-
沉积(物)岩中黄铁矿是还原性沉积环境的标志(李洪星等,2009),多在滞流底层水或沉积物孔隙水中形成(Gregory et al.,2015)。沉积黄铁矿中微量元素含量与同期海水中元素的数量级相同,为古海洋元素变化趋势的深时研究打开新窗口(Large et al.,2014)。黄铁矿具难熔性,除热液溶解和再沉积作用外,其元素组成在较高变质条件(742°C、低压)仍保持稳定(Guy and Beukes,2010),可保存至绿片岩相(Gregory et al.,2017)。莓球状黄铁矿是认识重金属汇、矿床金属来源和古海洋化学的重要途径(Gregory et al.,2014,2017),还被认为是甲烷渗流的标志(Miao et al.,2022);而Lin Zhiyong et al.(2022)却认为甲烷渗流成因黄铁矿不能用于古海水微量元素组成的重建。Gregory et al.(2022)也认为黄铁矿指标不如传统沉积物指标灵敏,仅适用于黑色页岩。李洪星等(2009)还发现有孔虫壳体空腔微环境轻—中度贫氧,其中的黄铁矿指示沉积环境具局限性。
-
“臭灰岩”由李四光1931年创立,为黑色富沥青质、具臭味的灰岩,因锤击有刺激性气味而名(张遴信,1983)。臭灰岩是下二叠统栖霞组下段的代表岩石,为灰黑色中厚层沥青质灰岩,对其沉积环境的认识不一。施春华等(2004a)据其富有机质和含大量对水体含氧量要求不高的生物推断其沉积环境贫氧;然而,陆鹿等(2014)却认为臭灰岩的沉积环境并非“贫氧或缺氧”,而是正常富氧,富有机质归因于较高生物产率和风暴事件沉积物的快速堆积;刘峰等(2013)也认为栖霞组碳酸盐岩烃源岩是低等藻类生产力水平和缺氧保存条件匹配的产物。
-
臭灰岩段底部黄铁矿结核普遍发育,其地球化学特征及成因不清,本文以巢湖凤凰山东坡下二叠统栖霞组臭灰岩段中黄铁矿结核为研究对象,对其主微量元素和稀土元素地球化学的研究,可揭示黄铁矿结核的成因,为臭灰岩段沉积环境分析提供新思路,也可推断早二叠世早期古环境演化信息,厘清下伏碎屑岩段(梁山煤系)与臭灰岩间的关系,还可为黄铁矿结核风化的环境影响分析提供科学数据。
-
1 区域地质背景
-
巢湖凤凰山地区位于扬子陆块东北下扬子坳陷,其西以郯庐断裂与华北陆块分隔,西南与大别造山带毗邻,东部与太平洋板块相邻(图1)(刘文中等,2014)。该区地层属扬子地层区,下扬子地层分区,六合—巢县地层小区,以古生界发育为特点,尤以古生界和下—中三叠统最完整(图1)(王道轩等,2005; 刘文中等,2014)。出露的地层包括震旦系、上泥盆统、石炭系、二叠系、下—中三叠统、下侏罗统和第四系(图1)。
-
下二叠统栖霞组厚148~189 m,岩性岩相稳定,自下而上分成六个岩性段,即底部碎屑岩段(梁山段)、臭灰岩段、下硅质层、本部灰岩段、上硅质层和顶部灰岩段(图2)(李双应和岳书仓,2002; 王冰等,2012; 刘峰等,2013),与下伏上石炭统船山组假整合接触,与上覆孤峰组整合接触(图2)(王道轩等,2005; 刘文中等,2014)。
-
底部碎屑岩段,亦称梁山煤系,厚仅0.7 m左右,主要由灰黑色碳质页岩和泥岩组成,该层岩性变化较大,在平顶山为土黄色泥岩,含腕足类Martinia sp.及植物化石碎片(王冰等,2012)。臭灰岩段为灰黑色薄层、中层—厚层泥晶生物碎屑灰岩,夹不规则黑色页岩。臭灰岩中富有机质,锤击时具较浓的沥青味,厚101 m(李双应等,2001; 王道轩等,2005; 刘文中等,2014)。生物群以腕足类、介形虫与藻类为主,自生黄铁矿发育(王冰等,2012)。
-
图1 巢湖北郊凤凰山地质图及采样位置(据王道轩等,2005修改)
-
Fig.1 Geologic map of Fenghuang Hill in north Chaohu City and the location for sampling (modified from Wang Daoxuan et al., 2005)
-
图2 巢湖凤凰山下二叠统栖霞组综合柱状图 (据王冰等,2012修改)
-
Fig.2 Stratigraphical column of the Lower Permian Qixia Formation of Fenghuang Hill in northern Chaohu City (modified from Wang Bing et al., 2012)
-
2 样品与方法
-
巢湖北郊凤凰山东坡采石坑上石炭统黄龙组至下二叠统栖霞组臭灰岩段地层揭露良好,界线清晰,其中黄铁矿结核普遍可见,部分风化后呈铁锈色覆于臭灰岩表面(图3a、b)。黄铁矿结核集中产出于碎屑岩段碳质页岩上覆臭灰岩段下部2~3 m的沥青质灰岩中。为分析黄铁矿结核的地球化学特征,揭示黄铁矿结核的成因,厘清臭灰岩段与下伏碳质泥岩的关系,从该剖面共切割采集了10块样品,包括6个黄铁矿结核样品(XQ06、XQ07、XQ12、XQ15、XQ17和XQ18),4个灰岩岩石样品(XQ01、XQ03、XQ04和XQ16),黄铁矿样品通过手工分割去除石灰岩部分,灰岩样品为黄铁矿结核附近5 cm范围内的岩石。
-
先将块状黄铁矿结核和灰岩样品磨制光学薄片,再采用NikonLV100N_Ci-POL偏光显微镜观察灰岩及黄铁矿结核的形态及结构特征;再将剩余块状样品手工破碎,后用玛瑙研钵研磨成200目粉末样品。粉末样品放入聚乙烯自封袋中密封保存备用。
-
样品中主量元素氧化物的含量通过Li2B4O7熔片后采用X射线荧光光谱仪(XRF)测试。采用微波消解系统消解固体粉末样品,消解液为由2 mL 65%的HNO3和5 mL 40%的HF组成的混酸,溶液定容后采用电感耦合等离子体质谱仪测试微量元素的含量,具体测试方法见Dai Shifeng et al.(2011)。为避免质谱测试过程的多原子干扰,As和Se采用带碰撞反应池的电感耦合等离子体质谱仪测试(Li Xiao et al.,2014)。固体粉末样品中Hg采用Milestone DMA-80汞分析仪直接测定。主量和微量元素测试在中国矿业大学(北京)煤炭资源与安全开采国家重点实验室完成。
-
3 结果与讨论
-
3.1 黄铁矿结核的形态特征
