-
20 世纪60年代以来,全球已在亚洲、非洲、澳洲等多处发现前寒武纪古老烃源岩以及原生油气藏,已证实的前寒武系油气藏的最古老烃源岩为澳大利亚麦克阿瑟盆地中元古界下部的Velkerri组的页岩,其年龄大致为12.8~13.6亿年;基于IHS(2017)数据库的资料统计分析表明,截至2016年底,全球共发现363个前寒武系原生油气藏,它们分布于前苏联、亚太、中东和南美洲9个盆地内的176个油气田中,共探明和控制可采储量为67.78亿桶(9.26亿t)石油、132.43万亿立方英尺(Tcf)(3.75万亿方)天然气和12.35亿桶(1.69亿t)凝析油,合计为300.95亿桶(41.06亿t)油当量,揭示这一古老含油气系统具有潜在的油气资源潜力(Terken et al.,2001; Bowring et al.,2007; Craig et al.,2009,2013; Ghori et al.,2009; 王铁冠等,2011;Kelly et al.,2011; Dakhnova et al.,2014)。
-
近年来针对中国海相超深层油气富集机理的研究不断取得进展,古老层位深层—超深层领域的油气藏逐渐成为研究及勘探的热点(马永生等,2020;杨海军等,2021;何碧竹等,2023),四川盆地安岳气田震旦系灯影组多层系获得高产油气流,在台缘礁滩相带深层岩性气藏实现了油气高效勘探开发(魏国齐等,2013,2023;谷志东等,2014)。与扬子台地相似,经历新元古代罗迪尼亚(Rodinia)超大陆裂解期的强伸展作用,巨厚的南华系—震旦系成为塔里木盆地首套沉积盖层,广泛分布于塔西南、柯坪断隆、库鲁克塔格断隆、塔北隆起及其周缘、北部坳陷和孔雀河斜坡等地区(图1)(高振家等,1983,1985;Powell,2002;朱文斌等,2018;He Bizhu et al.,2019,2021)。
-
塔里木盆地震旦系的石油地质条件研究也不断取得进展(周肖贝等,2015;石开波等,2016,2018;严威等,2018;He Bizhu et al.,2019;陈永权等,2022)。2007年XH1井首次在塔北钻遇寒武系玉尔吐斯组烃源岩和震旦系奇格布拉克组白云岩组合并在白云岩中发现9.0 m油迹显示和2.0 m气测异常(朱传玲,2014);2010年在塔北隆起北部雅克拉断凸西段的QG1井在震旦系获得突破,6 mm油嘴日产气39175 m3,日产油10.39 m3,发现了三道桥震旦系白云岩潜山凝析气藏(韩强等,2016,2017a,2017b)。之后在隆起低部位的QT1、XINH1、LT1、LT3、YS1井均钻遇寒武系—震旦系良好储盖组合和油气显示;2020年LT1井在震旦系8737~8750 m 酸化压裂测试见天然气,点火火焰高0.5~1 m(杨海军等,2020);2022年阿克库勒凸起上TS5井在震旦系8780~8840 m白云岩段获得稳定气流(累产气约24万m3)和凝析油流(累产油12.47 m3),显示出塔北地区震旦系具备良好的油气成藏条件,是重要战略突破的潜在层系(罗明霞等,2024)。然而,塔北隆起雅克拉断凸带震旦系埋深在5000~6000 m,其南部震旦系埋深普遍介于7000~10000 m。由于钻井稀少,源、储、盖等石油地质条件研究十分薄弱,资源潜力、有利方向及目标靶区有待深入评价。
-
本研究聚焦塔北地区超深层新层系、新类型相关科学问题,将柯坪地区露头和研究区井震资料结合,开展了震旦系基础石油地质条件综合研究,发现塔北隆起区稳定分布的玉尔吐斯组既是优质烃源岩,也构成了震旦系区域盖层;隆起东部发育与南华纪裂谷相关的震旦系台缘带和前寒武系有利烃源岩发育区,形成了超深层有利成藏区带,对加快塔里木盆地前寒武系深层、超深层油气勘探步伐和实现新层系突破具有重要意义。
-
图1 塔里木盆地构造区划分(a)及震旦系—寒武系玉尔吐斯组柱状简图(b)
-
Fig.1 Sketch map of tectonic units of the Tarim basin (a) and the comprehensive column of Sinian to Cambrian of the Yurtus Formation (b)
-
YKL—雅克拉断凸;HLH—哈拉哈塘凹陷;AKK—阿克库勒凸起;CH—草湖凹陷;SX—沙西凸起;KEL—库尔勒鼻凸
-
YKL—Yakela fault-uplift; HLH—Halahatang sag; AKK—Akkule uplift; CH—Caohu sag; SX—Shaxi uplift; KEL—Kuerle nose-bulge
-
1 地质背景
-
塔北隆起位于塔里木盆地北部,北边以亚南断裂带为界与库车坳陷相邻,南经塔里木河附近斜坡与顺托果勒低隆相接;西以喀拉玉尔滚-柯吐尔断裂为界与阿瓦提凹陷相邻,东与库鲁克塔格隆起在库尔勒附近相接,东西长约400 km,南北宽 60~80 km,面积约3.16×104 km2(何登发,1996;李坤,2009),总体呈北高南低、东高西低的复式背斜构造。塔北隆起具有基底隆起的特征,雏形期可以追溯到塔里木运动(晋宁运动)(汤良杰,1997),加里东中晚期继承性发育,海西早期运动在该区表现强烈,隆起幅度加大,地层遭受强烈剥蚀,石炭系—二叠系不整合超覆于下伏地层之上;海西晚期运动以断块活动和强烈剥蚀为特征,隆起基本定型(李曰俊等,2012;谢大庆等,2013;何碧竹,2015)。该区中生代仍保持隆起状态,在构造高部位缺失三叠系—侏罗系。白垩纪开始库车前陆盆地南扩,转化为一个向北倾斜的斜坡。前人按照基底结构及沉积盖层等特征,将划分为雅克拉断凸,沙西凸起,阿克库勒凸起,库尔勒鼻凸,哈拉哈塘凹陷,草湖凹陷等6个次级构造单元。
-
塔里木运动之后本区进入地台发育阶段,形成南华系、震旦系、下古生界、上古生界和中新生界较为齐全的地层系统,厚度达10000 m以上,发育11个不整合、7个构造层(田在艺等,1985;何碧竹,2015;韩强等,2017b)。塔北地区发育南部海相和北部陆相两个含油气系统,在多个二级构造带发现了主要产层为奥陶系的大型海相油气藏(康玉柱等,1985,2002;梁狄刚等,1998;云露等,2002),而与主力烃源岩玉尔吐斯组最近的寒武系和震旦系仍未形成战略接替(吕海涛等,2022)。资源评价表明,生、储、盖三因素是决定油气资源潜力的基础,决定着目的层系的油气勘探地位(朱永进等,2020)。因此,塔北隆起东部超深层震旦系有着得天独厚成藏条件(图1)。
-
2 区域石油地质条件分析
-
2.1 烃源岩条件
-
2.1.1 寒武系玉尔吐斯组
-
寒武系玉尔吐斯组是塔里木盆地古生界最重要的烃源岩层(康玉柱,1985,2002;梁狄刚等,1998;朱光有等,2016)。在盆地西北缘玉尔吐斯组广泛分布于阿克苏、乌什、柯坪一带,由高振家等于1979年在新疆柯坪地区苏盖特布拉克磷矿下寒武统肖尔布拉克组底部三叶虫层位之下发现了三层小壳化石、两个小壳化石组合的含磷层段,1989年被命名为玉尔吐斯组,为一套灰黑色含磷碳质页岩、硅质岩及薄层灰岩,向上以薄层状白云岩为主夹含海绿石砂岩、泥灰岩及含磷灰岩,含大量多门类小壳动物化石,平行不整合覆于奇格布拉克组之上,整合伏于肖尔布拉克组之下,厚12~35 m;玉尔吐斯组是一套寒武纪初期快速海侵背景下形成的陆棚相-盆地相为主的沉积,下部为富有机质细粒沉积岩或与硅质岩的薄韵律互层,向上变为与陆源碎屑混积的颗粒滩和逆粒序的碳酸盐岩,露头和地震剖面上不整合面之上的富有机质细粒沉积岩具典型的超覆特征(高振家等,1981;杨宗玉等,2017;金值民等,2020)。在昆盖阔坦剖面和肖尔布拉克剖面玉尔吐斯组可分为2个三级层序,自下而上岩性从硅质岩泥页岩向灰岩、白云岩有序变化,深水区沉积主要为泥页岩夹硅质岩和白云质灰岩、泥灰岩和泥晶灰岩等,反映了受海平面下降的影响沉积相带由深水盆地向半深水缓坡平缓过渡(朱光有等,2016,2022; 江维等,2021)。玉尔吐斯组底部的疑源类组合Asteridium-Heliosphaeridium-Comasphaeridium(AHC)(Yao Jinxian et al.,2005)与小壳化石Anabarites trisulcatus-Protohertzina unguliformis组合带(杨犇等,2023)基本上确定了其沉积于寒武纪幸运期早期。
-
在盆地东北缘库鲁克塔格露头和盆地内钻井也先后发现了该层位烃源岩,相当于西山布拉克组(表1;成守德等,1985),厚0~81.5 m,已揭示的分布范围主要在塔里木盆地北部坳陷和塔北隆起及其周缘地区。玉尔吐斯组岩相展布规律表现为从古隆起到盆地方向沉积相带平缓有序过渡,依次为浅水(滨岸)潮坪相、半深水混积陆棚(缓坡)相、深水陆棚相和深水盆地相;其中两套黑色页岩的属性差异较大,具有热液喷流缺氧模式和斜坡缺氧沉积模式,前者位于玉尔吐斯组底部,为玉尔吐斯组沉积初期的快速海侵形成化石丰富且含有大量磷块岩和硅质岩的页岩层系(TOC均值为5.37%);后者为第一旋回沉积之后相对海平面缓慢上升,形成深灰色灰质页岩、泥岩夹薄层云岩(透镜体)、含石英灰岩的第二套黑色页岩(TOC均值为1.46%)(杨宗玉等,2017)。
-
2.1.2 新元古界烃源岩
-
