en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

侯海海,男,1986年生,博士,主要从事含煤岩系沉积学的教学和科研;E-mail:houhaihai@lntu.edu.cn。

参考文献
付修根, 王剑, 曾玉红, 宋春彦, 曾胜强. 2020. 羌塘中生代盆地大洋缺氧事件及全球对比. 地质论评, 66(5): 1130~1142.
参考文献
柯妍, 曾勇. 2016. 晚二叠世长兴期—三叠纪腕足动物多样性. 古生物学报, 55(4): 439~450.
参考文献
鲁宁. 2019. 四川盆地东部三叠—侏罗纪之交沉积环境与陆地古生态变化. 导师: 王永栋. 合肥: 中国科学技术大学博士学位论文: 1~136.
参考文献
沈树忠, 张华. 2017. 什么引起五次生物大灭绝? 科学通报, 62(11): 1119~1135.
参考文献
许媛媛, 鲁宁, 周宁, 王永栋. 2018. 三叠纪—侏罗纪之交陆生植物群组成特征及变化模式—以中国华南晚三叠世和早侏罗世时期植物群为例. 见: 中国古生物学会第十二次全国会员代表大会暨第29届学术年会论文摘要集: 87~88.
参考文献
张筱青, 张国权, 席书娜, 李丽琴, 邓春涛, 王岩, 周宁, 王永栋, 宋宜. 2016. 三叠系—侏罗系界线古火灾事件研究: 方法、进展及展望. 古生物学报, 55(3): 331~345.
参考文献
张新智, 吕沛宗, 方琳浩, 杨涵, 邓胜徽, 卢远征, 房亚男, 张小宇, 黄汝婷, 梁佳宝, 师生宝. 2022. 三叠纪—侏罗纪之交准噶尔盆地南缘野火记录及全球对比. 沉积学报, 40(2): 473~483.
参考文献
Allen B J, Stubbs T L, Benton M J, Puttick M N, Mannion P. 2019. Archosauromorph extinction selectivity during the Triassic—Jurassic mass extinction. Palaeontology, 62(Pt. 2): 211~224.
参考文献
Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the Cretaceous—Tertiary extinction. Science, 208(4448): 1095~1108.
参考文献
Barash M S. 2016. Changes in environmental conditions as the cause of the marine biota great mass extinction at the Triassic—Jurassic boundary. Doklady Earth Sciences, 466(Pt. 2): 119~122.
参考文献
Bartolini A, Guex J, Spangenberg J E, Schoene B, Taylor D G, Schaltegger U, Atudorei V. 2012. Disentangling the Hettangian carbon isotope record: Implications for the aftermath of the end‐Triassic mass extinction. Geochemistry, Geophysics, Geosystems, 13(1): 1~11.
参考文献
Beerling D J, Berner R A. 2002. Biogeochemical constraints on the Triassic—Jurassic boundary carbon cycle event. Global Biogeochemical Cycles, 16(3): 10-1~10-13.
参考文献
Belcher C M, Mander L, Rein G, Jervis F X, Haworth M, Hesselbo S P, Glasspool I J, Mcelwain J C. 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience, 3(6): 426~429.
参考文献
Bice D M, Newton C R, Mccauley S, Reiners P W, McRoberts C A. 1992. Shocked quartz at the Triassic—Jurassic boundary in Italy. Science, 255(5043): 443~446.
参考文献
Blackburn T J, Olsen P E, Bowring S A, McLean N M, Kent D V, Puffer J, McHone G, Rasbury E T, Et-Touhami M. 2013. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science, 340(6135): 941~945.
参考文献
Bonis N R, Kürschner W M. 2012. Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiology, 38(2): 240~264.
参考文献
Bottini C, Jadoul F, Rigo M, Zaffani M, Artoni C, Erba E. 2016. Calcareous nannofossils at the Triassic/Jurassic boundary: stratigraphic and paleoceanographic characterization. Rivista Italiana di Paleontologia e Stratigrafia, 122(3): 141~164.
参考文献
Capriolo M, Marzoli A, Aradi L E, Callegaro S, Corso J D, Newton R J, Mills B J W, Wignall P B, Bartoli O, Baker D R, Youbi N, Remusat L, Spiess R, Szabó C. 2020. Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 11: 1670.
参考文献
Carter E S, Hori R S. 2005. Global correlation of the radiolarian faunal change across the Triassic—Jurassic boundary. Canadian Journal of Earth Sciences, 42(5): 777~790.
参考文献
Cleveland D M, Nordt L C, Dworkin S I, Atchley S C. 2008. Pedogenic carbonate isotopes as evidence for extreme climatic events preceding the Triassic—Jurassic boundary: Implications for the biotic crisis? Geological Society of America Bulletin, 120(11~12): 281~288.
参考文献
Cohen A S, Coe A L. 2002. New geochemical evidence for the onset of volcanism in the Central Atlantic magmatic province and environmental change at the Triassic—Jurassic boundary. Geology, 30(3): 267~270.
参考文献
Cohen A S, Coe A L. 2007. The impact of the Central Atlantic Magmatic Province on climate and on the Sr- and Os- isotope evolution of seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1~4): 374~390.
参考文献
Deenen M H L, Ruhl M, Bonis N R, Krijgsman W, Kuerschner W M, Reitsma M, Bergen M J V. 2010. A new chronology for the end-Triassic mass extinction. Earth and Planetary Science Letters, 291(1~4): 113~125.
参考文献
Delfino M, Kustatscher E, Lavezzi F, Bernardi M. 2020. The end-Permian mass extinction: nature’s revolution. In: Martinetto E, Tschopp E and Gastaldo R A. eds. Virtual field trips through the nature of the past springer textbooks in earth sciences, geography and environment. Springer Nature Switzerland AG: 253~267.
参考文献
Deng Shenghui, Lu Yuanzheng, Xu Daoyi. 2005. Progress and review of the studies on the end-Triassic mass extinction event. Science in China, 48(12): 2049~2060.
参考文献
Du Yixing, Chiari M, Karádi V, Nicora A, Onoue T, Pálfy J, Roghi G, Tomimatsu Y, Rigo M. 2020. The asynchronous disappearance of conodonts: New constraints from Triassic—Jurassic boundary sections in the Tethys and Panthalassa. Earth-Science Reviews, 203: 103176.
参考文献
Fang Yanan, Fang Linhao, Deng Shenghui, Lu Yuanzheng, Wang Bo, Zhao Xiangdong, Wang Yizhe, Zhang Haichun, Zhang Xinzhi, Sha Jingeng. 2021. Carbon isotope stratigraphy across the Triassic—Jurassic boundary in the high-latitude terrestrial Junggar Basin, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110559.
参考文献
Felber R, Weissert H J, Furrer H, Bontognali T R R. 2015. The Triassic—Jurassic boundary in the shallow-water marine carbonates from the western northern calcareous Alps (Austria). Swiss Journal of Geosciences, 108(2~3): 213~224.
参考文献
Fowell S J, Cornet B, Olsen P E. 1994. Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup. Geological Society of America Special Paper, 288: 197~206.
参考文献
Fu Xiugen, Wang Jian, Zeng Yuhong, Song Chunyan, Zeng Shengqiang. 2020&. Oceanic anoxic events in the Mesozoic Qiangtang Basin and global comparison. Geological Review, 66(5): 1130~1142.
参考文献
Fujisaki W, Sawaki Y, Yamamoto S, Sato T, Nishizawa M, Windley B F, Maruyama S. 2016. Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: Insights from redox-sensitive elements and nitrogen isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 449: 397~420.
参考文献
Fujisaki W, Sawaki Y, Yokoyama T, Yamamoto S, Maruyama S. 2015. Constraints for the causes of mass extinction at the Triassic—Jurassic boundary based on high precision platinum group element analyses. Bunseki Kagaku, 64(5): 341~348.
参考文献
Ge Yuzhu. 2021. Decoupled δ13Ccarb and δ13Corg records at Triassic—Jurassic boundary interval in eastern Tethys: Environmental implications for spatially different global response. Geoscience Frontiers, 12: 101146.
参考文献
Gómez J J, Goy A, Barrón E. 2007. Events around the Triassic—Jurassic boundary in northern and eastern Spain: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1~4): 89~110.
参考文献
Guex J. 2006. Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates. Earth and Planetary Science Letters, 242(3~4): 240~253.
参考文献
Hallam A, Wignall P B. 1997. Mass extinctions and their aftermath. Oxford: Oxford University Press: 1~328.
参考文献
Hallam A. 1981. The end-Triassic bivalve extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 35: 1~44.
参考文献
Hautmann M. 2004. Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies, 50(2): 257~261.
参考文献
Hesselbo S P, Mcroberts C A, Pálfy J. 2007. Triassic—Jurassic boundary events: Problems, progress, possibilities. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1~4): 1~10.
参考文献
Hesselbo S P, Robinson S A, Surlyk F, Piasecki S. 2002. Terrestrial and marine extinction at the Triassic—Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology, 30(3): 251~254.
参考文献
Hodych J P, Dunning G R. 1992. Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology, 20(1): 51~54.
参考文献
Hönisch B, Ridgwell A, Schmidt D N, Thomas E. 2012. The geological record of ocean acidification. Science, 335: 1058~1063.
参考文献
Hu Fangzhi, Fu Xiugen, Lin Li, Song Chunyan, Wang Zhongwei, Tian Kangzhi. 2019. Marine Late Triassic—Jurassic carbon-isotope excursion and biological extinction records: New evidence from the Qiangtang Basin, eastern Tethys. Global and Planetary Change, 185: 103093.
参考文献
Ibarra Y, Corsetti F A, Greene S E, Bottjer D J. 2014. Microfacies of the cotham marble: A tubestone carbonate microbialite from the Upper Triassic southwestern UK: A reply. Palaios, 29(1): 885~899.
参考文献
Jost A B, Bachan A, Schootbrugge B V D, Lau K V, Weaver K L, Maher K, Payne J L. 2017. Uranium isotope evidence for an expansion of marine anoxia during the end Triassic extinction. Geochemistry Geophysics Geosystems, 18(8): 3093~3108.
参考文献
Ke Yan, Zeng Yong. 2016&. Global brachiopod diversity analysis from Changhsingian (Late Permian) to Late Triassic. Acta Palaeontologica Sinica, 55(4): 439~450.
参考文献
Kiessling W, Simpson C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 17(1): 56~67.
参考文献
Kozur H W, Mock R. 1991. New Middle Carnian and Rhaetian Conodonts from Hungary and the Alps. Stratigraphic Importance and Tectonic Implications for the Buda Mountains and Adjacent Areas. Jahrbuch der Geologischen Bundesanstalt, 134(2): 271~297.
参考文献
Kozur H W, Weems R E. 2010. The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. Geological Society London Special Publications, 334(1): 315~417.
参考文献
Lindstrom S, Schootbrugge B V D, Dybkjaer K, Pedersen G K, Fiebig J, Nielsen L H, Richoz S. 2012. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction. Geology, 40(6): 531~534.
