en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孟苗苗,女,1988年生。高级工程师,主要从事沉积地质与天然气水合物研究工作。E-mail: 18811309981@126.com。

参考文献
Cao Licheng, Jiang Tiao, Wang Zhifeng, Zhang Yinzhao, Sun Hui. 2015. Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U-Pb ages. Marine Geology, 361: 136~146.
参考文献
Chen Hongjun, Zhan Wenhuan, Wu Shiguo. 2016. Response of geomorphic and geological processes to insufficient and ample sediment supply along the upper continental slope in the north-western South China Sea. Journal of Earth System Science, 125(6): 1635~1655.
参考文献
Cheng Cong, Jiang Tao, Kuang Zenggui, Ren Jinfeng, Xiong Pengfei. 2021. Seismic characteristics and distributions of Quaternary mass transport deposits in the Qiongdongnan basin, northern South China Sea. Marine and Petroleum Geology, 129(1): 105~118.
参考文献
Collett T S, Boswell R. 2012. Resource and hazard implications of gas hydrates in the northern Gulf of Mexico: Results of the 2009 Joint Industry Project Leg Il Drilling Expedition. Marine and Petroleum Geology, 34(1): 1~3.
参考文献
Du Hao, Shi Wanzhong, Liang Jinqiang, Wang Ren, He Yulin, Xu Litao. 2021. Factors influencing the enrichment of natural gas hydrates and their reservoir formation models in the southern low rise and its surrounding areas of the Qiongdongnan basin. Petroleum Geophysical Exploration, 56(4): 869~881+676 (in Chinese with English abstract).
参考文献
Elger J, Berndt C, Rüpke L, Krastel S, Gross F, Geissler W H. 2018. Submarine slope failures due to pipe structure formation. Nature Communications, 9(1): 1~6.
参考文献
Fn G S. 2000. 50 years of the turbidite paradigm (1950s~1990s): Deep-water processes and facies models—A critical perspective. Marine and Petroleum Geology, 17(2): 285~342.
参考文献
Gong Chenglin, Wang Yingmin, Hodgson D M. 2014. Origin and anatomy of two different types of mass-transport complexes: A 3D seismic case study from the northern South China Sea margin. Marine & Petroleum Geology, 54: 198~215.
参考文献
Gong Yuehua, Yang Shengxiong, Liang Jinqiang, Tian Ddongmei, Lu Jingan, Deng Wei, Meng Miaomiao. 2024. Identification of mass transport deposits and insights into gas hydrate accumulation in the Qiongdongnan Sea area, northern South China Sea. Journal of Marine Science and Engineering, 12: 855.
参考文献
Haflidason H, Sejrup H P, Nygard, Mienert J, Bryn P, Lien R, Forsberg C F, Berg K, Masson D. 2004. The Storegga Slide: Architecture, geometry and slide development. Marine Geology, 213(1~4): 201~234.
参考文献
Haq B U, Hardenbol J A N, Vail P R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156.
参考文献
He Yulin, Liang Jinqiang, Shi Wanzhong, Kuang Zenggui, Deng Wei, Wang Ren, Xu Litao, Du Hao. 2022. Factors influencing the enrichment of natural gas hydrates and their reservoir formation models in the southern low rise and its surrounding areas of the Qiongdongnan basin. Earth Science, 47(5): 1711~1727 (in Chinese with English abstract).
参考文献
He Yunlong, Xie Xinong, Li Junliang, Zhang Cheng, Zhang Jianxin. 2013. Differences in internal structural characteristics of block flow sedimentation in the eastern and western parts of the Qiongdongnan basin. Journal of Jilin University (Earth Science Edition), 43(1): 49~56 (in Chinese with English abstract).
参考文献
Huang Wei, Zhang Wei, Liang Jinqiang, Shang Jiujing, Meng Miaomiao, Shan Chenchen. 2021. Comparative study of gas hydrate accumulation system in the Qiongdongnan basin of the South China Sea and the Ulleung basin of Korea. Journal of China University of Mining & Technology, 50(2): 365~382.
参考文献
Jang Junbo, Dai Sheng, Yoneda Jun, Waite W F, Stern L A, Boze L G, Kumar P. 2019. Pressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate bearing reservoirs in the Krishna-Godavari basin, offshore India. Marine and Petroleum Geology, 108: 537~550.
参考文献
Jang Junbo, Waite W F, Stern L A. 2020. Gas hydrate petroleum systems: What constitutes the “seal”? Interpretation, 8(2): 1~68.
参考文献
Karstens J, Berndt C. 2015. Seismic chimneys in thesouthern Viking Graben—Implications for palaeo fluid migration and overpressure evolution. Earth and Planetary Science Letters, 412: 88~100.
参考文献
Kim K J, Yi B Y, Kang N K, Yoo D G. 2015. Seismic attribute analysis of the indicator for gas hydrate occurrence in the northwest Ulleung basin, East Sea. Energy Procedia, 76: 463~469.
参考文献
Li Dong, Wang Yingmin, Wang yongfeng, Xu Qiang. 2011. Identification of block like transport complex and its significance for oil and gas exploration: Taking the central canyon area of Qiongdongnan basin as an example. Sedimentary and Tethyan Geology, 31(3): 58~63 (in Chinese with English abstract).
参考文献
Li Lu, Clift P D, Nguyen H T. 2013. The sedimentary, magmatic and tectonic evolution of the southwestern South China Sea revealed by seismic stratigraphic analysis. Marine Geophysical Research, 34(3): 341~365.
参考文献
Longva O, Janbu N, Blikra L H, Bøe R. 2003. The 1996 Finneidfjord slide; seafloor failure and slide dynamics. Advances in Natural & Technological Hazards Research, 1: 531~538.
参考文献
Ma Yun, Li Sanzhong, Liang Jinqiang, Suo Yanhui, Dai Liming, Wang Xiaofei, Zhang Bingkun. 2012. Characteristics and genetic mechanisms of submarine landslides in the Qiongdongnan basin in the northern South China Sea. Journal of Jilin University (Earth Science Edition), 42(z3): 196~205 (in Chinese with English abstract).
参考文献
Maslin M, Mikkelsen N, Vilela C, Haq B. 1998. Sea-level and gas-hydrate-controlled catastrophic sediment failures of the Amazon Fan. Geology, 26(12): 1107~1110.
参考文献
Masson D G, Berndt C. 2006. National Oceanography Centre. Southampton, 18(3): 29~33.
参考文献
McAdoo B G, Pratson L F, Orange D L. 2000. Submarine landslide geomorphology, US continental slope. Marine Geology, 169(1~2): 103~136.
参考文献
Meng Miaomiao, Liang Jinqiang, Lu Jingan, Zhang Wei, Kuang Zenggui, Fang Yunxin, He Yulin, Deng Wei, Huang Wei. 2021. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan basin, Northwest South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 177: 103628.
参考文献
Moscardelli L. 2006. Abstract: Masstransport complexes in offshore trinidad and worldwide analogs. Forest Frontier Settlement & Change in Brazilian Roraima, 48(7): 23.
参考文献
Posamentier H W. 2009. Abstract: Using 3D seismic data to predict lithology in the subsurface: Applications of seismic geomorphology and seismic stratigraphy from deep water to shelf. Houston Geological Society Bulletin, 52(4): 21.
参考文献
Qin Yanqun, Wan Lunkun, Ji Zhifeng, Li Fuheng, Xu Hailong, Ba Dan. 2018. Research progress on deep-water block transport sedimentary systems. Oil & Gas Geology, 39(1): 140~152 (in Chinese with English abstract).
参考文献
Riedel M, Bahk J J, Scholz N A, Ryu B J, Yoo D G, Kim W, Kim G Y. 2012. Mass transport deposits and gas hydrate occurrences in the Ulleung basin, East Sea-Part 2: Gas hydrate content and fracture-induced anisotropy. Marine and Petroleum Geology, 35(1): 75~90.
参考文献
Ruppel C, Boswell R, Jones E. 2008. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg l drilling: Introduction and overview. Marine and Petroleum Geology, 25(9): 819~829.
参考文献
Shanmugam G. 2012. New perspectives on deep-water sandstones: Origin, recognition, initiation, and reservoir quality. Elsevier, 17: 221~270.
参考文献
Shipp R C, Weimer P, Posamentier H W. 2011. Mass-transport deposits in deepwater settings. Special Publication, 96: 3~6.
参考文献
Sun Qiliang, Wu Shiguo, Lue Fuliang, Yuan Shengqiang. 2010. Polygonal faults and their implications for hydrocarbon reservoirs in the southern Qiongdongnan basin, South China Sea. Journal of Asian Earth Sciences, 39(5): 470~479.
参考文献
Sun Qiliang, Alves T M, Zhao Minghui, Sibuet J C, Xie Xinong. 2020. Post-rift magmatism on the northern South China Sea margin. Geological Society of America Bulletin, 132(11~12): 2382~2396.
参考文献
Waite W F, Ruppel C D, Collett T S, Schultheiss P, Holland M, Shukla K M, Kumar P. 2019. Multi-measurement approach for establishing the base of gas hydrate occurrence in the Krishna-Godavari basin for sites cored during expedition NGHP-02 in the offshore of India. Marine and Petroleum Geology, 108: 296~320.
参考文献
Wang Dawei, Wu Shiguo, Qin Zhiliang, Ding Weiwei, Cao Quanbin. 2009. The structure and identification characteristics of large block transportation system on the South China Sea slope. Marine Geology and Quaternary Geology, 29(5): 65~72 (in Chinese with English abstract).
参考文献
Wang Dawei, Wu Shiguo, Lv Fuliang, Wang Bin. 2011. Sedimentary system of deep water block transportation in the South China Sea and its significance for oil and gas exploration. Journal of China University of Petroleum (Natural Science Edition), 35(5): 14~19 (in Chinese with English abstract).
参考文献
Wang Linlin, Wang Zhenqi, Yu Shui, Ngia N R. 2016. Seismic responses and controlling factors of Miocene deepwater gravity-flow deposits in Block A, Lower Congo basin. Journal of African Earth Sciences, 120: 31~43.
参考文献
Wang Xiujuan, Wu Shiguo, Dong Dongdong, Guo Yiqun, Hutchinson D. 2011. The controlling effect of the block transport system in the Qiongdongnan basin on the formation of natural gas hydrates. Marine Geology and Quaternary Geology, 31(1): 109~118 (in Chinese with English abstract).
参考文献
Weimer P, Slatt R M, Bouroullec R, Fillon R, Tari G. 2006. Introduction to the Petroleum Geology of Deepwater Setting. American Association of Petroleum Geologists.
参考文献
Wu Shiguo, Qin Yunshan. 2009. A study on the deepwater sedimentary system of the northern slope of the South China Sea. Journal of Sedimentology, 27(5): 922~930 (in Chinese with English abstract).
参考文献
Wu Shiguo, Qin Zhiliang, Wang Dawei, Peng Xuechao, Wang Zhijun, Yao Genshun. 2011. Seismic response and genetic mechanism of the sedimentary system of block transport on the northern slope of the South China Sea. Journal of Geophysics, 54(12): 3184~3195 (in Chinese with English abstract).
参考文献
Xie Xinong, Müller R D, Li Sitian. 2006. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7): 745~765.
参考文献
Yuan Yusong, Yang Shuchun, Hu Shengbiao, He Lijuan. 2008. The tectonic subsidence history and its main controlling factors in the Qiongdongnan basin. Journal of Geophysics, 51(2): 376~383 (in Chinese with English abstract).
参考文献
Zhao Zhongxian, Sun Zhen, Sun Longtao, Wang Zhifeng, Sun Zhipeng. 2016. Cenozoic tectonic subsidence in the Qiongdongnan basin, northern South China Sea. Basin Research, 30(1): 269~288.
参考文献
Zhao Zhongxian, Sun Zhen, Wang Zhifeng, Sun Zhipeng, Liu Jianbao, Zhang Cuimei. 2015. The high resolution sedimentary filling in Qiongdongnan basin, northern South China Sea. Marine Geology, 361: 11~24.
参考文献
Zhong Zhihong, Wang Liangshu, Li Xuxuan, Sun Zhen, Zhang Minqiang, Wu Guogan. 2004. The Paleogene basin-filling evolution of Qiongdongnan basin and its relation with seafloor spreading of the South China Sea. Marine Geology & Quaternary Geology, 24(1): 29~36 (in Chinese with English abstract).
参考文献
杜浩, 石万忠, 梁金强, 王任, 何玉林, 徐立涛. 2021. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响. 石油地球物理勘探, 56(4): 869~881+676.
参考文献
何玉林, 梁金强, 石万忠, 匡增桂, 邓炜, 王任, 徐立涛, 杜浩. 2022. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式. 地球科学, 47(5): 1711~1727.
参考文献
何云龙, 解习农, 李俊良, 张成, 张建新. 2013. 琼东南盆地东西部块体流沉积内部结构特征的差异性. 吉林大学学报(地球科学版), 43(1): 49~56.
参考文献
黄伟, 张伟, 梁金强, 尚久靖, 孟苗苗, 单晨晨. 2021. 琼东南盆地和郁陵盆地天然气水合物成藏对比研究. 中国矿业大学学报, 50(2): 365~382.
参考文献
李冬, 王英民, 王永凤, 徐强. 2011. 块状搬运复合体的识别及其油气勘探意义——以琼东南盆地中央峡谷区为例. 沉积与特提斯地质, 31(3): 58~63.
参考文献
马云, 李三忠, 梁金强, 索艳慧, 戴黎明, 王霄飞, 张丙坤. 2012. 南海北部琼东南盆地海底滑坡特征及其成因机制. 吉林大学学报(地球科学版), 42(z3): 196~205.
参考文献
秦雁群, 万仑坤, 计智锋, 李富恒, 徐海龙, 巴丹. 2018. 深水块体搬运沉积体系研究进展. 石油与天然气地质, 39(1): 140~152.
参考文献
王大伟, 吴时国, 秦志亮, 丁巍巍, 曹全斌. 2009. 南海陆坡大型块体搬运体系的结构与识别特征. 海洋地质与第四纪地质, 29(5): 65~72.
参考文献
王大伟, 吴时国, 吕福亮, 王彬. 2011. 南海深水块体搬运沉积体系及其油气勘探意义. 中国石油大学学报(自然科学版), 35(5): 14~19.
参考文献
王秀娟, 吴时国, 董冬冬, 郭依群, Hutchinson Deborah. 2011. 琼东南盆地块体搬运体系对天然气水合物形成的控制作用. 海洋地质与第四纪地质, 31(1): 109~118.
参考文献
吴时国, 秦蕴珊. 2009. 南海北部陆坡深水沉积体系研究. 沉积学报, 27(5): 922~930.
参考文献
吴时国, 秦志亮, 王大伟, 彭学超, 王志君, 姚根顺. 2011. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制. 地球物理学报, 54(12): 3184~3195.
参考文献
袁玉松, 杨树春, 胡圣标, 何丽娟. 2008. 琼东南盆地构造沉降史及其主控因素. 地球物理学报, 51(2): 376~383.
参考文献
钟志洪, 王良书, 李绪宣, 夏斌, 孙珍, 张敏强, 吴国干. 2004. 琼东南盆地古近纪沉积充填演化及其区域构造意义. 海洋地质与第四纪地质, 24(1): 29~36.
目录contents