区域研究表明,塔里木盆地北部新元古界发育最为普遍(周肖贝,2015;严威等,2018;刘若涵等,2020;杨海军等,2021)。塔北地区除了广泛分布的玉尔吐斯组是优质烃源岩之外,塔里木盆地及周缘晚元古代震旦纪—南华纪发育于大陆裂谷-被动大陆边缘盆地环境,期间存在全球最为典型的四期冰期事件,在间冰期发育较好的烃源岩层(朱光有等,2018,2020;何碧竹等,2023)。本研究对塔里木盆地周缘新元古界露头的调查发现,在塔里木盆地四周均有新元古界烃源岩发育,在塔东南红柳沟、塔西南新藏公路雨塘剖面震旦系库尔卡克组、塔西北柯坪地区震旦系苏盖特布拉克组及塔东露头区5个地方存在烃源岩(表2)。在库鲁克塔格地区南华系、震旦系发育2套烃源岩,南华系特瑞艾肯组、震旦系水泉组为主要烃源岩发育层位。特瑞艾肯组烃源岩TOC分布在0.22%~2.80%,平均值 1.65%,Ro 平均值为 1.28%~1.60%;水泉组烃源岩TOC分布在0.22%~0.79%之间,平均值为 0.49%; Ro分布在1.37%~1.93%之间(均值1.72%)。塔北隆起区XH1、QT1、TS5、LT1等井钻遇震旦系苏盖特布拉克组厚度较小,XH1井苏盖特布拉克组厚32 m,主要为潮坪相的褐色泥岩、灰色细砂岩,下伏杂色片麻岩,不具备生烃能力;TS5井钻遇苏盖特布拉克组76.5 m(未穿),岩性为灰色含泥白云质石灰岩、灰褐色泥岩、褐色泥岩、灰色灰质泥岩、绿灰色泥岩和浅棕色泥灰质粉砂岩,烃源条件较差。位于塔北隆起东部孔雀河斜坡的YL1井在寒武系中下统钻遇盆地相优质烃源岩,莫合尔山—西大山和西山布拉克组累计钻遇灰色泥灰岩、深灰色泥质白云岩、灰色白云质泥岩、黑色泥岩厚度270 m,115件样品中有机碳最小值为0.20%,最大值为3.52%,平均值为1.45%。YL1井震旦系和南华系顶部钻遇陆棚相的烃源岩,其中震旦系上部4421~4477 m钻遇灰色硅质泥岩夹灰色泥质白云岩56 m,20件样品中有机碳最小值为0.01%,最大值为2.22%,平均值为0.63%;南华系上部4774~4874.5 m钻遇灰白色砂质白云岩、灰色泥岩、夹灰色泥质粉砂岩100.5 m,25件样品中有机碳最小值为0.01%,最大值为2.22%,平均值为0.63%,揭示了由塔北隆起自西向东震旦系—寒武系烃源岩逐渐变好的趋势。
-
根据区域二维地震和塔北东部三维地震资料解释,塔北地区东部和南部南华纪—震旦纪广泛发育的裂谷体系(吴林等,2016;何碧竹等,2019,2023)对烃源岩的形成非常有利。塔北东部于奇地区地震资料解释显示,于奇东震旦纪—南华纪发育陆棚斜坡-盆地相古地理环境,烃源岩发育范围主要在YQ6井以东呈近南北向展布,与构造高部位震旦系的台缘礁滩相带构成了良好的源储配置关系(图2)。
-
2.2 区域盖层条件
-
2.2.1 玉尔吐斯组的岩石组合及空间分布
-
随着埋藏作用的进行,玉尔吐斯组在早古生代晚期就具备了物性封闭与烃浓度封闭的能力,除了能提供油气来源之外,还能形成区域性优质盖层,与震旦系储层构成长期稳定的储盖组合。
-
玉尔吐斯组形成于塔里木盆地早寒武世的一次大规模海侵,但其空间分布差异较大。柯坪地表露头肖尔布拉克剖面下寒武统玉尔吐斯组实测地层厚度为11 m,其中纯泥岩为4.2 m。巴楚隆起南部BT5井、MB1井、YL1井、ZS1井揭示寒武系肖尔布拉克组白云岩直接覆盖于花岗岩或变质岩基底之上,缺失玉尔吐斯组沉积。塔东地区TD1井、KN1井和YL1井下寒武统西山布拉克组底部也发育含磷黑色页岩和硅质岩的岩石组合,是与玉尔吐斯组同时期的沉积物。塔北地区新进完钻多口超深探井均钻遇玉尔吐斯组,厚度在33~80 m,为深水陆棚-盆地相发育区。
-
图2 于奇东地区南华系沉积古地理与烃源岩分布预测图
-
Fig.2 Sedimentary paleogeography and the prediction of source rock distribution of the Nanhua System in the eastern Yuqi area
-
(a)—于奇东南华纪沉积相展布图;(b)—南华纪古地貌示意图(T19-Td等To厚度图);(c)—于奇东震旦系—南华系岩相古地理分析剖面
-
(a) —Nanhua Period sedimentary facies map of the eastern Yuqi; (b) —schematic diagram of Nanhua palaeogeomorpholog (T19-Td thickness) ; (c) —lithofacies paleogeographic analysis section of Sinian-Nanhua Series in the eastern Yuqi
-
塔北隆起北部XH1井钻遇的玉尔吐斯组,厚度为33 m,岩性为灰黑、黑色碳质泥页岩及深灰色磷块岩、灰色含磷硅质岩、硅质泥岩,测井曲线具有高伽马(117~1763 API)、中—高电阻率(1389 Ω·m)特征,形成于深水陆棚沉积环境,其中黑色碳质泥页岩厚度18.85 m,灰质泥岩厚度为4 m,泥地比69%。LT1井玉尔吐斯组总厚度59 m,泥岩厚度33.3 m。塔北隆起中南部TS5井玉尔吐斯组最为发育,总厚度为82 m,上部为泥质灰岩和灰质泥岩,下部为含灰质泥岩段,其中见海绵骨针化石和含硅质泥岩,为深水陆棚相-棚内洼地相,封盖条件好(图3~5)。在东部盆地相区YL1井位于满加尔地层小区的深水盆地相区(图1),西山布拉克组与玉尔吐斯组层位相当,总厚度46.8 m,上段白云质泥岩厚度12.8 m,下段硅质岩、页岩厚度34 m。从地层对比及厚度变化关系看,自西向东玉尔吐斯组厚度在深水陆棚和棚内洼地最大,向盆地方向泥页岩所占地层的比值逐渐变大,这与西台东盆的沉积地层结构和沉积环境相吻合。
-
2.2.2 玉尔吐斯组的封盖能力
-
盖层封盖能力与成岩作用、压实密切相关。评价泥岩盖层最主要的参数包括比表面积和排替压力,其中排替压力可以用测井资料计算。XH1井区为深水陆棚相区,玉尔吐斯组厚度较大,地震资料显示其厚度稳定性较好,岩性段具有代表性,利用声波测井计算的排替压力为30 MPa,是属于较好的盖层。
-
图3 TS5井玉尔吐斯组综合柱状图
-
Fig.3 Comprehensive column of the Yurtus of the Cambrian and the Sinian of well TS5, Tarim basin
-
KT1井西山布拉克组黑色页岩是与玉尔吐斯组同时期沉积的盆地相区沉积岩,其盖层封盖能力对超深层评价具有借鉴意义。孔探1共分析9个黑色页岩样品,其中裂缝发育不满足实验要求的有三个,在6个突破压力测试的样品中,其中有2个突破压力超过20 MPa,在另外的4个样品突破压力分别为12.8、10.2、4.97、12.3 MPa,其封盖能力达到好盖层标准。
-
图4 塔北地区玉尔吐斯组对比图
-
Fig.4 Stratigraphic correlation map of Yurtus Formation in the northern Tarim basin
-
根据井震标定和联片地震资料预测,塔北地区玉尔吐斯组作为一套稳定分布的的烃源岩层系,因其具有生烃能力,作为盖层时还具备烃浓度封闭机制。根据埋藏史以及区域生烃、成藏史研究(熊冉等,2015;罗明霞等,2024),加里东中—晚期塔北地区这套烃源岩就已经具有生烃能力,即加里东中—晚期就已经具备了烃浓度封闭的机制。
-
2.3 奇格布拉克组储层特征
-
晚震旦世早期研究区处于由大陆裂谷演化为被动大陆边缘的过渡期,近陆源且缺氧、温暖、高碱度的海水为微生物白云岩的发育创造了条件,沉积水体浅、海平面动荡交互的沉积环境形成了由叠层石夹砂泥岩、震积岩等混积岩向白云岩过渡的沉积序列(He Bizhu et al.,2021)。奇格布拉克组在塔里木盆地北部、塔东和柯坪露头区均有发育,厚度一般在130~240 m不等,发育碳酸盐岩台地为主的沉积,在塔东北为陆棚相碎屑岩-冰碛岩沉积。奇格布拉克组可以划分为上下2个三级层序:岩性以白云岩为主夹少量灰质云岩、灰岩、砂岩、泥质云岩;上部为厚层白云岩,顶部为岩溶角砾白云岩,其中以广泛发育叠层石、凝块岩、泡沫绵层白云岩、藻黏结白云岩和葡萄状白云岩等微生物岩为特征(石开波等,2016;钱一雄等,2017;郑剑锋等,2021;段云江等,2022)。大量研究表明,奇格布拉克组储层发育段集中分布于奇格布拉克组中上部,主要有微生物白云岩储层和风化壳-热液型白云岩储层两大类(石书缘等,2017;严威等,2019;刘禹等,2022)。
-
图5 塔北地区及周缘玉尔吐斯组沉积相分布图
-
Fig.5 Sedimentary facies distribution map of Yurtus Formation in the northern Tarim basin and its periphery areas
-
微生物碳酸盐岩是重要的油气储层类型之一。不同微生物群落的生理活动特性影响了原生孔隙的形成及保存,微生物沉积形成的不同尺度的沉积组构影响了孔隙的孔径大小及空间分布。奇格布拉克组微生物白云岩储层岩性以凝块白云岩、泡沫绵层白云岩和黏结格架白云岩为主,奇格布拉克组微生物白云岩储层孔隙的发育与岩相具有明显的相关性,储集空间主要为粒间孔、粒内孔、微生物格架孔等原生孔隙和铸模孔、晶间孔、溶蚀孔洞和溶缝等次生孔隙,其中泡沫绵层石白云岩和黏结颗粒白云岩的孔洞最发育,面孔率达2%~18%(图6)。柯坪露头区震旦系奇格布拉克组微生物白云岩储层垂向上主要发育3个储层段,总厚度为65.7~95.9 m,为中高孔、中低渗特征的孔隙—孔洞型储层,平均孔隙度为 3.3%,最大孔隙度为 19.6%;储地比约为 0.31~0.53,孔隙度≥2.5%的储层厚度约为 43~53.7 m(石书缘等,2017;严威等,2019;刘禹等,2022)。CT研究表明,微孔隙(孔径≤10 μm)在不同类型微生物白云岩中普遍发育,对提高储层的储集性能具有重要意义,其形成与微生物早期热解作用有关,热解形成的有机酸和 CO2对碳酸盐矿物溶蚀和初始孔隙的保存起到了重要作用(Anselmetti et al.,1998;胡安平等,2019;佘敏等,2019)。
