en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

梅冥相,男,1965年生。教授,主要从事沉积学和地层学研究。E-mail:meimingxiang@263.net。

参考文献
Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268: 211~225.
参考文献
Aretz M, Herbig H G, Wang X D. 2020. The Carboniferous Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2020. Amsterdam: Elsevier, 811~893.
参考文献
Arthur M A, Sageman B B. 1994. Marine black shales: Depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22: 499~551.
参考文献
Beaulieu S E. 2002. Accumulation and fate of phytodetritus on the sea floor. Oceanography and Marine Biology: An Annual Review, 40: 171~232.
参考文献
Biard T, Stemmann L, Picheral M, Mayot N, Vandromme P, Hauss H, Gorsky G, Guidi L, Kiko R, Not F. 2016. In situ imaging reveals the biomass of giant protists in the global ocean. Nature, 532: 504~507.
参考文献
Bohacs K M, Grabowski G J, Carroll A R, Mankiewicz P J, Gerhardt K J, Schwalbach J R, Wegner M B, Simo J A. 2005. Production, destruction, and dilution—The many paths to source rock development. In: Harris N B, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology (SEPM) Special Publication, 82: 61~101.
参考文献
Boucot A J, Chen Xu, Scotese C R. 2013. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate. SEPM Concepts in Sedimentology and Paleontology, 11: 1~478.
参考文献
Cai Jingong, Zeng Xiang, Wei Hailun, Song Mingshui, Wang Xuejun, Liu Qing. 2019. From water body to sediments: Exploring the depositional processes of organic matter and their implications. Journal of Palaeogeography, 21(1): 49~66 (in Chinese with English abstract).
参考文献
Caron D A. 2016. The rise of Rhizaria. Nature, 532: 444~445.
参考文献
Catuneanu O. 2006. Principles of Sequence Stratigraphy. Elsevier: Amsterdam, 1~375.
参考文献
Catuneanu O. 2019. Model-independent sequence stratigraphy. Earth-Science Reviews, 188: 312~388.
参考文献
Catuneanu O. 2020. Sequence stratigraphy of deep-water systems. Marine and Petroleum Geology, 114: 1~13.
参考文献
Cen Wenpan, Wang Ruihu, Xu Hai, Li Xiaolin, Li Weiyuan. 2018. Status, issues and suggestions on the shale gas exploration in Gungaxi. Land and Resources in South China, (3): 40~43 (in Chinese without English abstract).
参考文献
Chen Lin, Jiang Shu, Chen Ping, Chen Xiaohong, Zhang Baomin, Zhang Guotao, Lin Weibing, Lu Yongchao. 2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area, China. Marine and Petroleum Geology, 124: 104809
参考文献
Chevrot V, Gottardi R. 2022. Heterogeneity of the transgressive systems tract of the Eagle Ford Formation, Val Verde County, Texas. American Association of Petroleum Geologists Bulletin, 106(8): 1581~1603.
参考文献
Creaney S, Passey Q R. 1993. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. American Association of Petroleum Geologists Bulletin, 77: 386~401.
参考文献
Csato I, Homonnai O, Zadravecz C, Catuneanu O. 2021. Lower Visean sea-level changes in the northern Precaspian basin. Marine and Petroleum Geology, 132: 105186.
参考文献
Davydov V I, Korn D, Schmitz M D. 2012. The Carboniferous Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012. Amsterdam: Elsevier, 603~651.
参考文献
Dong Dazhong, Huang Xunan, Guan Quanzhong, Huang Jinliang, Wang Shufang, Li Xinjing. 2016. Discussion about geological characteristics, resource evaluation method and its key parameters of shale gas in China. Natural Gas Geoscience, 27(9): 1583~1601 (in Chinese with English abstract).
参考文献
Dong Tian, Harris N B, Ayranci K. 2018. Relative sea-level changes and organic matter accumulation in shales of the Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada: Insights into sediment flux, redox conditions, and bioproductivity. The Geological Society of America Bulletin, 30: 859~880.
参考文献
Dong Weiping. 1997. Lithostratigraphy in Guizhou. Wuhan: China University of Geosciences Press, 143~220 (in Chinese).
参考文献
Feng Zengzhao, Yang Yuqing, Bao Zhidong, Zhang Haiqing, Wu Xianghe, Qi Dunlun. 1998. Lithofacies Paleogeography of Carboniferous in South China. Beijing: Geological Publishing House, 1~196 (in Chinese with English abstract).
参考文献
Gong Chenglin, Steel R J, Peng Yang, Wang Yingmin, Li Dongwei. 2022. Major advances in deep-marine siliciclastic sequence stratigraphy, 1970 to 2020. Acta Sedimentologica Sinica, 40(2): 292~318 (in Chinese with English abstract).
参考文献
Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, Darzi Y, Audic S, Berline L, Brum J, Coelho L P, Espinoza J C I, Malviya S, Sunagawa S, Dimier C, Kandels-Lewis S, Picheral M, Poulain J, Searson S, Tara Stemmann L, Not F, Hingamp P, Speich S, Follows M, Karp-Boss L, Boss E, Ogata H, Pesant S, Weissenbach J, Wincker P, Acinas S G, Bork P, de Vargas C, Iudicone D, Sullivan M B, Raes J, Karsenti E, Bowler C, Gorsky G. 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature, 532: 465~470.
参考文献
Guo Xusheng. 2014. Rules of two factor enrichment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan basin and its surrounding area. Acta Geologica Sinica, 88(7): 1209~1218 (in Chinese with English abstract).
参考文献
Guo Xusheng, Zhao Yongqiang, Shen Baojian, Wei Xiangfeng, Lu Longfei, Pan Anyang, Li Yuping. 2022. Marine shale gas exploration in southern China: Review and prospects. Acta Geologica Sinica, 96(1): 172~182 (in Chinese with English abstract).
参考文献
Han Yuyue, Ran Bo, Liu Shugen, Li Zhiwu, Ye Yuehao, Sun Wei, Yang Di, Wang Shiyu. 2021. Main controlling factors of organic-matter enrichment in the Ordovician-Silurian marine organic-rich mudrock in the Yangtze Block, South China. Marine and Petroleum Geology, 127: 104959.
参考文献
Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64~67.
参考文献
Harris N B, Freeman K H, Pancost R D, White T S, Mitchell G D. 2004. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo basin, West Africa. American Association of Petroleum Geologists Bulletin, 88: 1163~1184.
参考文献
Hetzel A, Böttcher M E, Wortmann U G, Brumsack H-J. 2009. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273: 302~328.
参考文献
Hu Dongfeng, Wei Zhihong, Liu Ruobing, Fan Zhiwei, Han Jing. 2018. Development characteristics and shale gas exploration potential of the Lower Carboniferous black shale in the Guizhong depression. Natural Gas Industry, 38(10): 28~37 (in Chinese with English abstract).
参考文献
Huang Ling, Xu Zhengyu, Wang Pengwan, Xiong Shaoyun. 2012. An analysis of resource potential of Upper Paleozoic shale gas in Guizhong depression. Geology in China, 39(2): 497~506 (in Chinese with English abstract).
参考文献
Hunt D, Tucker M E. 1992. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall. Sedimentary Geology, 81: 1~9.
参考文献
Jia Chengzao, Pang Xiongqi, Song Yan. 2021. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces. Petroleum Exploration and Development, 48(3): 437~452 (in Chinese with English abstract).
参考文献
Jiang Yuqiang, Fu Yonghong, Xie Jun, Dong Dazhong, Zhou Keming, Cheng Xiaoyan, Qi Lin, Zhang Нaijie, Chen Chao, Ma Tinghu, Gu Yifan. 2019. Development trend of marine shale gas reservoir evaluation and a suitable comprehensive evaluation system. Natural Gas Industry, 39(10): 1~9 (in Chinese with English abstract).
参考文献
Jin Siding, Liu Sibing, Wei Xiangfeng, Ma Chao, Chen Yicai, Hao Jingyu, Ni Kai, Zhou Daojun. 2023. Astronomically forced cycles in Lower Carboniferous Luzhai Formation shales, Guizhong depression, South China. Marine and Petroleum Geology, 156: 106427.
参考文献
Jin Yugan, Fan Yingnian, Wang Xiangdong, Wang Rennong. 2000. The Stratigraphic Lexicon of China (The Carboniferous System). Beijing: Geological Publishing House, 1~136 (in Chinese).
参考文献
Jarvie D M. 2012. Shale resource systems for oil and gas: Part 2. In: Breyer J A, ed. Shale-oil Resource Systems: Shale Reservoirs: Giant Resources for the 21st Century. Tulsa: American Association of Petroleum Geologists, 89~119.
参考文献
Katz B. 2005. Controlling factors on source rock development—A review of productivity, preservation, and sedimentation rate. In: Harris N B, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology (SEPM) Special Publication, 82: 7~16.
参考文献
Kocsis A T, Scotese C R. 2020. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Science Reviews, 213: 103463.
参考文献
Lash G G, Blood D R. 2014. Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian basin. Marine and Petroleum Geology, 57: 244~263.
参考文献
Lazar R, Bohacs K M, Schieber J, Macquaker J, Demko T. 2015. Mudstone primer: Lithofacies variations, diagnostic criteria, and sedimentologic/stratigraphic implications at lamina to bedset scales. SEPM Concepts in Sedimentology and Paleontology, 12: 1~128.
参考文献
Lenton T M, Boyle R A, Poulton S W, Shields-Zhou G A, Butterfield N J. 2014. Coevolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7: 257~265.
参考文献
Li Ying, Wang Xiangdong, Hu Keyi, Huang Xing, Zhang Shuichang, Zhang Bin, Qi Yuping, Chen Jitao, Yao Le. 2021. Lithostratigraphic subdivision and correlation of the Carboniferous in China. Journal of Stratigraphy, 45(3): 303~318 (in Chinese with English abstract).
参考文献
Liang Yuchen, Liu Ziliang, Chen Yicai, Liu Sibing. 2020. Analysis of sequence and sedimentary facies in Simen Formation of lower Carboniferous in the north-central Guizhong depression. Northwestern Geology, 53(2): 27~41 (in Chinese with English abstract).
参考文献
Lu Shupan, Chen Yi, Luo Xiangjian, He Ben, Fu Hongbing. 2021. Sedimentary characteristics and distribution of the Carboniferous black shale in Guizhou Province. Acta Sedimentologica Sinica, 39(3): 672~684 (in Chinese with English abstract).
参考文献
Luo Shengyuan, Wang Chuanshang, Peng Zhongqin. 2016. Shale gas research of Luzhai Formation, low Carboniferous in Guizhong depression. Geology and Mineral Resources of South China, 32(2): 180~190 (in Chinese with English abstract).
参考文献
Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2018. China's shale gas exploration and development: Understanding and practice. Petroleum Exploration and Development, 45(4): 561~574 (in Chinese with English abstract).
参考文献
Mankin C J. 1983. Unconventional sources of natural gas. Annual Review of Energy, 8: 27~43.
参考文献
Mei Mingxiang. 2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy. Journal of Palaeogrography, 12(5): 549~564 (in Chinese with English abstract).
参考文献
Mei Mingxiang. 2011. From vertical stacking pattern of cycles to discerning and division of sequences: The third advance in sequence stratigraphy. Journal of Palaeogrography, 13(1): 27~54 (in Chinese with English abstract).
参考文献
Mei Mingxiang, Ma Yongsheng. 2001. On two kinds offacies-change surface and two kinds of diachronism in stratigraphical records according to the natures of cyclic-sequences. Journal of Stratigraphy, 25(2): 150~153 (in Chinese with English abstract).
参考文献
Mei Mingxiang, Tucker M E. 2007. Sequence-stratigraphic frameworks and sea-level changes for the Late Paleozoic of the Dianqiangui basin and its adjacent areas of southwestern China. In: Wong Th E. ed. Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Amsterdam: Royal Nertherlands Academy of Arts and Sciences, 417~430.
参考文献
Mei Mingxiang, Xu Debin, Zhou Hongrui. 2000. Genetic types of meter-scale sequences and fabric natures of facies succession. Journal of China University of Geosciences, 11(4): 375~382.
参考文献
Mei Mingxiang, Meng Qingfen, Yi Dinghong, Li Donghai. 2004a. Carboniferous sequence framework in Guizhou and Guangxi, southern China. Acta Geoscientica Sinica, 25(1): 39~46 (in Chinese with English abstract).
参考文献
Mei Mingxiang, Ma Yongsheng, Deng Jun, Meng Qingfen, Yi Dinghong, Li Donghai. 2004b. Late Paleozoic sequence-stratigraphic frameworks and sea level changes in Dianqiangui basin and its adjacent areas with systematic revisions of regional unconformities. Journal of China University of Geosciences, 15 (1): 55~69.
参考文献
Meyers S R, Peters S E. 2011. A 56 million year rhythm in North American sedimentation during the Phanerozoic. Earth and Planetary Science Letters, 303: 174~180.
参考文献
Montañez I P. 2016. A Late Paleozoic climate window of opportunity. Proceedings of the National Academy of Sciences, 113(9): 2334~2336.
参考文献
Negri A, Ferretti A, Wagner T, Meyers P A. 2009. Organic-carbon-rich sediments through the Phanerozoic: processes, progress, and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 273: 213~217.
参考文献
Osleger D A. 1991. Subtidal carbonate cycles: Implications for allocyclic versus autocyclic controls. Geology, 19: 917~920.
参考文献
Pedersen T F, Calvert S E. 1990. Anoxia vs. productivity: What controls the formation of organic-carbon rich sediments and sedimentary rocks? American Association of Petroleum Geologists Bulletin, 74: 454~466.
参考文献
Qiu Zhen, Zou Caineng, Li Xizhe, Wang Hongyan, Dong Dazhong, Lu Bin, Zhou Shangwen, Shi Zhengsheng, Feng Ziqi, Zhang Mengqi. 2018. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: A case study of the Wufeng-Longmaxi Formations in South China. Natural Gas Geoscience, 29(5): 606~615 (in Chinese with English abstract).
参考文献
Rimmer S M, Thompson J A, Goodnight S A, Robl T L. 2004. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215: 125~154.
参考文献
Ross C A, Ross J R P. 1995. Late Paleozoic depositional sequences are synchronism and worldwide. Geology, 13: 194~197.
参考文献
Sageman B B, Murphy A E, Werne J P, Ver Straeten C A, Hollander D J, Lyons T W. 2003. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195: 229~273.
参考文献
Schlager W, Warrlichw G. 2009. Record of sea-level fall in tropical carbonates. Basin Research, 21: 209~224.
参考文献
Schwazacher W. 1993. Cyclostratigraphy and the Milankovitch Theory. Amsterdam: Elsevier, 1~196.
参考文献
Scotese C R. 2021. An atlas of Phanerozic paleogeography maps: The seas come in and the seas go out. Annual Review of Earth and Planetary Sciences, 49: 669~718.
参考文献
Scotese C R, Song H, Mills B, van der Meer D. 2021. Phanerozoic paleotemperatures: The Earth's changing climate during the last 540 million years. Earth-Science Reviews, 2021: 103503.
参考文献
Sohail G M, Radwan A E, Mahmoud M. 2022. A review of Pakistani shales for shale gas exploration and comparison to North American shale plays. Energy Reports, 8: 6423~6442.
参考文献
Stanley S M, Luczaj J A. 2015. Earth System History (Fourth Edition). New York: W. H. Freeman and Company, 329~355.
参考文献
Turner J T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Progress in Oceanography, 130: 205~248.
参考文献
Tyson R V. 2001. Sedimentation rate, dilution, preservation, and total organic carbon: Some results of a modeling study. Organic Geochemistry, 32: 333~339.
参考文献
Tyson R V. 2005. The “productivity versus preservation” controversy: Cause, flaws, and resolution. In: Harris N B, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology (SEPM) Special Publication, 82: 17~33.
参考文献
Wang Shiqian. 2017. Shale gas exploitation: Status, issues and prospects. Natural Gas Industy, 37(6): 115~130 (in Chinese with English abstract).
参考文献
Wang Shufang, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Guang Quanzhong. 2015. A comparative study of the geological feature of marine shale gas between China and the United States. Natural Gas Geoscience, 26(9): 1666~1678 (in Chinese with English abstract).
参考文献
Wang Xiangdong, Hu Keyi, Qie Wenkun, Sheng Qingyi, Chen Bo, Lin Wei, Yao Le, Wang Qiulai, Qi Yuping, Chen Jitao, Liao Zhuoting, Song Junjun. 2019. Carboniferous integrative stratigraphy and time scale of China. Science China-Earth Sciences, 49(1): 139~159 (in Chinese with English abstract).
参考文献
Wu Haoruo. 2000. A discussion on the tectonic paleogeography related to the Caledonian movement in Guangxi. Journal of Paleogeography, 2(1): 70~76 (in Chinese with English abstract).
参考文献
Xi Zhaodong, Tang Shuheng, Wang Jing, Zhang Zhen, Li Yanpeng, Gong Minghui, Xiao Heqi. 2018. Evolution parameters study of selecting favorable shale gas areas in southern China. Acta Geologica Sinica, 92(6): 1313~1323 (in Chinese with English abstract).
参考文献
Yang Huimin, Liu Bingwen, Deng Zonghuai, Qi Jingwen, Wu Dahua, Huang Wenming. 1999. Value and Selection to the Best Gas-Oil Keeping Unite of Marine Carbonate Area in Yunnan, Guizhou and Guangxi. Guiyang: Guizhou Science and Technology Press, 4~63 (in Chinese).
参考文献
Yin Baoan. 1997. Lithostratigraphy in Guangxi. Wuhan: China University of Geosciences Press, 52~191 (in Chinese).
参考文献
Zhang Junfeng, Zhou Zhi, Song Teng, Li Fei, Chen Rong, Lu Yanxin, Chen Xianglin, Xu Qiuchen, Wang Chao, Wang Yuluo. 2022. Comparison of exploration and development history, geological characteristics and exploitation conditions of shale gas in China and the United States and its enlightenment. Acta Petrolei Sinica, 43(12): 1687~1701 (in Chinese with English abstract).
参考文献
Zhao Ziqiang, Ding Qixiu. 1996. The Regional Stratigraphy in Central and South Part of China. Wuhan: China University of Geosiences Press, 71~123 (in Chinese).
参考文献
Zhou Ruiqi, Zhang Cong, Wei Honggang, Chen Yang. 2018. Lower Carboniferous Dawuba Formation shale gas preservation conditions of Ziyun-Luodian area. Bulletin of Science and Technology, 34(8): 28~34 (in Chinese with English abstract).
参考文献
Zou Caineng, Zhu Rukai, Chen Zhongqiang, Ogg J G, Wu Songtao, Dong Dazhong, Qiu Zhen, Wang Yuman, Wang Lan, Lin Senhu, Cui Jingwei, Su Ling, Yang Zhi. 2019. Organic-matter-rich shales of China. Earth-Science Reviews, 189: 51~78.
参考文献
Zou Caineng, Zhu Rukai, Dong Dazhong, Wu Songtao. 2022. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas. Acta Petrolei Sinica, 43(12): 1675~1686 (in Chinese with English abstract).
参考文献
蔡进功, 曾翔, 韦海伦, 宋明水, 王学军, 刘庆. 2019. 从水体到沉积物: 探寻有机质的沉积过程及其意义. 古地理学报, 21(1): 49~66.
参考文献
岑文攀, 王瑞湖, 徐海, 王新宇, 李小林, 李委员. 2018. 广西页岩气勘查现状、存在问题及建议. 南方国土资源, (3): 40~43.
参考文献
董大忠, 王玉满, 黄旭楠, 张晨晨, 管全中, 黄金亮, 王淑芳, 李新景. 2016. 中国页岩气地质特征、资源评价方法及关键参数. 天然气地球科学, 27(9): 1583~1601.
参考文献
董卫平. 1997. 贵州省岩石地层. 武汉: 中国地质大学出版社, 143~220.
参考文献
冯增昭, 杨玉卿, 鲍志东, 张海清, 吴祥和, 齐敦伦. 1998. 中国南方石炭纪岩相古地理. 北京: 地质出版社, 1~196.
参考文献
龚承林, Steel R J, 彭旸, 王英民, 李东伟. 2022. 深海碎屑岩层序地层学50年(1970—2020)重要进展. 沉积学报, 40(2): 292~318.
参考文献
郭旭升. 2014. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7) : 1029~1218.
参考文献
郭旭升, 赵永强, 申宝剑, 魏祥峰, 卢龙飞, 潘安阳, 李宇平.2022.中国南方海相页岩气勘探理论: 回顾与展望.地质学报, 96(1): 172~182.
参考文献
胡东风, 魏志红, 刘若冰, 范志伟, 韩京. 2018. 桂中坳陷下石炭统黑色页岩发育特征及页岩气勘探潜力. 天然气工业, 38(10): 28~37.
参考文献
黄羚, 徐政语, 王鹏万, 熊绍云. 2012. 桂中坳陷上古生界页岩气资源潜力分析. 中国地质, 39(2): 497~506.
参考文献
贾承造, 庞雄奇, 宋岩. 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. 石油勘探与开发, 48(3): 437~452.
参考文献
蒋裕强, 付永红, 谢军, 董大忠, 周克明, 程晓艳, 漆麟, 张海杰, 陈超, 马廷虎, 谷一凡. 2019. 海相页岩气储层评价发展趋势与综合评价体系. 天然气工业, 39(10): 1~9.
参考文献
金玉玕, 范影年, 王向东, 王仁农. 2000. 中国地层典 (石炭系). 北京: 地质出版社, 1~136.
参考文献
李莹, 王向东, 胡科毅, 黄兴, 张水昌, 张斌, 祁玉平, 陈吉涛, 要乐. 2021. 中国石炭纪岩石地层划分和对比. 地层学杂志, 45(3): 303~318.
参考文献
梁雨晨, 刘自亮, 陈义才, 刘四兵. 2020. 桂中坳陷中北部下石炭统寺门组层序与沉积相分析. 西北地质, 53(2): 27~41.
参考文献
卢树藩, 陈祎, 罗香建, 何犇, 符宏斌. 2021. 贵州石炭系黑色页岩层系沉积特征及分布规律研究. 沉积学报, 39(3): 672~684.
参考文献
罗胜元, 王传尚, 彭中勤. 2016. 桂中坳陷下石炭统鹿寨组页岩气研究. 华南地质与矿产, 32(2): 180~190.
参考文献
马永生, 蔡勋育, 赵培荣. 2018. 中国页岩气勘探开发理论认识与实践. 石油勘探与开发, 45(4): 561~574.
参考文献
梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学的进展之一. 古地理学报, 12(5): 549~564.
参考文献
梅冥相. 2011. 从旋回的有序叠加形式到层序的识别和划分: 层序地层学进展之三. 古地理学报, 13(1): 27~54.
参考文献
梅冥相, 马永生. 2001. 从旋回层序的特征论地层记录的两种相变面及两种穿时性. 地层学杂志, 25 (2): 150~153.
参考文献
梅冥相, 孟庆芬, 易定红, 李东海. 2004a. 黔桂地区石炭系层序地层格架及海平面变化. 地球学报, 25(1): 39~46.
参考文献
邱振, 邹才能, 李熙喆, 王红岩, 董大忠, 卢斌, 周尚文, 施振生, 冯子齐, 张梦琪. 2018. 论笔石对页岩气源储的贡献: 以华南地区五峰组—龙马溪组笔石页岩为例. 天然气地球科学, 29(5): 606~615.
参考文献
王世谦. 2017. 页岩气资源开采现状、问题与前景. 天然气工业, 37(6): 115~130.
参考文献
王淑芳, 董大忠, 王玉满, 李新景, 黄金亮, 管全中. 2015. 中美海相页岩气地质特征对比研究.天然气地球科学, 26(9): 1666~1678.
参考文献
王向东, 胡科毅, 郄文昆, 盛青怡, 陈波, 林巍, 要乐, 王秋来, 祁玉平, 陈吉涛, 廖卓庭, 宋俊俊. 2019. 中国石炭纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 139~159.
参考文献
吴浩若. 2000. 广西加里东运动构造古地理问题. 古地理学报, 2 (1): 70~76.
参考文献
郗兆栋, 唐书恒, 王静, 张振, 李彦朋, 龚明辉, 肖何琦. 2018. 中国南方海相页岩气选区关键参数探讨. 地质学报, 92(6): 1313~1323.
参考文献
杨惠民, 刘炳温, 邓宗淮, 齐敬文, 吴大华, 黄藴明. 1999. 滇黔桂海相碳酸盐岩地区最佳油气保存单元的评价与选择. 贵阳: 贵州科技出版社, 4~63.
参考文献
殷保安. 1997. 广西岩石地层. 武汉: 中国地质大学出版社, 52~191.
参考文献
张君峰, 周志, 宋腾, 李飞, 陈榕, 卢妍欣, 陈相霖, 徐秋晨, 王超, 王昱荦. 2022. 中美页岩气勘探开发历程、地质特征和开发利用条件对比及启示. 石油学报, 43(12): 1687~1701.
参考文献
赵自强, 丁启秀. 1996. 中南区区域地层. 武汉: 中国地质大学出版社, 71~123.
参考文献
周瑞琦, 张聪, 魏洪刚, 陈杨. 2018. 紫云-罗甸地区下石炭统打屋坝组页岩气保存条件分析. 科技通报, 34(8): 28~34.
参考文献
邹才能, 朱如凯, 董大忠, 吴松涛. 2022. 页岩油气科技进步、发展战略及政策建议. 石油学报, 43(12): 1675~1686.
目录contents

