硅同位素地球化学与硅质岩成因机理的研究进展
作者:
基金项目:

本文为中国国家自然科学基金委员会资助项目(编号:42073068)的成果


New progress in silicon isotope geochemistry and genetic mechanism of siliceous rocks
Author:
单位:
  • 长江大学地球科学学院,武汉,430100    
  • 长江大学地球科学学院,武汉,430100    
  • 长江大学地球科学学院,武汉,430100    
  • 长江大学地球科学学院,武汉,430100    
  • 长江大学地球科学学院,武汉,430100    
  • 长江大学地球科学学院,武汉,430100    
  • 长江大学地球科学学院,武汉,430100    
  • 长江大学地球科学学院,武汉,430100    
  • School of Geosciences, Yangtze University, Wuhan, 430100, China    
  • School of Geosciences, Yangtze University, Wuhan, 430100, China    
  • School of Geosciences, Yangtze University, Wuhan, 430100, China    
  • School of Geosciences, Yangtze University, Wuhan, 430100, China    
  • School of Geosciences, Yangtze University, Wuhan, 430100, China    
  • School of Geosciences, Yangtze University, Wuhan, 430100, China    
  • School of Geosciences, Yangtze University, Wuhan, 430100, China    
  • School of Geosciences, Yangtze University, Wuhan, 430100, China    
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    准确判识硅质岩的成因机理一直是地质学研究中的难点问题。作为硅质岩的直接示踪同位素,硅同位素(Si同位素)在揭示硅质岩成因机理方面潜力巨大。近年来,随着高精度Si同位素测试分析技术的快速发展,运用Si同位素示踪不同硅质岩的硅质来源、迁移过程、沉积—成岩演化背景等方面取得了重大进展。为进一步推动Si同位素在约束硅质岩成因机理中更广泛的应用,本文回顾了硅质岩成因类型,Si同位素的分析测试方法、分馏机理、以及其在硅质岩成因研究中的应用,取得如下认识:硅质岩按成因类型可分为热水成因、火山成因、生物成因和交代成因。多接收电感耦合等离子质谱法和二次离子质谱法在Si同位素测试中都具有较高的精度,分别可达优于±0. 10‰和±0. 10‰~±0. 22‰。Si同位素分馏机理涉及多个方面,扩散作用会造成Si同位素的选择性迁移并且影响同位素分馏的程度。温度、压力和化学成分等因素在凝结过程中共同作用,决定了Si同位素的分馏程度。蒸发作用通过改变熔体的化学成分和物理性质,影响Si同位素的分馏。在低温地质作用中,Si同位素分馏比高温地质过程更为显著,例如化学风化、生物—非生物沉淀、生物吸收、吸附等过程。生物在吸收硅的过程中会引起同位素分馏,从而导致生物地球化学过程中Si同位素相对丰度发生变化。不同生物在吸收过程中对Si同位素分馏存在差异。Si同位素在硅质岩成因研究中的应用展现了其独特优势,如揭示热液硅质岩的热液活动特征、火山硅质岩的岩浆起源和演化、生物硅质岩的形成机制以及交代硅质岩的硅质来源。为更准确判识硅质岩成因机理,未来的研究需要在提高Si同位素分析测试精度、积累大样本数据、明确分馏机理和构建成因理论模型等深入探索。本文展示了Si同位素在硅质岩成因研究中的独特优势和重要意义,为未来的研究方向和应用领域提供了有益的参考。

    Abstract:

    The accurate identification of the genetic mechanism of siliceous rocks (SiO2) has always been a challenging issue in geological research. This paper aims to promote the broader application of silicon (Si) isotope in constraining the genetic mechanism of siliceous rocks by reviewing their genetic types, analytical testing methods, fractionation mechanisms, and applications in studying siliceous rock genesis.Methods: High- precision Si isotope testing techniques, including multi- receiver inductively coupled plasma mass spectrometry (MC- ICP- MS) and secondary ion mass spectrometry (SIMS), were analyzed for their accuracy and applicability. The fractionation mechanisms of Si isotopes were explored, encompassing diffusion, crystallization (influenced by temperature, pressure, and chemical composition), evaporation, and low- temperature geological processes (e.g., chemical weathering, biogenic—abiotic precipitation, biological absorption, and adsorption). Differences in Si isotope fractionation among organisms during silicon absorption were also investigated.Results: Siliceous rocks were classified into four genetic types: hydrothermal, volcanic, biogenic, and metasomatic.MC- ICP- MS and SIMS achieved high- precision Si isotope testing, with accuracies of better than ±0. 10‰ and ±0. 10‰~±0. 22‰, respectively. Key factors influencing Si isotope fractionation include diffusion, crystallization conditions (temperature, pressure, melt composition), evaporation, and low- temperature processes. Biological absorption induces significant isotopic fractionation, with variations observed among different organisms.Si isotopes demonstrated unique advantages in tracing hydrothermal activity characteristics, magmatic origins of volcanic siliceous rocks, biogenic formation mechanisms, and silicon sources of metasomatic siliceous rocks.Conclusions: Silicon isotopes exhibit significant potential in deciphering the genetic mechanisms of siliceous rocks. Future research should focus on improving analytical precision, accumulating large- scale sample datasets, clarifying fractionation mechanisms, and constructing theoretical genetic models. This review highlights the unique advantages of Si isotopes in siliceous rock studies and provides a foundational reference for future research directions and applications.

    参考文献
    相似文献
    引证文献
引用本文

郑凯航,李茜,朱光有,高和婷,李生,张杰志,陈泓州,刘健勇.2025.硅同位素地球化学与硅质岩成因机理的研究进展[J].地质论评,71(2):2025020009,[DOI].
ZHENG Kaihang, LI Xi, ZHU Guangyou, GAO Heting, LI Sheng, ZHANG Jiezhi, CHEN Hongzhou, LIU Jianyong.2025. New progress in silicon isotope geochemistry and genetic mechanism of siliceous rocks[J]. Geological Review,71(2):2025020009.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-04
  • 最后修改日期:2025-01-04
  • 在线发布日期: 2024-03-20
  • 出版日期: 2025-03-15