-
研究表明,塔里木盆地前寒武纪发育大型不整合,柯坪地区震旦系和寒武系之间为平行不整合接触或低角度单斜不整合接触(何碧竹等,2019;陈永权等,2022)。通过野外考察,震旦系顶部奇格布拉克组为厚层白云岩,不整合面上发育黄色、红褐色土壤层,其上被寒武系泥岩及含磷硅质岩等覆盖,存在明显沉积转换面。据柯坪地区碳同位素测定,不整合面之下震旦系奇格布拉克组白云岩δ13C值一般变化在0.8‰~2.8‰之间,但顶部距不整合面0.1 m处出现明显的负漂移,δ13C 值达-9.2‰,同时不整合面之上寒武系底部碳酸盐岩中δ13C值均为负值,变化在-0.3‰~-1.0‰之间。震旦系与寒武系之间这一风化壳-热液型白云岩储层分布于奇格布拉克组上部,岩性为硅质云岩、角砾云岩和细粉晶云岩、泥晶云岩、微生物白云岩等。储集空间主要为裂缝-孔洞型储层,顶部热液作用强烈,形成溶塌角砾岩和热液白云岩储层叠加(图7)。在柯坪地区和XH1井、LT1井都表现出此类储层特性,表明区域上有较为广泛的分布。XH1井奇格布拉克组测井解释Ⅱ类储层4层34.5 m,Ⅲ类储层3层14 m。取芯证实该储层段经历了较强的风化淋滤作用和热液作用改造(图7;焦存礼等,2011)。LT1井和TS5井在奇格布拉克组上部均钻遇风化壳相关的微生物白云岩孔缝型储层,前者见到良好气测异常显示,后者获得工业气流,表明该区震旦系白云岩具有较好的储集性能。LT1井震旦系奇格布拉克组发育28.5 m风化壳藻白云岩储层,成像测井见岩溶角砾状构造,平均孔隙度为4%。TS5井奇格布拉克组白云岩储层除了少量格架孔和溶蚀孔洞以外,岩芯中裂缝普遍发育,说明裂缝对储层具有重要作用(图7)。
-
图6 奇格布拉克组微生物白云岩及储集特征
-
Fig.6 Microbial dolomites and reservoir characteristics of Qigebulak Formation
-
(a)—水平纹层微生物白云岩,Z2q,肖尔布拉克剖面,(-);(b)—叠层石白云岩,粒内-晶间孔,Z2q,蓬莱坝剖面,铸体(-);(c)—丘状叠层石白云岩,Z2q,肖尔布拉克剖面,(-);(d)—泡沫绵层云岩,格架孔发育,铸体(-)Z2q,肖尔布拉克剖面;(e)—砂屑云岩,粒间孔发育,铸体(-)Z2q,肖尔布拉克剖面;(f)—凝块云岩,面孔率5%,铸体(-)Z2q,肖尔布拉克剖面
-
(a) —horizontal stratified microbial dolomite, Z2q, Shorbrach section, (-) ; (b) —stromatolite dolomite, intra-intergranular pores, Z2q, Penglaiba section, casting section, (-) ; (c) —hummocky stromatolite dolomite, Z2q, Shorbrach section, (-) ; (d) —foam matte dolomite, Lattice pore, casting section, (-) , Z2q, Shorbrach section; (e) —arenaceous dolomite, intergranular pore, casting section, (-) , Z2q, Shorbrach section; (f) —clotted dolomite, surface porosit 5%, casting section, (-) , Z2q, Shorbrach section
-
依据塔里木盆地北部沉积构造背景及前人的沉积相划分,以磷矿沟剖面和LT1、TS5、YS1等井为代表,将奇格布拉克组分为四段,沉积类型划分为七种沉积相。奇格布拉克组底部第一段为厚层砂岩、纹层状或穹隆状叠层石白云岩、鲕粒云岩夹砂岩或泥岩,从下到上有泥岩/砂岩逐渐变薄、叠层石以及鲕粒灰岩逐渐变厚,反映了陆源碎屑供应逐渐减少,为相对浅水的滨岸-混积陆棚沉积。下部第二段为薄层状灰岩、泥晶云岩、藻黏结-砂屑白云岩和柱状叠层石白云岩、凝块白云岩,为泥云坪、丘滩相沉积。上部第三段整体为薄层—中厚层的叠层石白云岩和薄层泥晶云岩互层夹砂屑云岩,在LT3、YS1井区为厚层灰岩沉积,由若干向上变浅的旋回构成,未见到陆源碎屑岩,表明沉积环境为离陆地更远的开阔台地-局限台地沉积。上部第四段以厚层—巨厚层块状泡沫绵层云岩、凝块云岩为特征,顶部见溶塌角砾岩和硅质白云岩,为高位沉积环境下丘滩相叠加震旦纪—寒武纪之交暴露环境下大气水淋滤以及构造热液活动的综合产物。塔北地区奇格布拉克组地层总体厚度较小,厚度为170~240 m,在XH1井区最厚,向东、向南逐渐减薄,越过顺托果勒低隆起在塔中古陆北缘上超尖灭。研究区奇格布拉克组沉积层序与柯坪露头区相似,又有明显差异。主要是向东面临满加尔坳陷,在于奇东地区的台缘带内洼陷处,LT3和YS1井在奇格布拉克组顶部保留了一套灰色冰碛岩沉积,岩性为绿灰色含砾泥质粉砂岩,相当于库鲁克塔格地区的汉格尔乔克组冰碛岩沉积。综上所述,研究区由陆向海、由早到晚依次经历滨岸、混积陆棚、潮坪、开阔台地、局限台地、台地边缘、斜坡-盆地相和冰碛岩等沉积;在四级旋回的顶部,伴随海平面缓慢下降,沿顺北、塔北隆起周缘形成多个微生物礁、颗粒滩,在塔北东部形成早期的规模化台缘建造(图8~10)。
-
图7 奇格布拉克组风化壳-热液型白云岩储集特征
-
Fig.7 Characteristics of carst-hydrothermal dolomite reservoir in Qigebulak Formation
-
(a)—溶塌角砾岩与热液白云岩,Z2q,肖尔布拉克剖面;(b)—震旦系顶部碎裂白云岩,Z2q,TS5,8818.04 m,(-);(c)—奇格布拉克组顶部的溶蚀孔洞,Z2q,什艾日克剖面;(d)—叠层云岩,残余格架晶间孔,Z2q,蓬莱坝剖面(-);(e)—藻屑黏结白云岩,残余格架晶间孔,Z2q,TS5,8817.7 m,铸体(-);(f)—灰色细晶白云岩,沥青充填,XH1,岩芯横切面,5866.42 m;(g)—藻黏结白云岩,溶洞与裂缝,TS5岩芯,Z2q,8817.3 m;(h)—藻黏结白云岩,残余格架孔与裂缝,Z2q,TS5,铸体8818.0 m,(-);(i)—藻黏结白云岩,残余格架孔与裂缝,Z2q,TS5,8818.5 m,铸体(-)
-
(a) —collapse breccia and hydrothermal dolomite, Z2q, Shorbrach section; (b) —Sinian top cataclastic dolomite, Z2q, TS5, 8818.04 m, (-) ; (c) —dissolution cavity at the top of the Chigburak Formation, Z2q, Schiezik profile; (d) —stromatolite dolomite, residual lattice intergranular pore, Z2q, Penglaiba profile, (-) ; (e) —algae clump dolomite, residual lattice intergranular pore, Z2q, TS5, 8817.7 m, casting section, (-) ; (f) —gray fine grained dolomite, asphalt filling, XH1, core cross-section, 5866.42 m; (g) —algae-bonded dolomite, caves and cracks, TS5 core, Z2q, 8817.3 m; (h) —algae-bonded dolomite, residual lattice holes and cracks, Z2q, TS5, 8818.0 m, casting section, (-) ; (i) —algae-bonded dolomite, residual lattice holes and cracks, Z2q, TS5, 8818.5 m, casting section, (-)
-
根据井震标定和地震资料解释分析,奇格布拉克组沉积时期,塔北地区主要发育碳酸盐岩局限台地沉积,东部台地边缘在于奇东—阿克库勒东地区呈狭长条带状展布。台地由西向东外依次发育了局限台地、开阔台地、台地边缘和斜坡-盆地相;由北向南受塔中古隆起影响,发育局限台地-开阔台地-斜坡-陆棚-混积陆棚和滨岸相,在塔中隆起1号断裂带北部地层尖灭。阿克库勒凸起于奇东一带台内洼地相内YS1井钻遇晚震旦世海相冰碛岩;在阿克库勒凸起奇格布拉克组局限台地相台内丘滩和台缘带礁滩相是白云岩储层有利发育区(图9、10)。
-
3 有利成藏组合及主控因素分析
-
3.1 油气成藏组合类型与分布规律
-