    摘要

    一套总厚度接近300 m的富有机质页岩,总有机碳含量(TOC)普遍大于2%是其基本特征,主导着下石炭统杜内阶至维宪阶的鹿寨组,集中发育在黔桂地区所在的华南板块滇黔桂盆地的台间盆地相带之中的三级海平面上升期,代表着一套重要的潜在性页岩气勘探目的层。更为重要的是,特殊的形成发育时代,从深水台间盆地相的鹿寨组向浅水连陆台地中的深水陆棚相英塘组的相变和穿时减薄,而且结束于一套煤系地层主导的三角洲沉积体系的沉积过程之中;这些特征不但将这套富有机质页岩特征化,而且代表着一个与欧美地区泛大陆上的下石炭统(密西西比亚系)存在差异巨大的早石炭世沉积序列;因为在泛大陆上,只有石炭系的上部(上石炭统:宾夕法利亚亚系)储存着大量的煤,石炭系下部(下石炭统,或密西西比亚系)则包含着不同寻常的大套灰岩。这一套可以归为缺氧盆地相的下石炭统富有机质页岩,其中的有机质堆积作用,主要为以下3个因素之间复杂的相互作用所形成,即:① 得到增强的生产率;② 与还原条件相关而得到增强的有机质保存作用;③ 得到较低沉积作用速率导致的减弱的有机质稀释作用;而且这3个因素还直接受到海平面波动控制。但是,除了这3个因素之外,细粒植物碎屑的“生物碳泵(The biological carbon pump)”,也应该是这一套富有机质页岩中有机质富集的另外一个重要机制,尽管还存在许多细节问题需要进一步研究。

    Abstract

    A set of organic-rich shales, known as the Luzhai Formation, has developed within an inter-platform basin facies in the Dianqiangui basin, which is located in the southwestern part of the South China plate. These shales reach a thickness of approximately 300 m and exhibit a relatively high total organic carbon (TOC) content, exceeding 2%. The Luzhai Formation formed during a third-order sea-level rise spanning the Tournaisian and Visean ages of the Early Carboniferous, making it a promising target rock for shale gas exploration. The Luzhai Formation exhibits a distinctive diachronous development, characterized by a complex transition from deep-water inter-platform basin facies to shallow-water continental shelf facies, marked by a decrease in thickness and facies changes within the overlying Yingtang Formation. This diachronous development culminates in the formation of coal measure strata caused by deltaic sedimentation, highlighting a unique sedimentary succession within the Early Carboniferous (Missippissian) of the study area. This succession contrasts significantly with the depositional patterns observedon the Pangaea supercontinent, where the Pennsylvanian Subsystem is characterized by extensive coal deposits, while the Missippissian Subsystem exhibits an unusually large proportion of limestone. Organic matter accumulation within the anoxic basin facies of the Lower Carboniferous shales in the study area aligns with a comprehensive model that emphasizes the complex interaction of three primary factors: 1) enhanced productivity; 2) organic matter preservation that is associated with reducing conditions; and 3) a decreased sedimentation rate that led to reduced dilution of organic matter. These factors are directly affected by relative sea-level fluctuations. In addition to these factors, the biological carbon pump, specifically involving phytodetritus, appears to be a crucial mechanism for organic matter enrichment in this organic-rich shale. Further research is necessary to fully elucidate the details of this mechanism.

  • 美国的“页岩气革命”(Jarvie,2012),以及我国在四川盆地及其周缘实现了海相页岩气工业突破和快速规模发展(郭旭升,2014; 马永生等,2018; Zou Caineng et al.,2019; 郭旭升等,2022; 邹才能等,2022),充分表明富有机质页岩是最为重要的页岩气和页岩油勘探与开发目的层(Mankin,1983; Jarvie,2012; Lazar et al.,2015; 王淑芳等,2015; 董大忠等,2016; 蒋裕强等,2019; Zou Caineng et al.,2019; 贾承造等,2021; 邹才能等,2022; Sohail et al.,2022; 张君峰等,2022),从而进一步激发了对富有机质页岩及其中的有机质富集机理的深入研究(Negri et al.,2009; 蔡进功等,2019)。针对富有机质或有机碳的沉积物,即所谓的黑色页岩的有机质的聚集作用,产生了3个基本的模式,即:① 得到增强的有机生产率,即有机质生产作用的增强(Pedersen and Calvert,1990; Tyson,2001; Sageman et al.,2003; Algeo and Tribovillard,2009);② 得到增强的有机质保存作用,这与深海海底的还原条件以及缺氧事件相关(Arthur and Sageman,1994; Hetzel et al.,2009);③ 较低的沉积作用速率所减弱的有机质稀释作用(Pedersen and Calvert,1990; Creaney and Passey,1993; Tyson,20012005; Bohacs et al.,2005; Katz,2005)。因此,有机质的聚集作用,受到生产率、保存作用和沉积作用速率3个因素之间的复杂的相互作用的控制(Harris et al.,2004; Rimmer et al.,2004; Bohacs et al.,2005; Katz,2005; Lash and Blood,2014; Chevrot and Gottardi,2022);再者,海平面变化,似乎对所有这3个因素施加了一个基本的控制,因此就对有机质堆积作用施加了基本的控制(Bohacs et al.,2005; Dong Tian et al.,2018; Chen Lin et al.,2021; Han Yuyue et al.,2021; Chevrot and Gottardi,2022)。但是,除了上述3个因素之外,生物碳泵(The biological carbon pump; Biard et al.,2016; Caron,2016; Guidi et al.,2016),即通过光合作用将大气圈二氧化碳转化成有机碳并主要通过沉落颗粒输出,从而将有机碳最终鳌合在深部大洋沉积之中的复杂过程,也有可能是显生宙深海沉积之中较为重要的有机质聚集过程(Lenton et al.,2014; Turner,2015)。

  • 石炭纪与二叠纪一起构成了地质年代表中的晚古生代(Davydov et al.,2012; Aretz et al.,2020),而且石炭纪以形成煤的时代(Stanley and Luczaj,2015)而著称,这些煤是生长在沼泽之中的新类型植物的残余物所形成;在19世纪晚期,美国地质学家开始将富集灰岩的石炭系下部特指为密西西比系,石炭系上部富集煤的层段则定义为宾西法利亚系。在现代的国际地质年代表中(Davydov et al.,2012; Aretz et al.,2020),分别将下石炭统定义为密西西比亚系,上石炭统则定义为宾西法利亚亚系。

  • 在华南板块西南部的黔南至桂中地区的深水沉积主导的台间盆地相之中,一套累计厚度超过300 m的富有机质页岩,主导着大致从杜内阶至维宪阶的鹿寨组,该套富有机质页岩结束于煤系地层主导的寺门组三角洲沉积作用时期,从而提供了一个煤系地层发育的密西西比亚系的典型实例,而且代表着一个与欧美地区泛大陆上的下石炭统(密西西比亚系)存在差异巨大的早石炭世沉积序列。本文的目的在于:① 在前人地层学和沉积学研究的基础上(赵自强和丁启秀,1996; 董卫平,1997; 殷保安,1997; 冯增昭等,1998; 金玉玕等,2000; 梅冥相等,2004a; Mei Mingxiang et al.,2004b; Mei Mingxiang and Tucker,2007; 王向东等,2019; 李莹等,2021; Jin Siding et al.,2023)选取代表性的露头剖面,基于地层旋回性(Catuneanu,2019)进行特别的深水沉积的层序地层学(Catuneanu,2020)研究,并进行系统的采样与TOC分析,检验海平面变化对有机质聚集作用的基本控制;② 基于特别的II1和II2型干酪根(罗胜元等,2016; 胡东风等,2018; 周瑞琦等,2018),展示一个可能受到细粒植物碎屑生物碳泵(Lenton et al.,2014; Turner,2015; Biard et al.,2016; Caron,2016; Guidi et al.,2016)控制的深水富有机质页岩沉积序列;③ 以层序地层格架及其形成的古地理背景演化(梅冥相等,2004a; Mei Mingxiang et al.,2004b; Mei Mingxiang and Tucker,2007)为基础,追索富有机质页岩的空间分布,为研究区的页岩气勘探提供有价值的重要线索。

  • 1 地质背景

  • 在早石炭世(密西西比亚纪),随着超大陆泛大陆的形成,华南、华北和塔里木板块组成的华夏大陆(Cathaysian),已经完全从冈瓦纳大陆的印度-澳大利亚边缘裂解出来,它们顺时针旋转并总体向北漂移,所以,华南板块总体上处于接近赤道的低纬度位置(Kocsis and Scotese,2020; Scotese,2021);巧合而且重要的是,热带雨林覆盖在赤道地区的华南板块之上(Boucot et al.,2013)。正是在这样的全球古地理和古气候背景下,在华南板块今天地理位置的西南部,发育着一个特别的密西西比亚纪的沉积序列,一个大致属于杜内期和维宪期、并结束于煤系地层主导的三角洲沉积作用期的富有机质页岩序列,其厚度可达300余米,发育在受到同生断裂带控制的台间盆地相之中,该序列主导着鹿寨组、而且向连陆台地方向相变并减薄成英塘组。