-
宏观上,黄铁矿多呈不规则结核状或团块状,粒径1~5 cm,部分或完全交代珊瑚化石,与臭灰岩的界线清晰明显,采石坑揭露的黄铁矿结核部分风化和氧化(图3c~e)。
-
臭灰岩段灰岩中多见有机质纹层,含大量生物碎屑,生物碎屑排列有一定方向性,与纹层平行(图4a、b),部分为泥晶灰岩,泥晶灰岩微孔为细粒黄铁矿充填(图4e)。黄铁矿结核呈块状(图4c~e)和微晶粒状(图4f)。黄铁矿结核与灰岩界线清晰,未切割或破坏有机质纹层(图4b、e),表明黄铁矿结核为成岩孔隙水交代生物而成。李洪星等(2012)在湖北京山雁门口栖霞组含泥灰岩中亦发现不同形态微晶草莓状黄铁矿充填棘皮动物化石。栖霞组岩石中水平层理和层纹极发育,碳质页岩中常见黄铁矿结核或晶粒,表明贫氧至厌氧的沉积环境(施春华等,2001)。
-
图3 巢湖北郊凤凰山下二叠统栖霞组臭灰岩段采样剖面(a、b)及黄铁矿结核(c~e)
-
Fig.3 Sampling profile (a, b) and pyrite nodules (c~e) in odorous limestone member of the Lower Permian Qixia Formation from Fenghuang Hill in northern Chaohu City
-
(a)—巢湖北郊凤凰山上石炭统—下二叠统剖面;(b)—剖面(a)中下二叠统栖霞组碎屑岩段和臭灰岩段;(c)—黄铁矿结核与珊瑚化石,黄铁矿部分交代珊瑚化石;(d)—风化的黄铁矿结核;(e)—黄铁矿部分交代珊瑚化石
-
(a) —profile of the Upper Carboniferous and Lower Permian strata of Fenghuang Hill in northern Chaohu City; (b) —members of clastic rocks and odorous limestone of the Lower Permian Qixia Formation in the profile (a) ; (c) —pyrite nodule and coral fossil in the square of panel (b) , where the coral fossil is metasomatized by pyrite; (d) —weathered pyrite nodule; (e) —coral fossil partially metasomatized by pyrite
-
3.2 臭灰岩和黄铁矿结核的地球化学
-
3.2.1 主量元素地球化学
-
巢湖北郊凤凰山下二叠统栖霞组臭灰岩段灰岩及黄铁矿结核的烧失量和主量元素氧化物含量的测试结果见表1。石灰岩样品较高的烧失量(平均26.93%)与方解石和有机质分解有关。与灰岩背景值相比,巢湖凤凰山臭灰岩中MgO、Al2O3、SiO2、SO3、TiO2和Fe2O3的含量较高(表1),SO3(为灰岩背景值的112倍)和Fe2O3(为灰岩背景值的9.6倍)尤为富集,高SO3含量与较高含量有机质有关,是臭灰岩“臭味”的来源,而较高含量的Fe2O3与黄铁矿有关,尽管手工剔除了灰岩样品中可分离的黄铁矿,但仍可能有少量微细黄铁矿颗粒混入。臭灰岩中Al2O3含量为灰岩背景值的4.0倍,可能表明臭灰岩中存在部分黏土矿物,与下伏碎屑岩段的碳质泥岩存在一定的物质联系。灰岩的主量元素地球化学受陆地距离、地形高低、火山作用等盆地构造环境控制,大陆边缘灰岩的地球化学受陆源碎屑影响,而开放海灰岩则多取决于热液成因的Fe-Mn氢氧化物输入(Zhang Kaijun et al.,2017)。臭灰岩MnO的含量与灰岩的背景值接近,综合较高的Al2O3和SiO2含量,其高含量的Fe2O3主要来源于陆源供应,且黄铁矿结核集中产出于碎屑岩(碳质泥岩)段上2~3 m的臭灰岩中也进一步证实此推断。
-
黄铁矿结核的烧失量平均为25.03%(表1),与黄铁矿受热氧化分解和混入结核中方解石的分解有关,CaO含量平均达20.25%,表明有灰岩(方解石)混入(图4c)。Fe2O3和SO3的平均含量分别为32.21%和13.19%,其Fe/S原子比为2.5,远高于黄铁矿Fe和S的化学计量比,表明Fe过剩,可能部分Fe与Al2O3相关,与下伏碎屑岩段碳质泥岩有关,均来源于陆源碎屑供应。
-
图4 巢湖北郊凤凰山下二叠统栖霞组臭灰岩段灰岩和黄铁矿结核的微观特征
-
Fig.4 Microscopic images of limestone and pyrite nodules from the odorous limestone member of the Lower Permian Qixia Formation of Fenghuang Hill in northern Chaohu City
-
(a)—生物碎屑+有机质,样品XQ15;(b)—层状有机质+块状黄铁矿,样品XQ15;(c)—块状黄铁矿,样品XQ15;(d)—块状黄铁矿+有机质,样品XQ17;(e)—泥晶灰岩+有机质纹层+块状黄铁矿,样品XQ07;(f)—微晶黄铁矿,样品XQ07;反射光
-
(a) —bioclast and disseminated organic matter in sample XQ15; (b) —layered organic matter and massive pyrite in sample XQ15; (c) —massive pyrite in sample XQ15; (d) —massive pyrite and reticular organic matter in sample XQ17; (e) —micrite, organic matter-rich layer, and massive pyrite in sample XQ07; (f) —microcrystalline pyrite in sample XQ07; under reflected right
-