东西伯利亚地台里菲纪和文德纪碳酸盐岩大油气田形成的有利条件为里菲纪坳拉谷演化阶段形成的暗色泥页岩构成优质烃源岩,克拉通盆地长期发育的古隆起是油气富集的主要区带,稳定分布的膏盐岩盖层是古油藏保存的关键,构造背景上的地层岩性油气藏是主要成藏类型,这些对于塔北地区震旦系油气评价具有一定参考价值(杜金虎等,2013)。塔北古隆起长期稳定发育(云露等,2002;何碧竹等,2015),在雅克拉断凸构造带已发现三道桥震旦系高潜山天然气藏(韩强等,2016);TS5井在震旦系超深层的油气发现证实了塔北隆起低部位阿克库勒凸起背斜构造背景下的低潜山成藏组合(罗明霞等,2024);根据地质条件预测,塔北隆起东部震旦系存在斜坡构造背景下的台缘带岩性圈闭油气藏。
-
图8 塔北地区玉尔吐斯组—震旦系奇格布拉克组储层与油气显示对比图
-
Fig.8 Reservoir and oil and gas correlation map of Yurtus-Qigebulak Formation in northern Tarim basin
-
塔北隆起北部的雅克拉断凸低部位三道桥潜山为震旦系白云岩为储层,新生界泥岩为盖层,北部有来自库车坳陷陆相油气源,南部有来自古生界海相油气源,构成了双源-古储-新盖的高部位潜山型天然气成藏组合,油气藏是海-陆两相油气在燕山及喜马拉雅晚期油气多次充注、调整的产物;XH1井震旦系见到良好油气显示,发育了较好的白云岩储层,但测试未见油气,累计产水61.42 m3,折算日产水70.71 m3,岩芯中可见黑色沥青充填,表明古油藏遭到破坏。
-
阿克库勒凸起为一依附于雅克拉断凸的古生界长期稳定的鼻状构造,高点位于阿克库木断裂—于奇中一带(图11)。于奇东地区位于满加尔凹陷—塔北隆起过渡斜坡带,构造长期东倾西抬,既是构造转换带,又是台地-盆地斜坡的坡褶带,还是油气长期运移指向区。塔北地区经历了加里东期、海西早期和海西晚期三期主要构造运动控制了油气的储集空间的发育、油气运移输导体系的形成和区域的油气运移方向,也构成了多个主要成藏期。
-
图9 塔北地区东部南华系—寒武系连井地震地质解释剖面(剖面位置见图13)
-
Fig.9 Seismic interpretation profile of Nanhua-Cambrian connecting wells in the east of northern Tarim basin (the profile location shown in Fig.13)
-
图10 塔北地区及周缘上震旦统奇格布拉克组沉积相图
-
Fig.10 Sedimentary facies map of the Upper Sinian Qigebulak Formation in northern Tarim basin
-
图11 塔北地区阿克库勒凸起及周缘震旦系(T19)构造图(位置见图1)
-
Fig.11 Structure map of Sinian (T19) in Akkule bulge and its surrounding, northern Tarim basin (the location shown in Fig.1)
-
塔北隆起东部的阿克库勒凸起经轮台断裂与雅克拉断凸相邻,构造破坏相对较弱,加里东晚—海西早期的大规模充注期和古油藏得以大量保存,海西晚期-印支油气第二次大规模的充注期使得古油藏得以扩大和定型,在更晚期得以再次气化充注。来自深层的油气距离寒武系—南华系油源更近,更易形成古油藏和多次充注。在远离轮台断裂的LT1井和TS5井在震旦系获得了良好的勘探效果。LT1井震旦系录井显示气层-差气层12 m/6层,TG(全烃)最高15.23%,C1最高12.95%,组分全;8703~8734 m后效TG为49.5%,C1为41.19%,组分全。测井解释II类白云岩储层9 m/2层,孔隙度3.8%~4.1%,为孔洞型储层,含气饱和度75%;III类储层19.5 m/2层。震旦系8737~8750 m井段射孔酸压,地层未压开,天然气点火焰高0.5~1 m。干燥系数0.988,属于干气气藏。LT3井紧邻轮台断裂,寒武系以上未见油气显示,在玉尔吐斯组底部-震旦系顶部钻遇良好油气显示,玉尔吐斯组为硅质泥岩储层,震旦系顶部油气显示最好,在8549~8552 m,TG由60.35%上升至64.66%,C1由45.8327%上升至48.2891%,组分全,槽面见10%气泡(图7)。TS5井完钻井深9017 m,在玉尔吐斯组底部-震旦系钻遇多层油气显示,奇格布拉克组钻井取芯藻黏结白云岩破碎严重,存在溶蚀孔洞和裂缝,岩芯面孔率1%~3%,为缝洞型藻黏结白云岩,裂缝或晶间充填黑色沥青。孔洞中发育大气水成因的皮壳构造半充填溶蚀孔洞,与LT1井奇格布拉克组角砾白云岩共同反映了该区震旦系发育潜山风化壳型储层。TS5井经过压裂测试在8780~8840 m震旦系白云岩段获得稳定气流(累产天然气24万m3)和凝析油(累产油12.47 m3)(罗明霞等,2024)。天然气以烃类气体为主,甲烷含量为64.41%~85.09%,乙烷以上烃含量约6%,N2、CO2和H2S等非烃气体占比10.73%,天然气干燥系数为0.975,为高甲烷凝析气。TS5井凝析油密度为0.8133 g/cm3,为低黏度、低硫、低蜡的轻质凝析油,与上部奥陶系高黏度、高硫、低蜡的重质—超重质原有差异明显;凝析油正构烷烃系列均匀完整,与塔河油田奥陶系原油和雅克拉油田凝析油具有相似的生物标志化合物和碳同位素分布特征,推测TS5井震旦系油气源来自玉尔吐斯组,在加里东晚期—海西早期成油、海西晚期—喜马拉雅期成气,在阿克库勒凸起低潜山部位虽然缺乏稳定的前寒武系烃源岩,仍然具备形成玉尔吐斯组既是烃源岩又是盖层的新生古储、上生下储的低潜山油气藏。
-
而在塔北隆起东部毗邻满加尔坳陷,根据前述地质条件研究,结合四川盆地安岳气田震旦系灯影组台缘带成藏规律,塔北隆起东部地区前寒武系裂谷区烃源岩和震旦系台缘带构成良好的源-储体系,具备形成古生古储、新生-古储的成藏条件,该类型油气藏在四川盆地震旦系已经获得突破,是塔北地区一个重要的超深层勘探新领域。总之,塔北地区深层震旦系成藏条件较为优越,可以形成高潜山、低潜山和台缘带三类油气成藏组合(图12)。
-
图12 塔北地区震旦系生储盖配置与成藏模式图
-
Fig.12 Model of source-reservoir-cover assembly and hydrocarbon accumulation of Sinian in northern Tarim basin
-
图13 塔北地区阿克库勒凸起震旦系奇格布拉克组沉积相与断裂分布图
-
Fig.13 Sedimentary facies and fault distribution map of Sinian Chigbulak Formation in Akkule uplift, northern Tarim basin
-
3.2 有利勘探区带与目标
-
综上所述,塔北地区震旦系存在东部台缘礁滩相带与台内丘滩相带两大有利勘探区带。利用塔北三维连片地震资料开展震旦系奇格布拉克组井震标定和地震相与沉积相分析,在该区东北台缘带发育5个碳酸盐岩建隆区,台缘带面积1205 km2(图13)。在于奇东地区台缘带三维地震工区内,震旦系自东向西形成上超海侵体系域沉积,建隆形态明显,发育2~3期加积礁滩组合体,平面上有5个呈近圆形和不规则椭圆形,面积24.49~117.07 km2。综合分析该区具备形成台缘带礁滩相岩性油气藏条件,是重要的风险勘探目标区(图13、14)。
-
图14 于奇东三维工区震旦系礁滩相地震属性特征(道积分反演波阻抗剖面,剖面位置见图13)
-
Fig.14 Seismic attributes of Sinian reef-shoal facies in eastern Yuqi 3D seismic area (channel integral inversion wave impedance profile, the profile location shown in Fig.13)
-
4 结论
-
4.1 塔北东部震旦系发育优质储盖组合和三套主要烃源岩
-
目前塔北邻区野外露头和钻井已发现可靠的新元古代烃源岩,地震资料解释表明于奇—草湖地区发育有下寒武统玉尔吐斯组深水陆棚相-盆地相烃源岩,于奇东部紧邻震旦纪、南华纪斜坡-陆棚-盆地相烃源岩发育区;震旦系上统奇格布拉克组台缘体系形成了良好的礁滩相储层发育区;其上覆的玉尔吐斯组泥岩与中下寒武统斜坡相泥灰岩则形成了巨厚的优质盖层。
-
4.2 稳定的古隆起构造演化有利于形成低位潜山-台缘带原生油气聚集区带
-
塔北地区深层震旦系成藏条件较为优越,可以形成高潜山油气藏、低潜山油气藏和台缘带岩性圈闭等三类油气成藏组合,低位潜山和台缘带是有利的勘探区带,分布范围广,资源潜力大。塔北隆起阿克库勒凸起为稳定的断背斜构造,其东翼于奇东地区位于满加尔凹陷-塔北隆起过渡带,构造长期自西向东倾伏,既是构造转换带,又是台地-盆地斜坡的坡褶带,有利于礁滩相发育和油气长期运移聚集。于奇地区震旦系礁滩相白云岩储层的发育受台缘礁滩相控制,具备侧向运移古(南华系—震旦系烃源岩)生古(震旦系碳酸盐岩储层)储和上部源岩新(下寒武统烃源岩)生古(震旦系礁滩相)储的长期供烃、礁滩相控储、加里东晚期—海西早期成油、海西晚期—喜马拉雅期晚期裂解成气条件,是有利的勘探新层系和目标区。
-
参考文献
-
Anselmetti F S, Lushi S, Eberli G P. 1998. Quantitative characterization of carbonate pore systems by digital image analysis. AAPG Bulletin, 82(10): 1815~1836.