  • 志留纪与泥盆纪过渡时期的广西造山运动(加里东运动),使扬子板块与华夏板块汇聚在一起形成一个统一的华南板块(赵自强和丁启秀,1996; 吴浩若,2000),在其上,从泥盆纪至中三叠世由于地壳拉伸而形成了几个沉积盆地(赵自强和丁启秀,1996),包括:上扬子盆地、扬子西缘盆地、扬子南缘盆地、滇黔桂盆地、湘桂盆地和钦州盆地(图1)。研究区域,即黔南—桂中地区,就处于滇黔桂盆地的中心地带,石炭系平行不整合超覆在泥盆系之上;在其中,一个富集有机质页岩主导的深水缺氧盆地沉积相带,可能受到同沉积断裂带(如紫云-罗甸-南丹-都安断裂带)的控制,呈北西-南东向发育在贵州南部的紫云—罗甸一带,并延伸到广西的南丹—都安一带。

  • 本文选取露头发育较好的广西南丹同贡和南丹车河等剖面(其位置见图1、图9)进行系统层序地层划分并进行系统的总有机碳(TOC)采样,主要是为了展示富有机质页岩的时间发育特征、以及一个特别的石炭系深水体系层序地层序列(Catuneanu,2020)。

  • 图1 华南板块中西部泥盆纪至中三叠世的沉积盆地分布图(据赵自强和丁启秀,1996

  • Fig.1 Distribution of sedimentary basins from the Devonian to the middle Triassic in the western-central part of the South-China plate (after Zhao Ziqiang and Ding Qixiu, 1996)

  • 1 —广西南丹同贡剖面;2—广西南丹车河剖面;研究区域的黔南—桂中地区位于滇黔桂盆地的中心地带

  • 1—Tonggong section in Nandan County of Guxngxi Province; 2—Chehe section in Nandan County of Guxngxi Province; the gray area refers to the Dianqiangui basin, in the central part of which is the study area (the region from southern Guizhou to central Guangxi)

  • 2 富有机质页岩的时间发育特征

  • 几个代表性的剖面,即发育在深水背景的广西南丹同贡和车河剖面(其大致位置见图1、图9)、浅水台地背景的广西环江孟洞剖面和上述二者过渡性质的广西环江城西剖面(其大致的地理位置见图9),被选取进行沉积相和层序地层学研究,而且进行了系统的总有机碳含量(TOC)的采样与分析,从而揭示富有机质页岩的时间发育特征。

  • 2.1 广西南丹同贡剖面石炭系层序地层划分

  • 广西南丹同贡剖面,位于南丹县城之西大约25 km(图1、图9),代表着研究区域台间盆地相带最为典型的剖面,一个岩石地层序列,即“鹿寨组+南丹组+马平组”序列,涵盖石炭系至二叠系乌拉尔统,自下而上包括富有机质页岩(图2a)主导的鹿寨组、以及碳酸盐岩(图2c)主导的南丹组和马平组(图2),它们组成一个二级构造层序,类似于Meyers and Peters(2011)的Kaskaskia2北美克拉通层序。基于岩石地层系统的年代地层归属(赵自强和丁启秀,1996; 董卫平,1997; 殷保安,1997; 金玉玕等,2000; 王向东等,2019; 李莹等,2021),依据沉积相序列所表征的地层叠加样式的变化所代表的旋回性或沉积趋势(Catuneanu,2019),该二级层序可以进一步划分为6个三级层序(SQ1至SQ6;图2;梅冥相等,2004a; Mei Mingxiang et al.,2004b; Mei Mingxiang and Tucker,2007)。在该剖面,大致属于杜内阶与维宪阶的鹿寨组,组成两个三级沉积层序即SQ1和SQ2;台间盆地相的块状黑色页岩(图2a、b),以碳质页岩为主,见少量硅质页岩,组成这两个三级沉积层序的海平面上升阶段的沉积,属于SQ1的厚度为200 m左右,属于SQ2的厚度为150 m左右;对其系统采样分析表明,总有机碳含量(TOC)多大于2%,而且还获得了6.97%的高值(TG-LZ-1;表1和图2),明显表现出富集有机质的基本特征;对应于三级海平面下降产生的沉积环境变浅过程,则发育泥晶灰岩和泥灰岩组成的陆棚相沉积(图2b),属于SQ1的厚度为20 m左右,属于SQ2的厚度为15 m左右,对这些陆棚相灰岩层中所夹的暗色钙质泥页岩的TOC分析,SQ1的顶部的两块样品的TOC值很低(TGLZ-1=0.28%,TGLZ-1=0.58%;表1和图2),SQ2的顶部的一块样品的TOC值也相对较低(TGLZ-9=1.86%;表1和图2),表现出相对亏损有机质的特点。

  • 表1 广西南丹县同贡村剖面石炭系鹿寨组的TOC测试分析表

  • Table1 TOC values of samples from the Luzhai Formation of the Carboniferous at the Tonggong section in Nandan County of Guangxi Province

  • 图2 广西南丹同贡剖面石炭系至二叠系乌拉尔统的层序地层划分

  • Fig.2 Sequence-stratigraphic subdivision from the Carboniferous System to the Cisuralian Series of the Permian System at the Tonggong section in Nandan County of Guangxi Province

  • SQ1~SQ6—三级沉积层序,分别为特别的沉积相序列代表的地层旋回所组成;其中,表示了深水沉积序列的TOC值分析结果的地层位置;(a)—鹿寨组下部的块状富有机质黑色页岩;(b)—盆地相富有机质泥岩直接覆盖在陆棚相灰岩地层表征的三级层序SQ1的顶界面(箭头所指);(c)—南丹组缓坡相灰岩地层;岩性符号以及其他属性代号见图6

  • SQ1~SQ6—third-order depositional sequences that are marked by stratigraphic cyclicity of the sedimentary facies successions, and the stratigraphic location of TOC value of deep-water deposits are particularly denoted; (a) —massive organic-matter-rich black shales in the lower part of the Luzhai Formation; (b) —top boundary of the third-order depositional sequence SQ1 that is marked by an abrupt changing surface from limestone of the shelf facies to organic-matter-rich black shales of the basin facies (the arrow) ; (c) —strata of the ramp limestone in the Nandan Formation; the meaning of legends is demonstrated as those as shown in Fig.6

  • 2.2 广西南丹车河剖面石炭系层序地层划分

  • 广西南丹车河剖面,位于南丹县城之南东大约10 km(见图1、图9所示),也是一个代表着研究区域台间盆地相带较为典型的剖面,石炭系至二叠系乌拉尔统包括“鹿寨组+南丹组+马平组”序列,组成一个类似于北美克拉通层序的二级构造层序Kaskaskia2(Meyers and Peters,2011),并可以进一步划分为6个三级沉积层序(SQ1至SQ6;图3)。主导着鹿寨组深水沉积序列下部的三级层序SQ1,与图2所示的南丹同贡剖面较为相似,一套厚度接近160 m的富有机质黑色页岩(图3a)代表着三级海平面上升阶段的沉积,一套厚度接近20 m的陆棚相泥灰岩与灰岩地层(图3b)构成海平面下降阶段产生的沉积环境变浅的沉积;与图2所示的南丹同贡剖面的最大区别是,三级层序SQ2的顶部,发育一套厚度接近40 m的三角洲前缘砂岩(图3c)地层,构成了三级层序SQ2的海平面下降阶段的沉积,类似于Hunt and Tucker(1992)的强迫型海退体系域,表明了鹿寨组沉积相构成的多样性的同时,进一步表明了深水盆地相富有机质黑色页岩主导的鹿寨组,随着发育煤系地层的三角洲沉积作用产生的陆源物质的大量输入而结束。同时,在三级沉积层序SQ1中的下部形成于三级海平面上升阶段的块状黑色页岩(图3a)之中,4块样品分析的结果,获得了4.35%的高TOC值(CHLZ-01,表2和图3),也表现出富集有机质的基本特征。

  • 表2 广西南丹车河剖面石炭系鹿寨组的TOC测试分析表

  • Table2 TOC values of samples from the Luzhai Formation of the Carboniferous at the Chehe section in Nandan County of Guangxi Province

  • 2.3 广西环江城西剖面下石炭统层序地层划分

  • 环江城西剖面,出露在环江县城的西部,大致距离南丹县城50 km(其剖面位置见图9),在大埔组白云岩、黄龙组灰岩与马平组大套灰岩地层组成的上石炭统至二叠系乌拉尔统之下,该剖面的下石炭统为“鹿寨组+黄金组+寺门组+罗城组”序列所组成(图4);因此,在该剖面,厚度260余米的富有机质黑色页岩(图4a、b)组成的鹿寨组,下部厚度为120 m左右并夹较多的硅质页岩,上部厚度为120 m左右夹少量钙质页岩,总体上代表着缺氧盆地相的沉积,代表着三级海平面上升阶段产生的沉积环境加深过程的产物,与上覆厚度100余米的黄金组缓坡相灰岩地层一起,组成三级沉积层序SQ1,黄金组灰岩地层则构成该三级沉积层序的海平面下降阶段的沉积(Hunt and Tucker,1992; Schlager and Warrlichw,2009);厚度接近160 m的寺门组,曾经被描述为潮坪相沉积序列(梁雨晨等,2020),在三角洲平原相、以及前三角洲相的海岸冲积平原相砂页岩之中发育煤线,中部为厚度30余米的前三角洲前缘相砂岩,因而组成一个三角洲沉积序列,从而构成三级层序SQ2;罗城组缓坡相灰岩地层,组成三级沉积层序SQ3。因此,与南丹地区相比较,只是相当于南丹地区的鹿寨组下部地层,从而进一步表明了鹿寨组的穿时性。对鹿寨组下部缺氧盆地相黑色含硅质碳质泥页岩(HJX-LZ-1至HJX-LZ-7;表3和图4)、以及上部夹陆棚相暗色钙质页岩的黑色富有机质页岩(HJX-LZ-8至HJX-LZ-12;表3和图4)12块样品的分析测试结果表明,其TOC值大多数大于1%,其最高值可以达到3.87%;由此说明,与南丹一带相比较,尽管随着沉积背景的总体变浅,鹿寨组的分布时代明显变短,但是,还是表明了富集有机质的基本特点。

  • 表3 广西环江城西剖面石炭系鹿寨组的TOC测试分析表

  • Table3 TOC values of samples from the Luzhai Formation of the Carboniferous at the Chengxi section in Huanjiang County of Guangxi Province

  • 2.4 广西环江孟洞剖面下石炭统层序地层划分

  • 环江孟洞剖面,位于环江县县城之东北大约45 km的孟洞村一带(剖面位置见图9),下石炭统包括尧云岭组、英塘组、黄金组、寺门组、罗城组,它们组成3个三级沉积层序(图5中的SQ1至SQ3)。尧云岭组,为一套灰岩与泥灰岩夹泥页岩组成的浅缓坡相地层,厚度大致110 m,它们组成石炭系第一个三级沉积层序SQ1的海侵体系域(TST;Catuneanu,2006; 梅冥相,2010)单元;英塘组,为大套深水陆棚相块状富有机质黑色页岩(图5a)所构成,其中夹粉砂质钙质泥页岩、泥质粉砂岩透镜体和透镜层,局部夹泥灰岩透镜层和透镜体,厚度为160 m左右,构成石炭系第一个三级沉积层序SQ1的凝缩段(CS;或凝缩序列;Catuneanu,2006; 梅冥相,2010)单元;厚度接近60 m的黄金组,以中薄层暗色页岩与中厚层灰岩层组成的潮下型碳酸盐岩米级旋回(图5b;Osleger,1991; Mei Mingxiang et al.,2000; 梅冥相,2011)为特征,组成石炭系第一个三级沉积层序SQ1的高水位体系域(HST;Catuneanu,2006; 梅冥相,2010)单元。

  • 图3 广西南丹车河剖面石炭系至二叠系乌拉尔统的层序地层划分

  • Fig.3 Sequence-stratigraphic subdivision from the Carboniferous System to the Cisuralian Series of the Permian System at the Chehe section in Nandan County of Guangxi Province

  • SQ1~SQ6—三级沉积层序,分别为特别的沉积相序列代表的地层旋回所组成;其中,表示了深水沉积序列的TOC值分析结果的地层位置;(a)—鹿寨组下部的块状富有机质黑色页岩;(b)—三级层序SQ1顶部的陆棚相灰岩地层及其顶界面(箭头所指);(c)—三级层序SQ2顶部的三角洲相砂岩;(d)—南丹组缓坡相灰岩地层;岩性符号以及其他的属性代号见图6

  • SQ1~SQ6—third-order depositional sequences that are marked by stratigraphic cyclicity of the sedimentary facies successions, and the stratigraphic location of TOC value of deep-water deposits are particularly denoted; (a) —massive organic-matter-rich black shales in the lower part of the Luzhai Formation; (b) —limestone beds of the shelf facies in the top part of the third-order depositional sequence SQ1 and its top boundary (the arrow) ; (c) —strata dominated by the delta sandstone in the top of the third-order depositional sequence SQ2; (d) —strata of the ramp limestone in the Nandan Formation; the meaning of legends is demonstrated as those as shown in following Fig.6

  • 图4 广西环江城西剖面下石炭统的层序地层划分

  • Fig.4 Sequence-stratigraphic subdivision of the lower Carboniferous at the Chengxi section in Huanjiang County of Guangxi Province

  • SQ1~SQ3—三级沉积层序,分别为特别的沉积相序列代表的地层旋回所组成;其中,表示了深水沉积序列的TOC值分析结果的地层位置;(a)—鹿寨组下部的块状含硅质富有机质黑色页岩,(b)—鹿寨组上部的块状含钙质富有机质黑色页岩;岩性符号以及其他的属性代号见图6

  • SQ1~SQ3—third-order depositional sequences that are marked by stratigraphic cyclicity of the sedimentary facies successions, and the stratigraphic location of TOC value of deep-water deposits are particularly denoted; (a) —massive siliceous organic-matter-rich black shales in the lower part of the Luzhai Formation; (b) —massive calcareous organic-matter-rich black shales in the upper part of the Luzhai Formation; the meaning of legends is demonstrated as those as shown in Fig.6

  • 寺门组,是广西石炭系最为特别的煤系地层,曾经被描述为一个潮坪相沉积序列(梁雨晨等,2020),但是,包括以下3部分地层而构成一个三角洲沉积序列,并组成三级沉积层序SQ2:① 下部为中厚层块状深灰色及灰黑色含碳质泥岩,夹少量灰黄色泥岩粉砂和细砂岩透镜体和透镜层,代表前三角洲亚相的滨海沼泽和冲积平原沉积,厚度为60 m左右;② 中部地层以中薄层及少量厚层块状灰黄色泥质细砂岩及粉砂岩为特征,与中薄层灰黑色及黑色沼泽相碳质泥岩互层,代表着高能曲流河道砂岩主导的三角洲前缘亚相,厚度为40 m左右;③ 上部为厚层块状灰色及深灰色含碳质泥岩,与灰黑色薄层沼泽相碳质泥岩或少量煤线一起组成低能曲流河沉积(图5c),代表着以曲流河泛滥平原沉积为特征的三角洲平原相,厚度为60 m左右。

  • 图5 广西环江孟洞剖面下石炭统的层序地层划分

  • Fig.5 Sequence-stratigraphic subdivision of the lower Carboniferous at the Mengdong section in Huanjiang County of Guangxi Province

  • SQ1~SQ3—三级沉积层序,分别为特别的沉积相序列代表的地层旋回所组成;其中,表示了深水沉积序列的TOC值分析结果的地层位置;(a)—英塘组中部的块状富有机质黑色页岩;(b)—黄金组中部中薄层暗色页岩与中厚层灰岩组成的潮下型米级旋回;(c)—寺门组上部的三角洲平原相暗色页岩(夹煤线和砂岩);岩性符号以及其他的属性代号见图6

  • SQ1~SQ3—third-order depositional sequences that are marked by stratigraphic cyclicity of the sedimentary facies successions, and the stratigraphic location of TOC value of deep-water deposits are particularly denoted; (a) —massive organic-matter-rich black shales in the middle part of the Yingtang Formation; (b) —subtidal meter-scale cycles composed of both the mid-to thin-bedded shale and the mid-to thick-bedded limestone in the middle part of the Huangjin Formation; (c) —strata of the delta plain dominated by both the mid-to thin-bedded dark shale with coal seam and mid-to thin-bedded sandstone in the Simen Formation; the meaning of legends is demonstrated as those as shown in Fig.6

  • 罗城组,以深色及深灰色厚层至块状生物屑及生物壳泥晶灰岩为主,这些灰岩层与灰黑色及黑色碳质泥页岩互层组成若干特别的潮下型米级旋回(Osleger,1991; Mei Mingxiang et al.,2000; 梅冥相,2011),厚度为220 m左右,组成下石炭统的第三个三级沉积层序SQ3