参考文献
Lu Ning. 2019&. Changes in sedimentary environment and terrestrial paleoecology across the Triassic—Jurassic transition in eastern Sichuan Basin. Supervisor: Wang Yongdong. Hefei: Doctoral Degree Dissertation of China University of Science and Technology: 1~136.
参考文献
Lucas S G, Tanner L H. 2007. The nonmarine Triassic—Jurassic boundary in the Newark Supergroup of eastern North America. Earth-Science Reviews, 84(1): 1~20.
参考文献
Lucas S G, Tanner L H. 2008. Reexamination of the end-Triassic mass. In: Elewa A M T. eds. Mass Extinction. Springer Verlag, 66~103.
参考文献
Lucas S G, Tanner L H. 2015. End-Triassic nonmarine biotic events. Journal of Palaeogeography, 4(4): 331~348.
参考文献
Lucas S G, Tanner L H. 2018. The missing mass extinction at the Triassic—Jurassic boundary. In: Tanner L H. eds. The Late Triassic World. Springer International Publishing AG, 721~785.
参考文献
Luo Genming, Richoz S, Schootbrugge B V D, Algeo T J, Xie S, Ono S, Summons R E. 2018. Multiple sulfur-isotopic evidence for a shallowly stratified ocean following the Triassic—Jurassic boundary mass extinction. Geochimica et Cosmochimica Acta, 231: 73~87.
参考文献
Ma Xueping, Gong Yiming, Chen Daizhao, Racki G, Chen Xiuqin, Liao Weihua. 2016. The Late Devonian Frasnian—Famennian event in South China — Patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 224~244.
参考文献
Martindale R C, Berelson W M, Corsetti F A, Bottjer D J, West A J. 2012. Constraining carbonate chemistry at a potential ocean acidification event (the Triassic—Jurassic boundary) using the presence of corals and coral reefs in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 350~352: 114~123.
参考文献
Marynowski L, Simoneit B. 2009. Widespread upper Triassic to lower Jurassic wildfire records from Poland: evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios, 24(11/12), 785~798.
参考文献
Mcelwain J C, Beerling D J, Woodward F I. 1999. Fossil plants and global warming at the Triassic—Jurassic boundary. Science, 285(5432): 1386~1390.
参考文献
Mcelwain J C, Popa M E, Hesselbo S P, Haworth M, Surlyk F. 2007. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology, 33(4): 547~573.
参考文献
Miller K G, Kominz M A, Browning J V, Wright J D, Mountain G S, Katz M E, Sugarman P J, Cramer B S, Christie-Blick N, Pekar S F. 2005. The Phanerozoic record of global sea-level change. Science, 310(5752): 1293~1298.
参考文献
Newell N D. 1963. Crises in the history of life. Scientific American, 208(2): 76~93.
参考文献
Olsen P E, Shubin N H, Anders M H. 1987. New Early Jurassic tetrapod assemblages constrain Triassic—Jurassic tetrapod extinction event. Science, 237: 1025~1029.
参考文献
Olsen P E, Kent D V, Sues H D, Koeberl C. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic—Jurassic boundary. Science, 296(5571): 1305~1307.
参考文献
Paálfy J, Mortensen J K, Carter E S, Smith P L, Friedman R M, Tipper H W. 2000. Timing the end-Triassic mass extinction: First on land, then in the sea? Geology, 28(1): 39~42.
参考文献
Pearson D A B. 1977. Rhaetian brachiopods of Europe. Denkschriften der nature historisches Museum Wien, 1: 1~70.
参考文献
Peterffy O, Calner M, Vajda V. 2016. Early Jurassic microbial mats—A potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 464: 76~85.
参考文献
Petersen H I, Lindström S. 2012. Synchronous wildfire activity rise and mire deforestation at the Triassic-Jurassic boundary. Plos One, 7(10): 1~15.
参考文献
Racki G. 1999. Silica-secreting biota and mass extinctions: survival patterns and processes. Palaeogeography, Palaeoclimatology, Palaeoecology, 154(1~2): 107~132.
参考文献
Raup D M, Sepkoski J J. 1982. Mass extinctions in the marine fossil record. Science, 215(4539): 1501~1503.
参考文献
Rigo M, Bertinelli A, Concheri G, Gattolin G. 2015. The Pignola—Abriola section (southern Apennines, Italy): A new GSSP candidate for the base of the Rhaetian Stage. Lethaia An International Journal of Palaeontology and Stratigraphy, 49(3): 1~20.
参考文献
Ruhl M, Bonis N R, Reichart G J, Damste J S S, Kurschner W M. 2011. Atmospheric carbon injection linked to end-Triassic mass extinction. Science, 333(6041): 430~434.
参考文献
Ruhl M, Kürschner W M. 2011. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic—Jurassic transition. Geology, 39(5): 431~434.
参考文献
Ruhl M, Veld H, Kürschner W M. 2010. Sedimentary organic matter characterization of the Triassic—Jurassic boundary GSSP at Kuhjoch (Austria). Earth and Planetary Science Letters, 292(1~2): 17~26.
参考文献
Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn T J. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology, 38(5): 387~390.
参考文献
Schoene B, Samperton K M, Eddy M P, Keller G, Adatte T, Bowring S A, Khadri S F R, Gertsch B. 2015. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science, 347(6218): 1~8.
参考文献
Schootbrugge B V D, Quan T M, Lindstrm S, Püttmann W, Heunisch C, Pross J, Fiebig J, Petschick R, Röhling H R, Richoz S, Rosenthal Y, Falkowski P G. 2009. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience, 2: 589~594.
参考文献
Schopf T J M. 1974. Permo—Triassic extinctions: relation to sea-floor spreading. The Journal of Geology, 82(2): 129~143.
参考文献
Sepkoski J J. 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. Journal of the Geological Society London, 146(1): 35~51.
参考文献
Shen Jun, Yin Runsheng, Zhang Shuang, Algeo T J, Bottjer D J, Yu Jianxin, Xu Guozhen, Penman D, Wang Yongdong, Li Liqin, Shi Xiao, Planavsky N J, Feng Qinglai, Xie Shucheng. 2022. Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic—Jurassic transition. Nature Communications, 13: 299.
参考文献
Shen Shuzhong, Zhang Hua. 2017&. What caused mass extinctions? Chinese Science Bulletin, 62(11): 1119~1135.
参考文献
Song Yi, Algeo T J, Wu Wenjun, Luo Genming, Li Liqin, Wang Yongdong, Xie Shucheng. 2020. Distribution of pyrolytic PAHs across the Triassic—Jurassic boundary in the Sichuan Basin, southwestern China: Evidence of wildfire outside the Central Atlantic Magmatic Province. Earth-Science Reviews, 201: 102970.
参考文献
Steinthorsdottir M, Jeram A J, Mcelwain J J C. 2011. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(3~4): 418~432.
参考文献
Stramma L, Johnson G C, Sprintall J, Mohrholz V. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science, 320(5876): 655~658.
参考文献
Tanner L H, Lucas S G, Chapman M G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews, 65(1~2): 103~139.
参考文献
Thibodeau A M, Ritterbush K, Yager J A, West A J, Ibarra Y, Bottjer D J, Berelson W M, Bergquist B A, Corsetti F A. 2016. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nature Communications, 7: 1~8.
参考文献
Walker X J, Baltzer J L, Cumming S G, Day N J, Mack M C. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 572(7770): 520~523.
参考文献
Ward P D, Garrison G H, Haggart J W, Kring D A, Beattie M J. 2004. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction. Earth and Planetary Science Letters, 224(3~4): 589~600.
参考文献
Whiteside J H, Ward P D. 2011. Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. Geology, 39(2): 99~102.
参考文献
Wignall P B, Atkinson J W. 2020. A two-phase end-Triassic mass extinction. Earth-Science Reviews, 208: 103282.
参考文献
Wignall P B, Bond D. 2008. The end-Triassic and Early Jurassic mass extinction records in the British Isles. Proceedings of the Geologists Association, 119(1): 73~84.
参考文献
Williford K H, Grice K, Holman A, Mcelwain J C. 2014. An organic record of terrestrial ecosystem collapse and recovery at the Triassic—Jurassic boundary in East Greenland. Geochimica et Cosmochimica Acta, 127: 251~263.
参考文献
Xu Yuanyuan, Lu Ning, Zhou Ning, Wang Yongdong. 2018#. Compositional characteristics and change patterns of terrestrial flora at the transition of Triassic—Jurassic boundary—Taking Late Triassic and Early Jurassic Flora of South China as an Example. Abstract Volume of Joint Meetings on the 12th National Congress of the Palaeontological Society of China (PSC) and the 29th Annual Conference of PSC: 87~88.
参考文献
Yi Fan, Yi Haisheng, Xia Guoqing, Cai Zhanhu. 2018. Atmospheric carbon dioxide reconstruction and ocean acidification deduced from carbon isotope variations across the Triassic—Jurassic boundary in the Qiangtang area, Tibetan Plateau. Acta Geologica Sinica, 92(5): 2055~2057.
参考文献
Zaffani M, Jadoul F, Rigo M. 2018. A new Rhaetian δ13Corg record: Carbon cycle disturbances, volcanism, end-Triassic mass extinction (ETE). Earth-Science Reviews, 178: 92~104.
参考文献
Zhang Xiaoqing, Zhang Guoquan, Xi Shuna, Li Liqin, Deng Chuntao, Wang Yan, Zhou Ning, Wang Yongdong, Song Yi. 2016&. Wildfire event at the Triassic/Jurassic boundary: approaches, progress, and perspective. Acta Palaeontologica Sinica, 55(3): 331~345.
参考文献
Zhang Xinzhi, L Peizong, Fang Linhao, Yang Han, Deng Shenghui, Lu Yuanzheng, Fang Yanan, Zhang Xiaoyu, Huang Ruting, Liang Jiabao, Shi Shengbao. 2022&. Wildfire records across the Triassic—Jurassic boundary in the Southern margin of the Junggar Basin, and global correlations. Acta Sedimentologica Sinica, 40(2): 473~483.
目录contents