    摘要

    块体搬运沉积(mass transport deposits, MTDs)作为深水沉积体系的重要组成在资源勘探和地质灾害等方面具有重要意义。琼东南盆地深水区水合物钻探发现水合物层之上发育三套MTDs,目前对其沉积特征以及控制因素等研究不足,进而限制了其对下伏水合物藏影响的认识。本研究以紧邻水合物层的第三套块体搬运沉积(MTD3)为重点研究对象,综合利用2D/3D地震数据、测井及岩芯资料对MTD3的沉积特征进行研究,并探讨了MTD3的物质来源、控制因素以及对下伏水合物藏的影响。研究表明,MTD3的岩性主要为具有明显的变形特征的泥质沉积,在测井上表现为低伽马值和低电阻率以及不规则成像特征,在地震剖面上表现为与顶底连续性较好的强振幅反射有明显的差别低幅杂乱或空白反射;MTD3在琼东南盆地发育体部滑移区和趾部挤压区,未见头部拉张区,平面上呈条带状展布,面积约3600 km2。MTD3的沉积物质可能来源于琼东南盆地西北部陆坡,然后沿中央坳陷带自SW向NE运移。MTD3的发育受海底地形地貌、构造和地震活动、沉积速率以及海平面变化等因素的综合控制。位于趾部挤压区的MTD3与半远洋沉积共同构成下伏水合物的盖层,其致密岩性以及浅层超压共同促使水合物的富集成藏。本研究加深了对琼东南盆地第四纪浅层事件性沉积的认识,并为与块体搬运沉积相关的水合物资源预测提供地质理论指导。

    Abstract

    Mass transport deposits (MTDs) are crucial components of deep-water sedimentary systems, playing a significant role in resource exploration and geological hazard assessment. Gas hydrate drilling in the Qiongdongnan basin has revealed three distinct MTD sets above the gas hydrate layer. However, limited research on the sedimentary characteristics and controlling factors of these MTDs hinders our understanding of their influence on the underlying gas hydrate reservoir. This study focuses on the third MTD set (MTD3), situated directly above the gas hydrate layer. By comprehensively using 2D/3D seismic data, logging data, and core samples, we investigated the sedimentary characteristics of MTD3, explored its sediment source, and analyzed the controlling factors influencing its formation and its impact on the underlying gas hydrate reservoir. Our results indicate that MTD3 mainly consists of muddy sediment exhibiting pronounced deformation features. Logging data reveals low gamma ray values, low resistivity values, and irregular imaging characteristics,whereas seismic profiles show chaotic or blank reflections. MTD3 comprises of two structural units: a body slip area and a toe extrusion area, lacking a head stretching area. It exhibits a strip-shaped distribution, covering an approximate area of 3600 km2. Sediment provenance analysis suggests that the sediments originated from the northwestern continental slope of the Qiongdongnan basin and were transported SW to NE in the central depression. The development of MTD3 is attributed to a complex interplay of factors, including seabed topography, tectonic and seismic activity, sedimentation rates, and sea-level changes. The toe extrusion zone of MTD3, in conjunction with hemipelagic sediments, forms a cap layer. The tight lithology and shallow overpressure within this cap layer may contribute to the accumulation of gas hydrates. This study enhances our understanding of Quaternary shallow event deposits in the Qiongdongnan basin and provides valuable geological insights for predicting gas hydrate resources related to MTDs.