  • 表4 广西环江县孟洞剖面下石炭统页岩的TOC测试分析表

  • Table4 TOC values of samples from the Lower Carboniferous at the Mengdong section in Huanjiang County of Guangxi Province

  • 对英塘组深水陆棚相黑色页岩第一次采样8块(MDYT-1至MDYT-8;表4和图5),第二次采样9块(MD-YT-1至MD-YT-9;表4和图5),多数样品的TOC值大于2%,2块样品的TOC值超过5%(MDYT-6=5.41%,MDYT-7=5.78%),还获得了6.50%(MDYT-1)的高值,充分表明了富集有机质的基本特征。同时,对黄金组与灰岩层互层的暗色钙质碳质页岩(图5b),第一次采样两块(MDHJ-1至MDHJ-2),第二次采样5块(MD-HJ-1至MD-HJ-5),TOC最大值为1.57%(MDHJ-1),最小值为0.62%,表现出相对富集有机质的特征;对寺门组下部的前三角洲的冲积平原或海岸平原相中的黑色粉砂质碳质页岩,第一采样(MDSM-1至MDSM-4;表4和图5)和第二次采样(MD-SM-1至MD-SM-4;表4和图5)分别采集了4块,最小值为0.86%(MDSM-4),其中3块样品的TOC大于2%(MDSM-2=2.11%,MDSM-3=2.63%,MDSM-4=2.37%),表明了局部富集有机质的特征,而且与沼泽化的植物残余物来源的有机质存在着联系。

  • 3 富有机质页岩的空间展布特征

  • 在前人岩石地层单位的年代地层归属(赵自强和丁启秀,1996; 董卫平,1997; 殷保安,1997; 金玉玕等,2000; Wang Xiangdong et al.,2019)、以及相关的层序地层研究(梅冥相等,2004a; Mei Mingxiang et al.,2004b; Mei Mingxiang and Tucker,2007)的基础上,层序地层格架(图6~8)及其形成的古地理背景的演变(图9~11),成为追索图2至图5所示的下石炭统富有机质页岩序列空间分布的主要线索。

  • 以图2所示的南丹同贡剖面为基础,在连陆台地背景中向北经过贵州平塘卡洛、都匀斑庄一直追索到古陆边缘的贵阳乌当剖面,向南追索到孤立台地背景的广西隆安都结剖面,以地层记录中的两种相变面(空间静态相变面和层序界面代表的时间动态相变面)以及两种穿时性(相变面穿时以及间断面穿时)(梅冥相和马永生,2001)为基本要素,可以建立黔桂地区石炭系至二叠系乌拉尔统的岩石-层序地层格架(图6)和年代层序地层格架(图7)。

  • 层序地层格架表明,研究区域石炭系至二叠系乌拉尔统组成一个二级构造层序,类似于Kaskaskia2北美克拉通层序(Meyers and Peters,2011),该二级构造层序的底界面即紫云运动不整合面,从而与Kaskaskia2北美克拉通层序(Meyers and Peters,2011)相一致,具体表现为三级层序SQ1从平塘卡洛剖面向古陆边缘的贵阳乌当剖面的海侵尖灭;但是,顶界面存在着差异,研究区域相应的顶界面置于跨越在石炭纪与二叠纪之间的马平组灰岩地层之顶的黔桂运动不整合面,具体表现在具有古风化壳覆盖层的梁山组海岸平原煤系地层自南而北的海退尖灭和相变,而且梁山组构成三级沉积层序SQ6的三级海平面下降阶段的沉积(Hunt and Tucker,1992; Catuneanu,2006; Schlager and Warrlichw,2009梅冥相,2010),在北美地区Kaskaskia2北美克拉通层序的顶界面被置于石炭系与二叠系之间的平行不整合面。

  • 图6 黔桂地区石炭系至下二叠统(乌拉尔统)的岩石-层序地层格架

  • Fig.6 Litho-sequence stratigraphic framework from the Carboniferous to the Cisuralian (Permian) in the region from the southern part of Guizhou Province to the central part of Guxiang Province

  • SQ1~SQ6—三级沉积层序,它们组成一个二级构造层序;被选择来建立岩石-层序地层格架的不同古地理背景的典型剖面的大致地理位置见图9;1—铝土铁质岩系代表的古风化壳;2—煤线;3—砂岩;4—泥质砂岩;5—砂质泥岩;6—泥岩;7—页岩;8—泥灰岩;9—白云岩;10—灰质白云岩;11—白云质灰岩;12—灰岩;13—叠层石生物丘灰岩;14—生物屑灰岩;15—核形石颗粒灰岩;16—煤系地层主导的海岸平原相;17—白云岩主导的清水潮坪相;18—灰岩主导的浅水台地相;19—核形石和化石主导的颗粒滩相;20—灰岩和泥灰岩主导的陆棚相;21—富有机质黑色页岩主导的盆地相;22—静态相变面;23—层序界面代表的动态相变面;24—三级海平面变化曲线

  • SQ1~SQ6—third-order depositional sequences, and them make up one second-order tectonic sequence; the approximately geographical location of the typical sections on different palaeogeographical background is shown in Fig.9; 1—fossil weathering crust dominated by allites; 2—coal seam; 3—sandstone; 4—muddy sandstone; 5—sandy mudstone; 6—mudstone; 7—shale; 8—marl; 9—dolostone; 10—lime dolostone; 11—dolomitic limestone; 12—limestone; 13—massive limestone of stromatolitic bioherm; 14—bioclastic limestone; 15—oncoid grainston; 16—the coastal plain facies dominated by coal measure strata; 17—the clearwater tidal-flat facies dominated by dolostone strata; 18—the shallow water platform facies dominated by limestone strata; 19—the grain bank facies dominated by oncoids and Fusulina fossils; 20—the shelf facies dominated by marls and limestones; 21—the basin facies dominated by organic-matter-rich black shales; 22—static facies-changing surface; 23—dynamic facies-changing surface represented by sequence boundary; 24—the curve of third-order sea-level change

  • 该二级构造层序包含6个三级沉积层序(SQ1至SQ6;图6、图7),这些三级沉积层序在不同的古地理背景为不同的沉积相序列所组成,表现在:① 在台间盆地相背景之中,三级层序SQ1和SQ2为厚度超过100 m、具有陆棚相灰岩与泥灰岩覆盖层的缺氧盆地相富有机质黑色页岩(图2和图3),而且结束于连陆台地上的海岸平原或冲积平原煤系地层(祥摆组)构成的三级层序SQ2的发育时期,代表着研究区域沉积相分异最为强烈的时期(杜内期至维宪期早期),也代表着一个特别的深水体系的层序地层样式(Catuneanu,2020; 龚承林等,2022);② 从早石炭世晚期的谢尔普霍夫期一直到早二叠世,即三级层序SQ3至SQ6的形成时期,沉积相带的分异明显减弱,为大套碳酸盐岩所组成,从广海到古陆边缘(从平塘卡洛剖面到贵阳乌当剖面),这些层序的海平面下降期发育较多、较厚的白云岩而且明显减薄;③ 在孤立台地上,6个三级沉积层序均为大套灰岩组成(如隆安都结剖面),在海平面下降阶段或多或少发育着白云石化的地层;上述这些变化,尤其是相变面穿时和层序地层界面的间断面穿时(梅冥相和马永生,2001),在图7所示的年代-层序地层格架之中,表现更加明显而得到了充分的体现。

  • 图7 黔桂地区石炭系至下二叠统(乌拉尔统)的年代-层序地层格架

  • Fig.7 Chrono-sequence stratigraphic framework from the Carboniferous to the Cisuralian (Permian) in the region from the southern part of Guizhou Province to the central part of Guxiang Province

  • SQ1~SQ6—三级沉积层序,它们组成一个二级构造层序;被选择来建立年代-层序地层格架的不同古地理背景的典型剖面的大致地理位置见图9;1—地层间断;2—白云岩主导的清水潮坪相;3—煤系地层主导的海岸平原相;4—灰岩主导的浅水台地相;5—核形石和化石主导的颗粒滩相;6—灰岩和泥灰岩主导的陆棚相;7—富有机质黑色页岩主导的盆地相;8—静态相变面;9—层序界面代表的动态相变面;10—三级海平面变化曲线

  • SQ1~SQ6—third-order depositional sequences, and them make up one second-order tectonic sequence; the approximately geographical location of the typical sections on different palaeogeographical background is shown in Fig.9; 1—stratigraphic hiatus; 2—the clearwater tidal-flat facies dominated by dolostone strata; 3—the coastal plain facies dominated by coal measure strata; 4—the shallow water platform facies dominated by limestone strata; 5—the grain bank facies dominated by oncoids and Fusulina fossils; 6—the shelf facies dominated by marls and limestones; 7—the basin facies dominated by organic-matter-rich black shales; 8—static facies-changing surface; 9—dynamic facies-changing surface represented by sequence boundary; 10—the curve of third-order sea-level change

  • 从图2所示的南丹同贡剖面向东追索到图3所示南丹车河剖面,一直向北东方向经过图4所示的环江城西剖面追索到图5所示的环江孟洞剖面,所建立的桂北地区下石炭统岩石-层序地层格架(图8),更加表明了富集有机质黑色页岩主导的鹿寨组的穿时减薄、并相变成深水陆棚相含砂页岩和泥灰岩的英塘组之间复杂的时空变化特征。在图3所示的南丹车河剖面,鹿寨组的沉积相构成确实发生了很大的变化,表现在三级沉积层序SQ2的海平面下降期发育一套三角洲相砂岩;再向北东方向到环江城西剖面(图4),富有机质黑色页岩的鹿寨组只是发育在三级层序SQ1的海平面上升阶段,黄金组缓坡相灰岩地层代表着海平面下降阶段的沉积(Hunt and Tucker,1992; Schlager and Warrlichw,2009; 梅冥相,2010),三角洲沉积体系主导的寺门组所构成的三级层序SQ2向西追索到南丹车河剖面SQ2的上部,形成了复杂的空间相变;向北东方向继续追索到古陆边缘的环江孟洞剖面(图5),下石炭统相变成包含着三个三级层序(SQ1至SQ3)的岩石地层序列,即“尧云岭组+英塘组+黄金组+寺门组+罗城组”,环江城西剖面组成三级层序海平面上升阶段沉积的富有机质页岩主导的鹿寨组(图4)相变并减薄成环江孟洞剖面的英塘组,为一套百余米的夹砂页岩层和泥灰岩层的富有机质黑色页岩(图5a)所组成,构成三级沉积层序SQ1的凝缩段;相应地,尧云岭组厚度100余米的缓坡相灰岩地层则组成TST单元、黄金组缓坡相灰岩地层则组成SQ1的HST单元(Catuneanu,2006; 梅冥相,2010)。因此,桂北地区三角洲序列的煤系地层寺门组(图4、图5和图8)组成的三级沉积层序SQ2,可以对比于贵州南部海岸平原和冲积平原相煤系地层祥摆组组成的三级沉积层序SQ2(图6、图7),与欧美地区大套灰岩组成的密西西比亚系(下石炭统)相比较,形成了强烈的反差。

  • 总的来讲,在研究区域,石炭系至二叠系下统(乌拉尔统),包括组成6个三级沉积层序(SQ1至SQ6)并进一步构成一个二级构造层序,表现为两套特殊的岩系:下部(杜内阶至维宪阶)为一套沉积相分异最为明显的地层,在台间盆地之中,在SQ1与SQ2的三级海平面上升阶段发育富有机质页岩,并结束于与连陆台地上煤系地层(寺门组和祥摆组组成的SQ2)主导的三角洲沉积作用过程(图6~8);上部为一套厚度巨大的碳酸盐岩地层而表征着一个沉积相分异不明显的长时间沉积过程(SQ3至SQ6的形成时期),而且结束于海岸平原相煤系地层主导的梁山组的海退尖灭过程之中,从而代表了一个海域逐渐海侵扩大、而后又海退萎缩的古地理变迁过程所形成的盆地充填序列(图6至图8)。石炭系到二叠系下统组成的二级构造层序中的三级层序划分(图6和图7中的SQ1至SQ6),与Davydov et al.(2012)所划分的石炭系长周期海侵—海退(T—R)旋回较为相似,表明了这些三级沉积层序不但受到全球性海平面变化的控制,也受到区域构造活动的影响和控制,所以与北美地区石炭纪至早二叠世的海平面变化(Ross and Ross,1995)、以及全球海平面变化(Haq and Schutter,2008; Aretz et al.,2020Csato et al.,2021)相比较,总是存在着巨大的差异(梅冥相等,2004aMei Mingxiang et al.,2004b; Mei Mingxiang and Tucker,2007);再者,从台间盆地向连陆台地,盆地相富有机质页岩主导的鹿寨组、向深水陆棚相夹砂页岩和泥灰岩的富有机质页岩主导的英塘组的变薄与相变(图8),意味着一个复杂的古地理格局的演变过程(图9 至图11),从而成为窥视下石炭统富有机质页岩空间分布的重要线索。

  • 在主要形成于杜内期的三级层序SQ1的形成时期(图9),一套厚度接近200 m的富有机质页岩(图2a、3a、4a以及图6至图8),主导着一个台间盆地相带,形成在三级海平面上升阶段,展布在从贵州南部的紫云—罗甸一带、向南东延伸到广西南宁之北,并从南丹—河池一带向东延伸到柳州以北地区,在广西白色以西地区小范围分布;这个台间盆地相带,被陆棚相包围,最为特别的是,向连陆台地相变、减薄并尖灭,相变为组成三级层序凝缩段的英塘组(或贵州南部的打屋坝组;周瑞琦等,2018)深水陆棚相夹砂页岩和泥灰岩的富有机质页岩(图5a),代表着下石炭统第二种类型的富有机质页岩。因此,该时期叠加在二级海侵期的三级海平面上升期,是研究区域富有机质页岩分布最为广泛的时期。

  • 在主要形成于维宪期的SQ2的形成时期(图10),大致与三级沉积层序SQ1的形成时期相似(图9),在从贵州南部的紫云—罗甸一带、向南东延伸到广西南宁之北,并从南丹—河池一带向东延伸到柳州以北地区,也发育着一个台间盆地相带,在最深水的南丹同贡剖面发育着一套150 m左右厚度的盆地相富有机质页岩,形成在SQ2的三级海平面上升阶段(图2;海平面下降期的沉积则为20 m左右的陆棚相灰岩和泥灰岩夹泥页岩),主导着台间盆地相带;向东到南丹车河剖面,在SQ2的海平面上升期发育厚度接近100 m的盆地相富有机质页岩,但是,一套厚度接近40 m的三角洲前缘相砂岩组成了三级沉积层序SQ2海平面下降阶段的沉积(图3a;Hunt and Tucker,1992; Schlager and Warrlichw,2009; 梅冥相,2010),代表着受到三角洲沉积作用过程影响的台间盆地相带。所以说,该时期与图9所示的前一个时期相比较,一个最大的变化是,与受到三角洲沉积作用影响的台间盆地相带相对应,在连陆台地上,一套厚度接近150 m的具有三角洲沉积作用性质的煤系地层(图5c),即黔南地区的祥摆组(图6至图7)以及桂北地区的寺门组(图4、图5以及图8所示)),组成三级沉积层序SQ2并大面积分布在古陆周围(图10);而且在该时期,广西百色一带也可能发育着台盆相带;与连陆台地上三角洲平原相砂页岩主导的煤系地层相对应的是,孤立台地上发育着大套灰岩地层。因此,该时期代表着台间盆地相富有机质页岩,随着连陆台地上三角洲平原以及冲积平原上的沼泽中生长着各种植物并成煤,研究区域逐渐结束富有机质页岩主导的台间盆地发育历史,同时也代表着研究区域的华南板块西南部特别的煤系地层的发育,以及所代表的热带雨林生长最为茂盛的时期(Boucot et al.,2013; Scotese,2021; Scotese et al.,2021),因为这些质量相对较差的煤层和煤线形成于生长在沼泽之中的新类型植物的残余物(Stanley and Luczaj,2015)。

  • 图8 桂北地区下石炭统的岩石-层序地层格架

  • Fig.8 Litho-sequence stratigraphic framework of the Lower Carboniferous in the northern part of Guxiang Province

  • SQ1~SQ3—下石炭统的3个三级沉积层序;被选择来建立岩石-层序地层格架的不同古地理背景的典型剖面的大致地理位置见图9;地层柱中的岩性符号见图6所示;1—含煤线的砂页岩主导的前三角洲相;2—含煤线的砂页岩主导的三角洲平原相;3—砂岩主导的三角洲前缘相;4—灰岩主导的浅水台地相;5—灰岩和泥灰岩主导的浅水陆棚相;6—夹砂页岩和泥灰岩的富有机质黑色页岩主导的深水陆棚相;7—富有机质黑色页岩主导的盆地相;8—静态相变面;9—层序界面代表的动态相变面