    摘要

    三叠纪末期生物大灭绝是全球地质历史时期5大生物灭绝事件之一,它致使海洋生态系统中约53%的属和80%的种灭绝。显著灭绝的生物包括菊石亚纲、牙形类、放射虫目和陆地四足动物,发生部分灭绝的生物包括腕足动物门、介形亚纲、双壳纲和珊瑚纲等。中大西洋火成岩省(CAMP)的爆发与三叠纪末期生物大灭绝在时间上具有较高的一致性,其火山的高强度和大面积喷发被认为是导致此次灭绝事件发生的主要原因。CAMP爆发释放出大量的CO2、SO2和CH4等气体,一方面温室效应促使海平面升高,物种栖息地面积减少、海洋酸化和海洋缺氧等事件直接威胁着海洋和陆地生物的生存环境;另一方面温室效应亦会引发全球性森林火灾,造成陆地植物减少,大量植物碳屑注入海洋使其发生富营养化,又因伴随海洋酸化作用(碳酸化和硫酸化),海洋古生产率发生崩溃。不同地质时期生物大灭绝的发生往往伴随着剧烈的环境变化,在三叠纪末生物大灭绝期,这些变化多表现为古大气成分和古气温动荡、古火灾频繁、海洋酸化、海平面升高和海水缺氧等,它们之间的综合作用最终导致三叠纪末期全球生态系统失稳。在全球多个三叠纪—侏罗纪之交(TJB)剖面均可以识别出3次明显的碳同位素负偏移,最显著的1次发生于瑞替期末,早于TJB。上述情况说明,三叠纪末期生物大灭绝虽然是全球性事件,但并不是1次发生的,具有分阶段性、非同步性、区域性和有选择性等特点。

    Abstract

    Objectives:As one of the five global major extinction events in the geological history, the Late Triassic mass extinction event resulted in the extinction of approximately 53% of genera and 80% of species in marine ecosystems. A systematic review of extinction patterns and mechanisms at the Triassic—Jurassic boundary (TJB) is of great practical significance for predicting the recurrence of mass extinction events.

    Methods: The evolution of terrestrial flora, terrestrial tetrapods and marine organisms at the end of the Triassic was analyzed based on paleontological data from multiple profiles around the world. The causes of the mass extinction at the end of Triassic were discussed in terms of ocean acidification, ocean anoxia, greenhouse effect, ancient wildfire event and celestial impact.

    Results:The eruption of the Central Atlantic Magmatic Province (CAMP) released a large amount of CO2, SO2 and CH4. The rising of sea level and the decreasing of species habitat area caused by greenhouse effect, ocean acidification and ocean hypoxia directly threatened the living environment of marine and terrestrial organisms. Furthermore, the global forest fires caused by greenhouse effect resulted in the reduction of land plants. A large amount of plant charcoal debris moving into the ocean resulted in eutrophication, accompanied by ocean acidification (carbonation and sulfur acidification) and ancient ocean productivity collapsing. Biological mass extinction in different geological periods used to be accompanied by severe environmental changes. These changes during the Late Triassic mass extinction included ancient atmosphere components and temperature instability, frequent wildfire and ocean acidification, rising sea level and water anoxic event, and the combination between them eventually led to the instability of the Late Triassic global ecosystems. Three significant negative carbon isotope excursions can be identified in several outcrops at the Triassic—Jurassic boundary (TJB), the largest taking place at the end of the Rhaetian, earlier than the TJB.