与黄铁矿结核相比(图5),除Fe2O3外,臭灰岩中主量元素的含量均较高,而两者的SO3含量接近,表明SO3除以黄铁矿形式赋存外,还大量存在于臭灰岩的层状分散有机质中(图4a、d)。灰岩中Fe2O3的含量仅约为黄铁矿结核的1/5(表1),表明臭灰岩中的Fe不足以支持大量黄铁矿结核的形成。
-
3.2.2 微量元素地球化学
-
巢湖北郊凤凰山下二叠统栖霞组臭灰岩段灰岩及黄铁矿结核中微量元素的含量测试结果见表2。与灰岩的背景值(Reimann and de Caritat,1998)相比,巢湖栖霞组臭灰岩段灰岩中Cr、Co、Ni、Cu、Ga、As、Se、Rb、Nb、Mo、Ag、Cs、Ta、W、Tl和U相对富集(表2)。
-
注:n.d.为无数据;① 引自Reimann and de Caritat(1998)。
-
图5 巢湖北郊凤凰山栖霞组臭灰岩与黄铁矿结核中主量元素的含量对比图
-
Fig.5 Comparison of major element oxide' contents of limestone and pyrite nodules of the Qixia Formation from Fenghuang Hill in northern Chaohu City
-
尽管Gregory et al.(2017)认为分散黄铁矿中Ag、Sb、Se、Pb、Cd、Te、Bi、Mo、Ni和Au等亲铜和亲铁元素的变化可反映样品全岩的数据特征;而巢湖北郊凤凰山栖霞组黄铁矿结核与臭灰岩相比(表2和图6),Cr、Co、Ni、As、Se、Mo、Sb、Hg、Tl和Pb的含量较高,表明大多亲硫元素在黄铁矿结核中有进一步富集的特点。虽Lin Zhiyong et al.(2022)认为As影响黄铁矿对Co和Ni的吸收,但巢湖北郊凤凰山栖霞组黄铁矿结核中As、Co和Ni共富集。一般而言,沉积黄铁矿对金属吸收的顺序为As = Mo > Cu ≥ Co > Ni >> Mn > Zn > Cr = Pb > Cd(Gregory et al.,2015),而凤凰山栖霞组中黄铁矿结核对金属元素吸收的顺序与此明显不同。围岩性质决定黄铁矿的组成,黄铁矿结核中的粉砂组分稍高的As含量表明成岩过程As有较强的迁移性(Guy and Beukes,2010),臭灰岩和黄铁矿结核中的高As含量证实了该认识。
-
与上陆壳(Rudnick and Gao,2014)相比,巢湖北郊凤凰山下二叠统栖霞组臭灰岩中除Se、Mo和Cd富集外,黄铁矿结核中除Cr、Ni、As、Se、Mo、Cd、Sb和Hg富集外,其余微量元素含量均较低,大多相差一个数量级(表2)。与富有机质沉积环境的黄铁矿类似,早成岩黄铁矿以高Ni和As含量及低 Co/Ni为特征(Guy and Beukes,2010)。Zhang Kai-Jun et al.(2017)发现与澳大利亚后太古宙页岩相比,灰岩中高场强元素(Th、U、Sc、Zr、Hf、Ga、Na、Ta)和过渡金属元素(Co、Cr、Ni、Cu、Zn)含量一般均低一个数量级。施春华等(2004a)发现栖霞组灰岩Cr含量异常的样品中含较丰富的海相藻类有机质,从而认为栖霞期海藻大量发育,其对Cr的富集导致灰岩中Cr含量异常。在硫酸盐-甲烷过渡带,由于有机碎屑硫酸盐还原,黄铁矿中Cd的含量较低,且由于Mo对氧化还原环境敏感,其含量较高(Miao et al.,2022),表明巢湖凤凰山栖霞组臭灰岩段亦存在明显与有机质分解相关的甲烷渗流活动。
-
注:① 引自Reimann and de Caritat(1998);② 引自Rudnick and Gao(2014)。
-
图6 巢湖北郊凤凰山栖霞组臭灰岩与黄铁矿结核中微量元素的含量对比图
-
Fig.6 Comparison of trace element concentrations of limestone and pyrite nodules of the Qixia Formation from Fenghuang Hill in northern Chaohu City
-
Ni、Co和Se一般赋存于黄铁矿结构中,As、Cu、Zn、Pb、Bi、Sb、Tl、Mo、Ag、Cd、Mn、Hg和Te可赋存于黄铁矿结构或以硫化物微包体形式存在,Ti、V、U、Ba、Sn、W和Cr赋存于基质的微包体中(Large et al.,2014)。黄铁矿中As、Ni、Co、Sb、Se和Mo均匀分布,赋存于晶格或纳米包体中,Bi、Pb、Ag、Au、Te和Cu含量较低且分布均匀,其含量高时以微包体形式存在,Zn和Cd含量变化大,以闪锌矿微包体形式存在(Gregory et al.,2015)。
-
3.2.3 稀土元素地球化学
-
巢湖北郊凤凰山下二叠统栖霞组臭灰岩段灰岩及黄铁矿结核中稀土元素的含量测试结果见表3,臭灰岩和黄铁矿结核的稀土元素总量(分别为30.2×10-6和21.8×10-6)显著低于上陆壳(Rudnick and Gao,2014),且黄铁矿结核中稀土元素的含量较臭灰岩低。
-
注:① 引自Rudnick and Gao(2014)。
-
巢湖北郊凤凰山下二叠统栖霞组臭灰岩段灰岩及黄铁矿结核中稀土元素的上陆壳标准化分配模式见图7。从图中可看出:灰岩样品和黄铁矿结核样品的稀土元素分配模式类似,均以稍富集中重稀土、Ce显著负异常和Eu弱负异常为特征,而施春华等(2004b)却发现巢湖平顶山剖面栖霞组的岩石具有反映缺氧环境的Ce正异常。表层海水中碎屑颗粒来源的Ce3+被氧化而与其他三价稀土元素分离,而深海沉积物中颗粒分解释放的Ce较其他三价稀土元素活动性弱(Elderfield and Greaves,1982)。不溶Ce4+氧化沉降必须发生在水深小于76 m的充分氧化的水体中,而Ce4+还原成Ce3+的溶解则必须大于此深度(German et al.,1991)。
-
3.3 黄铁矿结核的成因及形成环境
-