  • 块体搬运沉积(mass transport deposits,以下简称MTDs)是由于重力失稳引起的海底滑坡沉积而成的大规模复合沉积体(McAdoo et al.,2000),可以将沉积物从浅海陆架搬运到深海盆地(Fn,2000; Haflidason et al.,2004; Weimer et al.,2006)。沉积于深海环境的MTDs可作为天然气水合物的盖层和储层(Ruppel et al.,2008; 王秀娟等,2011; Collett et al.,2012),例如美国墨西哥湾下陆坡水合物油气系统中砂层和MTDs的交互发育以及韩国郁陵盆地的水合物系统的MTDs(Ruppel et al.,2008Collett et al.,2012);海底滑坡往往伴随着海啸的发生,如挪威中部沿海的Storegga滑坡和夏威夷的Manua Loa滑坡,对人们的生命安全和财产带来巨大的威胁(Longva et al.,2003)。前人对块体搬运沉积的研究集中在触发机制、主控因素分析以及油气勘探指示意义等方面(Moscardelli,2006; Posamentier,2009; Shipp et al.,2011; Shanmugam,2012; Wang Linin et al.,2016; Chen Hongjun et al.,2016; 秦雁群等,2018)。

  • 琼东南盆地第四纪沉积物以细粒为主,主要发育有半远洋沉积、水道沉积体系和MTDs(吴时国等,2009; Meng Miaomiao et al.,2021)。MTDs在地层中具有多期次垂向叠加的特点。不同期次的MTDs展布特征和物源不同,其成因受如高沉积速率、坡度增加、断层重新激活、地震和海平面变化等多种控制因素影响,不同地质背景和主控因素导致了各个区域MTDs的沉积特征有差异(王大伟等,2009; 何云龙等,2013; Gong Chenglin et al.,2014; Cheng Cong et al.,2021)。

  • 琼东南盆地中央凹陷带第四纪浅层海底之下约110 m处发育砂岩型高饱和度水合物,水合物层上方发育三期MTDs。前人大多是从地震剖面或者局限范围内的三维地震工区对琼东南盆地第四纪的MTDs做沉积体系研究并取得了一定的认识(杜浩等,2021; Cheng Cong et al.,2021; Gong Yuehua et al.,2024),但是缺乏多尺度、多方位的综合分析,尤其是对紧邻水合物层之上的一期块体搬运沉积(MTD3)缺乏充分的沉积学研究。块体搬运沉积可作为水合物藏的盖层或储层(黄伟等,2021Meng Miaomiao et al.,2021; 杜浩等,2021; 何玉林等,2022),但是对块体搬运沉积认识的匮乏可能造成其对水合物藏影响的认识不足。基于此,本文以琼东南盆地中央坳陷带水合物层上覆MTD3为研究对象,综合应用高精度岩芯资料和地震、测井数据相结合,多尺度、多方位地分析深水块体搬运沉积体系的沉积特征,并对深水块体搬运沉积体系的触发机制和控制因素进行分析研究,继而探讨了MTDs对下伏水合物藏的影响。

  • 1 区域地质背景

  • 琼东南盆地是位于南海西北部的一个新生代陆缘张性盆地(Sun Qiliang et al.,2010),是欧亚板块、印-澳板块和太平洋板块的交界,其西南部与莺歌海盆地相接,东部为西沙隆起和神狐隆起,北面为海南岛,整体大致呈NE-SW走向,水深从西北向东南方向逐渐加深(图1)。琼东南盆地经历了古近纪以断陷为主的裂陷期和新近纪以坳陷为主的裂后期的两大构造演化阶段,在始新世、渐新世和中新世发生了三次快速沉降,分别是珠琼运动、南海运动和东沙运动(图2; Xie Xinong et al.,2006; 袁玉松等,2008)。始新世沉积环境以断陷湖盆为主,渐新世依次沉积崖城组、陵水组,沉积环境由陆相湖盆逐渐变为滨浅海,中新世晚期以来发育半远洋—深海沉积,依次沉积三亚组、梅山组、黄流组,上新世以后开始逐渐分异出明显的陆架-陆坡体系,沉积了莺歌海组与上覆的第四系乐东组。晚中新世以来受红河断裂和太平洋俯冲影响下的新构造运动使得陆架坡折形态逐渐成熟,坡度变陡,来自中国海南岛、红河和越南中部的大量沉积物向深海方向推进,再加上断裂活动和地震的频发,这些都是块体搬运沉积形成的潜在条件(马云等,2012Li Lu et al.,2013)。

  • 图1 琼东南盆地地理位置图(a)、构造单元划分图(b)及重点三维区和钻井位置图(c)

  • Fig.1 Geographical location map (a) , structural unit division map (b) and key 3D area and drilling location map (c) of the Qiongdongnan basin

  • 图2 琼东南盆地综合地层柱状图(海平面变化曲线引自Haq et al.,1987; Zhao Zhongxian et al.,2016; 岩性柱及沉积速率等引自Zhao Zhongxian et al.,20152016

  • Fig.2 Comprehensive stratigraphic histogram of the Qiongdongnan basin (sea level change curve cited after Haq et al., 1987; Zhao Zhongxian et al., 2016; lithological column and sedimentation rates cited after Zhao Zhongxian et al., 2015, 2016)

  • 2 数据和方法

  • 本研究综合利用了岩芯、测井和地震等数据资料,多尺度、多方位地分析块体搬运沉积特征。

  • 岩芯和测井资料为2021年钻探的W05井(图1b),站位水深为1771.8 m。钻探取芯深度范围在海底之下2.4~157 m之间,共45个回次,单管连续取芯长度最长为1 m,累计取芯长度约150 m,共扫描岩芯照片资料140张;测井资料包括三种常规测井曲线(伽马、电阻率和密度)以及电阻率成像测井资料;琼东南盆地全盆二维地震数据累计50000 km2以上,因块体搬运沉积展布并非全区,本研究仅追踪解释块体搬运沉积所涵盖的地震测线。三维重点区位于松南低凸,面积约为800 km2(图1c)。

  • 对W05井的高清岩芯扫描照片进行了详尽的沉积学描述,重点关注了半远洋沉积与块体搬运沉积的识别标志、沉积特征差异及接触关系,归纳总结了多种变形结构的块体搬运沉积并划分MTD3亚单元。测井数据重点使用了在岩性和沉积结构构造识别有明显优势的电阻率成像测井资料以更全面、准确地刻画垂向沉积相发育特征,并结合岩芯观察标定确定了块体搬运的亚单元。使用GeoFrame和Petrel软件对地震数据中的MTD3的顶低界面进行追踪解释并成图分析以明确MTD3的沉积发育特征和时空展布特征。

  • 3 结果

  • 3.1 块体搬运沉积岩芯特征

  • 岩芯观察发现W05井岩性为以黑灰色或浅棕色为主的泥质沉积,部分层段见少量粉砂。MTD3在岩芯上表现为不同程度的变形层理。层理的变形程度从小到大依次划分为团块状、倾斜状、扭曲状、包卷状和破碎状,这有利于区分不同深度MTD3的变形程度(图3)。团块状疑为未受变形影响的黑色鹅卵石状的残余泥团块,是变形程度最小的一类;倾斜状代表着地层的不平整,倾斜角度一般小于90°,此类还包括有被挤压造成的上凸或下凹形态的地层;扭曲状比倾斜状的变形程度更大,有一定规模连续分布(厚度0.5 m以上)似火焰形状的变形层理;包卷状表现为不同颜色或岩性的层理揉皱包卷,也就是通常所说的包卷层理,这种变形非常剧烈使得地层扭转接近180°;其余方向及形态不规则的线条或小团块被划分为破碎状。

  • 从岩芯上标定的MTD3深度约为海底之下77~115 m(1848~1886 m),MTD3的变形程度剧烈(图3)。从岩芯数据将地震剖面上识别的MTD3划分为多个亚单元有助于恢复一次大型事件性沉积内部更加详细的结构,并推断其沉积过程。每个亚单元可能代表一次大型事件性沉积中的小型事件,整体上表现为变形挤压地层和平整的地层交互,代表不同程度块体搬运沉积与正常半远洋沉积的交替发育。

  • 图3 琼东南盆地W05井MTD3岩芯照片(a)及层理变形程度分类图版(b)

  • Fig.3 Core photos (a) and stratification deformation classification chart (b) of MTD3 from well W05, Qiongdongnan basin

  • MTD3自上而下划分为3个亚单元(图3)。MTD3-1是MTD3变形特征最清晰明显的亚单元,大部分为棕色、灰色及黑色的泥质沉积混杂,呈团块状和倾斜状,说明其变形较弱,少部分可见倾斜状、扭曲状、包卷状和破碎状多种形态,值得注意的是发现长达1.5 m的连续扭曲状地层,表现为灰色泥质沉积与灰黑色泥质粉砂的糅杂,可能是两种不同来源的沉积物的混合作用。MTD3-2中海底之下约95.5 m有明显突变分界,上段主要为黑灰色泥质沉积,下段为棕色泥质与灰色粉砂质泥的糅杂,可能存在一次沉积事件或某种沉积环境的改变。除海底之下95 m之前有倾斜状外,其余部分均为变形程度较大的不规则破碎状。MTD3-3大部分为棕灰色泥质沉积,变形非常弱,在海底之下109~110 m发现粥状构造及空管,疑似因含气流通过微裂隙渗漏到MTD内部赋存的水合物分解导致。