    Conclusions:The CAMP eruption was the direct cause of the mass extinction of TJB, and the combined effect of ocean acidification, ocean hypoxia, greenhouse effect and frequent occurrence of ancient wildfires caused by volcanic eruption was the direct cause of the mass extinction of organisms at the end of Triassic. Although the TJB biological mass extinction was a global event, it was not a one-off event, and had the characteristics of phased, non-synchronous, regional and selective.

  • 显生宙地质历史时期发生过5次生物大灭绝事件:①最早为奥陶纪末生物大灭绝,其凯迪晚期(Katian)和赫南特晚期(Hirnantian)2幕生物灭绝可用古气温变化引起的温室—冰室—温室效应反复转换来解释(沈树忠等,2017)。②泥盆纪晚期的生物灭绝持续了近20 Ma,其中的弗拉期—法门期(F—F)之交生物大灭绝事件被列为5次生物大灭绝事件之一,但物种灭绝的根本原因尚不清楚(Ma Xueping et al.,2016)。 ③二叠纪末生物大灭绝毫无争议地被公认为地质历史时期最严重的1次灭绝事件,其与广泛的火山活动密切相关(Delfino et al.,2020)。 ④三叠纪末生物灭绝事件是5次灭绝事件中最严重的海洋灭绝之一(Raup et al.,1982),公认的灭绝原因为中大西洋火成岩省(CAMP)爆发,但由于研究区域和研究目标较为分散,研究结果还存在一些分歧。⑤白垩纪末生物大灭绝最受人瞩目的是恐龙集群绝灭事件,小行星撞击地球,生态环境变化,从而导致生物集群绝灭(Alvarez et al.,1980),但随着高精度测年技术的发展,越来越多的证据表明印度德干(Deccan)玄武岩大规模喷发带来的环境恶化可能是造成白垩纪—古近纪(K—Pg)之交生物大灭绝的原因(Schoene et al.,2015)。

  • 尽管三叠纪末期也有陨石坑记录,但多数学者认为证据不足,因此未将其列为三叠纪末生物灭绝的主要原因。对于三叠纪末生物大灭绝的研究范围而言,有的研究区离CAMP爆发区域很近,有的则很远,但均有可对比的生物灭绝证据,这表明了CAMP爆发对全球古生物生存环境带来了严重的影响(图1)。显生宙5次大灭绝事件的主要原因多数都归咎于大规模的火山喷发所带来的古环境变化,据统计,过去100年,全球CO2浓度和地表温度持续上升,尽管现今火山喷发没有造成像CAMP喷发所释放的大量CO2,但是大气中持续增加的CO2含量何时达到生物灭绝的临界点还很难确定。基于1960年至2008年热带大西洋东部和赤道太平洋中低氧区浓度变化研究,认为海水低氧带于60多年前便已形成持续扩张趋势(Stramma et al.,2008)。这些环境的变化,是否会诱发第6次生物大灭绝事件?对三叠纪—侏罗纪(T—J)界线的灭绝模式与灭绝机制的系统综述研究,对我们预测大灭绝事件重现具有重要现实意义。

  • 1 三叠纪末期生物大灭绝概述

  • 1.1 三叠纪末生物灭绝事件

  • 全球不同地区三叠纪末期古生物数量发生明显下降并得了各类证据的支撑。基于特提斯海洋东部羌塘盆地碳酸盐岩碳同位素研究,发现其2次负偏移与全球界线层型剖面(GSSP,奥地利Kuhjoch剖面)(图1)中的“初始”和“主要”负碳同位素偏移(CIE)相一致,并在主要负CIE附近发生生物危机和古海洋变化(Hu Fangzhi et al.,2019)。对于大陆和海洋生物而言,大约45%的陆生四足动物在诺利期(Norian)或诺利晚期消失(Olsen et al.,1987),即主要脊椎动物群更替的时间比海洋无脊椎动物要早几百万年(Hallam,1981)。Carter等(2005)证实了三叠纪末放射虫的突变,并主张其具有全球性变化。Ibarra等(2014)认为英国西南部大量的微生物岩丘与三叠纪末期生物大灭绝事件有关,Peterffy等(2016)认为硅质碎屑潮下环境中的蓝藻藻垫的扩张是对三叠纪末大灭绝的微生物响应。Deng Shenghui等(2005)对三叠纪末期大灭绝事件进行了评述,总结出在海洋生态系统中,双壳纲、腕足动物门、菊石亚纲、珊瑚纲、放射虫目、介形亚纲和有孔虫目所受影响显著,而腹足纲和脊椎动物亚门等其他类群则未受明显影响;在陆地生态系统中,植物和四足动物所受影响有一定的地域性,并归纳了海洋缺氧、海平面变化、温室效应和天体撞击等灭绝原因。

  • 1.2 三叠纪末生物灭绝原因

  • 对于三叠纪末生物灭绝的原因,火山活动导致不同地区生物灭绝是无可争议的(Hesselbo et al.,2007Fujisaki et al.,2015Thibodeau et al.,2016),但在碳同位素负偏移和生物灭绝时间一致性方面还存在争议。Lindstrom等 (2012)发现丹麦盆地Stenlille地区有机碳同位素存在3次负偏移,主要的生物变化发生在最显著的碳同位素负偏移(CIE)之前,认为即使有大量甲烷气体释放,也不会引发三叠纪末的大灭绝。Schoene 等(2010)Capriolo等(2020)认为CAMP爆发(活动峰值在201.6~201.1 Ma)与三叠纪末大灭绝(201.31±0.43 Ma)是同步的,CAMP岩浆活动的时间与3次显著的负碳同位素偏移相吻合,且这些负偏移涵盖了主要灭绝期。

  • 图1 三叠纪—侏罗纪之交(约200 Ma)中泛古陆古地理重建、CAMP最大范围及世界各地的T—J剖面地点(据Song Yi et al.,2020修改)

  • Fig.1 Paleogeographic reconstruction of Pangaea during Triassic—Jurassic transition (about 200 Ma) , maximum range of CAMP and T—J section sites around the world (modified from Song Yi et al., 2020)

  • 1 —奥地利Kuhjoch;2—英格兰St. Audrie’s Bay;3—美国Newark—Hartford盆地;4—西班牙Asturias地区;5—德国Germanic盆地;6—加拿大夏洛特皇后群岛;7—美国Canyon;8—奥地利Calcarceous Alps 北部Lorüns;9—中国准噶尔盆地;10—中国羌塘盆地;11—中国四川盆地

  • 1 —Kuhjoch, Austria;2—St. Audrie’s Bay, England;3—Newark—Hartford basin, America;4—Asturias area, Spain;5—Germanic basin, Germany;6—Canada Queen Charlotte Islands;7—Canyon, America;8—Lorüns, Calcarceous Alps, Austria;9—Junggar Basin, China;10—Qiangtang Basin, China;11—Sichuan Basin, China

  • 三叠纪末生物大灭绝原因可综合归纳为以下4个方面:

  • (1)海洋酸化和海洋缺氧:CAMP爆发造成CO2浓度升高和气候变暖,促使大陆化学风化速率增强,带来一系列如土壤侵蚀、海洋酸化和海洋缺氧事件,导致三叠纪末生物大规模灭绝(Kiessling et al.,2011Shen Jun et al.,2022)。通过研究特提斯海岸带的阿尔卑斯山、内华达、欧洲西北部和东亚等三叠纪-侏罗纪之交(TJB)剖面的海洋沉积序列,发现浅海无脊椎动物于三叠纪末发生了大规模灭绝,认为三叠纪末海洋已经大幅退化,这是导致大规模灭绝事件的原因之一,另一原因则是赫塘阶(Hettangian)海侵期间发生的普遍缺氧(Hallam,1981)。

  • (2)温室效应:通过分析东格陵兰岛和瑞典南部TJB剖面中保存的巨型植物化石的生理生态学,发现CO2和古气温上升会对叶片造成相关的热损伤,干旱影响TJB大型物种的生存和分布,继而导致灭绝(Mcelwain et al.,1999Gómez et al.,2007)。基于德国南部、北部和瑞典南部多个钻孔岩心观察,三叠纪末期蕨类植物明显增加,表明洪水玄武岩火山活动与陆地生态系统扰动联系紧密,认为陆地植物大规模灭绝的主要原因为CAMP爆发所带来的温室效应和土壤酸化(Schootbrugge et al.,2009)。