-
Bowring S A, Grotzinger J P, Condon D J. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 307: 1097~1145.
-
Craig J, Thurow J, Thusu B. 2009. Global Neoproterozoic petroleum systems: The emerging potential in North Africa. London: Geological Society Special Publications, 1~25.
-
Craig J, Biffi U, Galimberti R F. 2013. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks. Marine and Petroleum Geology, 40: 1~47.
-
Chen Yongquan, Wang Xiaoxue, He Hao, Yi Yan. 2022. Evolution of uplift and depression framework of Tarim Craton in Nanhua-Cambrian. China Petroleum Exploration, 27(4): 30~45 (in Chinese with English abstract).
-
Cheng Shoude, Xiao Bing, Wang Wuyang. 1985. The Lower Palaeozoic of Tianshan. Xinjiang Geology, 3(2): 27~36(in Chinese with English abstract).
-
Dakhnova M V, Zheglova T P, Mozhegova S V. 2014. Generation characteristics of organic matter and distribution of biomarkers in bitumens of the Riphean, Vendian, and Cambrian source rocks of the Siberian platform. Russian Geology and Geophysics, 55: 755~762.
-
Du Jinhu, Yang Hua, Xu Chunchun, Wang Xishuang, Jiao Guihao, Chen Qilin. 2013. Carbonate reservoir forming conditions of East Siberia platform and its inspiration to oil and gas exploration in China. Lithologic Reservoirs, 25(3): 1~8 (in Chinese with English abstract).
-
Duan Yunjiang, Huang Shaoying, Luo Caiming, Wang Zhenhong, Lou Hong, Shi Lei, Yuan Rui, Yao Kun, Zhang Xing, Jiang Jun, Zhou Siyu, Zhang Wen. 2022. Stratigraphic and structural characteristics of Tarim basin in the Sinian Period. Chinese Journal of Geology, 57(2): 341~352(in Chinese with English abstract).
-
Gao Zhenjia, Wu Shaozu, Li Yongan, Qian Jianxin. 1981. Study on Sinian-Cambrian strata in Aksu-Keping area, Xinjiang. Chinese Science Bulletin, 2: 741~743 (in Chinese).
-
Gao Zhenjia, Wu Shaozu. 1983. Tectonic development of the Precambrian and Paleozoic Tarimu platform. Chinese Science Bulletin, 23: 1447~1450 (in Chinese).
-
Gao Zhenjia, Pen Changwen. 1985. The Precambrain of Tianshan, Xinjiang. Xinjiang Geology, 3(12): 14~25(in Chinese with English abstract).
-
Ghori K A R, Craig J, Thusu B. 2009. Global infracambrian petroleum systems: A review. London: Geological Society Special Publications, 110~136.
-
Gu Zhidong, Wang Zhecheng. 2014. The discovery of Neoproterozoic extensional structures and its significance for gas exploration in the Central Sichuan Block, Sichuan basin, South China. Science China: Earth Sciences, 44(10): 2210~2220 (in Chinese with English abstract).
-
Han Qiang, Yang Zichuan, Li Zongjie, Zhu Yunhui, Han Yong, Cao Yuanzhi, Chen Xuyun. 2017. Sinian stratigraphy and zircon U-Pb ages from the Shaya uplift of the Tarim basin, NW China. Journal of Stratigraphy, 41(4): 428~436(in Chinese with English abstract).
-
Han Qiang, Li Zongjie, Zhu Yunhui, Wang Chao, Yang Zichuan, Yan Liang, Meng Qinglong, Li Hongyan, Zhao Yuan. 2016. Characteristics and age of a Proterozoic buried hill reservoir in the northern Shaya uplift of the Tarim basin. Geology in China, 43(2): 486~499(in Chinese with English abstract).
-
Han Qiang, Yang Zichuan, Li Hongyan, Wei Renpu, Yan Liang, Jiao Cunli. 2017. Characteristics of Sandaoqiao buried hill structure and reservoir in the northern Shaya uplift of Tarim basin, China. Journal of Earch Sciences and Environment, 39(1): 103~112(in Chinese with English abstract).
-
He Bizhu, Jiao Cunli, Xu Zhiqin, Cai Zhihui, Liu Shilin, Zhang Jianxin, Zhang Miao. 2015. Distribution and migration of the Phanerozoic palaeo-uplifts in the Tarim basin, NW China. Earth Science Frontiers, 22(3): 277~289 (in Chinese with English abstract).
-
He Bizhu, Jiao Cunli, Huang Taizhu, Zhou Xingui, Cai Zhihui, Cao Zicheng, Jiang Zhongzheng, Cui Junwen, Yu Zhuoying, Chen Weiwei, Liu Ruohan, Yun Xiaorui, Hao Guangming. 2019. Structural architecture of Neoproterozoic rifting depression groups in the Tarim basin and their formation dynamics. Science China Earth Sciences, 62: 529~549(in Chinese with English abstract).
-
He Bizhu, Jiao Cunli, Cai Zhihui, Liu Ruohan, Meert Joseph G, Yun Xiaorui, Wang Tianyu, Chen Weiwei, Yu Zhuoying, Li Jinchang, Peng Shoutao, Hao Guangming, Guo Xianpu, Qiao Xiufu. 2021. Soft-sediment deformation structures (SSDS) in the Ediacaran and lower Cambrian succession of the Aksu area, NW Tarim basin, and their implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110237.
-
He Bizhu, Jiao Cunli, Liu Ruohan, Cao Zicheng, Cai Zhihui, Lan Mingjie, Yun Xiaorui, Zhu Ding, Jiang Zhongzheng, Yang Yujie, Li Zhengyu. 2023. The paleotectonic and paleogeography reconstructions of the Tarim basin in the Neoproterozoic and prediction of favorable deep source rock areas. Earth Science Frontiers, 30(4): 19~42(in Chinese with English abstract).
-
He Dengfa. 1996. Petroleum geology and exploration of Cratonic basin. Acta Petrologica Sinica, 1(1): 18~24(in Chinese with English abstract).
-
Hu Anping, Shen Anjiang, Yang Hanxuan, Zhang Jie, Wang Xin, Yang Liu, Meng Shaoxing. 2019. Dolomite genesis and reservoir-cap rock assemblage in carbonate evaporite para genesis system. Petroleum Exploration and Development, 46(5): 916~928 (in Chinese with English abstract).
-
Jiang Wei, Gao Zhiqian, Hu Zongquan, Zhao Yongqiang, Chu Chenglin. 2021. Sedimentary filling evolution and hydrocarbon control of high frequency sequence in Yurtus Formation, Tarim basin. Geoscience, 35(2): 349~364 (in Chinese with English abstract).
-
Jiao Cunli, He Zhiliang, Xing Xiujuan, Qing Hairuo, He Bizhu, Li Chengcheng. 2011. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim basin. Acta Petrologica Sinica, 27(1): 277~284 (in Chinese with English abstract).
-
Jin Zhimin, Tan Xiucheng, Tang Hao, Shen Anjiang, Qiao Zhanfeng, Zheng Jianfeng, Li Fei, Zhang Shixuan, Chen Lei, Zhou Chenggang. 2020. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: A case study of Cambrian Yuertus Formation in northwestern Tarim basin, NW China. Petroleum Exploration & Development, 47(3): 476~489 (in Chinese with English abstract).
-
Kang Yuzhu, Jia Runxi, Jiang Bingnan, Huang Youyuan. 1985. Geological features and petroleum potential of Shayar uplift, northern Tarim basin. Oil & Gas Geology, 6(1): 15~23(in Chinese with English abstract).
-
Kang Yuzhu, Kang Zhihong. 2002. Forming conditions and exploration prospecting of Paleozoic marine giant fields in Tarim basin. Marine Origin Petroleum Geology, 7(3): 28~33(in Chinese with English abstract).
-
Kelly A E, Love G D, Zumberge J E. 2011. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia. Organic Geochemistry, 42: 640~654.
-
Li Kun. 2009. The three main paleohigh's evolution and affection hydrocarbon accumulation, Tarim basin. Doctoral dissertation of Chengdu University of Technology: 10~21(in Chinese with English abstract).