  • SQ1~SQ3—three third-order depositional sequences of the Lower Carboniferous; the approximately geographical location of the typical sections that are selected to establish the sequence-stratigraphic framework is shown in Fig.9; lithological marks are same to those as shown in Fig.6; 1—the prodelta facies dominated by sandy shales with coal seams; 2—the delta plain facies dominated by sandy shales with coal seams; 3—the delta front facies dominated by sandstones; 4—the shallow water platform facies dominated by limestone strata; 5—the shallow-water shelf facies dominated by marls and limestones; 6—the deep-water shelf facies dominated by organic-matter-rich black shales; 7—the basin facies dominated by organic-matter-rich black shales with dandy shales and marls; 8—static facies-changing surface; 9—dynamic facies-changing surface represented by sequence boundary

  • 图9 黔桂地区下石炭统三级层序SQ1形成时期的古地理格局图

  • Fig.9 Outline map showing the outline of paleogeographical setting for the forming period of the third-order sequence SQ1 in the region from the southern Guizhou to the central Guangxi

  • [1] —贵州贵阳乌当剖面;[2] —贵州都匀斑庄剖面;[3] —贵州平塘卡洛剖面;[4] —广西南丹同贡剖面;[5] —广西隆安都结剖面;[6] —广西南丹车河剖面;[7] —广西环江城西剖面;[8] —广西环江孟洞剖面;1—古陆;2—含砾砂岩主导的滨岸相;3—白云岩主导的清水潮坪相;4—灰岩主导的浅水台地相;5夹泥页岩的灰岩与泥灰岩主导的浅水陆棚相;6—夹砂页岩与泥灰岩的富有机质黑色页岩主导的深水陆棚相;7—富有机质黑色页岩主导的盆地相

  • [1]—Wudang section in Guiyang City of Guizhou Province; [2]—Banzhuang section in Duyun City of Guizhou Province; [3]—Kaluo section in Pingtang County of Guizhou Province; [4]—Tonggong section in Nandan County of Guangxi Province; [5]—Dujie section in Longan County of Guangxi Province; [6]—Chehe section in Nandan County of Guangxi Province; [7]—Chengxi section in Huangjiang County of Guangxi Province; [8]—Mengdong section in Huangjiang County of Guangxi Province; 1—oldland; 2—the littoral facies dominated by conglomeratic sandstones; 3—the clear-water tidal-flat facies dominated by dolostones; 4—the shallow water platform facies domilated by limestones; 5—the shallow shelf facies dominated by limestones and marls with dark shales; 6—the deep shelf facies dominated by organic-matter-rich black shales with sandy shales and marls; 7—the basin facies dominated by organic-matter-rich black shales

  • 图10 黔桂地区下石炭统三级层序SQ2形成时期的古地理格局图

  • Fig.10 Outline map showing the outline of paleogeographical setting for the forming period of the third-order sequence SQ2 in the region from the southern Guizhou to the central Guangxi

  • 1—古陆;2—含煤线的砂页岩主导的海岸平原相;3—含煤线的砂页岩主导的三角洲平原相;4—砂岩主导的三角洲前缘;5—灰岩主导的浅水台地相;6—夹泥页岩的灰岩与泥灰岩主导的陆棚相;7—富有机质黑色页岩主导的盆地相

  • 1—oldland; 2—the coastal-plain facies dominated by sandy shales with coal seams; 3—the delta-plain facies dominated by sandy shales with coal seams; 4—the delta front facies domilated bydandstones; 5—the shallow water platform facies domilated by limestones; 6—the shelf facies dominated by limestones and marls with dark shales; 7—the basin facies dominated by organic-matter-rich black shales

  • 三级层序SQ3的形成时期,大致相当于早石炭世晚期的谢尔普霍夫期,研究区的沉积相与古地理格局以相带分异不明显为特征(图11),大套灰岩主导的连陆台地与孤立台地明显进积增大,在SQ2形成时期的台间盆地相带(图10)逐渐萎缩,并演变成夹暗色页岩层的灰岩与泥灰岩层主导的浅水陆棚相沉积(图2c和图3c),古陆边缘发育着一个白云岩主导的清水潮坪相带(图11)。在该时期之后,一直到早二叠世(乌拉尔世),不发育富有机质黑色页岩主导的台间盆地相,形成一个分布广阔的浅水碳酸盐台地,从而进入一个沉积相分异不明显的特殊时期;构成三级层序SQ4的大套白云岩(贵州的摆佐组和广西的大埔组)以及组成SQ5的大套浅水台地相大套灰岩(黄龙组),包括横跨石炭系与二叠系并组成三级层序SQ6的马平组大套灰岩,均可以在研究区大范围追索和对比(赵自强和丁启秀,1996; 董卫平,1997; 殷保安,1997; 冯增昭等,1998; 金玉玕等,2000; Wang Xiangdong et al.,2019; 李莹等,2021),这样的沉积相格局结束于构成三级层序SQ6的海平面下降阶段沉积,表现为梁山组煤系地层的海退尖灭过程(图7和图8)。

  • 图11 黔桂地区下石炭统三级层序SQ3形成时期的古地理格局图

  • Fig.11 Outline map showing the outline of paleogeographical setting for the forming period of the third-order sequence SQ3 in the region from the southern Guizhou to the central Guangxi

  • 1—古陆;2—白云岩主导的清水潮坪相;3—灰岩主导的浅水台地或缓坡相;4—泥灰岩和泥晶灰岩主导的浅水陆棚相;5—砂页岩主导的深水陆棚相;6—泥灰岩夹暗色页岩主导的台间深水陆棚相

  • 1—oldland; 2—the clear-water tidal-flat facies dominated by dolostones; 3—the ramp or the shallow-water platform facies dominated by limestones; 4—the shallow shelf facies dominated by marls; 5—the deep-water shelf facies domilated by sandy shales; 6—the deep-water shelf facies dominated by marls intherbedded with dark shales

  • 4 讨论

  • 如图2和图3所示,一套累计厚度超过300 m、而且总体上表现为块状富有机质黑色页岩(图2a,图3a,图4a、b)的地层所主导的鹿寨组(赵自强和丁启秀,1996; 董卫平,1997; 殷保安,1997; 冯增昭等,1998; 金玉玕等,2000; 王向东等,2019; 李莹等,2021),发育在杜内期至维宪期的台间盆地相之中(图9和图10),而且集中发育在三级层序SQ1与SQ2的三级海平面上升阶段产生的环境加深过程之中,并结束于煤系地层主导的寺门组(以及贵州的祥摆组)所构成的三角洲沉积体系的形成过程之中(图6至图8),而且向连陆台地相变并减薄为组成三级沉积层序SQ1凝缩段,即以夹泥灰岩和砂页岩层的深水陆棚相富有机质页岩为特征的英塘组(图5a、图8)(或贵州的打屋坝组;周瑞琦等,2018; 卢树藩等,2021),与北美地区大套灰岩组成的下石炭统(密西西比亚系)(Davydov et al.,2012; Stanley and Luczaj,2015; Aretz et al.,2020)形成强烈的反差,可能代表着冈瓦纳冰川作用的低纬度响应(Mei Mingxiang and Tucker,2007),因为研究区域所属的华南板块在早石炭世大致为位于接近赤道的低纬度地区(Scotese,2021; Scotese et al.,2021)。在一个进入冰室阶段的温度总体在下降的长周期变化过程之中,在SQ1形成时期的杜内期,曾经发生过明显的加温过程,而且代表着石炭纪或二叠纪最为温暖的时期(Scotese et al.,2021),三级层序SQ1的海平面上升阶段沉积的厚度接近200 m的富有机质页岩,可能成为杜内期加温事件响应的结果;组成三级层序SQ2的寺门组三角洲相煤系地层(图4和图5),可能形成在维宪期温暖层段(Scotese et al.,2021),也可能是覆盖在赤道地区的华南板块上的热带雨林集中发育(Boucot et al.2013)的沉积学响应,尽管还有许多细节问题需要进一步研究才能得到合理的阐释。在鹿寨组之中,形成在三级层序SQ1和SQ2的海平面上升期的富有机质页岩(图2至图4以及图6、图7所示),以及在英塘组之中,构成三级层序SQ1凝缩段的夹砂页岩与泥灰岩层的富有机质黑色页岩(图5、图8所示),大于2%的TOC值,甚至还可以达到5%至6%的高值(表1至表4),充分表明了它们将构成一套条件较为优越的潜在性页岩气勘探目的层(Mankin,1983; Lazar et al.,2015; 王淑芳等,2015; 董大忠等,2016; 蒋裕强等,2019; Zou Caineng et al.,2019; 贾承造等,2021; 邹才能等,2022; Sohail et al.,2022; 张君峰等,2022),因为确实具备了页岩气潜在性勘探目的层的两个最为基本的条件,即TOC值要大于2%、而且单层厚度要大于15 m(王淑芳等,2015; 董大忠等,2016; 蒋裕强等,2019; Sohail et al.,2022; 张君峰等,2022),近年来的许多研究(罗胜元等,2016; 岑文攀等,2018; 胡东风等,2018; 周瑞琦等,2018; 卢树藩等,2021)也充分表明了这一点;尽管存在着巨大的风险和挑战(黄羚等,2012; 郭旭升,2014; 王世谦,2017; 岑文攀等,2018; 马永生等,2018; 郭旭升等,2022; 邹才能等,2022),因为要在四川盆地之外的复杂构造区寻找到符合以下条件的潜在性勘探区块,这一套富有机质页岩才能成为有效的页岩气勘探目的层(王淑芳等,2015; 董大忠等,2016; 郗兆栋等,2018; 蒋裕强等,2019; Sohail et al.,2022; 张君峰等,2022):① 大于50 km2的勘探面积;② 超过600 m的埋深;③ 保证潜在性页岩气勘探目的层倾角接近水平的地层产状。无论如何,图9至图11所表示的研究区域早石炭世富有机质页岩的空间分布特点,将成为今后寻找和优选有效页岩气勘探区块的重要线索。这些TOC值普遍大于2%(表1~4)而富有机质的块状黑色页岩(图2a、3a、4a、5a),其中的有机质聚集作用,总体时间发育特征(图2~5)与空间展布特点(图6~11),符合被很多学者所推崇和主张(Harris et al.,2004; Rimmer et al.,2004; Bohacs et al.,2005; Katz,2005; Algeo and Tribovillard,2009; Lash and Blood,2014; Dong Tian et al.,2018; Chen Lin et al.,2021; Han Yuyue et al.,2021)的一个综合型模式:① 有机生产率的增强而产生更多的有机质;② 缺氧的底层水体而促进有机质保存作用;③ 较低的沉积作用速率而减弱沉积物对有机质的稀释作用。再者,海平面变化似乎对所有这3个作用机制施加了一个基本的控制,从而对有机质聚集作用施加了基本的控制(Arthur and Sageman,1994; Bohacs et al.,2005; Lash and Blood,2014; Dong Tian et al.,2018; Chen Lin et al.,2021; Han Yuyue et al.,2021)。具体表现在以下几个方面:① 发育在一个有利的全球大背景之中,包括在总体降温过程的晚古生代冰室初期的杜内期与维宪期加温事件过程(Scotese et al.,2021)、以及热带雨林(Boucot et al.2013)覆盖着的接近赤道的低纬度古地理大背景(Scotese,2021),这将有利于表面水体的有机生产作用的加强、而且有利于在深水区域产生水体的分层作用、进而造成深水区域底层水体的缺氧环境而促进有机质的保存;② 叠加在二级海平面变化上升期的三级层序SQ1与SQ2(图2至图5)的海平面相对上升期,相对高位的海平面时期将有利于有机质保存的缺氧底层水体环境的发育和形成、并减弱沉积物对有机质的稀释作用,最终有利于有机质的聚集与保存(Tyson,2001; Katz,2005; Lash and Blood,2014; Dong Tian et al.,2018);③ 在上述背景下才有利于在石炭纪早期的杜内期和维宪期产生明显的沉积相带分异,就像图9至图11所示的远离古陆的盆地相带那样,在研究区域形成远离古陆的深水盆地(图9 至图11所示),在其中得到增强的水柱分层作用导致了底层水体的缺氧有利于有机质的保存,而且远离古陆造成陆源碎屑沉积物的缺乏减弱了沉积物对有机质的稀释作用,最终促进了有机质的富集(Arthur and Sageman,1994; Tyson,2001; Katz,2005; Lash and Blood,2014; Dong Tian et al.,2018)。

  • 但是,黔桂地区石炭纪早期的块状富有机质黑色页岩(图2a、3a、4a、5a)的有机质聚集作用机制,与特别的生物碳泵即细粒植物碎屑的生物碳泵(Turner,2015),可能存在着成因联系;“生物碳泵”是一个过程(Beaulieu,2002; Turner,2015),通过这个过程,光合作用在海洋之中产生的有机质,主要通过沉落的颗粒、可溶解有机质的回流或垂向混合过程以及动物的搬运,从表面海洋下降到深部的一个从大气圈向海洋深部输出碳的过程。就像Caron(2016)指出的那样,谜一样的原生生物超级组合即根虫(Rhizaria),被Biard et al.(2016)揭示出在现代海洋之中其丰度与生物量要比以前所认识到的大得多,而且被Guidi et al.(2016)的工作证明卷入了浮游动物从大气圈向海洋深部输出碳的重要性;也就像在四川盆地成为重要的页岩气勘探目的层的奥陶系五峰组和志留系龙马溪组的笔石页岩中笔石对页岩气源储的贡献(邱振等,2018)那样。细粒植物碎屑从透光带向深部的直接沉积作用的聚集与脉动,是生物碳泵的一个重要构成(Beaulieu,2002; Turner,2015)。

  • 最为重要的是,在广西罗城小长安剖面(在罗城县城东北约20 km)出露完好的罗城组之中,中—厚层含生物灰岩层(图12b)、与灰黑色中薄层富有机质暗色页岩(图12c、d)组成若干潮下型米级旋回(图12a;Osleger,1991; Mei Mingxiang et al.,2000; 梅冥相,2011),这些米级旋回由于常常4个旋回构成一组而反映了长偏心率旋回与短偏心率旋回之间的叠加、从而代表着地层记录中的米兰柯维奇旋回性质(Schwazacher,1993);富有机质暗色页岩9块样品的TOC值普遍大于2%(表5),还获取了4.14%的高值(QT-LC-2;表5),充分表明了富集有机质的基本特征;而且在灰黑色中薄层富有机质暗色页岩发育厘米级别大小的植物碎屑(图12d),也充分表明这些中薄层富有机质页岩中的有机质聚集作用,确实与细粒植物碎屑的生物碳泵存在着密切的成因联系;另外,前人的研究表明,下石炭统鹿寨组中的富有机质页岩,有机质的聚集与陆源高等植物存在着联系(杨惠民等,1999; 黄羚等,2012; 周瑞琦等,2018),即主碳峰较高的含有腐殖型和腐泥型有机质构成的II型干酪根,也为上述推断和解释提供了一些重要的线索和证据。

  • 图12 广西罗城小长安剖面罗城组的基本特征

  • Fig.12 Images showing the features for the Luocheng Fm. at the Xiaochangan section in Luocheng County of Guangxi Province

  • (a)—罗城组的宏观特征,中薄层富有机质暗色页岩与中厚层灰岩组成潮下型米级旋回及其1∶4的叠加样式(箭头所指);(b)—灰岩层中的珊瑚化石(箭头所指);(c)—与灰岩层互层的暗色富有机质页岩(箭头所指);(d)—富有机质暗色页岩中的植物化石碎片(箭头所指)

  • (a) —the megascopic feature of the Luocheng Formation that are marked by subitdal type of carbonate meter-scale cycles composed of both the mid-to thin-bedded organic-matter-rich dark shale and the mid-to thick-bedded limestone and a1∶4 stacking pattern (the arrow) ; (b) —coral fossil within limestone (the arrow) ; (c) —the mid-to thin-bedded organic-matter-rich dark shale bed (the arrow) interbedded with limestone bed; (d) —the fragment of plant fossils within organic-matter-rich dark shale

  • 表5 广西罗城小长安剖面下石炭统罗城组灰岩层中富有机质页岩夹层的TOC测试分析表

  • Table5 TOC values of samples from the organic-matter-rich shales interbedded with the limestones within the Luocheng Formation of the Lower Carboniferous at the Xiaochang'an section in Luocheng County of Guangxi Province

  • 进一步讲,如果说黔南—桂中地区下石炭统形成在三级海平面上升期的大套富有机质页岩,可能分别对应着杜内期与维宪期的加温过程;它们的形成结束于三级海平面下降期,尤其是寺门组发育煤系的三角洲过程分别对应着全球性降温过程(图8),正好处于即将到来的石炭纪—二叠纪冰期(313~291 Ma)的前奏(Scotese et al.,2021);石炭纪—二叠纪冰期,代表着显生宙最长寿命而且最为严重的冰室效应,为一个较低的大气圈二氧化碳分压、以及异常高的大气圈氧气分压所驱动,而且这样的全球变化,主要为泥炭在广泛的热带低地盆地中的堆积和埋藏所驱动和产生(Davydov et al.,2012; Boucot et al.,2013; Stanley and Luczaj,2015; Montañez,2016; Aretz et al.,2020; Scotese et al.,2021);但是,这样的地球生物学和地球动力学过程,还可能得益于早石炭世(密西西比亚纪)深部大洋中细粒植物碎屑的生物碳泵,就像本文所发现的那样。

  • 5 结论

  • 在晚古生代冰室期(365~253 Ma)初期,即严酷的石炭纪—二叠纪冰期(313~291 Ma)前奏期的杜内期至维宪期,而且位于接近赤道低纬度背景、并覆盖着热带雨林的华南板块西南部的黔南—桂中地区,在远离古陆的深水台间盆地相中,发育一套累计厚度接近300 m、TOC值普遍大于2%的富有机质页岩,主导着研究区域下石炭统的鹿寨组(和英塘组);该套富有机质页岩,发育在三级海平面上升期造成的沉积环境加深过程之中,还可能对应着杜内期和维宪期的加温过程,最终形成一套极为优越的潜在性页岩气勘探目的层,为四川盆地以外的复杂构造区潜在性页岩气勘探区块的寻找和优选,提供了重要线索。针对富有机质页岩中的有机质聚集和保存作用,除了海平面变化控制下得到增强的生产率和保存作用、以及较低的沉积作用速率减弱了沉积物对有机质的稀释作用之外,细粒植物碎屑的生物碳泵,也可能是一个重要而不可忽视的作用过程。在石炭纪,泥炭在广泛的热带低地盆地中的堆积和埋藏并成煤的作用,导致了一个较低的大气圈二氧化碳分压和异常高的大气圈氧气分压、并驱动着显生宙最长寿命而且最为严酷的冰室期(晚古生代冰室),这些地球生物学过程可能还受到深部大洋中的植物碎屑生物碳泵的正反馈的驱动,尽管还存在着许多细节问题需要进一步探索与研究。

  • 致谢:本文是广西重点研发计划项目“广西页岩气成藏条件与预测评价关键技术研究(2021AB30011)”的成果之一;项目第一负责人陆济璞教授级高级工程师给予了大力指导和帮助,两位匿名审稿专家对本文进行了详细的审阅,并提出宝贵的修改意见,在此一并致以衷心感谢!