  • (3)野火事件:野火也是大气中碳的净来源(Walker et al.,2019),在CAMP区域内存有大量的野火证据。实际上,远离CAMP的四川盆地等地区也留有TJB频繁的野火证据,受全球气候变暖和野火事件的影响,四川盆地及邻区的TJB植物群多发生群落结构和属种更替(鲁宁,2019Song Yi et al.,2020)。

  • (4)天体撞击:尽管在TJB有陨石坑记录,但因证据不足,未能将其列为三叠纪末生物灭绝的原因之一(Hodych et al.,1992Fujisaki et al.,2015)。

  • 1.3 三叠纪末生物分阶段灭绝

  • 近些年来,由于技术方法和研究精度的提高,学者们发现TJB灭绝是1个分阶段的灭绝。晚三叠世由一系列离散的生物灭绝事件组成,海生双壳纲和菊石亚纲在诺利期(Norian)产生了重要变革,双壳纲、菊石亚纲在瑞替期(Rhaetian)又进一步发生了重大灭绝,而几乎所有的牙形类在瑞替期都消失了(Lucas et al.,2008);晚三叠世两栖纲动物的灭绝也不是集中在TJB的,而是由诺利期(Norian)至赫塘期(Hettangian)逐步发生,总体上陆地生态系统破坏程度比人们普遍认为的要低,植被变化是区域性的、非同步的,即CAMP爆发对环境造成影响,海洋和陆地生态系统出现暂时性破坏,但这些破坏并没有造成全球一次性的大规模灭绝(Lucas et al.,2015Lucas et al.,2018)。TJB分阶段灭绝在全球不同剖面中均有体现,晚三叠世瑞替期CAMP爆发具有“双脉冲”,继而导致了2个阶段的生物灭绝。在瑞替期晚期不列颠群岛的第一次灭绝有大约一半的双壳纲和介形亚纲消失,第二次灭绝则有更多的双壳纲、介形亚纲和最后的牙形类消失,它们之间存在数十万年的间隔期,中间阶段以蕨类孢子占优势为特征,在其他国家许多剖面中也可以看到2个灭绝阶段,并且灭绝的第一个阶段是最严重的,后一次危机程度一般较低(Wignall et al.,2020)。前人发现不列颠群岛晚三叠世和早侏罗世均发生过生物灭绝事件,其中早侏罗世曾有2个阶段灭绝(普林斯巴赫期—托阿尔期灭绝和托阿尔期大灭绝)的发生,认定Karoo—Ferrar大火成岩省爆发为灭绝的主要原因(Wignall et al.,2008)。

  • 随着对三叠纪—侏罗纪界线生物大灭绝的研究逐步深入,先前认为三叠纪末大灭绝事件是突发的、一次性的并不合理,较多学者逐渐认为其是渐进的、分阶段的灭绝,并主张对三叠纪末离散的灭绝事件进行详细研究。对于灭绝原因的探究,前人认为是CAMP的爆发引发了生物大灭绝,随着研究精度的提高,爆发时间得以精确确定,发现同期或准同期还伴生了全球海水波动、无机碳同位素和有机碳同位素储库波动等事件(图2a、b、f)。但至于其他灭绝原因,如海洋缺氧、古盐度变化等都没有全球性系统研究,故海洋和陆地灭绝模式还有待于进一步总结。对于生物灭绝事件,由于研究地域的不同,某一生物是否灭绝得到的结论完全不同;以介形虫为例,一些学者认为其发生了大灭绝,而也有学者认为其没有发生明显的灭绝(Hallam,1981Deng Shenghui et al.,2005)。

  • 最大的一次三叠纪末生物大灭绝(ETE)早于三叠纪—侏罗纪之交(TJB)发生已成为共识,但有人认为灭绝事件多数集中于Norian末(沈树忠等,2017),也有人认为灭绝事件集中于Rhaetian(Pálfy et al.,2000)。本文在综述三叠纪末期全球海洋生物(牙形类、菊石亚纲、双壳纲、珊瑚纲、腕足动物门、介形亚纲和放射虫目等)和陆地生物(陆地植物群和四足动物)灭绝情况的基础上,从地球化学、煤岩学、孢粉统计学、古生物学及沉积学等研究方法出发,以揭示三叠纪末期全球生物大灭绝可能的原因,并在此基础上重建最有可能的生物灭绝模式。

  • 2 三叠纪末期生物大灭绝分述

  • 目前,学者们主要根据古生物学、地层学及地球化学等方法,对三叠纪—侏罗纪界线处生物灭绝事件进行了研究。化石证据表明,在TJB处,有80%的类群发生灭绝,包括53%的海洋属和50%的四足动物(Sepkoski,1996);海洋生态系统遭受严重打击,有近80%的种灭绝(Barash,2016)。

  • 全球多个TJB剖面均识别出了3次明显的碳同位素负偏移,在地层顺序上分别包括前碳同位素负偏移(P-NCIE)、初始碳同位素负偏移(I-NCIE)和主碳同位素负偏移(M-NCIE);且该趋势具有全球性,特别是靠近瑞替期—赫塘期界线处的碳同位素负偏移已经得到世界范围内的认可(图3)(Zaffani et al.,2018)。由于岩脉和岩床侵入早期沉积盆地,热蚀作用促使地下富有机质地层释放热成因甲烷,前碳同位素负偏移产生(Ruhl et al.,2011)。全球公认的I-NCIE与CAMP火山活动的第一次脉冲有关,这也与主要生物灭绝期相一致(Deenen et al.,2010Wignall et al.,2020)。在全球地球化学旋回中,主碳同位素负偏移是由大量新暴露的CAMP喷出物风化作用增加引起的(Cohen et al.,20022007)。初始碳同位素负偏移多指示ETE层位,有学者认为主碳同位素负偏指示TJB层位(张新智等,2022),也有学者认为主碳同位素负偏移出现在赫塘期早期(图3)(Bottini et al.,2016)。Ruhl等(2011)分析了奥地利三叠纪末期剖面碳同位素变化特征,观察到的负偏移结果表明陆地高等植物碳库的13C耗竭,这与灭绝间隔相吻合。δ13Ccarb记录海洋无机碳,δ13Corg记录陆源有机碳,两者结合可以综合探究大气和海洋环境变化(Ge Yuzhu,2021),如在特提斯东部羌塘盆地主碳同位素负偏附近发现了生物危机和古海洋环境变化(Hu Fangzhi et al.,2019)。

  • 图2 三叠纪—侏罗纪之交碳同位素含量变化、生物更替和海平面变化

  • Fig.2 Changes in carbon isotope content, biological turnover and sea level during the Triassic—Jurassic transition

  • (a)无机碳同位素;(b)有机碳同位素;(c)菊石分异度及主要生物类群灭绝时间;(d)英格兰St. Audrie’s Bay 掌鳞杉科植物孢粉含量;(e)奥地利Hochalplgraben掌鳞杉科植物孢粉含量;(f)海平面变化

  • (a) Carbonate carbon isotope; (b) Organic carbon isotope; (c) Differentiation of ammonites and extinction time of main biological group; (d) Palynological content of Cheirolepidiaceae from St. Audrie’s Bay, England; (e) Palynological content of Cheirolepidiaceae from Hochalplgraben, Austria; (f) Sea level fluctuation

  • 图3 全球典型TJB剖面碳同位素负偏对比

  • Fig.3 Comparison of carbon isotope negative shift from several global TJB outcrops

  • 1 —奥地利Lorüns(临近CAMP);2—奥地利Kuhjoch(临近CAMP);3—英格兰St. Audrie’s Bay(CAMP直接影响区域); 4—美国Canyon(临近CAMP);5—中国准噶尔盆地(远离CAMP)

  • 1 —Lorüns, Austria (close to CAMP) ; 2—Kuhjoch, Austria (close to CAMP); 3—St. Audrie’s Bay, England (CAMP direct influence area) ; 4—Canyon, America (close to CAMP) ; 5—Junggar basin, China (far from CAMP)