一般而言,沉积黄铁矿的地球化学特征值及组成限值为0.01<Co/Ni<2、0.01<Cu/Ni<10、0.01<Zn/Ni<10和0.1<As/Ni<10(Gregory et al.,2015);成岩黄铁矿的Co/Ni≤2,而热液黄铁矿的Co含量高且偏离Co/Ni=1线(Bajwah et al.,1987; Large et al.,2009);巢湖凤凰山栖霞组臭灰岩段中黄铁矿结核样品的Co/Ni(图8a)、Cu/Ni、Zn/Ni和As/Ni平均分别为0.09、0.13、0.24和0.09,表明黄铁矿结核为沉积成岩成因,块状(图4c~e)和微晶粒状(图4f)的黄铁矿未切割或破坏有机质纹层(图4b、e),进一步证实其为成岩孔隙水交代生物而成。Adachi et al.(1986)根据太平洋深海燧石和白陶土样品的岩石学特征和元素组成采用Al-Fe-Mn三角图解来区分热液成因和非热液成因样品(图8b),巢湖北郊凤凰山栖霞组灰岩与黄铁矿结核样品均多投于热液成因区,表明根据深海沉积物的元素特征建立的Al-Fe-Mn三角图解区别成因具有局限性,并不适用于浅海石灰岩样品。
-
大陆边缘灰岩的地球化学受陆源碎屑影响,而开放海灰岩则更多取决于热液成因的Fe-Mn氢氧化物输入,灰岩的稀土元素和难迁移元素比值(如(La/Ce)N、Ce/Ce*、Zr/Ti和La/Sc)是区分洋底高原、稳定大陆边缘、活动大陆边缘和内陆淡水盆地四种构造背景的最佳地球化学手段;Rb-Sr-Ba三角图解可区分开放海、内陆湖和大陆边缘三种构造背景,Zr-Ti和Sr/Rb-Sr/Ba图解可识别内陆和大陆边缘环境(Zhang Kaijun et al.,2017)。巢湖北郊凤凰山下二叠统栖霞组臭灰岩段灰岩和黄铁矿结核样品的Rb-Sr-Ba三角图解的投点较分散(图9a),在大陆边缘、开放海和内陆湖区均有分布;而在Zr-Ti(图9b)和Sr/Rb-Sr/Ba(图9c)图解中,样品均投入大陆边缘区域,表明Rb-Sr-Ba三角图解在识别灰岩形成的构造背景方面不如后者灵敏。
-
图7 巢湖北郊凤凰山栖霞组臭灰岩(a)及黄铁矿结核(b)中稀土元素的上陆壳标准化分配模式
-
Fig.7 UCC-normalized REY distribution patterns of limestone (a) and pyrite nodules (b) of the Qixia Formation from Fenghuang Hill in northern Chaohu City
-
图8 巢湖北郊凤凰山栖霞组臭灰岩及黄铁矿结核的Co-Ni (a)关系图和Al-Fe-Mn三角图解(b)
-
Fig.8 Co vs. Ni binary diagram (a) and Al-Fe-Mn ternary diagram (b) of limestone and pyrite nodules of the Qixia Formation from Fenghuang Hill in northern Chaohu City
-
MnO/TiO2亦为沉积环境的判别标志,离陆地较近的大陆斜坡和边缘海的硅质沉积物中,MnO/TiO2较低,一般<0.5,而大洋硅质沉积物中MnO/TiO2则较高,达0.5~3.5(杨锐等,2014)。巢湖栖霞组灰岩的MnO/TiO2变化范围大(0.2~7.5),平均2.9,黄铁矿结核的MnO/TiO2变化范围为0.2~6.0,平均1.5,表明MnO/TiO2环境判别指标仅适用于硅质沉积物。
-
李双应等(2001)在巢湖栖霞组臭灰岩段底部发现水平型U形管状根珊瑚迹,表明其为低能远岸潮下带环境,并认为臭灰岩段主要属水体较深、贫氧—缺氧的半深海—斜坡环境,为碳酸盐岩台地边缘斜坡(李双应和岳书仓,2002)。栖霞组碎屑岩段沉积时期,海水入侵,碳质泥岩(劣质煤)海陆过渡相沉积,随海水大规模入侵,整个下扬子区变为清水环境,沉积物主要为碳酸盐岩(栖霞组灰岩),代表一个相对稳定和持续的海侵过程(刘峰等,2011)。
-
构造背景和局部沉积环境决定成岩黄铁矿的分布、形态和组成,富金属的早成岩黄铁矿多存在于河流成因机制的碳质泥岩中,地表径流供应营养成分和硫;以海相沉积环境为主的成岩黄铁矿较少,与太古宙海洋缺乏硫酸盐有关(Guy and Beukes,2010)。巢湖凤凰山下二叠统栖霞组碎屑岩段-臭灰岩段的岩性组合、黄铁矿结核的局限分布及其主微量元素地球化学特征均表明臭灰岩段中黄铁矿结核形成于受一定程度陆源物质影响的稳定大陆边缘的构造背景。
-
图9 巢湖北郊凤凰山栖霞组臭灰岩及黄铁矿结核的Rb-Sr-Ba三角图解(a)、Zr-Ti(b)和Sr/Ba-Sr/Rb(c)关系图
-
Fig.9 Rb-Sr-Ba ternary diagram (a) , Zr vs. Ti (b) , and Sr/Ba vs. Sr/Rb (c) binary diagrams of limestone and pyrite nodules of the Qixia Formation from Fenghuang Hill in northern Chaohu City
-
华南栖霞组是在全球石炭纪—二叠纪冰期极地冰盖消融、全球大规模海侵过程中形成的一套碳酸盐岩地层(施春华等,2001)。巢湖栖霞组沉积是由海侵开始并持续扩大,经历早期含煤的滨岸碎屑岩台地环境向晚期正常海相碳酸盐岩沉积转变的历程(刘峰等,2013),主要为碳酸盐岩台地边缘斜坡沉积环境,臭灰岩段层状石灰砾岩形成于斜坡中上部(李双应和岳书仓,2002)。巢湖凤凰山栖霞组臭灰岩段灰岩和黄铁矿结核样品均投入Sr-Ba图解中的海相沉积区(图10a),而B-Ga图解的投点则较分散(图10b),表明Sr/Ba指示沉积环境较B/Ga更准确。
-
巢湖栖霞组臭灰岩段层面上的结核状黄铁矿是缺氧环境的产物,属水体较深、贫氧-缺氧的半深海-斜坡环境(李双应等,2001)。栖霞组富含灰岩,无高能沉积环境的颗粒岩,富有机质,发育有反映贫氧沉积环境的生物群,表明其处于一整体受局限的低能贫氧环境(施春华等,2001)。栖霞组灰岩的亮晶胶结物较少,主要为灰泥,表明整体沉积水体能量较低(杜叶龙等,2012)。凤凰山栖霞组臭灰岩段灰岩中的水平纹层(图4a、b)和泥晶灰岩(图4e)均表明沉积水体的低能环境。
-
微量元素在缺氧沉积物的成岩过程中以沉降或共沉降机制进入黄铁矿(Gregory et al.,2015);因此,黄铁矿是许多微量元素的沉积载体,尤其是亲铜和亲铁元素,其中,由于Mo对氧化还原敏感且有较长的海洋残留时间,在推测古海洋化学组成方面尤为重要(Gregory et al.,2022),Se受变质作用影响最小,对氧化还原环境最敏感(Large et al.,2014)。巢湖北郊凤凰山栖霞组臭灰岩段灰岩和黄铁矿结核中Mo和Se均较上陆壳富集,黄铁矿结核中Se富集近百倍(表2),表明臭灰岩段为强还原沉积环境。