  • 参考文献

    • Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268: 211~225.

    • Aretz M, Herbig H G, Wang X D. 2020. The Carboniferous Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2020. Amsterdam: Elsevier, 811~893.

    • Arthur M A, Sageman B B. 1994. Marine black shales: Depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22: 499~551.

    • Beaulieu S E. 2002. Accumulation and fate of phytodetritus on the sea floor. Oceanography and Marine Biology: An Annual Review, 40: 171~232.

    • Biard T, Stemmann L, Picheral M, Mayot N, Vandromme P, Hauss H, Gorsky G, Guidi L, Kiko R, Not F. 2016. In situ imaging reveals the biomass of giant protists in the global ocean. Nature, 532: 504~507.

    • Bohacs K M, Grabowski G J, Carroll A R, Mankiewicz P J, Gerhardt K J, Schwalbach J R, Wegner M B, Simo J A. 2005. Production, destruction, and dilution—The many paths to source rock development. In: Harris N B, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology (SEPM) Special Publication, 82: 61~101.

    • Boucot A J, Chen Xu, Scotese C R. 2013. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate. SEPM Concepts in Sedimentology and Paleontology, 11: 1~478.

    • Cai Jingong, Zeng Xiang, Wei Hailun, Song Mingshui, Wang Xuejun, Liu Qing. 2019. From water body to sediments: Exploring the depositional processes of organic matter and their implications. Journal of Palaeogeography, 21(1): 49~66 (in Chinese with English abstract).

    • Caron D A. 2016. The rise of Rhizaria. Nature, 532: 444~445.

    • Catuneanu O. 2006. Principles of Sequence Stratigraphy. Elsevier: Amsterdam, 1~375.

    • Catuneanu O. 2019. Model-independent sequence stratigraphy. Earth-Science Reviews, 188: 312~388.

    • Catuneanu O. 2020. Sequence stratigraphy of deep-water systems. Marine and Petroleum Geology, 114: 1~13.

    • Cen Wenpan, Wang Ruihu, Xu Hai, Li Xiaolin, Li Weiyuan. 2018. Status, issues and suggestions on the shale gas exploration in Gungaxi. Land and Resources in South China, (3): 40~43 (in Chinese without English abstract).

    • Chen Lin, Jiang Shu, Chen Ping, Chen Xiaohong, Zhang Baomin, Zhang Guotao, Lin Weibing, Lu Yongchao. 2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area, China. Marine and Petroleum Geology, 124: 104809

    • Chevrot V, Gottardi R. 2022. Heterogeneity of the transgressive systems tract of the Eagle Ford Formation, Val Verde County, Texas. American Association of Petroleum Geologists Bulletin, 106(8): 1581~1603.

    • Creaney S, Passey Q R. 1993. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. American Association of Petroleum Geologists Bulletin, 77: 386~401.

    • Csato I, Homonnai O, Zadravecz C, Catuneanu O. 2021. Lower Visean sea-level changes in the northern Precaspian basin. Marine and Petroleum Geology, 132: 105186.

    • Davydov V I, Korn D, Schmitz M D. 2012. The Carboniferous Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012. Amsterdam: Elsevier, 603~651.

    • Dong Dazhong, Huang Xunan, Guan Quanzhong, Huang Jinliang, Wang Shufang, Li Xinjing. 2016. Discussion about geological characteristics, resource evaluation method and its key parameters of shale gas in China. Natural Gas Geoscience, 27(9): 1583~1601 (in Chinese with English abstract).

    • Dong Tian, Harris N B, Ayranci K. 2018. Relative sea-level changes and organic matter accumulation in shales of the Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada: Insights into sediment flux, redox conditions, and bioproductivity. The Geological Society of America Bulletin, 30: 859~880.

    • Dong Weiping. 1997. Lithostratigraphy in Guizhou. Wuhan: China University of Geosciences Press, 143~220 (in Chinese).

    • Feng Zengzhao, Yang Yuqing, Bao Zhidong, Zhang Haiqing, Wu Xianghe, Qi Dunlun. 1998. Lithofacies Paleogeography of Carboniferous in South China. Beijing: Geological Publishing House, 1~196 (in Chinese with English abstract).

    • Gong Chenglin, Steel R J, Peng Yang, Wang Yingmin, Li Dongwei. 2022. Major advances in deep-marine siliciclastic sequence stratigraphy, 1970 to 2020. Acta Sedimentologica Sinica, 40(2): 292~318 (in Chinese with English abstract).

    • Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, Darzi Y, Audic S, Berline L, Brum J, Coelho L P, Espinoza J C I, Malviya S, Sunagawa S, Dimier C, Kandels-Lewis S, Picheral M, Poulain J, Searson S, Tara Stemmann L, Not F, Hingamp P, Speich S, Follows M, Karp-Boss L, Boss E, Ogata H, Pesant S, Weissenbach J, Wincker P, Acinas S G, Bork P, de Vargas C, Iudicone D, Sullivan M B, Raes J, Karsenti E, Bowler C, Gorsky G. 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature, 532: 465~470.

    • Guo Xusheng. 2014. Rules of two factor enrichment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan basin and its surrounding area. Acta Geologica Sinica, 88(7): 1209~1218 (in Chinese with English abstract).

    • Guo Xusheng, Zhao Yongqiang, Shen Baojian, Wei Xiangfeng, Lu Longfei, Pan Anyang, Li Yuping. 2022. Marine shale gas exploration in southern China: Review and prospects. Acta Geologica Sinica, 96(1): 172~182 (in Chinese with English abstract).

    • Han Yuyue, Ran Bo, Liu Shugen, Li Zhiwu, Ye Yuehao, Sun Wei, Yang Di, Wang Shiyu. 2021. Main controlling factors of organic-matter enrichment in the Ordovician-Silurian marine organic-rich mudrock in the Yangtze Block, South China. Marine and Petroleum Geology, 127: 104959.

    • Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64~67.

    • Harris N B, Freeman K H, Pancost R D, White T S, Mitchell G D. 2004. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo basin, West Africa. American Association of Petroleum Geologists Bulletin, 88: 1163~1184.

    • Hetzel A, Böttcher M E, Wortmann U G, Brumsack H-J. 2009. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273: 302~328.

    • Hu Dongfeng, Wei Zhihong, Liu Ruobing, Fan Zhiwei, Han Jing. 2018. Development characteristics and shale gas exploration potential of the Lower Carboniferous black shale in the Guizhong depression. Natural Gas Industry, 38(10): 28~37 (in Chinese with English abstract).

    • Huang Ling, Xu Zhengyu, Wang Pengwan, Xiong Shaoyun. 2012. An analysis of resource potential of Upper Paleozoic shale gas in Guizhong depression. Geology in China, 39(2): 497~506 (in Chinese with English abstract).

    • Hunt D, Tucker M E. 1992. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall. Sedimentary Geology, 81: 1~9.

    • Jia Chengzao, Pang Xiongqi, Song Yan. 2021. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces. Petroleum Exploration and Development, 48(3): 437~452 (in Chinese with English abstract).

    • Jiang Yuqiang, Fu Yonghong, Xie Jun, Dong Dazhong, Zhou Keming, Cheng Xiaoyan, Qi Lin, Zhang Нaijie, Chen Chao, Ma Tinghu, Gu Yifan. 2019. Development trend of marine shale gas reservoir evaluation and a suitable comprehensive evaluation system. Natural Gas Industry, 39(10): 1~9 (in Chinese with English abstract).

    • Jin Siding, Liu Sibing, Wei Xiangfeng, Ma Chao, Chen Yicai, Hao Jingyu, Ni Kai, Zhou Daojun. 2023. Astronomically forced cycles in Lower Carboniferous Luzhai Formation shales, Guizhong depression, South China. Marine and Petroleum Geology, 156: 106427.

    • Jin Yugan, Fan Yingnian, Wang Xiangdong, Wang Rennong. 2000. The Stratigraphic Lexicon of China (The Carboniferous System). Beijing: Geological Publishing House, 1~136 (in Chinese).

    • Jarvie D M. 2012. Shale resource systems for oil and gas: Part 2. In: Breyer J A, ed. Shale-oil Resource Systems: Shale Reservoirs: Giant Resources for the 21st Century. Tulsa: American Association of Petroleum Geologists, 89~119.

    • Katz B. 2005. Controlling factors on source rock development—A review of productivity, preservation, and sedimentation rate. In: Harris N B, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology (SEPM) Special Publication, 82: 7~16.

    • Kocsis A T, Scotese C R. 2020. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Science Reviews, 213: 103463.

    • Lash G G, Blood D R. 2014. Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian basin. Marine and Petroleum Geology, 57: 244~263.

    • Lazar R, Bohacs K M, Schieber J, Macquaker J, Demko T. 2015. Mudstone primer: Lithofacies variations, diagnostic criteria, and sedimentologic/stratigraphic implications at lamina to bedset scales. SEPM Concepts in Sedimentology and Paleontology, 12: 1~128.

    • Lenton T M, Boyle R A, Poulton S W, Shields-Zhou G A, Butterfield N J. 2014. Coevolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7: 257~265.

    • Li Ying, Wang Xiangdong, Hu Keyi, Huang Xing, Zhang Shuichang, Zhang Bin, Qi Yuping, Chen Jitao, Yao Le. 2021. Lithostratigraphic subdivision and correlation of the Carboniferous in China. Journal of Stratigraphy, 45(3): 303~318 (in Chinese with English abstract).

    • Liang Yuchen, Liu Ziliang, Chen Yicai, Liu Sibing. 2020. Analysis of sequence and sedimentary facies in Simen Formation of lower Carboniferous in the north-central Guizhong depression. Northwestern Geology, 53(2): 27~41 (in Chinese with English abstract).

    • Lu Shupan, Chen Yi, Luo Xiangjian, He Ben, Fu Hongbing. 2021. Sedimentary characteristics and distribution of the Carboniferous black shale in Guizhou Province. Acta Sedimentologica Sinica, 39(3): 672~684 (in Chinese with English abstract).

    • Luo Shengyuan, Wang Chuanshang, Peng Zhongqin. 2016. Shale gas research of Luzhai Formation, low Carboniferous in Guizhong depression. Geology and Mineral Resources of South China, 32(2): 180~190 (in Chinese with English abstract).

    • Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2018. China's shale gas exploration and development: Understanding and practice. Petroleum Exploration and Development, 45(4): 561~574 (in Chinese with English abstract).

    • Mankin C J. 1983. Unconventional sources of natural gas. Annual Review of Energy, 8: 27~43.

    • Mei Mingxiang. 2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy. Journal of Palaeogrography, 12(5): 549~564 (in Chinese with English abstract).

    • Mei Mingxiang. 2011. From vertical stacking pattern of cycles to discerning and division of sequences: The third advance in sequence stratigraphy. Journal of Palaeogrography, 13(1): 27~54 (in Chinese with English abstract).

    • Mei Mingxiang, Ma Yongsheng. 2001. On two kinds offacies-change surface and two kinds of diachronism in stratigraphical records according to the natures of cyclic-sequences. Journal of Stratigraphy, 25(2): 150~153 (in Chinese with English abstract).

    • Mei Mingxiang, Tucker M E. 2007. Sequence-stratigraphic frameworks and sea-level changes for the Late Paleozoic of the Dianqiangui basin and its adjacent areas of southwestern China. In: Wong Th E. ed. Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Amsterdam: Royal Nertherlands Academy of Arts and Sciences, 417~430.

    • Mei Mingxiang, Xu Debin, Zhou Hongrui. 2000. Genetic types of meter-scale sequences and fabric natures of facies succession. Journal of China University of Geosciences, 11(4): 375~382.

    • Mei Mingxiang, Meng Qingfen, Yi Dinghong, Li Donghai. 2004a. Carboniferous sequence framework in Guizhou and Guangxi, southern China. Acta Geoscientica Sinica, 25(1): 39~46 (in Chinese with English abstract).

    • Mei Mingxiang, Ma Yongsheng, Deng Jun, Meng Qingfen, Yi Dinghong, Li Donghai. 2004b. Late Paleozoic sequence-stratigraphic frameworks and sea level changes in Dianqiangui basin and its adjacent areas with systematic revisions of regional unconformities. Journal of China University of Geosciences, 15 (1): 55~69.

    • Meyers S R, Peters S E. 2011. A 56 million year rhythm in North American sedimentation during the Phanerozoic. Earth and Planetary Science Letters, 303: 174~180.

    • Montañez I P. 2016. A Late Paleozoic climate window of opportunity. Proceedings of the National Academy of Sciences, 113(9): 2334~2336.

    • Negri A, Ferretti A, Wagner T, Meyers P A. 2009. Organic-carbon-rich sediments through the Phanerozoic: processes, progress, and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 273: 213~217.

    • Osleger D A. 1991. Subtidal carbonate cycles: Implications for allocyclic versus autocyclic controls. Geology, 19: 917~920.

    • Pedersen T F, Calvert S E. 1990. Anoxia vs. productivity: What controls the formation of organic-carbon rich sediments and sedimentary rocks? American Association of Petroleum Geologists Bulletin, 74: 454~466.

    • Qiu Zhen, Zou Caineng, Li Xizhe, Wang Hongyan, Dong Dazhong, Lu Bin, Zhou Shangwen, Shi Zhengsheng, Feng Ziqi, Zhang Mengqi. 2018. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: A case study of the Wufeng-Longmaxi Formations in South China. Natural Gas Geoscience, 29(5): 606~615 (in Chinese with English abstract).

    • Rimmer S M, Thompson J A, Goodnight S A, Robl T L. 2004. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215: 125~154.

    • Ross C A, Ross J R P. 1995. Late Paleozoic depositional sequences are synchronism and worldwide. Geology, 13: 194~197.

    • Sageman B B, Murphy A E, Werne J P, Ver Straeten C A, Hollander D J, Lyons T W. 2003. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195: 229~273.

    • Schlager W, Warrlichw G. 2009. Record of sea-level fall in tropical carbonates. Basin Research, 21: 209~224.

    • Schwazacher W. 1993. Cyclostratigraphy and the Milankovitch Theory. Amsterdam: Elsevier, 1~196.

    • Scotese C R. 2021. An atlas of Phanerozic paleogeography maps: The seas come in and the seas go out. Annual Review of Earth and Planetary Sciences, 49: 669~718.

    • Scotese C R, Song H, Mills B, van der Meer D. 2021. Phanerozoic paleotemperatures: The Earth's changing climate during the last 540 million years. Earth-Science Reviews, 2021: 103503.

    • Sohail G M, Radwan A E, Mahmoud M. 2022. A review of Pakistani shales for shale gas exploration and comparison to North American shale plays. Energy Reports, 8: 6423~6442.

    • Stanley S M, Luczaj J A. 2015. Earth System History (Fourth Edition). New York: W. H. Freeman and Company, 329~355.

    • Turner J T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Progress in Oceanography, 130: 205~248.

    • Tyson R V. 2001. Sedimentation rate, dilution, preservation, and total organic carbon: Some results of a modeling study. Organic Geochemistry, 32: 333~339.

    • Tyson R V. 2005. The “productivity versus preservation” controversy: Cause, flaws, and resolution. In: Harris N B, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology (SEPM) Special Publication, 82: 17~33.

    • Wang Shiqian. 2017. Shale gas exploitation: Status, issues and prospects. Natural Gas Industy, 37(6): 115~130 (in Chinese with English abstract).

    • Wang Shufang, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Guang Quanzhong. 2015. A comparative study of the geological feature of marine shale gas between China and the United States. Natural Gas Geoscience, 26(9): 1666~1678 (in Chinese with English abstract).