  • 2.1 陆地植物群

  • 由于孢子花粉一般具有保存好、数量大且传播范围广等特点,故孢粉学方法是古环境重建中最常用的方法之一。此外,植物化石是划分、恢复地史时期古大陆、古气候和古地理的主要标志。Gómez等(2007)通过总结西班牙阿斯图里亚斯地区小孢子分类群,发现7种孢子类群在瑞替期末期没有存活下来,只有6种出现在T—J过渡时期,22种出现在赫塘期早期,反映出T—J边界附近曾存在过陆相生物危机。

  • 曾有学者对格陵兰、美国、欧洲地区晚三叠世和早侏罗世植物群组成变化进行研究,并得出两种不同观点:①陆生植物群因受TJB事件影响发生突发性灭绝;②TJB前后陆生植物群并未发生大规模灭绝。Mcelwain等(2007)在东格陵兰岛发现,在T—J边界之前,植物群落的属级丰富度和均匀度有所下降,生态组成发生变化。在美国纽瓦克盆地的TJB处,近60%的孢子形态类群经历了一次大灭绝,随后出现了1个孢子高峰(Fowell et al.,1994)。分析欧洲2个浅海TJB剖面高分辨率孢粉数据集发现,奥地利以针叶树和种子蕨类为主的阔叶裸子植物森林被以蕨类、石松类和苔类为主的植被所取代,英格兰裸子植物混交林被以掌鳞杉科植物为主的单调植被所取代(80%~100%),但它们都没有显示出明显的植物大规模灭绝(图2d、e)(Bonis et al.,2012)。基于中国华南地区晚三叠世和早侏罗世陆生植物群数据统计,考虑到进化等因素导致的属种替换,发现中国华南地区陆生植物群组成面貌在TJB前后可能并未发生巨大变化,推测其变化模式为渐变型(许媛媛等,2018)。

  • 2.2 陆地四足动物

  • 三叠纪末大灭绝事件对陆地四足动物的影响主要表现为原始爬行动物和两栖动物的消失,取而代之的是早期恐龙的出现(Newell,1963Tanner,2004)。在晚三叠世,恐龙遗迹类群的数量和大小均有所增加,这一事件与甲壳纲、植龙和足迹化石Brachychirotherium的消失相对应(Hesselbo et al.,2007)。学者多以动物化石和足迹记录来研究TJB时期的陆地四足动物变化,并得出两种不同观点:①记录的四足动物变化证实了大灭绝事件的存在;②证据不足,难以证明四足动物发生过大规模灭绝事件,而且晚三叠世是由有时间间隔的一系列离散的灭绝事件组成。

  • 近45%的大陆四足动物消失于诺利期或诺利末期,如果算上仅在诺利晚期出现的科,至少有32%的科在赫塘期灭绝;在T—J边界下方地层中发现的脚印要比边界上方地层中的脚印小得多,这表明三叠纪末期发生过恐龙的大规模更替与大规模灭绝事件(Olsen et al.,1987; Olsen et al.,2002)。有学者将TJB兽脚亚目幸存食肉恐龙快速(数千年)进化导致的体型增加解释为“生态释放”(Olsen et al.,2002)。三叠纪到侏罗纪古龙类(包括鳄鱼、鸟类及其祖先)发生了大灭绝,但这并不认为是体型选择的结果(Allen et al.,2019)。分析美国纽瓦克盆地的四足动物变化发现,在整个TJB时期,四足动物的化石记录稀疏,不足以评估TJB四足动物的灭绝情况,而这种灭绝(如果存在的话)与海洋TJB是否存在直接关联亦尚待证明(Lucas et al.,2007)。足迹记录研究表明在瑞替阶地层中,足迹组合存在一定变化,主要以植龙(Phytosaurs)、链鳄(Aetosaurs)、长颈龙(Tanystropheids)和前棱蜥类(Procolophonidae)的局部灭绝为特征。亦有学者于美国西南部的格伦峡谷和日耳曼盆地发现了类似的四足动物足迹组合变化,但其指出这些证据不足以证明存在TJB的大灭绝,且认为该记录发生于瑞替期(Lucas et al.,2018)。

  • 2.3 海洋生物

  • (1)牙形类:最大一次晚三叠世牙形类灭绝发生在卡尼期,当时台型牙形类几乎完全消失(Kozur et al.,1991);其多样性在诺利期有所恢复,但在瑞替期又有所下降。在瑞替期,几乎所有的牙形类分类群均消失于TJB之前,只有一两个分类群在牙形类组合中得以发现(Kozur et al.,1991Rigo et al.,2015)。牙形类是非同步灭绝,有的灭绝于主要碳同位素负偏移(M-NCIE)之前,且在不同地区不同时期亦有不同显示。如特提斯和泛大洋东部的牙形类在M-NCIE之前消失,而在远离大陆架的泛大洋中部开阔海盆中,牙形类则在M-NCIE内部消失(Du Yixing et al.,2020)。

  • (2)菊石亚纲:前人研究发现,菊石在卡尼期和诺利期早期达到多样性高峰,然后急剧下降,除一种菊石(Phylloceratina)外,其他菊石均灭绝于三叠纪末期,随后发现的各类侏罗纪菊石多是由这种菊石进化而来的(图2c)(Hallam,1981Guex,2006)。也有学者认为菊石亚纲并没有在三叠纪末全部灭绝,而是逐渐从诺利期开始消失的,诺利期有8个科的消失,瑞替期有17个科灭绝(Deng Shenghui et al.,2005)。

  • (3)双壳纲:据估计,近一半现有双壳纲中的属和几乎所有种都未能在三叠纪末灭绝事件中幸存下来(Hallam,1981)。Hallam等(1997)后来研究则发现在欧洲西北部的27个属中只有4个灭绝,而在奥地利北部阿尔卑斯山脉的29个属中有9个灭绝。一些证据表明,双壳纲是选择性灭绝的,即贝壳越大灭绝率越高(Deng Shenghui et al.,2005)。究其原因,较小贝壳对食物的需求较少,更为重要的是它们对氧气的需求也通常较低,所以能在这种极端的环境下得以幸存。Lucas等(2018)通过对三叠纪海洋双壳纲进行记录回顾,继而提出物种的灭绝是断断续续的,而不是集中在TJB的论断。例如在对加拿大夏洛特皇后群岛肯尼科特剖面进行研究时发现,双壳纲Monotis在诺利期—瑞替期之交近于灭绝(图2c)(Ward et al.,2004)。因此,海洋双壳纲动物的灭绝,是长期的、有选择性的灭绝,即并不是一次突发的大规模灭绝事件。

  • (4)珊瑚纲:除三叠纪末期阿尔卑斯山脉珊瑚急剧消失外,亚洲、北美洲、南美洲的珊瑚也有显著变化,同时高钙化类群之间的钙化危机相伴出现,因此推测这是一次全球性事件(Deng Shenghui et al.,2005Kiessling et al.,2011)。Martindale等(2012)通过分析古生物学数据库(PBDB),确认出5次严重的后生动物珊瑚危机和5次严重的生物多样性枯竭,其中只有三次珊瑚危机和大规模灭绝同时发生,这表明珊瑚灭绝与其他生物灭绝并不同步。如果晚三叠世海洋的总溶解无机碳(DIC,二氧化碳注入引起酸化的严重程度)值偏低,T—J界线处二氧化碳分压[p(CO2)]的增加会降低其饱和状态,珊瑚的生物矿化将极其困难,因此会出现珊瑚礁缺口,影响生物灭绝的推断。

  • (5)腕足动物门、介形亚纲:对欧洲的腕足动物统计研究发现,诺利期、瑞替期14个物种中,仅有3个物种在里阿斯世得以存活(Pearson,1977)。Wignall等(2008)等指出腕足动物门、介形亚纲在侏罗纪早期普林斯巴赫期—托阿尔期边界处遭到损失,且先后经历过2个阶段的2次灭绝。在对中国华南和新西兰、中亚、东欧、西欧、西伯利亚、北美西部及阿拉斯加等地的腕足动物化石数据进行统计时发现,晚三叠世瑞替期腕足动物属种分异度明显下降,且在瑞替期的63个属中,仅有14个属存活到了早侏罗世赫塘期,灭绝率达78%(柯妍等,2016)。Deng Shenghui等(2005)指出腕足动物门动物存在集群绝灭事件,介形虫在特定水平(种级)上表现出较高的灭绝率。也有学者持相反观点,即具有较好TJB化石记录的节肢动物类群(如介形虫)在TJB没有明显的灭绝迹象(Kozur et al.,2010)。在TJB的世界海洋中没有“生产力崩溃”,即海洋食物链没有崩溃,所以腕足动物门、介形亚纲等海洋生物没有异常高的灭绝率(Lucas et al.,2018)。