-
图10 巢湖北郊凤凰山栖霞组臭灰岩及黄铁矿结核的Sr-Ba(a)、B-Ga(b)和U-Th(c)关系图
-
Fig.10 Sr vs. Ba (a) , B vs. Ga (b) , and U vs. Th (c) binary diagrams of limestone and pyrite nodules of the Qixia Formation from Fenghuang Hill in northern Chaohu City
-
泥岩的V/Cr、Ni/Co和U/Th等具内在一致性,是解释古氧化还原环境条件的可靠指标,而Ni/V和(Cu+Mo)/Zn则较少记录古氧化作用信息(Jones and Manning,1994)。在页岩的古氧相判别指标中,V/(V+Ni)、Ce/La和U/Th亦适用于华南地区灰岩,该区含黄铁矿黑色页岩和含碳质泥质灰岩形成于厌氧的沉积条件(施春华等,2004a);高V/(V+Ni)值(0.84~0.89)为水体分层且底层水体出现H2S的厌氧环境,中等比值(0.54~0.82)为水体分层不强烈的厌氧环境,低值(0.46~0.60)则为水体分层弱的贫氧环境(施春华等,2001)。凤凰山栖霞组臭灰岩段灰岩和黄铁矿结核的V/(V+Ni)均小于0.60,平均值分别为0.31和0.13,表明其沉积环境为水体分层弱的贫氧环境;刘峰等(2013)基于V/(V+Ni)亦认为栖霞组为整体缺氧的沉积条件;然而,施春华等(2001)则认为栖霞组灰岩的低V/(V+Ni)与其较低的有机质和V含量有关。强还原成岩条件和较大的fS2有利于黄铁矿中Ni的取代,导致较低的Co/Ni(Guy and Beukes,2010);凤凰山栖霞组黄铁矿结核的Co/Ni范围为0.06~0.13,平均0.09,综合其U/Th(图10c),证实臭灰岩段的沉积环境及成岩条件为缺氧强还原条件。
-
栖霞组较低的V/Cr与沉积期海藻大量发育,海藻对Cr的富集相关(施春华等,2001),Ba对生物有机质作用的响应明显,可作为栖霞组灰岩古生产力的替代指标(刘峰等,2013);凤凰山臭灰岩段灰岩和黄铁矿结核的V/Cr(平均值分别为0.48和0.04)较低,Ba含量较低(表2),表明V/Cr较Ba含量能更准确反映生物生产力水平。硫酸盐-甲烷过渡带中黄铁矿的Mo/Cd平均为82.08,显著高于非硫酸盐-甲烷过渡带(平均16.02),Mo/Cd可指示甲烷渗流(Miao et al.,2022),栖霞组臭灰岩段黄铁矿结核的Mo/Cd平均为32.42,表明有大量沉积有机质厌氧降解产生甲烷。栖霞组的高生物产率、丰富底栖生物和缺氧的孢粉组成表明其沉积期间频发充氧事件和多次海平面变化(刘峰等,2011)。
-
4 结论
-
巢湖北郊凤凰山下二叠统栖霞组臭灰岩段下部普遍发育黄铁矿结核,黄铁矿呈块状和微晶粒状,与灰岩界线清晰,未切割或破坏有机质纹层。
-
凤凰山臭灰岩中SO3和Fe2O3显著富集,SO3与高含量有机质有关,是其“臭味”的来源,而Fe2O3与黄铁矿结核有关,主要来源于陆源供应,与其下伏碎屑岩段有一定的物质联系。与上陆壳相比,臭灰岩中Se、Mo和Cd富集,黄铁矿结核中Cr、Ni、As、Se、Mo、Cd、Sb和Hg富集,稀土元素以稍富集中重稀土、Ce显著负异常和Eu弱负异常为特征。
-
凤凰山臭灰岩段黄铁矿结核为成岩孔隙水交代生物而成。碎屑岩-臭灰岩的岩性组合、黄铁矿结核的分布范围及其主微量元素地球化学特征均表明臭灰岩和黄铁矿结核沉积于受一定程度陆源物质影响的稳定大陆边缘缺氧强还原海相环境。Al-Fe-Mn、Rb-Sr-Ba和B-Ga图解在识别热液作用、构造背景和沉积环境方面具一定的局限性。
-
致谢:感谢太原理工大学孙蓓蕾教授在文章选题和修改方面给予的宝贵意见和建议。
-
参考文献
-
Adachi M, Yamamoto K, Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific: Their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1-2): 125~148.
-
Bajwah Z U, Seccombe P K, Offler R. 1987. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22: 292~300.
-
Dai Shifeng, Wang Xibo, Zhou Yiping, Hower J C, Li Dahua, Chen Wenmei, Zhu Xingwei, Zou Jianhua. 2011. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao coalfield, Chongqing, Southwest China. Chemical Geology, 282(1-2): 29~44.
-
Du Yelong, Li Shuangying, Wang Song, Huang Jialong, Gong Xiaoxing. 2012. Quantitative microfacies analysis of the carbonate of Qixia Formation in the Chaohu-Nanling aera, Anhui Province. Acta Sedimentologica Sinica, 30(5): 847~858 (in Chinese with English abstract).
-
Elderfield H, Greaves M J. 1982. The rare earth elements in seawater. Nature, 296: 214~219.
-