  • 3.2 块体搬运沉积测井特征

  • 钻遇地层包括MTDs、半远洋沉积和水道-天然堤沉积,这三类沉积相在测井上也有明显的差异(图4)。MTDs和半远洋沉积因为岩性相同均表现为较低幅值的伽马曲线,两者没有明显的区别,但地层倾角能够很好地区分MTDs和半远洋沉积,度数为零或接近于零是正常半远洋沉积,MTDs则表现为一定的倾角度数且倾向各异,倾角大多集中在20°~70°之间,倾向多为北方向。含水合物砂层的水道-天然堤沉积具有明显的低伽马值和高电阻率的特征。

  • 图4 琼东南盆地W05井电阻率成像测井沉积相识别图版

  • Fig.4 Sedimentary facies identification charts interpretated from resistivity imaging logging of well W05, Qiongdongnan basin

  • (a)—MTD识别图版(b)—水道天然堤识别图版(c)—半远洋沉积识别图版

  • (a) —identification chart of MTDs; (b) —identification chart of channel-leveel deposits; (c) —identification chart of hemipelagic sediments

  • 另外,地层微电阻率成像(FMI)测井为连接岩芯数据和地震数据提供了一个桥梁。FMI包括静态成像和动态成像,浅色在这里代表低电阻率,深色代表高电阻率,可以可视化岩性差异和大型构造的广泛变化。MTDs和正常深海沉积在成像上尽管都由深色表示但略有不同,MTDs呈较厚的波浪状(似正余弦曲线),暗部杂乱的特征与半远洋沉积的水平条带状有明显差异,表明具有一定的倾向和倾角不断变化(图4)。砂层在动态成像中具有明显的空白特征,这可能是由于水合物充填造成的,可以识别出水合物层。

  • 通过常规测井曲线、电阻率成像测井、倾向倾角和岩芯的综合分析对整个W05井和MTD3的沉积特征进行了精细解剖。将W05井地层的岩性划分成了五类,分别是正常深海泥质沉积、MTDs泥质沉积、粉砂质泥、泥质粉砂和砂,沉积相划分为MTDs、半远洋沉积和水道天然堤三类(图4)。在该井深度1790~1990 m(约海底之下18.2~218.2 m)内共识别出六期MTDs、两期水道天然堤和多期半远洋沉积(图5)。

  • MTDs内部变形并不是连续的而是间断的,即变形糅杂部分和未变形部分交替产生。这一特征在测井上也有所表现。需要注意的是虽然岩芯数据精度较高,但确实为一孔之见,所以也有可能“无变形”是较大规模变形构造内的某个局部。MTDs内部的杂乱堆积在测井上最明显的特征是不同倾角地层的交替出现。由岩芯标定的岩性和沉积相及微相与测井的解释非常一致,通过将常规测井、FMI测井与岩芯相结合,可以准确地评估岩性及其边界,在建立高精度的地层序列、确定沉积构造、判断沉积亚相和微相、识别MTDs等方面有很大优势。依此在测井上划分了W05井MTDs沉积相的亚单元(图5)。此外在成像上未变形部分也同半远洋沉积具有相同的特征而异于变形部分,而从岩性上看没有直接的区别。

  • 图5 琼东南盆地W05井综合地层柱状图和井震标定

  • Fig.5 Comprehensive stratigraphic column and well-seismic calibration of well W05, Qiongdongnan basin

  • MTD3在测井上标定的深度约为1852~1888 m,密度曲线在1850~1860 m波动频繁,1860~1890 m密度较高且稳定,1888 m左右后逐渐降低。1888~1890 m的高密度表明此处可能为MTD3下伏致密剪切带,岩芯上有明显的水平剪切特征,且GR较MTD3高(图6)。MTD3地震剖面对应的反射特征为强振幅连续的顶底界面及内部的杂乱反射,底界面下为超强振幅反射且出现GR和密度的测井曲线异常(图6)。

  • 3.3 块体搬运沉积地震剖面特征

  • MTD3在地震剖面上表现为杂乱空白反射和顶底连续性较好的强振幅反射,常常与连续性好的强振幅半远洋沉积交替发育(图7、8),且通过岩芯-测井-地震综合标定发现MTD3都具有明显的识别特征(图6),这也证明了我们识别MTD3的准确性。

  • 按照搬运过程MTDs一般可以分为3个结构单元,分别是头部拉张区、体部滑移区和趾部挤压区。由于琼东南盆地西侧地震数据限制,我们只观察到MTD3的体部滑移区和趾部挤压区(图8a、b)。MTD3体部滑移区在地震剖面上表现为弱—中振幅杂乱或空白反射,底界面见有侵蚀凹槽、侧壁滑塌等,偶尔发现侵蚀残余体(图8)。从NW—SE向地震剖面可见MTD呈北西高南东低、中间厚两侧薄的月牙形特征(图8c)。相比于MTD3体部滑移区,趾部挤压区沉积更厚,反映了沉积块体流动过程中末端的块体堆积和主部滑移延伸过程。受到地形影响MTD3的末端向上逐渐尖灭,块体流动长达数百千米,搬运距离很长,这可能在一定程度上受坡度影响。另外在MTD3的趾部挤压区发现大量残余块体(图8、12),说明MTD3末端的侵蚀能力较弱,块体逐渐沉积。

  • MTD3底面的均方根振幅(RMS)属性可见类似猫抓状的擦痕特征(图9),结合研究区西南高东北低的地势特征,可以推测擦痕从西南向东北方向发展,这在一定程度上指示MTD3来源于西南方向。注意到由于气烟囱的存在导致均方根振幅属性在图中有两块极强振幅的斑块,并在地震剖面上呈现“上拉”异常和“空白”反射带。

  • 图6 琼东南盆地W05井岩芯-测井-地震综合标定下MTD3的响应特征

  • Fig.6 Response characteristics of MTD3 in well W05, Qiongdongnan basin, as determined by comprehensive core-log-seismic calibration

  • 图7 琼东南盆地三维地震研究区地震剖面(a)及沉积相解释(b)(测线位置见图1c)

  • Fig.7 Seismic profile (a) and interpretated sedimentary facies (b) in the 3D seismic survey area, Qiongdongnan basin (see seismic line location in Fig.1c)

  • 3.4 块体搬运沉积平面展布特征

  • 通过对3D工区MTD3的解释以及全区二维地震的追踪解释和计算,我们圈定了MTD3的展布范围、底界面构造和沉积厚度图,由于西部没有地震数据,因此解释的MTD3的西部边界待定(图1b、10a)。MTD3沿SW—NE方向呈长条状,宽约40 km,沿倾向方向长度可达100 km,深度范围约1375~2000 m,面积约3600 km2,从西南向东北逐渐加深(图10b)。从厚度上来看,MTD3大体上呈边缘薄中间厚的形态,最大厚度约为150 m,位于研究区西北角,从西北角发散厚度越来越小(图8c)。

  • 3.5 块体搬运沉积与水合物藏

  • W05井约1900 m处的砂岩中发现厚度约8 m的水合物层,自然伽马和电阻率曲线表现与上下地层的突变(箱型低伽马值及高电阻率),动态电阻率成像测井表现为代表电阻率很高的白色(图11),水合物层上方发育厚度约10 m的近水平泥质沉积层,因其与上覆MTD3杂乱倾角和倾向的块体搬运沉积有明显的差别,被认为是半远洋沉积。

  • 水合物层在地震剖面上表现为局部区域的强振幅反射特征,与海底近似平行,和两次地震轴有明显的反转特征,这就是在地震剖面上识别水合物的最常用的BSR(bottom simulation reflection)(图12)。水合物层下方发现与正常沉积层有明显区别的杂乱反射特征,杂乱反射宽度约1 km左右,两侧边界有明显的地震反射轴下拉的特征。解释为含气流体沿着地层微裂缝向上运移的类似烟囱状的气烟囱通道。水合物层上方发育的三期MTD非常清晰,在MTD3底界见有残余块体和侵蚀凹槽,沉积层内部见有类似叠瓦状构造的杂乱反射特征,结合我们对MTD3全区的刻画以及在地震剖面上的特征,我们认为该水合物藏位于MTD3的趾部挤压区。

  • 图8 琼东南盆地二维地震剖面中不同结构单元MTDs发育特征及在沉积模式图中的相应位置(剖面位置见图1b)

  • Fig.8 Development characteristics of MTDs in different structure units in seismic profiles and their corresponding positions in the sedimentary model map (see location of seismic lines in Fig.1b)

  • (a)—MTD3体部滑移区;(b)—MTD3趾部挤压区;(c)—MTD3趾部挤压区横切剖面;(d)—MTDs沉积模式图

  • (a) —body slip area of MTD3; (b) —toe extrusion area of MTD3; (c) —transverse section of toe extrusion area of MTD3; (d) —deposition patterns of MTDs

  • 图9 琼东南盆地三维地震研究区MTD3底界面均方根振幅属性(a)及解释的沉积相图(b)(三维地震研究区位置见图1b)

  • Fig.9 Maps of RMS amplitude attribute (a) and sedimentary facies (b) at the base of MTD3 in the 3D seismic survey study area of the Qiongdongnan basin (see Fig.1b for the location of the 3D seismic study area)

  • 图10 琼东南盆地MTD3底界面平面图(a)和沉积厚度图(b)(MTD3展布边界范围见图1b虚线圈定处)

  • Fig.10 Structural (a) and thickness map (b) of MTD3 in the Qiongdongnan basin (see the MTD3 boundary delineated by a dotted line in Fig.1b)

  • 4 讨论

  • 4.1 块体搬运沉积的物质来源

  • 块体搬运沉积没有固定的形态和规模,受地形因素影响一般在陆坡、隆起、峡谷、火山、底辟的延伸方向展布,一定程度上反映了沉积物受重力影响的搬运范围(李冬等,2011; 马云等,2012)。规模和厚度都很大的MTD往往与斜坡边缘的严重垮塌有关(吴时国等,2011)。