  • (6)放射虫目:放射虫在TJB更替显著,其以50多个物种的消失为特征。加拿大夏洛特皇后群岛和日本犬山剖面提供的连续放射虫记录表明,T—J边界上放射虫发生的突变显示出全球性变化特征(Carter et al.,2005)。研究加拿大夏洛特皇后群岛、日本及土耳其剖面发现,三叠纪末放射虫的灭绝是一次在属级上的大规模灭绝(Deng Shenghui et al.,2005);而第二次大规模的放射虫灭绝则发生于侏罗纪早期(Racki,1999)。因此,学者普遍认为放射虫是逐步灭绝的,且具有全球性。

  • 基于生物化石更替记录,三叠纪末期全球灭绝事件是一个从卡尼期开始直至瑞替期结束的长期过程,主要灭绝阶段可能发生在诺利期末期至瑞替期。总体而言,三叠纪—侏罗纪边界的生物灭绝,并不是一次性完成的,而是持续的、分阶段的灭绝,且具有区域性、选择性以及非同步性等特点。

  • 3 生物灭绝原因

  • 国内外学者一致认为,CAMP喷发是引起TJB生物灭绝的直接诱因。近年来锆石U-Pb地质年代学研究证明三叠纪晚期最早的火山活动和生物灭绝具有一致性(Blackburn et al.,2013),火山喷发后带来的一系列事件,如海洋酸化、温室效应、海洋缺氧、古野火事件等,是导致生物灭绝的直接原因。CAMP的喷发,不仅带来了CO2,还有其他火山挥发物,它们的影响也同样不容小觑。Thibodeau等(2016)发现了在三叠纪末期CAMP火山汞大量流入的证据,Hg的同位素值也证实了火山的起源,CAMP活动与灭绝有关,而几十万年的火山持续活动阻碍了生物的恢复。Fujisaki等(2015)采集了日本木曾川流域犬山地区的远洋深海页岩,进行高精度铂族元素浓度测定,结果表明铂族元素浓集来源于大规模火成活动的玄武岩和上大陆地壳物质的混合,并发现铂族元素浓度峰值出现于T—J边界,可大体推测大灭绝缘于大规模的火成活动。

  • 3.1 海洋酸化

  • CAMP爆发释放出大量CO2,促使p(CO2)大幅提升,p(CO2)增加可能导致海洋酸化(Hönisch et al.,2012)和珊瑚缺失(Martindale et al.,2012)。研究发现,在过去的5次全球后生动物珊瑚危机和生物多样性枯竭事件中,至少有4次受到海洋酸化和快速全球变暖的控制,其中两起留有海洋酸化地质证据(Kiessling et al.,2011),可见海洋酸化是珊瑚灭绝的一大触发因素。由于海洋能够吸收火山喷发生成的CO2、SO2,进而促使海水pH值和CaCO3饱和度降低,导致三叠纪末期海洋生物灭绝(Hautmann,2004)。中国西部青藏高原羌塘地区沉积了连续的T—J界线海相碳酸盐岩(付修根等,2020),晚三叠世大气p(CO2)相对较低,早侏罗世大气p(CO2)急剧上升,气候实现由冷向暖转变;同时,随着海洋CO2浓度的增加,pH值降低,海水酸化,进而诱发了生物的大规模灭绝(Yi Fan et al.,2018)。

  • 3.2 海洋缺氧

  • 在对日本犬山黑色页岩元素分析发现,钒(V)元素浓集,表明其在缺氧条件下沉积形成。低Th/U比值和Ce异常等化学特征表明,自晚三叠世至早侏罗世,除托尔阶黑色页岩的沉积时期外,远洋环境均处于缺氧状态(Fujisaki et al.,2016)。

  • 特提斯海西部(western Tethys)和泛大洋东部(eastern Panthalassa)的海洋缺氧和透光层闭塞现象普遍存在,由于距CAMP较近,因此受火山喷发释放的二氧化碳和有毒气体影响较大,这可能会增强大陆风化作用,并进一步促使海洋环境中的有机质积累和海洋缺氧条件形成,也使海洋动物的恢复推迟至赫塘期中期(Jost,2017Ge Yuzhu,2021),另外,因大陆风化作用增加的海洋初级生产力会在一定程度上加快灭绝后海洋生物恢复的速度(Luo Genming et al.,2018),后生动物多为好氧生物,故海洋缺氧是海洋生物灭绝的重要机制。

  • 欧洲和北美的相关地质资料证实了三叠纪末期海平面的波动,海退—海侵旋回始于晚三叠世的海退,结束于早侏罗世的海侵(Barash,2016)。在研究南半球智利和秘鲁的海相灰岩和页岩时发现,海侵开始于晚三叠世晚期,三叠纪末海退后的突然海侵造成的海洋缺氧环境是导致物种灭绝的主要原因(图2f)(Deng Shenghui et al.,2005)。海平面升降不仅能够影响含氧量的高低(付修根等,2020),还可以通过改变生物栖息地的面积造成浅海无脊椎动物的灭绝。研究发现,浅海无脊椎动物中的双壳纲在三叠纪末期几乎完全更替,菊石亚纲在三叠纪—侏罗纪的交界处更替急剧,腕足动物门出现部分灭绝。物种灭绝率会随栖息地面积的减少而增加,生态学家提出的“物种—面积效应”得以证实,海平面下降造成的陆缘海洋退化有可能导致海洋生物的广泛灭绝(Hallam,1981Schopf,1974)。

  • 3.3 温室效应

  • 一部分学者根据气孔指数与大气中CO2浓度的相关生态模型,推算出当时古大气中CO2浓度,如Williford等(2014)对东格陵兰岛陆相三叠—侏罗纪边界剖面中银杏目化石气孔指数恢复时发现:从瑞替期到赫塘期,p(CO2)增加了4倍。还有学者通过分析土壤成因碳酸盐的同位素组成来揭示温室效应,如Cleveland等(2008)对美国幽灵牧场(Ghost ranch)和蒙托亚(Montoya)三叠纪末碳酸盐岩的研究发现,δ18O数据显示从诺利晚期到瑞替期年平均气温(MAT)增加了7~9℃,δ13C数据表明盘古大陆p(CO2)的增加将导致严重的气候响应,包括MAT的上升(图4)。

  • 温室气体来源多样,火山喷发的CO2并不能完全解释大气p(CO2)上升和碳同位素负偏移,由于CAMP爆发和古野火事件释放的CO2和甲烷在全球外生碳循环中启动了一个正反馈,从而导致了天然气水合物(可燃冰)中甲烷的释放(Beerling et al.,2002Ruhl et al.,2011)。从天然气水合物中释放出的海底甲烷,是目前大量轻碳同位素的可能来源。

  • 有学者认为,当时海洋生物多样性的丧失与极端的温室效应有关,温室效应由大西洋中部玄武岩火山活动释放的二氧化碳引起。而陆地植被严重的损伤,不单单要归因于温室效应,还可能与SO2等有毒化合物的排放密切相关(Schootbrugge et al.,2009)。由于硫酸盐气溶胶(SO2与羟自由基反应并遇水蒸气形成的硫酸)的保存时间很短,其作用一直被忽略; Schootbrugge等(2009)对此予以重视,并认为三叶虫岩层内深色的孢粉形态可以用CAMP爆发期间的硫酸沉积导致的土壤酸化来解释。