German C R, Holliday B P, Elderfield H. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553~3558.
-
Gregory D, Meffre S, Large R. 2014. Comparison of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary. American Mineralogist, 99(4): 633~644.
-
Gregory D D, Large R R, Halpin J A, Baturina E L, Lyons T W, Wu S, Danyushevsky L, Sack P J, Chappaz A, Maslennikov V V, Bull S W. 2015. Trace element content of sedimentary pyrite in black shales. Economic Geology, 110(6): 1389~1410.
-
Gregory D D, Lyons T W, Large R R, Jiang G, Stepanov A S, Diamond C W, Figueroa M C, Olin P. 2017. Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China. Geochimica et Cosmochimica Acta, 216: 201~220.
-
Gregory D D, Lyons T W, Large R R, Stepanov A S. 2022. Ground-truthing the pyrite trace element proxy in modern euxinic settings. American Mineralogist, 107(5): 848~859.
-
Guy B M, Beukes N J. 2010. Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand supergroup, South Africa. South African Journal of Geology, 113(2): 195~228.
-
Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111~129.
-
Large R R, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B, Foster J. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104(5): 635~668.
-
Large R R, Halpin J A, Danyushevsky L V, Maslennikov V V, Bull S W, Long J A, Gregory D D, Lounejeva E, Lyons T W, Sack P J, McGoldrick P J, Calver C R. 2014. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth and Planetary Science Letters, 389: 209~220.
-
Li Shuangying, Yue Shucang. 2002. Sedimentation on a carbonate slope of Permian Qixia Formation in Chaohu region, Anhui. Acta Sedimentologica Sinica, 20(1): 7~12 (in Chinese with English abstract).
-
Li Shuangying, Hong Tianqiu, Jin Fuquan, Liu Hui, Hu Yongqiang. 2001. Allochthonous carbonate rocks in the swine limestone member of the Permian Chihsia Formation of Chaoxian, Anhui. Journal of Stratigraphy, 25(1): 69~74 (in Chinese with English abstract).
-
Li Hongxing, Lu Xiancai, Bian Lizeng, Xu Weiwei, Li Juan, Zhang Zhuangzhi, Zhao Huaping, Gong Hongliang, 2009. Formation of pyrite framboids in the chamber of foraminiferas and its geological significance: A case study of the foraminiferas fossils in the Qixia Formation in the Yanmenkou area, Hubei Province. Geological Journal of China Universities, 15(4): 470~476 (in Chinese with English abstract).
-
Li Hongxing, Lu Xiancai, Bian Lizeng, Ma Yemu, Zhang Xuefen, Zhang Zhuangzhi, Ding Zijian. 2012. Geological significance of microcrystalline morphology and composition of framboids pyrite: A case study of marl of Chihsia Formation. Acta Mineralogica Sinica, 32(3): 443~448 (in Chinese with English abstract).
