie J A. 2003. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology, 1(1): 71~79.

    • Vasconcelos C, Mckenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research, 67(3): 378~390.

    • Wang Hongzhen, Shi Xiaoying, Wang Xunlian, Yin Honghu, Qiao Xiufu, Liu Benpei, Li Sitian, Chen Jianqiang. 2000. Research on the Sequence Stratigraphy of China. Guangzhou: Guangdong Science and Technology Press (in Chinese with English abstract).

    • Wilson M A, Palmer T J. 1992. Hardgrounds and Hardground Faunas. University of Wales, Aberystwyth: Institute of Earth Studies Publications.

    • Wright V P, Cherns L. 2016. How far did feedback between biodiversity and early diagenesis affect the nature of Early Palaeozoic sea floors? Palaeontology, 59 (6): 753~765.

    • Xiang Liwen, Zhu Zhaoling, Li Shanji, Zhou Zhiqiang. 1999. Stratigraphical Lexicon of China-Cambrian. Beijing: Geological Publishing House (in Chinese with English abstract).

    • 冯增昭, 王英华, 张吉森, 左文岐, 张秀莲, 洪国良, 陈继新, 吴胜和, 陈玉田, 迟元苓, 杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 地质出版社.

    • 李文正, 张建勇, 郝毅, 倪超, 田瀚, 曾乙洋, 姚倩颖, 山述娇, 曹脊翔, 邹倩. 2019. 川东南地区洗象池组碳氧同位素特征、古海洋环境及其与储集层的关系. 地质学报, 93(2): 487~500.

    • 刘炳辰, 齐永安, 代明月, 白万备, 樊钰超, 庆国帅. 2021. 寒武纪生物大爆发之后的底栖生态系统工程建造者: 以河南地区为例. 地球科学, 46(1): 148~161.

    • 柳永清, 孟祥化, 葛铭. 1999. 华北地台中寒武世鲕滩碳酸盐旋回沉积、古海平面变动控制及旋回年代学研究. 地质科学, 34(4): 442~450.

    • 裴放, 张海清, 阎国顺, 席运宏. 2008. 河南省地层古生物研究, 早古生代(华北型). 郑州: 黄河水利出版社.

    • 齐永安, 杨小伟, 代明月, 李妲, 王敏, 刑智峰. 2014. 豫西登封地区寒武系第三统鲕粒和鲕粒灰岩演化及其意义. 古地理学报, 16(1): 55~64.

    • 塔克, 赖特著, 沈安江, 王小芳, 郑剑锋, 乔占峰, 郑兴平, 张建勇译. 2015. 碳酸盐岩沉积学. 北京: 石油工业出版社.

    • 王鸿祯, 史晓颖, 王训练, 殷鸿福, 乔秀夫, 刘本培, 李思田, 陈建强. 2000. 中国层序地层研究. 广州: 广东科技出版社.

    • 项礼文, 朱兆玲, 李善姬, 周志强. 1999. 中国地层典: 寒武系. 北京: 地质出版社.