  • 研究区块体搬运沉积的岩性主要为泥质沉积,并不能像砂质沉积物通过锆石定年等地球化学方法追溯其物源,但是基于我们的研究可以分析其物质来源方向。通过前文对MTD3的地震沉积相研究和平面展布的刻画,我们发现MTD3沿SW—NE方向呈长条状,宽约40 km,沿倾向NE方向达100 km以上;MTD3的体部滑移区位于长条状MTD3的左侧部分,而趾部挤压区位于长条状MTD3的右侧部分;结合MTD3底界面RMS属性上的近NE向的擦痕,MTD3的沉积物从西侧汇入琼东南盆地地形底处毋庸置疑。

  • 图11 琼东南盆地W05井MTD3对下伏水合物藏的封盖模式

  • Fig.11 The sealing model of MTD3 for the underlying gas hydrate reservoir in well W05, Qiongdongnan basin

  • 块体搬运沉积厚度在一定程度上也能反映物质来源,块体搬运沉积物在重力作用下沿斜坡由高向底流动,在沉积物由滑动滑移变为滑塌最后形成碎屑流的过程中物质不断向前滚动,先是粗粒沉积物沉积下来,然后细粒沉积物继续搬运,物质越来越少最终在较远的地方停止并沉积。虽然西北侧小范围区域厚度较大,整体上自SW向NE厚度没有明显的差异,MTD3中心区域较厚,向两侧尖灭变薄,由此初步推断MTD3来源于琼东南盆地西北部陆坡。

  • 4.2 块体搬运沉积的控制因素

  • 块体搬运沉积的控制因素包括内部因素和外部因素(Masson et al.,2006)。内部因素包括力学性质、海底地形地貌、软弱层等,外部因素有地震活动、火山、海啸、高沉积速率、海平面波动、坡度变化、天然气水合物分解、构造活动(断层激活)和流体逸散等(Maslin et al.,1998; 何云龙等,2013)。这些因素可以根据作用长短分为长期(几千年—几百万年)、中期(几年—几千年)和短期(几分钟—几个月)。本研究重点讨论海底地形地貌、构造和地震活动、沉积速率以及海平面变化对块体搬运沉积的控制。

  • 长距离块体搬运的坡度一般在1°~3°,沿沉积物搬运方向进行坡度分析发现,块体搬运沉积的斜坡在西侧的西北方向坡度最大(1.6°),整体的平均坡度1.2°,说明琼东南盆地MTD3的坡度恰好在能够发生长距离块体搬运的范围内。

  • 构造和地震活动是块体搬运沉积重要的触发因素(王大伟等,2011)。未变形岩层间形成的变形褶皱由地震活动引起,软沉积物变形也常与地震活动有关。琼东南盆地位于红河断裂带、南海西缘断裂带和西沙海槽断裂带之间,构造上位于地震多发带,推测研究区具备在地质历史时期发生多次震级较大地震的能力,岩芯中广泛发育的软沉积变形构造也指示了地震活动。

  • 沉积物供给是控制大陆斜坡不稳定性的潜在重要因素,一般沉积速率高的地方沉积厚度也较大,是造成大陆斜坡不稳定性的潜在重要因素。沉积速率的快速增加使斜坡沉积物过陡,随后孔隙流体在超压地层迁移导致沉积物坍塌,产生重力控制的大规模质量运动。北部海南岛入海河流和红河为琼东南盆地提供的沉积物最高沉积速率和平均沉积速率分别可达630 m/Ma和~370 m/Ma(钟志洪等,2004; Cao Licheng et al.,2015),极有可能造成琼东南盆地第四纪块体搬运沉积的发育。

  • 海平面变化也对块体搬运沉积发育有影响(Sun Qiliang et al.,2020),高海平面时陆架坡折带较长,陆坡沉积速率较低,不利于块体搬运沉积的发育,低海平面时则相反,有利于块体搬运沉积的发育。海平面变化是连续长期的过程,因此对块体搬运沉积的影响也是相对长期的。琼东南盆地第四纪多期次频繁发育的块体搬运沉积反过来也可能反映了海平面的频繁变化。

  • 4.3 块体搬运沉积对水合物藏的影响

  • 天然气水合物的形成需要合适的温压条件、储层、气源、运输通道及封盖。目前,对水合物“盖层”的认识不足,大多学者仅仅是针对已发现盖层进行简单描述。高密度低渗的MTDs常常作为水合物藏的盖层:印度KG盆地水合物储层中的甲烷气体能够运移进入上覆相对低渗的MTDs中(Waite et al.,2019);韩国郁陵盆地大部分水合物富集在低孔渗的MTDs底部或者内部的裂缝中(Riedel et al.,2012; Kim et al.,2015);尽管水合物能够大大降低相对粗粒储层单元内的渗透率,但上覆低渗透率的细粒沉积物仍可能为流体流动提供有效的封闭性,因此水合物的富集成藏仍需要上覆封盖作用控制(Elger et al.,2018; Jang Junbo et al.,20192020)。

  • 与正常沉积相比,MTDs因其孔隙度低且致密性好的特点有着非常出色的封盖能力(王秀娟等,2011),但在W05井中发现,在MTD3与水合物层中间还有半远洋沉积(图13)。W05井中MTD3和半远洋沉积夹层在测井上都表现为锯齿状较低伽马值和电阻率,两者都是泥质沉积。MTD3底界面的残留块体和侵蚀凹槽证明MTD3重力流沉积在途经该位置的侵蚀能力较弱或者下部的半远洋沉积相对致密。在岩芯中发现MTD3-3(MTD3最底部的亚单元)中发现有部分空管,可能有水合物零星分布,但在MTD3-1及MTD3-2中没有发现,而在地震剖面中MTD3内也没有发现明显的海底渗漏通道和有水合物特征响应的测井特征,推测天然气并没有继续向上渗漏,MTD3下伏的水合物藏属于封闭系统。MTD3虽然没有直接和水合物层接壤,但MTD3的沉积可以使残留块体半远洋沉积被异常压实形成致密剪切带,含气流体难以突破向上运移,形成超压环境。MTDs导致的浅层超压可能会对气体和水合物的聚集和封闭产生影响(Karstens and Berndt,2015),因此水合物藏上覆的MTD3与半远洋沉积的联合封盖为该区水合物的形成提供了有利的条件。

  • 图12 琼东南盆地过W05井的地震剖面,可见水合物层与上覆的MTD3(剖面位置见图1c)

  • Fig.12 The seismic profile through well W05 showing the gas hydrate layer and the overlying MTD3 in the Qiongdongnan basin (see location of seismic profile in Fig.1c)

  • 5 结论

  • (1)琼东南盆地含水合物砂层上覆块体搬运沉积(MTD3)主要为泥质沉积,在岩芯上呈现出多样的变形特征,按变形程度划分为团块状、倾斜状、扭曲状、包卷状和破碎状五种。

  • (2)综合利用常规测井曲线、地层倾向倾角、电阻率成像测井和岩芯识别出琼东南盆地第四纪地层发育MTDs、半远洋沉积和水道天然堤沉积。

  • (3)MTD3在测井上表现为低伽马值和低电阻率以及不规则成像特征,在地震剖面上表现为低幅的杂乱或空白反射,底界面见有反映滑擦的侵蚀沟槽和侵蚀残余块体等;MTD3在琼东南盆地发育体部滑移区和趾部挤压区,未见头部拉张区,平面上呈条带状展布,面积约3600 km2

  • (4)MTD3沉积物质来源于琼东南盆地西北部陆坡,然后沿中央坳陷带自SW向NE运移;MTDs的发育受海底地形地貌、构造和地震活动、沉积速率以及海平面变化等因素的综合控制。

  • (5)位于趾部挤压区的MTD3与半远洋沉积共同构成下伏水合物的盖层,其致密岩性以及形成的浅层超压共同作用为水合物的富集成藏提供了有利的条件。

  • 参考文献

    • Cao Licheng, Jiang Tiao, Wang Zhifeng, Zhang Yinzhao, Sun Hui. 2015. Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U-Pb ages. Marine Geology, 361: 136~146.

    • Chen Hongjun, Zhan Wenhuan, Wu Shiguo. 2016. Response of geomorphic and geological processes to insufficient and ample sediment supply along the upper continental slope in the north-western South China Sea. Journal of Earth System Science, 125(6): 1635~1655.

    • Cheng Cong, Jiang Tao, Kuang Zenggui, Ren Jinfeng, Xiong Pengfei. 2021. Seismic characteristics and distributions of Quaternary mass transport deposits in the Qiongdongnan basin, northern South China Sea. Marine and Petroleum Geology, 129(1): 105~118.

    • Collett T S, Boswell R. 2012. Resource and hazard implications of gas hydrates in the northern Gulf of Mexico: Results of the 2009 Joint Industry Project Leg Il Drilling Expedition. Marine and Petroleum Geology, 34(1): 1~3.

    • Du Hao, Shi Wanzhong, Liang Jinqiang, Wang Ren, He Yulin, Xu Litao. 2021. Factors influencing the enrichment of natural gas hydrates and their reservoir formation models in the southern low rise and its surrounding areas of the Qiongdongnan basin. Petroleum Geophysical Exploration, 56(4): 869~881+676 (in Chinese with English abstract).