-
Li Xiao, Dai Shifeng, Zhang Weiguo, Li Tian, Zheng Xin, Chen Wenmei. 2014. Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS). International Journal of Coal Geology, 124: 1~4.
-
Lin Zhiyong, Sun Xiaoming, Chen Kaiyun, Strauss H, Klemd R, Smrzka D, Chen Tingting, Lu Yang, Peckmann J. 2022. Effects of sulfate reduction processes on the trace element geochemistry of sedimentary pyrite in modern seep environments. Geochimica et Cosmochimica Acta, 333: 75~94.
-
Liu Feng, Cai Jingong, Lv Bingquan, Xu Jinli. 2011. Formation and influencing factors of carbonate source rock of the Lower Permian Chihsia Formation in Chaohu region, Anhui Province. Science China Earth Sciences, 41(6): 873~886 (in Chinese).
-
Liu Feng, Cai Jingong, Chen Aiguo, Peng Xingpeng. 2013. Element geochemistry of the carbonate source rock of the lower Permian Chihsia Formation in Chaohu region, Anhui and their implications. Marine Geology and Quaternary Geology, 33(6): 121~127 (in Chinese with English abstract).
-
Liu Wenzhong, Li Zonghai, Wang Laibin, Wu Shiyong, Zheng Jianbin. 2014. Guide for Regional Geological Survey in Fenghuang Hill of Chaohu City. Hefei: University of Science and Technology of China Press, 7~23 (in Chinese).
-
Lu Lu, Li Zhuangfu, Kang Peng, Zhang Xin. 2014. Interpretation of rich organic matter in swine limestone member of the Permian Chihsia Formation, Chaobei, Anhui. Geological Review, 60(1): 71~79 (in Chinese with English abstract).
-
Miao X, Feng X, Li J, Liu X, Liang J, Feng J, Xiao Q, Dan X, Wei J. 2022. Enrichment mechanism of trace elements in pyrite under methane seepage. Geochemical Perspectives Letters, 21: 18~22.
-
Reimann C, de Caritat P. 1998. Chemical Elements in the Environment. Heidelberg: Springer Berlin, 23~398.
-
Rudnick R L, Gao S. 2014. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (Second Edition). Elsevier Science, 1~51.
-
Shi Chunhua, Huang Qiu, Yan Jiaxin. 2001. Geochemistry of anaerobic sedimentary environments of the Qixia Formation in Laibin, Guangxi. Geology Geochemistry, 29(4): 35~39 (in Chinese with English abstract).
-
Shi Chunhua, Hu Ruizhong, Yan Jiaxin. 2004a. Geochemical features of the sedimentary of Qixia Formation in South China. Geological Science and Technology Information, 23(1): 33~37 (in Chinese with English abstract).
-
Shi Chunhua, Hu Ruizhong, Yan Jiaxin. 2004b. Sedimentary geochemistry of the Qixia Formation and its environmental implication. Bulletin of Mineralogy, Petrology and Geochemistry, 23(2): 144~148 (in Chinese with English abstract).
-
Wang Daoxuan, Song Chuanzhong, Jin Fuquan, Li Zuowen. 2005. Course of Geoscience Practice in Chaohu City. Hefei: Hefei University of Technology Press, 3~18 (in Chinese).
-
Wang Bing, Li Shuangying, Zhao Daqian, Shi Chuanjun, Du Yelong. 2012. Trace fossils and their sedimentary environment of the middle Permian Chihsia Formation in Chaohu, Anhui Province. Journal of Stratigraphy, 36(1): 109~115 (in Chinese with English abstract).
-
Yang Rui, Li Hong, Liu Yiqun, Lei Chuan, Lei Yun, Feng Shihai. 2014. Origin of nodular cherts in limestones in middle Permian Qixia Formation, Chaohu, Anhui Province. Geoscience, 28(3): 501~511 (in Chinese with English abstract).
-
Zhang Kaijun, Li Qiuhuan, Yan Lilong, Zeng Lu, Lu Lu, Zhang Yuxiu, Hui Jie, Jin Xin, Tang Xianchun. 2017. Geochemistry of limestones deposited in various plate tectonic settings. Earth-Science Reviews, 167: 27~46.
-
Zhang Linxin. 1983. Swine limestone. Journal of Stratigraphy, 7(3): 184~190 (in Chinese with English abstract).
-
杜叶龙, 李双应, 王松, 黄家龙, 龚晓星. 2012. 安徽巢湖—南陵地区栖霞组碳酸盐岩定量微相分析. 沉积学报, 30(5): 847~858.
-
李双应, 岳书仓. 2002. 安徽巢湖二叠系栖霞组碳酸盐岩斜坡沉积. 沉积学报, 20(1): 7~12.
-
李双应, 洪天求, 金福全, 刘辉, 胡永强. 2001. 巢县二叠系栖霞组臭灰岩段异地成因碳酸盐岩. 地层学杂志, 25(1): 69~74.
-
李洪星, 陆现彩, 边立曾, 许伟伟, 李娟, 张壮志, 赵华平, 宫红良. 2009. 有孔虫壳体内草莓状黄铁矿成因及其地质意义——以北雁门口地区栖霞组有孔虫化石为例. 高校地质学报, 15(4): 470~476.
-
李洪星, 陆现彩, 边立曾, 马野牧, 张雪芬, 张壮志, 丁子建. 2012. 草莓状黄铁矿微晶形态和成分的地质意义——以栖霞组含泥灰岩为例. 矿物学报, 32(3): 443~448.