-
Li Yuejun, Yang Haijun, Zang Guangya, Zheng Duoming, Liu Yunxiang, Zhao Yan, Li Guohui, Liu Yalei. 2012. Redivision of the tectonic units of Tabei Rise in Tarim basin, NW China. Acta Petrologica Sinica, 28(8): 2466~2478(in Chinese with English abstract).
-
Liang Digang, Gu Qiaoyuan, Pi Xuejun. 1998. Distribution of the condensate gas reservoirs in Tabei uplift. Natural Gas Industry, 18(3): 5~9 (in Chinese with English abstract).
-
Liu Ruohan, He Bizhu, Jiao Cunli, Cai Zhihui, Yun Xiaorui, Peng Shoutao, Hao Guangming, Guo Xianpu. 2020. The indication of Neoproterozoic sedimentary characteristics to rift development process in Aksu area, Xinjiang. Acta Petrologica Sinica, 36(10): 3225~3242 (in Chinese with English abstract).
-
Liu Yu, Zheng Jianfeng, Zeng Jianhui, Zhu Yongjin. 2022. Micro-characterization of microbial dolomite reservoir of Upper Sinian Qigeblak Formation in Keping area, Tarim basin. Natural Gas Geoscience, 33(1): 49~62 (in Chinese with English abstract).
-
Luo Mingxia, Cao Zicheng, Xu Qinqi, Liu Yongli, Shang Kai. 2024. Geochemical characteristics and geological significance of Sinian crude oil from well Tashen 5, Tahe oilfield, Tarim basin. Bulletin of Geological Science and Technology, 43(1): 135~149 (in Chinese with English abstract).
-
Lyu Haitao, Geng Feng, Shang Kai. 2022. Key factors and directions of exploration in the Cambrian pre-salt sequence, Tarim basin. Oil & Gas Geology, 43(5): 1049~1058 (in Chinese with English abstract).
-
Ma Yongsheng, Li Maowen, Cai Xunyu, Xu Xuhui, Hu Dongfeng, Qu Shouli, Li Gensheng, He Dengfa, Xiao Xianming, Zeng Yijin, Rao Ying. 2020. Mechanisms and exploitation of deep marine petroleum accumulations in China: Advances, technological bottlenecks and basic scientific problems. Oil & Gas Geology, 41(4): 655~671 (in Chinese with English abstract).
-
Powell C M, Pisarevsky S A. 2002. Late Neoproterozoic assembly of East Gondwana. Geology, 30: 3~6.
-
Qian Yixiong, He Zhiliang, Li Huili, Chen Yue, Jin Ting, Sha Xuguang, Li Hongquan. 1998. Discovery and discussion on origin of botryoidal dolostone in the Upper Sinian in North Tarim basin. Journal of Palaeogeography, 19(2): 108~114 (in Chinese with English abstract).
-
She Min, Wang Xin, Chen Wei. 2019. Thermocompression simulation of hydrocarbon and organic acid generation of microbial carbonates and its significance. Geology Review, 65(S1): 136~138 (in Chinese).
-
Shi Kaibo, Liu Bo, Tian Jingchun, Pan Wenqing. 2016. Sedimentary charactistics and lithofacies paleogeography of simian in Tarim basin. Acta Petrologica Sinica, 37(11): 1343~1360(in Chinese with English abstract).
-
Shi Kaibo, Liu Bo, Jiang Weimin, Luo Qingqing, Gao Xiaoqiao. 2018. Nanhua-Sinian tectono-sedimentary framework of Tarim basin, NW China. Oil & Gas Geology, 39(5): 862~874 (in Chinese with English abstract).
-
Shi Shuyuan, Liu Wei, Huang Qingyu, Wang Tongshan, Zhou Hui, Wang Kun, Ma Kui.2017. Dolostone reservoir characteristic and its formation mechanism in Qigebulake Formation, Sinian, north Tarim basin. Natural Gas Geoscience, 28(8): 1226~1234 (in Chinese with English abstract).
-
Tang Liangjie. 1997. An approach to major tectogenesis of Tarim basin. Petroleum Geology & Experiment, 19(2): 108~114 (in Chinese with English abstract).
-
Terken J M J, Frewin N L, Indrelid S L. 2001. Petroleum systems of Oman: Charge timing and risks. AAPG Bulletin, 85(10): 1817~1845 (in Chinese with English abstract).
-
Tian Zaiyi, Chai Guilin, Lin Liang. 1985. Tectonic evolution of Tarim basin and its hydrocarbon potential. Oil & Gas Geology, 6(3): 250~259 (in Chinese with English abstract).
-
Wang Tieguang, Han Keyou. 2011. On Meso-Neoproterozoic primary petroleum resources. Acta Petrolei Sinica, 32(1): 1~7 (in Chinese with English abstract).
-
Wei Guoqi, Shen Ping, Yang Wei, Zhang Jian, Jiao Guihao, Xie Wuren, Xie Zengye. 2013. Formation conditions and exploration prospects of Sinian large gas fields, Sichuan basin. Petroleum Exploration and Development, 40(2): 129~138 (in Chinese with English abstract).
-
Wei Guoqi, Jia Chengzhao, Yang Wei. 2023. Geological characteristics of shelf-rimmed platform from up Sinian to Lower Cambrian and its control on formation of large gas fields in Anyue-Fengjie area. Acta Petrolei Sinica, 44(2): 223~239 (in Chinese with English abstract).
-
Wu Lin, Guan Shuwei, Ren Rong, Wang Xiaobo, Yang Haijun, Jin Jiuqiang, Zhu Guangyou. 2016. The characteristics of Precambrian sedimentary basin and the distribution of deep source rock: A case study of Tarim basin in Neoproterozoic and source rocks in Early Cambrian, western China. Oil & Gas Geology, 43(6): 905~914 (in Chinese with English abstract).
-
Xie Daqing, Zheng Menglin, Jiang Huashan, Guo Xin. 2013. Formation and evolution of the Shaya uplift and constraints on oil and gas distribution in the Tarim basin. Geotectonica et Metallogenia, 37(3): 308~409 (in Chinese with English abstract).
-
Xiong Ran, Zhou Jingao, Ni Xinfeng, Zhu Yongjin, Chen Yongquan. 2015. Distribution prediction of Lower Cambrian Yuertusi Formation source rocks and its significance to oil and gas exploration in the Tarim basin. Geotectonica et Metallogenia, 35(10): 49~55 (in Chinese with English abstract).
-
Yan Wei, Wu Guanghui, Zhang Yanqiu, Yang Guo, Luo Hong, Wang Xiaoming. 2018. Sinian-Cambrian tectonic framework in the Tarim basin and its influences on the paleogeography of the early Cambrian. Geotectonica et Metallogenia, 40(3): 455~466 (in Chinese with English abstract).
-
Yan Wei, Yang Guo, Yi Yan, Zuo Xiaojun, Wang Xiaoming, Luo Hong, Rao Huawen. 2019. Characteristics and genesis of Upper SinianDolostone reservoirs in Keping area, Tarim basin. Acta Petrolei Sinica, 40(3): 295~306 (in Chinese with English abstract).
-
Yang Ben, Liu Pengju, Shang Xiaodong, Cai Xiyao, Zhou Yuan. 2023. Early formation small shelly fossils from the Aksu area of Xinjiang, China. Acta Geologica Sinica, 97(12): 4044~4051 (in Chinese with English abstract).
-
Yang Haijun, Chen Yongquan, Tian Jun, Du Jinhu, Zhu Yongfeng, Li Honghui, Pan Wenqing, Yang Pengfei, Li Yong, An Haiting. 2020. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim basin. China Petroleum Exploration, 25(2): 62~71 (in Chinese with English abstract).
-
Yang Haijun, Chen Yongquan, Pan Wenqing, Wang Bin, Yang Wenjing, Huang Shaoying, Yang Pengfei, Yi Yan, Wang Xiaoxue. 2021. Study on tectonic and sedimentary evolution during the Nanhua-Middle Cambrian and its significance for subsalt exploration, Tarim basin. China Petroleum Exploration, 26(4): 84~98 (in Chinese with English abstract).
-
Yang Zhongyu, Luo Ping, Liu Bo, Liu Ce, Ma Jie, Chen Feiran. 2017. The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim basin, Northwest China. Acta Petrologica Sinica, 33(6): 1893~1918 (in Chinese with English abstract).
-
Yao Jinxian, Xiao Shuhai, Yin Leiming, Li Guoxiang, Yuan Xunlai. 2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, North-West China): Systematic revision and biostratigraphic correlation of Micrhystridium-like Acritarchs from China. Palaeontology, 48: 1~23 (in Chinese with English abstract).
-
Yun Lu, Jiang Huashan. 2002. Petroleum system and exploration strategy in Shaya uplift of the northern Tarim basin. Petrpleum Geology & Experiment, 24(6): 506~511 (in Chinese with English abstract).
-
Zheng Jianfeng, Liu Yu, Zhu Yongjin, Liang Feng. 2021. Geochemical features and its geological significances of the Upper Sinian Qigeblak Formation in Wushi area, Tarim basin. Journal of Palaeogeography, 23(5): 983~996 (in Chinese with English abstract).
-
Zhou Xiaobei, Li Jianghai, Wang Honghao, Li Wenshan, Cheng Yalin. 2015. The type of prototypic basin and tectonic setting of Tarim basin formation from Nanhua to Snian. Earth Science Frontiers, 22(3): 290~298 (in Chinese with English abstract).
-
Zhu Chuanling, Yan Hua, Yun Lu, Han Qiang, Ma Huiming. 2014. Characteristics of Cambrian source rocks in well XH1, Shaya uplift, Tarim basin. Petroleum Geology & Experiment, 36(5): 626~632 (in Chinese with English abstract).