    • Wang Xiangdong, Hu Keyi, Qie Wenkun, Sheng Qingyi, Chen Bo, Lin Wei, Yao Le, Wang Qiulai, Qi Yuping, Chen Jitao, Liao Zhuoting, Song Junjun. 2019. Carboniferous integrative stratigraphy and time scale of China. Science China-Earth Sciences, 49(1): 139~159 (in Chinese with English abstract).

    • Wu Haoruo. 2000. A discussion on the tectonic paleogeography related to the Caledonian movement in Guangxi. Journal of Paleogeography, 2(1): 70~76 (in Chinese with English abstract).

    • Xi Zhaodong, Tang Shuheng, Wang Jing, Zhang Zhen, Li Yanpeng, Gong Minghui, Xiao Heqi. 2018. Evolution parameters study of selecting favorable shale gas areas in southern China. Acta Geologica Sinica, 92(6): 1313~1323 (in Chinese with English abstract).

    • Yang Huimin, Liu Bingwen, Deng Zonghuai, Qi Jingwen, Wu Dahua, Huang Wenming. 1999. Value and Selection to the Best Gas-Oil Keeping Unite of Marine Carbonate Area in Yunnan, Guizhou and Guangxi. Guiyang: Guizhou Science and Technology Press, 4~63 (in Chinese).

    • Yin Baoan. 1997. Lithostratigraphy in Guangxi. Wuhan: China University of Geosciences Press, 52~191 (in Chinese).

    • Zhang Junfeng, Zhou Zhi, Song Teng, Li Fei, Chen Rong, Lu Yanxin, Chen Xianglin, Xu Qiuchen, Wang Chao, Wang Yuluo. 2022. Comparison of exploration and development history, geological characteristics and exploitation conditions of shale gas in China and the United States and its enlightenment. Acta Petrolei Sinica, 43(12): 1687~1701 (in Chinese with English abstract).

    • Zhao Ziqiang, Ding Qixiu. 1996. The Regional Stratigraphy in Central and South Part of China. Wuhan: China University of Geosiences Press, 71~123 (in Chinese).

    • Zhou Ruiqi, Zhang Cong, Wei Honggang, Chen Yang. 2018. Lower Carboniferous Dawuba Formation shale gas preservation conditions of Ziyun-Luodian area. Bulletin of Science and Technology, 34(8): 28~34 (in Chinese with English abstract).

    • Zou Caineng, Zhu Rukai, Chen Zhongqiang, Ogg J G, Wu Songtao, Dong Dazhong, Qiu Zhen, Wang Yuman, Wang Lan, Lin Senhu, Cui Jingwei, Su Ling, Yang Zhi. 2019. Organic-matter-rich shales of China. Earth-Science Reviews, 189: 51~78.

    • Zou Caineng, Zhu Rukai, Dong Dazhong, Wu Songtao. 2022. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas. Acta Petrolei Sinica, 43(12): 1675~1686 (in Chinese with English abstract).

    • 蔡进功, 曾翔, 韦海伦, 宋明水, 王学军, 刘庆. 2019. 从水体到沉积物: 探寻有机质的沉积过程及其意义. 古地理学报, 21(1): 49~66.

    • 岑文攀, 王瑞湖, 徐海, 王新宇, 李小林, 李委员. 2018. 广西页岩气勘查现状、存在问题及建议. 南方国土资源, (3): 40~43.

    • 董大忠, 王玉满, 黄旭楠, 张晨晨, 管全中, 黄金亮, 王淑芳, 李新景. 2016. 中国页岩气地质特征、资源评价方法及关键参数. 天然气地球科学, 27(9): 1583~1601.

    • 董卫平. 1997. 贵州省岩石地层. 武汉: 中国地质大学出版社, 143~220.

    • 冯增昭, 杨玉卿, 鲍志东, 张海清, 吴祥和, 齐敦伦. 1998. 中国南方石炭纪岩相古地理. 北京: 地质出版社, 1~196.

    • 龚承林, Steel R J, 彭旸, 王英民, 李东伟. 2022. 深海碎屑岩层序地层学50年(1970—2020)重要进展. 沉积学报, 40(2): 292~318.

    • 郭旭升. 2014. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7) : 1029~1218.

    • 郭旭升, 赵永强, 申宝剑, 魏祥峰, 卢龙飞, 潘安阳, 李宇平.2022.中国南方海相页岩气勘探理论: 回顾与展望.地质学报, 96(1): 172~182.

    • 胡东风, 魏志红, 刘若冰, 范志伟, 韩京. 2018. 桂中坳陷下石炭统黑色页岩发育特征及页岩气勘探潜力. 天然气工业, 38(10): 28~37.

    • 黄羚, 徐政语, 王鹏万, 熊绍云. 2012. 桂中坳陷上古生界页岩气资源潜力分析. 中国地质, 39(2): 497~506.

    • 贾承造, 庞雄奇, 宋岩. 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. 石油勘探与开发, 48(3): 437~452.

    • 蒋裕强, 付永红, 谢军, 董大忠, 周克明, 程晓艳, 漆麟, 张海杰, 陈超, 马廷虎, 谷一凡. 2019. 海相页岩气储层评价发展趋势与综合评价体系. 天然气工业, 39(10): 1~9.

    • 金玉玕, 范影年, 王向东, 王仁农. 2000. 中国地层典 (石炭系). 北京: 地质出版社, 1~136.

    • 李莹, 王向东, 胡科毅, 黄兴, 张水昌, 张斌, 祁玉平, 陈吉涛, 要乐. 2021. 中国石炭纪岩石地层划分和对比. 地层学杂志, 45(3): 303~318.

    • 梁雨晨, 刘自亮, 陈义才, 刘四兵. 2020. 桂中坳陷中北部下石炭统寺门组层序与沉积相分析. 西北地质, 53(2): 27~41.

    • 卢树藩, 陈祎, 罗香建, 何犇, 符宏斌. 2021. 贵州石炭系黑色页岩层系沉积特征及分布规律研究. 沉积学报, 39(3): 672~684.

    • 罗胜元, 王传尚, 彭中勤. 2016. 桂中坳陷下石炭统鹿寨组页岩气研究. 华南地质与矿产, 32(2): 180~190.

    • 马永生, 蔡勋育, 赵培荣. 2018. 中国页岩气勘探开发理论认识与实践. 石油勘探与开发, 45(4): 561~574.

    • 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学的进展之一. 古地理学报, 12(5): 549~564.

    • 梅冥相. 2011. 从旋回的有序叠加形式到层序的识别和划分: 层序地层学进展之三. 古地理学报, 13(1): 27~54.

    • 梅冥相, 马永生. 2001. 从旋回层序的特征论地层记录的两种相变面及两种穿时性. 地层学杂志, 25 (2): 150~153.

    • 梅冥相, 孟庆芬, 易定红, 李东海. 2004a. 黔桂地区石炭系层序地层格架及海平面变化. 地球学报, 25(1): 39~46.

    • 邱振, 邹才能, 李熙喆, 王红岩, 董大忠, 卢斌, 周尚文, 施振生, 冯子齐, 张梦琪. 2018. 论笔石对页岩气源储的贡献: 以华南地区五峰组—龙马溪组笔石页岩为例. 天然气地球科学, 29(5): 606~615.

    • 王世谦. 2017. 页岩气资源开采现状、问题与前景. 天然气工业, 37(6): 115~130.

    • 王淑芳, 董大忠, 王玉满, 李新景, 黄金亮, 管全中. 2015. 中美海相页岩气地质特征对比研究.天然气地球科学, 26(9): 1666~1678.

    • 王向东, 胡科毅, 郄文昆, 盛青怡, 陈波, 林巍, 要乐, 王秋来, 祁玉平, 陈吉涛, 廖卓庭, 宋俊俊. 2019. 中国石炭纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 139~159.

    • 吴浩若. 2000. 广西加里东运动构造古地理问题. 古地理学报, 2 (1): 70~76.

    • 郗兆栋, 唐书恒, 王静, 张振, 李彦朋, 龚明辉, 肖何琦. 2018. 中国南方海相页岩气选区关键参数探讨. 地质学报, 92(6): 1313~1323.

    • 杨惠民, 刘炳温, 邓宗淮, 齐敬文, 吴大华, 黄藴明. 1999. 滇黔桂海相碳酸盐岩地区最佳油气保存单元的评价与选择. 贵阳: 贵州科技出版社, 4~63.

    • 殷保安. 1997. 广西岩石地层. 武汉: 中国地质大学出版社, 52~191.

    • 张君峰, 周志, 宋腾, 李飞, 陈榕, 卢妍欣, 陈相霖, 徐秋晨, 王超, 王昱荦. 2022. 中美页岩气勘探开发历程、地质特征和开发利用条件对比及启示. 石油学报, 43(12): 1687~1701.

    • 赵自强, 丁启秀. 1996. 中南区区域地层. 武汉: 中国地质大学出版社, 71~123.

    • 周瑞琦, 张聪, 魏洪刚, 陈杨. 2018. 紫云-罗甸地区下石炭统打屋坝组页岩气保存条件分析. 科技通报, 34(8): 28~34.

    • 邹才能, 朱如凯, 董大忠, 吴松涛. 2022. 页岩油气科技进步、发展战略及政策建议. 石油学报, 43(12): 1675~1686.

  • 参考文献

    • Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268: 211~225.

    • Aretz M, Herbig H G, Wang X D. 2020. The Carboniferous Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2020. Amsterdam: Elsevier, 811~893.

    • Arthur M A, Sageman B B. 1994. Marine black shales: Depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22: 499~551.

    • Beaulieu S E. 2002. Accumulation and fate of phytodetritus on the sea floor. Oceanography and Marine Biology: An Annual Review, 40: 171~232.

    • Biard T, Stemmann L, Picheral M, Mayot N, Vandromme P, Hauss H, Gorsky G, Guidi L, Kiko R, Not F. 2016. In situ imaging reveals the biomass of giant protists in the global ocean. Nature, 532: 504~507.

    • Bohacs K M, Grabowski G J, Carroll A R, Mankiewicz P J, Gerhardt K J, Schwalbach J R, Wegner M B, Simo J A. 2005. Production, destruction, and dilution—The many paths to source rock development. In: Harris N B, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology (SEPM) Special Publication, 82: 61~101.

    • Boucot A J, Chen Xu, Scotese C R. 2013. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate. SEPM Concepts in Sedimentology and Paleontology, 11: 1~478.

    • Cai Jingong, Zeng Xiang, Wei Hailun, Song Mingshui, Wang Xuejun, Liu Qing. 2019. From water body to sediments: Exploring the depositional processes of organic matter and their implications. Journal of Palaeogeography, 21(1): 49~66 (in Chinese with English abstract).

    • Caron D A. 2016. The rise of Rhizaria. Nature, 532: 444~445.

    • Catuneanu O. 2006. Principles of Sequence Stratigraphy. Elsevier: Amsterdam, 1~375.

    • Catuneanu O. 2019. Model-independent sequence stratigraphy. Earth-Science Reviews, 188: 312~388.

    • Catuneanu O. 2020. Sequence stratigraphy of deep-water systems. Marine and Petroleum Geology, 114: 1~13.

    • Cen Wenpan, Wang Ruihu, Xu Hai, Li Xiaolin, Li Weiyuan. 2018. Status, issues and suggestions on the shale gas exploration in Gungaxi. Land and Resources in South China, (3): 40~43 (in Chinese without English abstract).

    • Chen Lin, Jiang Shu, Chen Ping, Chen Xiaohong, Zhang Baomin, Zhang Guotao, Lin Weibing, Lu Yongchao. 2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area, China. Marine and Petroleum Geology, 124: 104809

    • Chevrot V, Gottardi R. 2022. Heterogeneity of the transgressive systems tract of the Eagle Ford Formation, Val Verde County, Texas. American Association of Petroleum Geologists Bulletin, 106(8): 1581~1603.

    • Creaney S, Passey Q R. 1993. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. American Association of Petroleum Geologists Bulletin, 77: 386~401.

    • Csato I, Homonnai O, Zadravecz C, Catuneanu O. 2021. Lower Visean sea-level changes in the northern Precaspian basin. Marine and Petroleum Geology, 132: 105186.

    • Davydov V I, Korn D, Schmitz M D. 2012. The Carboniferous Period. In: Gradstein F M, Ogg J G, Schmitz M D, Ogg G M, eds. The Geologic Time Scale 2012. Amsterdam: Elsevier, 603~651.

    • Dong Dazhong, Huang Xunan, Guan Quanzhong, Huang Jinliang, Wang Shufang, Li Xinjing. 2016. Discussion about geological characteristics, resource evaluation method and its key parameters of shale gas in China. Natural Gas Geoscience, 27(9): 1583~1601 (in Chinese with English abstract).

    • Dong Tian, Harris N B, Ayranci K. 2018. Relative sea-level changes and organic matter accumulation in shales of the Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada: Insights into sediment flux, redox conditions, and bioproductivity. The Geological Society of America Bulletin, 30: 859~880.

    • Dong Weiping. 1997. Lithostratigraphy in Guizhou. Wuhan: China University of Geosciences Press, 143~220 (in Chinese).

    • Feng Zengzhao, Yang Yuqing, Bao Zhidong, Zhang Haiqing, Wu Xianghe, Qi Dunlun. 1998. Lithofacies Paleogeography of Carboniferous in South China. Beijing: Geological Publishing House, 1~196 (in Chinese with English abstract).

    • Gong Chenglin, Steel R J, Peng Yang, Wang Yingmin, Li Dongwei. 2022. Major advances in deep-marine siliciclastic sequence stratigraphy, 1970 to 2020. Acta Sedimentologica Sinica, 40(2): 292~318 (in Chinese with English abstract).

    • Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, Darzi Y, Audic S, Berline L, Brum J, Coelho L P, Espinoza J C I, Malviya S, Sunagawa S, Dimier C, Kandels-Lewis S, Picheral M, Poulain J, Searson S, Tara Stemmann L, Not F, Hingamp P, Speich S, Follows M, Karp-Boss L, Boss E, Ogata H, Pesant S, Weissenbach J, Wincker P, Acinas S G, Bork P, de Vargas C, Iudicone D, Sullivan M B, Raes J, Karsenti E, Bowler C, Gorsky G. 2016. Plankton networks driving carbon export in the oligotrophic ocean. Nature, 532: 465~470.

    • Guo Xusheng. 2014. Rules of two factor enrichment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan basin and its surrounding area. Acta Geologica Sinica, 88(7): 1209~1218 (in Chinese with English abstract).

    • Guo Xusheng, Zhao Yongqiang, Shen Baojian, Wei Xiangfeng, Lu Longfei, Pan Anyang, Li Yuping. 2022. Marine shale gas exploration in southern China: Review and prospects. Acta Geologica Sinica, 96(1): 172~182 (in Chinese with English abstract).

    • Han Yuyue, Ran Bo, Liu Shugen, Li Zhiwu, Ye Yuehao, Sun Wei, Yang Di, Wang Shiyu. 2021. Main controlling factors of organic-matter enrichment in the Ordovician-Silurian marine organic-rich mudrock in the Yangtze Block, South China. Marine and Petroleum Geology, 127: 104959.

    • Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64~67.

    • Harris N B, Freeman K H, Pancost R D, White T S, Mitchell G D. 2004. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo basin, West Africa. American Association of Petroleum Geologists Bulletin, 88: 1163~1184.

    • Hetzel A, Böttcher M E, Wortmann U G, Brumsack H-J. 2009. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology, 273: 302~328.

    • Hu Dongfeng, Wei Zhihong, Liu Ruobing, Fan Zhiwei, Han Jing. 2018. Development characteristics and shale gas exploration potential of the Lower Carboniferous black shale in the Guizhong depression. Natural Gas Industry, 38(10): 28~37 (in Chinese with English abstract).

    • Huang Ling, Xu Zhengyu, Wang Pengwan, Xiong Shaoyun. 2012. An analysis of resource potential of Upper Paleozoic shale gas in Guizhong depression. Geology in China, 39(2): 497~506 (in Chinese with English abstract).

    • Hunt D, Tucker M E. 1992. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall. Sedimentary Geology, 81: 1~9.

    • Jia Chengzao, Pang Xiongqi, Song Yan. 2021. The mechanism of unconventional hydrocarbon formation: Hydrocarbon self-containment and intermolecular forces. Petroleum Exploration and Development, 48(3): 437~452 (in Chinese with English abstract).

    • Jiang Yuqiang, Fu Yonghong, Xie Jun, Dong Dazhong, Zhou Keming, Cheng Xiaoyan, Qi Lin, Zhang Нaijie, Chen Chao, Ma Tinghu, Gu Yifan. 2019. Development trend of marine shale gas reservoir evaluation and a suitable comprehensive evaluation system. Natural Gas Industry, 39(10): 1~9 (in Chinese with English abstract).

    • Jin Siding, Liu Sibing, Wei Xiangfeng, Ma Chao, Chen Yicai, Hao Jingyu, Ni Kai, Zhou Daojun. 2023. Astronomically forced cycles in Lower Carboniferous Luzhai Formation shales, Guizhong depression, South China. Marine and Petroleum Geology, 156: 106427.