-
刘峰, 蔡进功, 吕炳全, 徐金鲤. 2011. 巢湖地区栖霞组碳酸盐烃源岩的形成及影响因素. 中国科学: 地球科学, 41(6): 873~886.
-
刘峰, 蔡进功, 陈爱国, 彭兴鹏. 2013. 巢湖栖霞组碳酸盐烃源岩元素地球化学特征及其意义. 海洋地质与第四纪地质, 33(6): 121~127.
-
刘文中, 李宗海, 王来斌, 吴诗勇, 郑建斌. 2014. 巢湖凤凰山地质填图实习指南. 合肥: 中国科学技术大学出版社, 7~23.
-
陆鹿, 李壮福, 康鹏, 张新. 2014. 安徽巢北地区栖霞组臭灰岩段富有机质成因探讨. 地质论评, 60(1): 71~79.
-
施春华, 黄秋, 颜佳新. 2001. 广西来宾栖霞组缺氧沉积环境地球化学特征. 地质地球化学, 29(4): 35~39.
-
施春华, 胡瑞忠, 颜佳新. 2004a. 华南地区栖霞组沉积地球化学特征研究. 地质科技情报, 23(1): 33~37.
-
施春华, 胡瑞忠, 颜佳新. 2004b. 栖霞组沉积地球化学特征及其环境意义. 矿物岩石地球化学通报, 23(2): 144~148.
-
王道轩, 宋传中, 金福全, 李祚文. 2005. 巢湖地学实习教程. 合肥: 合肥工业大学出版社, 3~18.
-
王冰, 李双应, 赵大千, 石传军, 杜叶龙. 2012. 安徽巢湖地区中二叠统栖霞组的遗迹化石特征及其沉积环境. 地层学杂志, 36(1): 109~115.
-
杨锐, 李红, 柳益群, 雷川, 雷云, 冯诗海. 2014. 安徽巢湖地区中二叠统栖霞组灰岩中燧石成因. 现代地质, 28(3): 501~511.
-
张遴信. 1983. 论臭灰岩. 地层学杂志, 7(3): 184~190.
-
摘要
沉积黄铁矿的地球化学是认识重金属汇、矿床金属来源、古海洋化学及环境条件的重要途径。巢湖北郊凤凰山上石炭统黄龙组至下二叠统栖霞组臭灰岩段揭露良好,臭灰岩中黄铁矿结核普遍,集中产出于碳质页岩上2~3 m的沥青质灰岩中,其地球化学特征及成因不清。为查明黄铁矿结核的地球化学特征,分析臭灰岩段的沉积环境,推断早二叠世早期古环境演化,厘清碎屑岩段与臭灰岩的关系,从该剖面采集10个黄铁矿结核和灰岩样品,采用偏光显微镜、X射线荧光光谱仪和电感耦合等离子体质谱仪分析测试其矿物成分和主微量元素组成。结果表明:凤凰山下二叠统栖霞组臭灰岩段下部普遍发育的黄铁矿结核呈块状和微晶粒状,与灰岩界线清晰,并未切割或破坏有机质纹层,为成岩孔隙水交代生物而成。臭灰岩中SO3和Fe2O3显著富集,分别与高含量有机质和与下伏碎屑岩段一致的陆源供应有关。与上陆壳相比,臭灰岩中Se、Mo和Cd富集,黄铁矿结核中Cr、Ni、As、Se、Mo、Cd、Sb和Hg富集。碎屑岩-臭灰岩的岩性组合、黄铁矿结核的分布范围及其主微量元素地球化学特征均表明臭灰岩和黄铁矿结核沉积于受部分陆源物质影响的稳定大陆边缘缺氧强还原海相环境。
Abstract
The geochemistry of sedimentary pyrite provides valuable insights into heavy metal sinks, sources of metals for ore deposits, and the chemistry and environmental conditions of ancient oceans. The Pennsylvanian Huanglong Formation and the Lower Permian Qixia Formation are well-exposed in Fenghuang Hill, northern Chaohu City, Anhui Province. Pyrite nodules are commonly found within the odorous limestone of the lower member of the Qixia Formation, particularly in the 2~3 meter thick bituminous limestone layer overlying the carbonaceous shale member. Despite their prevalence, the geochemistry and genesis of these pyrite nodules are still not reported. This study investigates the geochemical characteristics of pyrite nodules, the depositional environment of the odorous limestone, the paleoenvironmental evolution during the Early Permian, and the relationship between the underlying clastic rocks and the odorous limestone. Ten pyrite nodule and limestone samples were collected for analysis. Mineral identification was performed using polarizing microscopy, while major element oxides and trace element concentrations were determined using X-ray fluorescence spectrometry and inductively coupled plasma-mass spectrometry, respectively. Results indicate that the pyrite nodules, widely distributed in the lower Qixia Formation odorous limestone, mainly occur as massive or microcrystalline grains with a distinct boundary between the nodules and the host limestone. The pyrite nodules do not cut or disrupt the surrounding organic-rich laminae, suggesting that it was precipitated from the diagenetic porewater via organisms replacement. The odorous limestone samples exhibit significant enrichment in SO3 and Fe2O3, likely related to the high organic matter content and a similar terrestrial input as the underlying clastic rock member, respectively. Compared to the upper continental crust, the Chaohu odorous limestone samples are enriched in Se, Mo, and Cd, while the pyrite nodule samples show elevated concentrations of Cr, Ni, As, Se, Mo, Cd, Sb, and Hg. The lithological association of clastic rocks and odorous limestone, the distribution of pyrite nodules, and their geochemistry collectively suggest that both the odorous limestone and pyrite nodules formed in a strongly anoxic, reducing marine environment at a passive continental margin with a degree of terrestrial influence.
Keywords
trace elements ; rare earth elements ; pyrite nodules ; Qixia Formation ; odorous limestone ; Chaohu City