-
Zhu Guangyou, Chen Feiran, Chen Zhiyong, Zhang Ying, Xing Xiang, Tao Xiaowan, Ma Debo. 2016. Discovery and basic characteristics of the high-quality source rocks of the Cambrain Yuertusi Formation in Tarim basin. Natural Gas Geoscience, 27(1): 8~21 (in Chinese with English abstract).
-
Zhu Guangyou, Cao Yinghui, Yan Lei, Yang Haijun, Sun Chonghao, Zhang Zhiyao, Li Tingting, Sun Yongquan. 2018. Petroleum explorarion potential and favorable areas of ultra-deep maraine strata deeper than 8000 meters in the eastern Tarim basin. Natural Gas Geoscience, 29(6): 755~769 (in Chinese with English abstract).
-
Zhu Guangyou, Yan Huihui, Chen Weiyan, Yan Lei, Chen Zhiyong, Li Tingting, Sun Qishen, Xie Xiaomin. 2020. Geochemical characteristics, formation and distribution of the Nanhua-Cambrian black rock series in the eastern Tarim basin. Acta Petrologica Sinica, 36(11): 3442~3461 (in Chinese with English abstract).
-
Zhu Guangyou, Hu Jianfeng, Chen Yongquan, Xue Nan, Zhao Kun, Zhang Zhiyao, Li Tingting, Chen Zhiyong. 2022. Geochemical characteristics and formation environment of source rocks of the Lower Cambrian Yuertusi Formation in well Luntan 1 in Tarim basin. Acta Geologica Sinica, 96(6): 2116~2130 (in Chinese with English abstract).
-
Zhu Wenbin, Ge Rongfeng, Wu Hailin. 2018. Paleoproterozoic ca. 2. 0 Ga magmatic-metamorphic event in the northern Altyn Tagh area. Acta Petrologica Sinica, 34(4): 1175~1190(in Chinese with English abstract).
-
Zhu Yongjin, Shen Anjiang, Liu Lingli, Chen Yongquan, Yu Guang. 2020. Tectonic-sedimentary filling history through the Later Sinian to the Mid-Cambrian in Tarim basin and its explorational potentia. Acta Sedimentologica Sinica, 38(2): 398~410 (in Chinese with English abstract).
-
陈永权, 王晓雪, 何皓, 易艳. 2022. 塔里木克拉通南华纪—寒武纪隆坳格局演化. 中国石油勘探, 27(4): 30~45.
-
成守德, 肖兵, 王务严. 1985. 新疆天山下古生界. 新疆地质, 3(2): 26~36.
-
杜金虎, 杨华, 徐春春, 王喜双, 焦贵浩, 陈启林. 2013. 东西伯利亚地台碳酸盐岩成藏条件对我国油气勘探的启示. 岩性油气藏, 25(3): 1~8.
-
段云江, 黄少英, 罗彩明, 王振鸿, 娄洪, 石磊, 袁瑞, 姚琨, 张星, 蒋俊, 周思宇, 张文. 2022塔里木盆地震旦纪地层-构造特征. 地质科学, 57(2): 341~352.
-
高振家, 吴绍祖, 李永安, 钱建新. 1981. 新疆阿克苏-柯坪地区震旦纪-寒武纪地层研究. 科学通报, 12: 741~743.
-
高振家, 吴绍祖. 1983. 前寒武纪及古生代塔里木地台的构造发展. 科学通报, 23: 1447~1450.
-
高振家, 彭昌文. 1985. 新疆天山前寒系. 新疆地质, 3(12): 14~25.
-
谷志东, 汪泽成. 2014. 四川盆地川中地块新元古代伸展构造的发现及其在天然气勘探中的意义. 中国科学: 地球科学, 44(10): 2210~2220.
-
韩强, 李宗杰, 王超, 杨子川, 闫亮, 孟庆龙, 李弘艳, 赵渊. 2016. 塔里木盆地沙雅隆起北部元古宙潜山气藏地震解析、地层特征与时代研究. 中国地质, 43(2): 486~498.
-
韩强, 杨子川, 李弘艳, 蒲仁海, 闫亮, 焦存礼. 2017a. 塔里木盆地沙雅隆起北部三道桥潜山结构与储层特征. 地球科学与环境学报, 39(1): 103~112.
-
韩强, 杨子川, 李宗杰, 朱允辉, 韩勇, 曹远志, 陈绪云. 2017b. 塔里木盆地沙雅隆起北部震旦纪地层特征与锆石U-Pb年龄约束. 地层学杂志, 41(4): 428~436.
-
何碧竹, 焦存礼, 许志琴, 蔡志慧, 刘士林, 张建新, 李海兵, 张淼. 2015. 塔里木盆地显生宙古隆起的分布及迁移. 地学前缘, 22(3): 277~289.
-
何碧竹, 焦存礼, 黄太柱, 周昕桂, 蔡志慧, 曹自成, 姜忠正, 崔军文, 余卓颖, 陈威威, 刘若函, 贠晓瑞, 郝光明. 2019. 塔里木盆地新元古代裂陷群结构构造及其形成动力学. 中国科学: 地球科学, 49(4): 635~655.
-
何碧竹, 焦存礼, 刘若涵, 曹自成, 蔡志慧, 兰明杰, 贠晓瑞. 2023. 塔里木盆地新元古代构造古地理及深层有利烃源岩发育区预测. 地学前缘, 30(4): 19~42.
-
何登发. 1996. 克拉通盆地的油气地质理论与实践. 勘探家, 1(1): 18~24.
-
胡安平, 沈安江, 杨翰轩, 张杰, 王鑫, 杨柳, 蒙绍兴. 2019. 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合. 石油勘探与开发, 46(5): 916~928.
-
江维, 高志前, 胡宗全, 赵永强, 储呈林. 2021. 塔里木盆地玉尓吐斯组高频层序沉积充填演化特征及控烃作用. 现代地质, 35(2): 349~364.
-
焦存礼, 何治亮, 邢秀娟, 卿海若, 何碧竹, 李程成. 2011. 塔里木盆地构造热液白云岩及其储层意义. 岩石学报, 27(1): 277~284.
-
金值民, 谭秀成, 唐浩, 沈安江, 乔占峰, 郑剑锋, 李飞, 张世轩, 陈雷, 周成刚. 2020. 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征——以塔里木盆地西北部寒武系玉尔吐斯组为例. 石油勘探与开发, 47(3): 476~488.
-
康玉柱, 贾润胥, 蒋炳南, 黄有元. 1985. 塔北沙雅隆起地质构造特征及找油前景. 石油与天然气地质, 6(1): 15~23.
-
康玉柱, 康志宏. 2002. 塔里木古生代海相大油气田形成条件及勘探方向. 海相油气地质, 7(3): 28~33.
-
李坤. 2009. 塔里木盆地三大控油古隆起形成演化与油气成藏关系研究. 成都理工大学博士学位论文, 10~21.
-
李曰俊, 杨海军, 张光亚, 郑多明, 刘云祥, 赵岩, 李国会, 刘亚雷.2012. 重新划分塔里木盆地塔北隆起的次级构造单元.岩石学报, 28(8): 2466~2478.
-
梁狄刚, 顾乔元, 皮学军. 1998. 塔里木盆地塔北隆起凝析气藏的分布规律. 天然气工业, 18(3): 5~9.
-
刘若涵, 何碧竹, 焦存礼, 蔡志慧, 贠晓瑞, 彭守涛, 郝光明, 郭宪璞. 2020. 新疆阿克苏地区新元古代沉积特征对裂谷发育过程的指示. 岩石学报, 36(10): 3225~3240.
-
刘禹, 郑剑锋, 曾溅辉, 朱永进. 2022. 塔里木盆地柯坪露头区震旦系微生物白云岩储层微观表征. 天然气地球科学, 33(1): 49~60.
-
罗明霞, 曹自成, 徐勤琪, 刘永立, 尚凯. 2024. 塔里木盆地塔河油田塔深5井震旦系原油地球化学特征及地质意义. 地质科技通报, 43(1): 135~148.
-
吕海涛, 耿锋, 尚凯. 2022. 塔里木盆地寒武系盐下领域勘探关键问题与攻关方向. 石油与天然气勘探, 43(5): 1049~1058.
-
马永生, 黎茂稳, 蔡勋育, 徐旭辉, 胡东风, 曲寿利, 李根生, 何登发, 肖贤明, 曾义金, 饶莹. 2020. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题. 石油与天然气地质, 41(4): 655~671.
-
钱一雄, 何治亮, 李慧莉, 陈跃, 金婷, 沙旭光, 李洪全. 2017. 塔里木盆地北部上震旦统葡萄状白云岩的发现及成因探讨. 古地理学报, 19(2): 197~209.
-
佘敏, 王鑫, 陈薇. 2019. 微生物碳酸盐岩生烃生酸模拟及其地质意义. 地质论评, 65(S1): 136~138.
-
石开波, 刘波田, 景春. 2016. 塔里木盆地震旦纪沉积特征及岩相古地理. 石油学报, 37(11): 1343~1358.
-
石开波, 刘波, 姜伟民, 罗清清, 高孝巧. 2018. 塔里木盆地塔里木盆地南华纪-震旦纪构造-沉积格局. 石油与天然汽地质, 39(5): 862~874.
-
石书缘, 刘伟, 黄擎宇, 王铜山, 周慧, 王坤, 马奎, 2017. 塔里木盆地北部震旦系齐格布拉克组白云岩储层特征及成因. 天然气地球科学, 28(8): 1226~1233.
-
汤良杰. 1997. 略论塔里木盆地主要构造运动. 石油实验地质, 19(2): 108~114.
-
田在艺, 柴桂林, 林梁. 1985. 塔里木盆地地质构造演化与含油气展望. 石油与天然气地质, 6(3): 250~259.