    • Elger J, Berndt C, Rüpke L, Krastel S, Gross F, Geissler W H. 2018. Submarine slope failures due to pipe structure formation. Nature Communications, 9(1): 1~6.

    • Fn G S. 2000. 50 years of the turbidite paradigm (1950s~1990s): Deep-water processes and facies models—A critical perspective. Marine and Petroleum Geology, 17(2): 285~342.

    • Gong Chenglin, Wang Yingmin, Hodgson D M. 2014. Origin and anatomy of two different types of mass-transport complexes: A 3D seismic case study from the northern South China Sea margin. Marine & Petroleum Geology, 54: 198~215.

    • Gong Yuehua, Yang Shengxiong, Liang Jinqiang, Tian Ddongmei, Lu Jingan, Deng Wei, Meng Miaomiao. 2024. Identification of mass transport deposits and insights into gas hydrate accumulation in the Qiongdongnan Sea area, northern South China Sea. Journal of Marine Science and Engineering, 12: 855.

    • Haflidason H, Sejrup H P, Nygard, Mienert J, Bryn P, Lien R, Forsberg C F, Berg K, Masson D. 2004. The Storegga Slide: Architecture, geometry and slide development. Marine Geology, 213(1~4): 201~234.

    • Haq B U, Hardenbol J A N, Vail P R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156.

    • He Yulin, Liang Jinqiang, Shi Wanzhong, Kuang Zenggui, Deng Wei, Wang Ren, Xu Litao, Du Hao. 2022. Factors influencing the enrichment of natural gas hydrates and their reservoir formation models in the southern low rise and its surrounding areas of the Qiongdongnan basin. Earth Science, 47(5): 1711~1727 (in Chinese with English abstract).

    • He Yunlong, Xie Xinong, Li Junliang, Zhang Cheng, Zhang Jianxin. 2013. Differences in internal structural characteristics of block flow sedimentation in the eastern and western parts of the Qiongdongnan basin. Journal of Jilin University (Earth Science Edition), 43(1): 49~56 (in Chinese with English abstract).

    • Huang Wei, Zhang Wei, Liang Jinqiang, Shang Jiujing, Meng Miaomiao, Shan Chenchen. 2021. Comparative study of gas hydrate accumulation system in the Qiongdongnan basin of the South China Sea and the Ulleung basin of Korea. Journal of China University of Mining & Technology, 50(2): 365~382.

    • Jang Junbo, Dai Sheng, Yoneda Jun, Waite W F, Stern L A, Boze L G, Kumar P. 2019. Pressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate bearing reservoirs in the Krishna-Godavari basin, offshore India. Marine and Petroleum Geology, 108: 537~550.

    • Jang Junbo, Waite W F, Stern L A. 2020. Gas hydrate petroleum systems: What constitutes the “seal”? Interpretation, 8(2): 1~68.

    • Karstens J, Berndt C. 2015. Seismic chimneys in thesouthern Viking Graben—Implications for palaeo fluid migration and overpressure evolution. Earth and Planetary Science Letters, 412: 88~100.

    • Kim K J, Yi B Y, Kang N K, Yoo D G. 2015. Seismic attribute analysis of the indicator for gas hydrate occurrence in the northwest Ulleung basin, East Sea. Energy Procedia, 76: 463~469.

    • Li Dong, Wang Yingmin, Wang yongfeng, Xu Qiang. 2011. Identification of block like transport complex and its significance for oil and gas exploration: Taking the central canyon area of Qiongdongnan basin as an example. Sedimentary and Tethyan Geology, 31(3): 58~63 (in Chinese with English abstract).

    • Li Lu, Clift P D, Nguyen H T. 2013. The sedimentary, magmatic and tectonic evolution of the southwestern South China Sea revealed by seismic stratigraphic analysis. Marine Geophysical Research, 34(3): 341~365.

    • Longva O, Janbu N, Blikra L H, Bøe R. 2003. The 1996 Finneidfjord slide; seafloor failure and slide dynamics. Advances in Natural & Technological Hazards Research, 1: 531~538.

    • Ma Yun, Li Sanzhong, Liang Jinqiang, Suo Yanhui, Dai Liming, Wang Xiaofei, Zhang Bingkun. 2012. Characteristics and genetic mechanisms of submarine landslides in the Qiongdongnan basin in the northern South China Sea. Journal of Jilin University (Earth Science Edition), 42(z3): 196~205 (in Chinese with English abstract).

    • Maslin M, Mikkelsen N, Vilela C, Haq B. 1998. Sea-level and gas-hydrate-controlled catastrophic sediment failures of the Amazon Fan. Geology, 26(12): 1107~1110.

    • Masson D G, Berndt C. 2006. National Oceanography Centre. Southampton, 18(3): 29~33.

    • McAdoo B G, Pratson L F, Orange D L. 2000. Submarine landslide geomorphology, US continental slope. Marine Geology, 169(1~2): 103~136.

    • Meng Miaomiao, Liang Jinqiang, Lu Jingan, Zhang Wei, Kuang Zenggui, Fang Yunxin, He Yulin, Deng Wei, Huang Wei. 2021. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan basin, Northwest South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 177: 103628.

    • Moscardelli L. 2006. Abstract: Masstransport complexes in offshore trinidad and worldwide analogs. Forest Frontier Settlement & Change in Brazilian Roraima, 48(7): 23.

    • Posamentier H W. 2009. Abstract: Using 3D seismic data to predict lithology in the subsurface: Applications of seismic geomorphology and seismic stratigraphy from deep water to shelf. Houston Geological Society Bulletin, 52(4): 21.

    • Qin Yanqun, Wan Lunkun, Ji Zhifeng, Li Fuheng, Xu Hailong, Ba Dan. 2018. Research progress on deep-water block transport sedimentary systems. Oil & Gas Geology, 39(1): 140~152 (in Chinese with English abstract).

    • Riedel M, Bahk J J, Scholz N A, Ryu B J, Yoo D G, Kim W, Kim G Y. 2012. Mass transport deposits and gas hydrate occurrences in the Ulleung basin, East Sea-Part 2: Gas hydrate content and fracture-induced anisotropy. Marine and Petroleum Geology, 35(1): 75~90.

    • Ruppel C, Boswell R, Jones E. 2008. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg l drilling: Introduction and overview. Marine and Petroleum Geology, 25(9): 819~829.

    • Shanmugam G. 2012. New perspectives on deep-water sandstones: Origin, recognition, initiation, and reservoir quality. Elsevier, 17: 221~270.

    • Shipp R C, Weimer P, Posamentier H W. 2011. Mass-transport deposits in deepwater settings. Special Publication, 96: 3~6.

    • Sun Qiliang, Wu Shiguo, Lue Fuliang, Yuan Shengqiang. 2010. Polygonal faults and their implications for hydrocarbon reservoirs in the southern Qiongdongnan basin, South China Sea. Journal of Asian Earth Sciences, 39(5): 470~479.

    • Sun Qiliang, Alves T M, Zhao Minghui, Sibuet J C, Xie Xinong. 2020. Post-rift magmatism on the northern South China Sea margin. Geological Society of America Bulletin, 132(11~12): 2382~2396.

    • Waite W F, Ruppel C D, Collett T S, Schultheiss P, Holland M, Shukla K M, Kumar P. 2019. Multi-measurement approach for establishing the base of gas hydrate occurrence in the Krishna-Godavari basin for sites cored during expedition NGHP-02 in the offshore of India. Marine and Petroleum Geology, 108: 296~320.

    • Wang Dawei, Wu Shiguo, Qin Zhiliang, Ding Weiwei, Cao Quanbin. 2009. The structure and identification characteristics of large block transportation system on the South China Sea slope. Marine Geology and Quaternary Geology, 29(5): 65~72 (in Chinese with English abstract).

    • Wang Dawei, Wu Shiguo, Lv Fuliang, Wang Bin. 2011. Sedimentary system of deep water block transportation in the South China Sea and its significance for oil and gas exploration. Journal of China University of Petroleum (Natural Science Edition), 35(5): 14~19 (in Chinese with English abstract).

    • Wang Linlin, Wang Zhenqi, Yu Shui, Ngia N R. 2016. Seismic responses and controlling factors of Miocene deepwater gravity-flow deposits in Block A, Lower Congo basin. Journal of African Earth Sciences, 120: 31~43.

    • Wang Xiujuan, Wu Shiguo, Dong Dongdong, Guo Yiqun, Hutchinson D. 2011. The controlling effect of the block transport system in the Qiongdongnan basin on the formation of natural gas hydrates. Marine Geology and Quaternary Geology, 31(1): 109~118 (in Chinese with English abstract).

    • Weimer P, Slatt R M, Bouroullec R, Fillon R, Tari G. 2006. Introduction to the Petroleum Geology of Deepwater Setting. American Association of Petroleum Geologists.

    • Wu Shiguo, Qin Yunshan. 2009. A study on the deepwater sedimentary system of the northern slope of the South China Sea. Journal of Sedimentology, 27(5): 922~930 (in Chinese with English abstract).

    • Wu Shiguo, Qin Zhiliang, Wang Dawei, Peng Xuechao, Wang Zhijun, Yao Genshun. 2011. Seismic response and genetic mechanism of the sedimentary system of block transport on the northern slope of the South China Sea. Journal of Geophysics, 54(12): 3184~3195 (in Chinese with English abstract).

    • Xie Xinong, Müller R D, Li Sitian. 2006. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7): 745~765.

    • Yuan Yusong, Yang Shuchun, Hu Shengbiao, He Lijuan. 2008. The tectonic subsidence history and its main controlling factors in the Qiongdongnan basin. Journal of Geophysics, 51(2): 376~383 (in Chinese with English abstract).