    • Jin Yugan, Fan Yingnian, Wang Xiangdong, Wang Rennong. 2000. The Stratigraphic Lexicon of China (The Carboniferous System). Beijing: Geological Publishing House, 1~136 (in Chinese).

    • Jarvie D M. 2012. Shale resource systems for oil and gas: Part 2. In: Breyer J A, ed. Shale-oil Resource Systems: Shale Reservoirs: Giant Resources for the 21st Century. Tulsa: American Association of Petroleum Geologists, 89~119.

    • Katz B. 2005. Controlling factors on source rock development—A review of productivity, preservation, and sedimentation rate. In: Harris N B, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology (SEPM) Special Publication, 82: 7~16.

    • Kocsis A T, Scotese C R. 2020. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Science Reviews, 213: 103463.

    • Lash G G, Blood D R. 2014. Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian basin. Marine and Petroleum Geology, 57: 244~263.

    • Lazar R, Bohacs K M, Schieber J, Macquaker J, Demko T. 2015. Mudstone primer: Lithofacies variations, diagnostic criteria, and sedimentologic/stratigraphic implications at lamina to bedset scales. SEPM Concepts in Sedimentology and Paleontology, 12: 1~128.

    • Lenton T M, Boyle R A, Poulton S W, Shields-Zhou G A, Butterfield N J. 2014. Coevolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7: 257~265.

    • Li Ying, Wang Xiangdong, Hu Keyi, Huang Xing, Zhang Shuichang, Zhang Bin, Qi Yuping, Chen Jitao, Yao Le. 2021. Lithostratigraphic subdivision and correlation of the Carboniferous in China. Journal of Stratigraphy, 45(3): 303~318 (in Chinese with English abstract).

    • Liang Yuchen, Liu Ziliang, Chen Yicai, Liu Sibing. 2020. Analysis of sequence and sedimentary facies in Simen Formation of lower Carboniferous in the north-central Guizhong depression. Northwestern Geology, 53(2): 27~41 (in Chinese with English abstract).

    • Lu Shupan, Chen Yi, Luo Xiangjian, He Ben, Fu Hongbing. 2021. Sedimentary characteristics and distribution of the Carboniferous black shale in Guizhou Province. Acta Sedimentologica Sinica, 39(3): 672~684 (in Chinese with English abstract).

    • Luo Shengyuan, Wang Chuanshang, Peng Zhongqin. 2016. Shale gas research of Luzhai Formation, low Carboniferous in Guizhong depression. Geology and Mineral Resources of South China, 32(2): 180~190 (in Chinese with English abstract).

    • Ma Yongsheng, Cai Xunyu, Zhao Peirong. 2018. China's shale gas exploration and development: Understanding and practice. Petroleum Exploration and Development, 45(4): 561~574 (in Chinese with English abstract).

    • Mankin C J. 1983. Unconventional sources of natural gas. Annual Review of Energy, 8: 27~43.

    • Mei Mingxiang. 2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy. Journal of Palaeogrography, 12(5): 549~564 (in Chinese with English abstract).

    • Mei Mingxiang. 2011. From vertical stacking pattern of cycles to discerning and division of sequences: The third advance in sequence stratigraphy. Journal of Palaeogrography, 13(1): 27~54 (in Chinese with English abstract).

    • Mei Mingxiang, Ma Yongsheng. 2001. On two kinds offacies-change surface and two kinds of diachronism in stratigraphical records according to the natures of cyclic-sequences. Journal of Stratigraphy, 25(2): 150~153 (in Chinese with English abstract).

    • Mei Mingxiang, Tucker M E. 2007. Sequence-stratigraphic frameworks and sea-level changes for the Late Paleozoic of the Dianqiangui basin and its adjacent areas of southwestern China. In: Wong Th E. ed. Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Amsterdam: Royal Nertherlands Academy of Arts and Sciences, 417~430.

    • Mei Mingxiang, Xu Debin, Zhou Hongrui. 2000. Genetic types of meter-scale sequences and fabric natures of facies succession. Journal of China University of Geosciences, 11(4): 375~382.

    • Mei Mingxiang, Meng Qingfen, Yi Dinghong, Li Donghai. 2004a. Carboniferous sequence framework in Guizhou and Guangxi, southern China. Acta Geoscientica Sinica, 25(1): 39~46 (in Chinese with English abstract).

    • Mei Mingxiang, Ma Yongsheng, Deng Jun, Meng Qingfen, Yi Dinghong, Li Donghai. 2004b. Late Paleozoic sequence-stratigraphic frameworks and sea level changes in Dianqiangui basin and its adjacent areas with systematic revisions of regional unconformities. Journal of China University of Geosciences, 15 (1): 55~69.

    • Meyers S R, Peters S E. 2011. A 56 million year rhythm in North American sedimentation during the Phanerozoic. Earth and Planetary Science Letters, 303: 174~180.

    • Montañez I P. 2016. A Late Paleozoic climate window of opportunity. Proceedings of the National Academy of Sciences, 113(9): 2334~2336.

    • Negri A, Ferretti A, Wagner T, Meyers P A. 2009. Organic-carbon-rich sediments through the Phanerozoic: processes, progress, and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 273: 213~217.

    • Osleger D A. 1991. Subtidal carbonate cycles: Implications for allocyclic versus autocyclic controls. Geology, 19: 917~920.

    • Pedersen T F, Calvert S E. 1990. Anoxia vs. productivity: What controls the formation of organic-carbon rich sediments and sedimentary rocks? American Association of Petroleum Geologists Bulletin, 74: 454~466.

    • Qiu Zhen, Zou Caineng, Li Xizhe, Wang Hongyan, Dong Dazhong, Lu Bin, Zhou Shangwen, Shi Zhengsheng, Feng Ziqi, Zhang Mengqi. 2018. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: A case study of the Wufeng-Longmaxi Formations in South China. Natural Gas Geoscience, 29(5): 606~615 (in Chinese with English abstract).

    • Rimmer S M, Thompson J A, Goodnight S A, Robl T L. 2004. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215: 125~154.

    • Ross C A, Ross J R P. 1995. Late Paleozoic depositional sequences are synchronism and worldwide. Geology, 13: 194~197.

    • Sageman B B, Murphy A E, Werne J P, Ver Straeten C A, Hollander D J, Lyons T W. 2003. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195: 229~273.

    • Schlager W, Warrlichw G. 2009. Record of sea-level fall in tropical carbonates. Basin Research, 21: 209~224.

    • Schwazacher W. 1993. Cyclostratigraphy and the Milankovitch Theory. Amsterdam: Elsevier, 1~196.

    • Scotese C R. 2021. An atlas of Phanerozic paleogeography maps: The seas come in and the seas go out. Annual Review of Earth and Planetary Sciences, 49: 669~718.

    • Scotese C R, Song H, Mills B, van der Meer D. 2021. Phanerozoic paleotemperatures: The Earth's changing climate during the last 540 million years. Earth-Science Reviews, 2021: 103503.

    • Sohail G M, Radwan A E, Mahmoud M. 2022. A review of Pakistani shales for shale gas exploration and comparison to North American shale plays. Energy Reports, 8: 6423~6442.

    • Stanley S M, Luczaj J A. 2015. Earth System History (Fourth Edition). New York: W. H. Freeman and Company, 329~355.

    • Turner J T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Progress in Oceanography, 130: 205~248.

    • Tyson R V. 2001. Sedimentation rate, dilution, preservation, and total organic carbon: Some results of a modeling study. Organic Geochemistry, 32: 333~339.

    • Tyson R V. 2005. The “productivity versus preservation” controversy: Cause, flaws, and resolution. In: Harris N B, ed. The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology (SEPM) Special Publication, 82: 17~33.

    • Wang Shiqian. 2017. Shale gas exploitation: Status, issues and prospects. Natural Gas Industy, 37(6): 115~130 (in Chinese with English abstract).

    • Wang Shufang, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Guang Quanzhong. 2015. A comparative study of the geological feature of marine shale gas between China and the United States. Natural Gas Geoscience, 26(9): 1666~1678 (in Chinese with English abstract).

    • Wang Xiangdong, Hu Keyi, Qie Wenkun, Sheng Qingyi, Chen Bo, Lin Wei, Yao Le, Wang Qiulai, Qi Yuping, Chen Jitao, Liao Zhuoting, Song Junjun. 2019. Carboniferous integrative stratigraphy and time scale of China. Science China-Earth Sciences, 49(1): 139~159 (in Chinese with English abstract).

    • Wu Haoruo. 2000. A discussion on the tectonic paleogeography related to the Caledonian movement in Guangxi. Journal of Paleogeography, 2(1): 70~76 (in Chinese with English abstract).

    • Xi Zhaodong, Tang Shuheng, Wang Jing, Zhang Zhen, Li Yanpeng, Gong Minghui, Xiao Heqi. 2018. Evolution parameters study of selecting favorable shale gas areas in southern China. Acta Geologica Sinica, 92(6): 1313~1323 (in Chinese with English abstract).

    • Yang Huimin, Liu Bingwen, Deng Zonghuai, Qi Jingwen, Wu Dahua, Huang Wenming. 1999. Value and Selection to the Best Gas-Oil Keeping Unite of Marine Carbonate Area in Yunnan, Guizhou and Guangxi. Guiyang: Guizhou Science and Technology Press, 4~63 (in Chinese).

    • Yin Baoan. 1997. Lithostratigraphy in Guangxi. Wuhan: China University of Geosciences Press, 52~191 (in Chinese).

    • Zhang Junfeng, Zhou Zhi, Song Teng, Li Fei, Chen Rong, Lu Yanxin, Chen Xianglin, Xu Qiuchen, Wang Chao, Wang Yuluo. 2022. Comparison of exploration and development history, geological characteristics and exploitation conditions of shale gas in China and the United States and its enlightenment. Acta Petrolei Sinica, 43(12): 1687~1701 (in Chinese with English abstract).

    • Zhao Ziqiang, Ding Qixiu. 1996. The Regional Stratigraphy in Central and South Part of China. Wuhan: China University of Geosiences Press, 71~123 (in Chinese).

    • Zhou Ruiqi, Zhang Cong, Wei Honggang, Chen Yang. 2018. Lower Carboniferous Dawuba Formation shale gas preservation conditions of Ziyun-Luodian area. Bulletin of Science and Technology, 34(8): 28~34 (in Chinese with English abstract).

    • Zou Caineng, Zhu Rukai, Chen Zhongqiang, Ogg J G, Wu Songtao, Dong Dazhong, Qiu Zhen, Wang Yuman, Wang Lan, Lin Senhu, Cui Jingwei, Su Ling, Yang Zhi. 2019. Organic-matter-rich shales of China. Earth-Science Reviews, 189: 51~78.

    • Zou Caineng, Zhu Rukai, Dong Dazhong, Wu Songtao. 2022. Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas. Acta Petrolei Sinica, 43(12): 1675~1686 (in Chinese with English abstract).

    • 蔡进功, 曾翔, 韦海伦, 宋明水, 王学军, 刘庆. 2019. 从水体到沉积物: 探寻有机质的沉积过程及其意义. 古地理学报, 21(1): 49~66.

    • 岑文攀, 王瑞湖, 徐海, 王新宇, 李小林, 李委员. 2018. 广西页岩气勘查现状、存在问题及建议. 南方国土资源, (3): 40~43.

    • 董大忠, 王玉满, 黄旭楠, 张晨晨, 管全中, 黄金亮, 王淑芳, 李新景. 2016. 中国页岩气地质特征、资源评价方法及关键参数. 天然气地球科学, 27(9): 1583~1601.

    • 董卫平. 1997. 贵州省岩石地层. 武汉: 中国地质大学出版社, 143~220.

    • 冯增昭, 杨玉卿, 鲍志东, 张海清, 吴祥和, 齐敦伦. 1998. 中国南方石炭纪岩相古地理. 北京: 地质出版社, 1~196.

    • 龚承林, Steel R J, 彭旸, 王英民, 李东伟. 2022. 深海碎屑岩层序地层学50年(1970—2020)重要进展. 沉积学报, 40(2): 292~318.

    • 郭旭升. 2014. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7) : 1029~1218.

    • 郭旭升, 赵永强, 申宝剑, 魏祥峰, 卢龙飞, 潘安阳, 李宇平.2022.中国南方海相页岩气勘探理论: 回顾与展望.地质学报, 96(1): 172~182.

    • 胡东风, 魏志红, 刘若冰, 范志伟, 韩京. 2018. 桂中坳陷下石炭统黑色页岩发育特征及页岩气勘探潜力. 天然气工业, 38(10): 28~37.

    • 黄羚, 徐政语, 王鹏万, 熊绍云. 2012. 桂中坳陷上古生界页岩气资源潜力分析. 中国地质, 39(2): 497~506.

    • 贾承造, 庞雄奇, 宋岩. 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. 石油勘探与开发, 48(3): 437~452.

    • 蒋裕强, 付永红, 谢军, 董大忠, 周克明, 程晓艳, 漆麟, 张海杰, 陈超, 马廷虎, 谷一凡. 2019. 海相页岩气储层评价发展趋势与综合评价体系. 天然气工业, 39(10): 1~9.

    • 金玉玕, 范影年, 王向东, 王仁农. 2000. 中国地层典 (石炭系). 北京: 地质出版社, 1~136.

    • 李莹, 王向东, 胡科毅, 黄兴, 张水昌, 张斌, 祁玉平, 陈吉涛, 要乐. 2021. 中国石炭纪岩石地层划分和对比. 地层学杂志, 45(3): 303~318.

    • 梁雨晨, 刘自亮, 陈义才, 刘四兵. 2020. 桂中坳陷中北部下石炭统寺门组层序与沉积相分析. 西北地质, 53(2): 27~41.

    • 卢树藩, 陈祎, 罗香建, 何犇, 符宏斌. 2021. 贵州石炭系黑色页岩层系沉积特征及分布规律研究. 沉积学报, 39(3): 672~684.

    • 罗胜元, 王传尚, 彭中勤. 2016. 桂中坳陷下石炭统鹿寨组页岩气研究. 华南地质与矿产, 32(2): 180~190.

    • 马永生, 蔡勋育, 赵培荣. 2018. 中国页岩气勘探开发理论认识与实践. 石油勘探与开发, 45(4): 561~574.

    • 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学的进展之一. 古地理学报, 12(5): 549~564.

    • 梅冥相. 2011. 从旋回的有序叠加形式到层序的识别和划分: 层序地层学进展之三. 古地理学报, 13(1): 27~54.

    • 梅冥相, 马永生. 2001. 从旋回层序的特征论地层记录的两种相变面及两种穿时性. 地层学杂志, 25 (2): 150~153.

    • 梅冥相, 孟庆芬, 易定红, 李东海. 2004a. 黔桂地区石炭系层序地层格架及海平面变化. 地球学报, 25(1): 39~46.

    • 邱振, 邹才能, 李熙喆, 王红岩, 董大忠, 卢斌, 周尚文, 施振生, 冯子齐, 张梦琪. 2018. 论笔石对页岩气源储的贡献: 以华南地区五峰组—龙马溪组笔石页岩为例. 天然气地球科学, 29(5): 606~615.

    • 王世谦. 2017. 页岩气资源开采现状、问题与前景. 天然气工业, 37(6): 115~130.

    • 王淑芳, 董大忠, 王玉满, 李新景, 黄金亮, 管全中. 2015. 中美海相页岩气地质特征对比研究.天然气地球科学, 26(9): 1666~1678.

    • 王向东, 胡科毅, 郄文昆, 盛青怡, 陈波, 林巍, 要乐, 王秋来, 祁玉平, 陈吉涛, 廖卓庭, 宋俊俊. 2019. 中国石炭纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 139~159.

    • 吴浩若. 2000. 广西加里东运动构造古地理问题. 古地理学报, 2 (1): 70~76.

    • 郗兆栋, 唐书恒, 王静, 张振, 李彦朋, 龚明辉, 肖何琦. 2018. 中国南方海相页岩气选区关键参数探讨. 地质学报, 92(6): 1313~1323.

    • 杨惠民, 刘炳温, 邓宗淮, 齐敬文, 吴大华, 黄藴明. 1999. 滇黔桂海相碳酸盐岩地区最佳油气保存单元的评价与选择. 贵阳: 贵州科技出版社, 4~63.

    • 殷保安. 1997. 广西岩石地层. 武汉: 中国地质大学出版社, 52~191.

    • 张君峰, 周志, 宋腾, 李飞, 陈榕, 卢妍欣, 陈相霖, 徐秋晨, 王超, 王昱荦. 2022. 中美页岩气勘探开发历程、地质特征和开发利用条件对比及启示. 石油学报, 43(12): 1687~1701.

    • 赵自强, 丁启秀. 1996. 中南区区域地层. 武汉: 中国地质大学出版社, 71~123.

    • 周瑞琦, 张聪, 魏洪刚, 陈杨. 2018. 紫云-罗甸地区下石炭统打屋坝组页岩气保存条件分析. 科技通报, 34(8): 28~34.

    • 邹才能, 朱如凯, 董大忠, 吴松涛. 2022. 页岩油气科技进步、发展战略及政策建议. 石油学报, 43(12): 1675~1686.