-
王铁冠, 韩克猷. 2011. 论中-新元古界的原生油气资源. 石油学报, 32(1): 1~7.
-
魏国齐, 沈平, 杨威, 张健, 焦贵浩, 谢武仁, 谢增业. 2013. 四川盆地震旦系大气田形成条件与勘探远景区. 石油勘探与开发, 40(2): 129~138.
-
魏国齐, 贾承造, 杨威. 2023. 安岳—奉节地区上震旦统—下寒武统陆架镶边台地地质特征及其对大气田(区)形成的控制作用. 石油学报, 44(2): 223~239.
-
吴林, 管树巍, 任荣, 王晓波, 杨海军, 靳久强, 朱光有. 2016. 前寒武纪沉积盆地发育特征与深层烃源岩分布一以塔里木新元古代盆地与下寒武统烃源岩为例. 石油勘探与开发, 43(6): 905~914.
-
谢大庆, 郑孟林, 蒋华山, 郭忻.2013. 塔里木盆地沙雅隆起形成演化与油气分布规律.大地构造与成矿学, 37(3): 398~409.
-
熊冉, 周进高, 倪新锋, 朱永进, 陈永权. 2015. 塔里木盆地下寒武统玉尔吐斯组烃源岩分布预测及油气勘探的意义. 地质勘探, 36(10): 49~56.
-
严威, 邬光辉, 张艳秋, 杨果, 娄洪, 王孝明. 2018. 塔里木盆地震旦纪-寒武纪构造格局及其对寒武纪古地理的控制作用. 大地构造与成矿学, 42(3): 455~466.
-
严威, 杨果, 易艳, 左小军王孝明, 娄洪, 饶华文. 2019. 塔里木盆地柯坪地区上震旦统白云岩储层特征与成因. 石油学报, 40(3): 295~306.
-
杨犇, 刘鹏举, 尚晓冬, 蔡习尧, 周元. 2023. 新疆阿克苏地区寒武纪幸运期早期小壳化石. 地质学报, 97(12): 4044~4051.
-
杨海军, 陈永权, 田军, 杜金虎, 朱永峰, 李洪辉, 潘文庆, 杨鹏飞, 李勇, 安海亭. 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62~71.
-
杨海军, 陈永权, 潘文庆, 王斌, 杨文静, 黄少英, 杨鹏飞, 易艳, 王晓雪. 2021. 塔里木盆地南华纪—中寒武世构造沉积演化及其盐下勘探选区意义. 中国石油勘探, 26(4): 84~97.
-
杨宗玉, 罗平, 刘波, 刘策, 马洁, 陈斐然. 2017. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异及成因. 岩石学报, 33(6): 1893~1918.
-
云露, 蒋华山. 2002. 塔里木盆地北部沙雅隆起含油气系统及勘探靶区选择. 石油实验地质, 24(6): 506~511.
-
郑剑锋, 刘禹, 朱永进, 梁峰. 2021. 塔里木盆地乌什地区上震旦统奇格布拉克组地球化学特征及其地质意义. 古地理学报, 23(5): 983~996.
-
周肖贝, 李江海, 王洪浩, 李文山, 程雅琳. 2015. 塔里木盆地南华纪—震旦纪盆地类型及早期成盆构造背景. 地学前缘, 22(3): 290~298.
-
朱传玲, 闫华, 云露, 韩强, 马慧明.2014. 塔里木盆地沙雅隆起星火 1 井寒武系烃源岩特征. 石油实验地质, 36(5): 626~632.
-
朱光有, 陈斐然, 陈志勇, 张颖, 邢翔, 陶小晚, 马德波. 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8~21.
-
朱光有, 曹颖辉, 闫磊, 杨海军, 孙崇浩, 张志遥, 李婷婷, 陈永权. 2018. 塔里木盆地8000m以深超深层海相油气勘探潜力与方向. 天然气地质学, 29(6): 755~769.
-
朱光有, 闫慧慧, 陈玮岩, 闫磊, 陈志勇, 李婷婷, 孙琦森, 谢小敏. 2020. 塔里木盆地东部南华系-寒武系黑色岩系地球化学特征及形成与分布. 岩石学报, 36(11): 3442~3461.
-
朱光有, 胡剑风, 陈永权, 薛楠, 赵坤, 张志遥, 李婷婷, 陈志勇. 2022. 塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境. 地质学报, 96(6): 2116~2130.
-
朱文斌, 葛荣峰, 吴海林. 2018. 北阿尔金地区古元古代ca. 2. 0 Ga岩浆变质事件. 岩石学报, 34(4): 1175~1190.
-
朱永进, 沈安江, 刘玲利, 陈永权, 俞广. 2020. 塔里木盆地晚震旦世—中寒武世构造沉积充填过程及油气勘探地位. 沉积学报, 38(2): 398~410.
-
摘要
塔里木盆地塔北地区震旦系分布广泛,勘探程度较低。在塔北隆起北部震旦系已发现三道桥高潜山气藏,中南部见良好油气显示及工业气流,然而区域展开仍然困难重重,亟待对其油气成藏条件及有利区带进行深入剖析。根据新近超深层钻探和地震资料解释综合研究发现,塔北地区震旦系—寒武系形成了良好的生储盖组合:上覆的寒武系玉尔吐斯组为稳定分布的深水陆棚相-盆地相泥岩-泥灰岩,既是厚层优质烃源岩,也构成了稳定的区域盖层;震旦系奇格布拉克组在塔北中西部发育局限台地相白云岩沉积,向东在阿克库勒凸起和草湖凹陷结合部于奇东地区发育台缘-斜坡带,并最终过渡到盆地相,其中台内丘滩相和台缘礁滩相形成两大类碳酸盐岩储层。在塔北隆起与满加尔坳陷过渡带深层发育南华纪—震旦纪裂谷和寒武纪克拉通内坳陷盆地,形成了下寒武统、震旦系—南华系3套盆地相、斜坡、陆棚环境的烃源岩。结合塔北隆起构造特征及其演化史分析,提出塔北隆起震旦系具备形成雅克拉高断凸潜山带南北双源次生油气藏、阿克库勒低背斜潜山带新生古储气藏和台缘带古生古储-新生古储气藏的条件。特别是于奇东地区震旦纪晚期台缘带的稳定构造背景、优质储集相带和多套烃源岩形成了规模油气成藏的基本要素,震旦系礁滩相具备侧向古生古储和垂向新生古储的长期供烃条件,礁滩相控储、下寒武统泥岩封盖可形成加里东早期油藏、海西晚期—喜马拉雅期晚期裂解气藏,将是有利的油气勘探区带。
Abstract
The Sinian is widely distributed in the northern Tarim basin, covering the whole Tabei uplift and its adjacent areas. Despite its extensive coverage, exploration of the Sinian in this area remains limited. Six exploration wells have been drilled in the northern part of the Tabei uplift targeting this stratum; however, the key questions regarding hydrocarbon accumulation mechanisms and favorable play types remain unresolved. Recent ultra-deep drilling and seismic data interpretation suggest promising hydrocarbon potential within the Sinian in the northern Tarim basin. The region exhibits favorable reservoir-capping conditions, good hydrocarbon shows, a relatively stable tectonic background, and high-quality reservoir facies belts, collectively constructing the main factors for the formation of large-scale gas reservoirs. The Sinian-Cambrian stratigraphic sequence forms a robust reservoir-cap assemblage in the northern Tarim basin. The overlying lower Cambrian Yurtusi Formation exhibits a stable distribution of deep-water shelf facies and basin facies mudstone-marl, serving as both a high-quality hydrocarbon source rock and a stable regional cap layer. Within the Sinian, the Qigebulak Formation displays diverse depositional environments. Dolomites developed within a restricted platform environment in the central and western parts of the northern Tabei uplift. Eastward, towards the Yuqi area, the formation transitions into a platform margin slope zone, situated at the junction of the Akkule sub-uplift and Caohu depression. Ultimately, the facies transitions into basin facies in the easternmost extent, where inner platform dune facies and platform margin reef beach facies constitute the dominant carbonate reservoir types. In the deep-burial transition zone between the Tabei uplift and the Manjia depression, Nanhua-Sinian rifting and subsequent Cambrian intracratonic basin development resulted in the formation of three source rock sets: basin, slope, and shelf sedimentary facies in the Lower Cambrian series and the Sinian-Nanhua System. By integrating the structural characteristics and evolutionary history of the Tabei uplift, several hydrocarbon accumulation models have been proposed. The “North-South Dual Source Model” suggests secondary hydrocarbon accumulations in the Yakra high, a region characterized by faulting and buried-hill belts. The “New (Lower Cambrian) Source, Paleo (Sinian) Reservoir Model” proposes gas accumulations in the Akkule low anticlinal, a buried-hill belt. Finally, the “Paleo (Nanhua and Sinian) Source and Paleo (Sinian) Reservoir, and New (Lower Cambrian) Source and Paleo (Sinian) Reservoir Model” focuses on the platform margin belt. The eastern Yuqi area, specifically the late Sinian platform margin belt, stands out as particularly promising. Its stable structural setting, high-quality reservoir facies, and multiple source rock sets create the ideal conditions for large-scale oil and gas accumulation. The Sinian reef-shoal facies benefited from long-term lateral hydrocarbon supply from paleo-sources and vertical contributions from new sources. These facies-controlled reservoirs, capped by Lower Cambrian mudstone, have the potential to host both early Caledonian oil reservoirs and late Hercycian-Himalayan phase fractured gas reservoirs. Therefore, the eastern Yuqi platform margin belt emerges as a highly favorable exploration zone.
Keywords
favorable zone ; reservoir formation conditions ; Sinian System ; Tabei region ; Tarim basin