    • Zhao Zhongxian, Sun Zhen, Sun Longtao, Wang Zhifeng, Sun Zhipeng. 2016. Cenozoic tectonic subsidence in the Qiongdongnan basin, northern South China Sea. Basin Research, 30(1): 269~288.

    • Zhao Zhongxian, Sun Zhen, Wang Zhifeng, Sun Zhipeng, Liu Jianbao, Zhang Cuimei. 2015. The high resolution sedimentary filling in Qiongdongnan basin, northern South China Sea. Marine Geology, 361: 11~24.

    • Zhong Zhihong, Wang Liangshu, Li Xuxuan, Sun Zhen, Zhang Minqiang, Wu Guogan. 2004. The Paleogene basin-filling evolution of Qiongdongnan basin and its relation with seafloor spreading of the South China Sea. Marine Geology & Quaternary Geology, 24(1): 29~36 (in Chinese with English abstract).

    • 杜浩, 石万忠, 梁金强, 王任, 何玉林, 徐立涛. 2021. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响. 石油地球物理勘探, 56(4): 869~881+676.

    • 何玉林, 梁金强, 石万忠, 匡增桂, 邓炜, 王任, 徐立涛, 杜浩. 2022. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式. 地球科学, 47(5): 1711~1727.

    • 何云龙, 解习农, 李俊良, 张成, 张建新. 2013. 琼东南盆地东西部块体流沉积内部结构特征的差异性. 吉林大学学报(地球科学版), 43(1): 49~56.

    • 黄伟, 张伟, 梁金强, 尚久靖, 孟苗苗, 单晨晨. 2021. 琼东南盆地和郁陵盆地天然气水合物成藏对比研究. 中国矿业大学学报, 50(2): 365~382.

    • 李冬, 王英民, 王永凤, 徐强. 2011. 块状搬运复合体的识别及其油气勘探意义——以琼东南盆地中央峡谷区为例. 沉积与特提斯地质, 31(3): 58~63.

    • 马云, 李三忠, 梁金强, 索艳慧, 戴黎明, 王霄飞, 张丙坤. 2012. 南海北部琼东南盆地海底滑坡特征及其成因机制. 吉林大学学报(地球科学版), 42(z3): 196~205.

    • 秦雁群, 万仑坤, 计智锋, 李富恒, 徐海龙, 巴丹. 2018. 深水块体搬运沉积体系研究进展. 石油与天然气地质, 39(1): 140~152.

    • 王大伟, 吴时国, 秦志亮, 丁巍巍, 曹全斌. 2009. 南海陆坡大型块体搬运体系的结构与识别特征. 海洋地质与第四纪地质, 29(5): 65~72.

    • 王大伟, 吴时国, 吕福亮, 王彬. 2011. 南海深水块体搬运沉积体系及其油气勘探意义. 中国石油大学学报(自然科学版), 35(5): 14~19.

    • 王秀娟, 吴时国, 董冬冬, 郭依群, Hutchinson Deborah. 2011. 琼东南盆地块体搬运体系对天然气水合物形成的控制作用. 海洋地质与第四纪地质, 31(1): 109~118.

    • 吴时国, 秦蕴珊. 2009. 南海北部陆坡深水沉积体系研究. 沉积学报, 27(5): 922~930.

    • 吴时国, 秦志亮, 王大伟, 彭学超, 王志君, 姚根顺. 2011. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制. 地球物理学报, 54(12): 3184~3195.

    • 袁玉松, 杨树春, 胡圣标, 何丽娟. 2008. 琼东南盆地构造沉降史及其主控因素. 地球物理学报, 51(2): 376~383.

    • 钟志洪, 王良书, 李绪宣, 夏斌, 孙珍, 张敏强, 吴国干. 2004. 琼东南盆地古近纪沉积充填演化及其区域构造意义. 海洋地质与第四纪地质, 24(1): 29~36.

  • 参考文献

    • Cao Licheng, Jiang Tiao, Wang Zhifeng, Zhang Yinzhao, Sun Hui. 2015. Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U-Pb ages. Marine Geology, 361: 136~146.

    • Chen Hongjun, Zhan Wenhuan, Wu Shiguo. 2016. Response of geomorphic and geological processes to insufficient and ample sediment supply along the upper continental slope in the north-western South China Sea. Journal of Earth System Science, 125(6): 1635~1655.

    • Cheng Cong, Jiang Tao, Kuang Zenggui, Ren Jinfeng, Xiong Pengfei. 2021. Seismic characteristics and distributions of Quaternary mass transport deposits in the Qiongdongnan basin, northern South China Sea. Marine and Petroleum Geology, 129(1): 105~118.

    • Collett T S, Boswell R. 2012. Resource and hazard implications of gas hydrates in the northern Gulf of Mexico: Results of the 2009 Joint Industry Project Leg Il Drilling Expedition. Marine and Petroleum Geology, 34(1): 1~3.

    • Du Hao, Shi Wanzhong, Liang Jinqiang, Wang Ren, He Yulin, Xu Litao. 2021. Factors influencing the enrichment of natural gas hydrates and their reservoir formation models in the southern low rise and its surrounding areas of the Qiongdongnan basin. Petroleum Geophysical Exploration, 56(4): 869~881+676 (in Chinese with English abstract).

    • Elger J, Berndt C, Rüpke L, Krastel S, Gross F, Geissler W H. 2018. Submarine slope failures due to pipe structure formation. Nature Communications, 9(1): 1~6.

    • Fn G S. 2000. 50 years of the turbidite paradigm (1950s~1990s): Deep-water processes and facies models—A critical perspective. Marine and Petroleum Geology, 17(2): 285~342.

    • Gong Chenglin, Wang Yingmin, Hodgson D M. 2014. Origin and anatomy of two different types of mass-transport complexes: A 3D seismic case study from the northern South China Sea margin. Marine & Petroleum Geology, 54: 198~215.

    • Gong Yuehua, Yang Shengxiong, Liang Jinqiang, Tian Ddongmei, Lu Jingan, Deng Wei, Meng Miaomiao. 2024. Identification of mass transport deposits and insights into gas hydrate accumulation in the Qiongdongnan Sea area, northern South China Sea. Journal of Marine Science and Engineering, 12: 855.

    • Haflidason H, Sejrup H P, Nygard, Mienert J, Bryn P, Lien R, Forsberg C F, Berg K, Masson D. 2004. The Storegga Slide: Architecture, geometry and slide development. Marine Geology, 213(1~4): 201~234.

    • Haq B U, Hardenbol J A N, Vail P R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156.

    • He Yulin, Liang Jinqiang, Shi Wanzhong, Kuang Zenggui, Deng Wei, Wang Ren, Xu Litao, Du Hao. 2022. Factors influencing the enrichment of natural gas hydrates and their reservoir formation models in the southern low rise and its surrounding areas of the Qiongdongnan basin. Earth Science, 47(5): 1711~1727 (in Chinese with English abstract).

    • He Yunlong, Xie Xinong, Li Junliang, Zhang Cheng, Zhang Jianxin. 2013. Differences in internal structural characteristics of block flow sedimentation in the eastern and western parts of the Qiongdongnan basin. Journal of Jilin University (Earth Science Edition), 43(1): 49~56 (in Chinese with English abstract).

    • Huang Wei, Zhang Wei, Liang Jinqiang, Shang Jiujing, Meng Miaomiao, Shan Chenchen. 2021. Comparative study of gas hydrate accumulation system in the Qiongdongnan basin of the South China Sea and the Ulleung basin of Korea. Journal of China University of Mining & Technology, 50(2): 365~382.

    • Jang Junbo, Dai Sheng, Yoneda Jun, Waite W F, Stern L A, Boze L G, Kumar P. 2019. Pressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate bearing reservoirs in the Krishna-Godavari basin, offshore India. Marine and Petroleum Geology, 108: 537~550.

    • Jang Junbo, Waite W F, Stern L A. 2020. Gas hydrate petroleum systems: What constitutes the “seal”? Interpretation, 8(2): 1~68.

    • Karstens J, Berndt C. 2015. Seismic chimneys in thesouthern Viking Graben—Implications for palaeo fluid migration and overpressure evolution. Earth and Planetary Science Letters, 412: 88~100.

    • Kim K J, Yi B Y, Kang N K, Yoo D G. 2015. Seismic attribute analysis of the indicator for gas hydrate occurrence in the northwest Ulleung basin, East Sea. Energy Procedia, 76: 463~469.

    • Li Dong, Wang Yingmin, Wang yongfeng, Xu Qiang. 2011. Identification of block like transport complex and its significance for oil and gas exploration: Taking the central canyon area of Qiongdongnan basin as an example. Sedimentary and Tethyan Geology, 31(3): 58~63 (in Chinese with English abstract).

    • Li Lu, Clift P D, Nguyen H T. 2013. The sedimentary, magmatic and tectonic evolution of the southwestern South China Sea revealed by seismic stratigraphic analysis. Marine Geophysical Research, 34(3): 341~365.

    • Longva O, Janbu N, Blikra L H, Bøe R. 2003. The 1996 Finneidfjord slide; seafloor failure and slide dynamics. Advances in Natural & Technological Hazards Research, 1: 531~538.

    • Ma Yun, Li Sanzhong, Liang Jinqiang, Suo Yanhui, Dai Liming, Wang Xiaofei, Zhang Bingkun. 2012. Characteristics and genetic mechanisms of submarine landslides in the Qiongdongnan basin in the northern South China Sea. Journal of Jilin University (Earth Science Edition), 42(z3): 196~205 (in Chinese with English abstract).

    • Maslin M, Mikkelsen N, Vilela C, Haq B. 1998. Sea-level and gas-hydrate-controlled catastrophic sediment failures of the Amazon Fan. Geology, 26(12): 1107~1110.

    • Masson D G, Berndt C. 2006. National Oceanography Centre. Southampton, 18(3): 29~33.

    • McAdoo B G, Pratson L F, Orange D L. 2000. Submarine landslide geomorphology, US continental slope. Marine Geology, 169(1~2): 103~136.

    • Meng Miaomiao, Liang Jinqiang, Lu Jingan, Zhang Wei, Kuang Zenggui, Fang Yunxin, He Yulin, Deng Wei, Huang Wei. 2021. Quaternary deep-water sedimentary characteristics and their relationship with the gas hydrate accumulations in the Qiongdongnan basin, Northwest South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 177: 103628.

    • Moscardelli L. 2006. Abstract: Masstransport complexes in offshore trinidad and worldwide analogs. Forest Frontier Settlement & Change in Brazilian Roraima, 48(7): 23.

    • Posamentier H W. 2009. Abstract: Using 3D seismic data to predict lithology in the subsurface: Applications of seismic geomorphology and seismic stratigraphy from deep water to shelf. Houston Geological Society Bulletin, 52(4): 21.

    • Qin Yanqun, Wan Lunkun, Ji Zhifeng, Li Fuheng, Xu Hailong, Ba Dan. 2018. Research progress on deep-water block transport sedimentary systems. Oil & Gas Geology, 39(1): 140~152 (in Chinese with English abstract).

    • Riedel M, Bahk J J, Scholz N A, Ryu B J, Yoo D G, Kim W, Kim G Y. 2012. Mass transport deposits and gas hydrate occurrences in the Ulleung basin, East Sea-Part 2: Gas hydrate content and fracture-induced anisotropy. Marine and Petroleum Geology, 35(1): 75~90.

    • Ruppel C, Boswell R, Jones E. 2008. Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg l drilling: Introduction and overview. Marine and Petroleum Geology, 25(9): 819~829.

    • Shanmugam G. 2012. New perspectives on deep-water sandstones: Origin, recognition, initiation, and reservoir quality. Elsevier, 17: 221~270.

    • Shipp R C, Weimer P, Posamentier H W. 2011. Mass-transport deposits in deepwater settings. Special Publication, 96: 3~6.

    • Sun Qiliang, Wu Shiguo, Lue Fuliang, Yuan Shengqiang. 2010. Polygonal faults and their implications for hydrocarbon reservoirs in the southern Qiongdongnan basin, South China Sea. Journal of Asian Earth Sciences, 39(5): 470~479.

    • Sun Qiliang, Alves T M, Zhao Minghui, Sibuet J C, Xie Xinong. 2020. Post-rift magmatism on the northern South China Sea margin. Geological Society of America Bulletin, 132(11~12): 2382~2396.

    • Waite W F, Ruppel C D, Collett T S, Schultheiss P, Holland M, Shukla K M, Kumar P. 2019. Multi-measurement approach for establishing the base of gas hydrate occurrence in the Krishna-Godavari basin for sites cored during expedition NGHP-02 in the offshore of India. Marine and Petroleum Geology, 108: 296~320.

    • Wang Dawei, Wu Shiguo, Qin Zhiliang, Ding Weiwei, Cao Quanbin. 2009. The structure and identification characteristics of large block transportation system on the South China Sea slope. Marine Geology and Quaternary Geology, 29(5): 65~72 (in Chinese with English abstract).

    • Wang Dawei, Wu Shiguo, Lv Fuliang, Wang Bin. 2011. Sedimentary system of deep water block transportation in the South China Sea and its significance for oil and gas exploration. Journal of China University of Petroleum (Natural Science Edition), 35(5): 14~19 (in Chinese with English abstract).

    • Wang Linlin, Wang Zhenqi, Yu Shui, Ngia N R. 2016. Seismic responses and controlling factors of Miocene deepwater gravity-flow deposits in Block A, Lower Congo basin. Journal of African Earth Sciences, 120: 31~43.

    • Wang Xiujuan, Wu Shiguo, Dong Dongdong, Guo Yiqun, Hutchinson D. 2011. The controlling effect of the block transport system in the Qiongdongnan basin on the formation of natural gas hydrates. Marine Geology and Quaternary Geology, 31(1): 109~118 (in Chinese with English abstract).

    • Weimer P, Slatt R M, Bouroullec R, Fillon R, Tari G. 2006. Introduction to the Petroleum Geology of Deepwater Setting. American Association of Petroleum Geologists.

    • Wu Shiguo, Qin Yunshan. 2009. A study on the deepwater sedimentary system of the northern slope of the South China Sea. Journal of Sedimentology, 27(5): 922~930 (in Chinese with English abstract).

    • Wu Shiguo, Qin Zhiliang, Wang Dawei, Peng Xuechao, Wang Zhijun, Yao Genshun. 2011. Seismic response and genetic mechanism of the sedimentary system of block transport on the northern slope of the South China Sea. Journal of Geophysics, 54(12): 3184~3195 (in Chinese with English abstract).

    • Xie Xinong, Müller R D, Li Sitian. 2006. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23(7): 745~765.

    • Yuan Yusong, Yang Shuchun, Hu Shengbiao, He Lijuan. 2008. The tectonic subsidence history and its main controlling factors in the Qiongdongnan basin. Journal of Geophysics, 51(2): 376~383 (in Chinese with English abstract).

    • Zhao Zhongxian, Sun Zhen, Sun Longtao, Wang Zhifeng, Sun Zhipeng. 2016. Cenozoic tectonic subsidence in the Qiongdongnan basin, northern South China Sea. Basin Research, 30(1): 269~288.

    • Zhao Zhongxian, Sun Zhen, Wang Zhifeng, Sun Zhipeng, Liu Jianbao, Zhang Cuimei. 2015. The high resolution sedimentary filling in Qiongdongnan basin, northern South China Sea. Marine Geology, 361: 11~24.

    • Zhong Zhihong, Wang Liangshu, Li Xuxuan, Sun Zhen, Zhang Minqiang, Wu Guogan. 2004. The Paleogene basin-filling evolution of Qiongdongnan basin and its relation with seafloor spreading of the South China Sea. Marine Geology & Quaternary Geology, 24(1): 29~36 (in Chinese with English abstract).

    • 杜浩, 石万忠, 梁金强, 王任, 何玉林, 徐立涛. 2021. 琼东南盆地块体搬运沉积体系成因及其对水合物成藏的影响. 石油地球物理勘探, 56(4): 869~881+676.

    • 何玉林, 梁金强, 石万忠, 匡增桂, 邓炜, 王任, 徐立涛, 杜浩. 2022. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式. 地球科学, 47(5): 1711~1727.

    • 何云龙, 解习农, 李俊良, 张成, 张建新. 2013. 琼东南盆地东西部块体流沉积内部结构特征的差异性. 吉林大学学报(地球科学版), 43(1): 49~56.

    • 黄伟, 张伟, 梁金强, 尚久靖, 孟苗苗, 单晨晨. 2021. 琼东南盆地和郁陵盆地天然气水合物成藏对比研究. 中国矿业大学学报, 50(2): 365~382.

    • 李冬, 王英民, 王永凤, 徐强. 2011. 块状搬运复合体的识别及其油气勘探意义——以琼东南盆地中央峡谷区为例. 沉积与特提斯地质, 31(3): 58~63.

    • 马云, 李三忠, 梁金强, 索艳慧, 戴黎明, 王霄飞, 张丙坤. 2012. 南海北部琼东南盆地海底滑坡特征及其成因机制. 吉林大学学报(地球科学版), 42(z3): 196~205.

    • 秦雁群, 万仑坤, 计智锋, 李富恒, 徐海龙, 巴丹. 2018. 深水块体搬运沉积体系研究进展. 石油与天然气地质, 39(1): 140~152.

    • 王大伟, 吴时国, 秦志亮, 丁巍巍, 曹全斌. 2009. 南海陆坡大型块体搬运体系的结构与识别特征. 海洋地质与第四纪地质, 29(5): 65~72.

    • 王大伟, 吴时国, 吕福亮, 王彬. 2011. 南海深水块体搬运沉积体系及其油气勘探意义. 中国石油大学学报(自然科学版), 35(5): 14~19.

    • 王秀娟, 吴时国, 董冬冬, 郭依群, Hutchinson Deborah. 2011. 琼东南盆地块体搬运体系对天然气水合物形成的控制作用. 海洋地质与第四纪地质, 31(1): 109~118.

    • 吴时国, 秦蕴珊. 2009. 南海北部陆坡深水沉积体系研究. 沉积学报, 27(5): 922~930.

    • 吴时国, 秦志亮, 王大伟, 彭学超, 王志君, 姚根顺. 2011. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制. 地球物理学报, 54(12): 3184~3195.

    • 袁玉松, 杨树春, 胡圣标, 何丽娟. 2008. 琼东南盆地构造沉降史及其主控因素. 地球物理学报, 51(2): 376~383.

    • 钟志洪, 王良书, 李绪宣, 夏斌, 孙珍, 张敏强, 吴国干. 2004. 琼东南盆地古近纪沉积充填演化及其区域构造意义. 海洋地质与第四纪地质, 24(1): 29~36.