  • 3.4 古野火事件

  • 人们认为横跨三叠纪—侏罗纪(T—J)边界的极端温室效应是三叠纪末动植物更替的重要原因,这是由于中大西洋岩浆省(CAMP)广泛的火山活动释放出大量的二氧化碳和甲烷,较高的温度会使上对流层水蒸气含量升高,而上对流层水蒸气的变化又与全球闪电活动呈正相关,因而风暴和闪电活动也会相应增加,加上气候驱动的植被可燃性增加,促使野火频发,进而造成陆地高等植物碳库减少等结果(Belcher et al.,2010Petersen et al.,2012张筱青等,2016)。此外,古野火事件作用下的陆地植被系统瘫痪,也是三叠纪—侏罗纪界线处生物大灭绝的原因之一。找到古野火事件的发生证据,对当时的古环境重建具有重要意义。

  • 图4 利用碳和氧同位素对晚三叠世古p(CO2)和古温度的古地理重建(据Cleveland et al.,2008Steinthorsdottir et al.,2011修改)

  • Fig.4 Paleogeographic reconstruction of Late Triassic paleo-p (CO2) and paleo-temperature using carbon and oxygen isotopes (modified by Cleveland et al., 2008 and Steinthorsdottir et al., 2011)

  • (1)古气候:干燥的气候环境,有助于野火事件的发生。在华南地区,全球气候演变模型证明,干旱化与全球变暖存在直接联系,热负荷带南移是导致气候干旱的主要原因(Song Yi et al.,2020)。亦有学者认为是季风引发的气候干旱,温室气体的增加导致气候变暖,大陆和海洋之间的热对流增强;进而季风系统增强,一场大规模的风暴激发,致使泛大陆内部变得更加干燥和温暖,并于特提斯海(Tethys Ocean)边缘产生更强的降雨。例如,四川盆地所处的中国南方地区位于气候敏感的亚热带,大型植物化石、孢粉学及黏土矿物数据均表明上三叠统须家河组是在相对干燥的气候条件下沉积完成的,即在T—J过渡时期,气候总体偏向干旱,使得野火频次增加(Song Yi et al.,2020)。

  • (2)植被类型及形态: Belcher等(2010)在研究东格陵兰岛植物叶片化石时发现,在TJB时期,植物由阔叶型向窄叶型转变,这与全球变暖导致风暴活动的增加关系密切,再加上气候驱使,继而阔叶物种灭绝,窄叶物种逐占优势;又因窄叶植物更易燃烧,故TJB火灾活动更为频繁。植被种类决定着燃料在空气中燃烧时的传播速度,如松柏类植物因含水量少,挥发分越高,着火和传播更为容易;故其在燃烧时,较被子类植物,具有更快的传播速度。

  • (3)多环芳烃(PAHs):通过研究波兰2个上三叠统和5个下侏罗统剖面,在侏罗纪底部发现了最高的火灾温度和最高的多环芳烃浓度,即最广泛的野火发生在侏罗纪早期,且其强度随着时间的推移而逐渐减弱(Marynowski et al.,2009)。东格陵兰岛TJB的多环芳烃浓度亦呈增加趋势,木炭含量增加5倍,植物多样性有所减少,表明野火在陆生物种灭绝中发挥了重要作用(Williford et al.,2014)。在远离CAMP的中国也存在类似现象,研究发现3个显著的PAHs浓度高峰分别出现于四川盆地的广元剖面和合川剖面;PAHs相关数据表明,TJB事件区间的所有样品均支持多环芳烃的燃烧来源,与晚三叠世花岗岩侵入无关。基于生物标志物,TJB时期更为温暖干燥的气候条件应该是促使野火发生的关键因素(Song Yi et al.,2020)。新疆准噶尔盆地的郝家沟剖面在ETE与TJB之间的地层同样存在燃烧成因的PAHs含量的异常高值,且与CAMP爆发时期相一致(张新智等,2022)。在远离CAMP的其他地区,在三叠纪—侏罗纪过渡时期同样发生了野火事件,证明这应该是一次全球性事件,且不是CAMP爆发直接带来的影响,而是通过改变全球气候条件引发的。

  • (4)煤岩学证据:在研究中欧晚三叠世至早侏罗世地层时发现,不同沉积岩(如砂岩、粉砂岩和泥岩)中均存有木炭,证明有野火发生(Marynowski et al.,2009)。瑞典和丹麦T—J边界的煤层中惰质组含量显著增加,最高含量出现在赫塘阶,表明了古野火的发生和规律性变化;基于惰质组反射率与古野火温度的关系式,并结合孢粉数据,瑞替期的高惰质组反射率表明有冠层火发生,低惰质组反射率表明有地面火或地表火发生;在赫塘期则以地表火为主(Petersen et al.,2012),古火灾的发生强度由晚三叠世向早侏罗世逐渐降低。

  • 3.5 天体撞击

  • 三叠纪末期,陨石坑记录众多,如加拿大曼尼古根陨石坑,其撞击时间定为214±1 Ma,比T—J界线早得多,因此有学者认为其与三叠纪末大灭绝几乎无关,可能与卡尼期—诺利期大灭绝事件关系紧密(Hodych et al.,1992)。但由于界线定年和陨石撞击时间存在误差,两者到底相关与否还需进一步研究。在意大利亚平宁山脉北部三叠纪末期(瑞替期)3个不同层中均出现了冲击石英,表明至少发生过3次密集碰撞(Bice et al.,1992)。

  • 蕨类植物在早侏罗世早期具有全球性突增的现象,比如在北美Newark盆地3个不同剖面和中国新疆准噶尔盆地郝家沟组都均有1个孢子含量峰值,Olsen等人认为这与陨石撞击有关(Olsen et al.,2002)。Alvarez等人检测到白垩纪末堆积的黏土层中有大量的Ir元素浓集,猜测这是由携带超过1000倍的陨石撞击导致的(Alvarez et al.,1980)。而在三叠纪—侏罗纪边界,也有Ir元素浓集,但其浓度仅为白垩系—古近系边界的1/10到1/100左右,因此在地球化学数据方面,陨石撞击导致生物灭绝的证据还不充分(Fujisaki et al.,2015)。地外撞击原因还需找寻更多证据予以支撑,陨石坑撞击时间方面仍需进一步研究,以确定其是否造成了三叠纪末的生物大灭绝。

  • 4 生物灭绝模式

  • 地球上发生过两类事件:一类是剧烈火山活动的陆地事件,另一类是与大型小行星和彗星撞击有关的宇宙事件。在这两类事件的影响下,有毒的化合物和气溶胶都被释放到大气中,进而造成生物大规模的灭绝(Barash,2016)。尽管有相关陨石坑的记录,但都没有确切的证据指明其与生物灭绝存在直接联系。而在三叠纪末期,盘古大陆即将分裂,软流圈的岩浆活动剧烈,从而导致岩浆喷发,证据确凿;因此可认定火山活动为三叠纪末生物大灭绝的主要原因,CAMP爆发所引发的一系列条件构成了三叠纪末陆地和海洋生物的综合灭绝模式。灭绝模式总结如下(图5):

  • (1)CAMP爆发,释放大量CO2和SO2等气体,致使海水pH值降低,海洋酸化:① H2O + SO2 = H2SO3,② H2SO3 + CaCO3 = H2O + CaSO3 + CO2;海洋酸化促使碳酸盐岩减少,进而导致海洋生态系统稳定性降低和物种灭绝。陆地生态系统的变化可能会因CO2和SO2的释放进一步加剧(Schootbrugge et al.,2009),释放的CO2再次进入大气,进一步加剧温室效应,促使陆地生态系统的崩溃。大气温度升高时,海洋表面温度也会升高,海水温度升高时,更多的二氧化碳溶解在海水中,导致海洋酸化进一步加重。

  • (2)CAMP喷发释放出大量CO2和CH4等温室气体,促进全球变暖,在全球外生碳循环中启动了1个正反馈,从而导致天然气水合物(可燃冰)中甲烷的释放。温度升高,又会引起冰川融化,海平面上升,海洋缺氧,最终造成浅海生物灭绝。CO2浓度升高和气候变暖还可能导致大陆化学风化速率增强,带来一系列的土壤侵蚀和海洋缺氧事件,进而导致生物大规模灭绝。

  • 图5 三叠纪末期生物大灭绝综合模式

  • Fig.5 A integrated model of the end-Triassic biological mass extinction

  • (3)CAMP侵位与爆发,引起古气候的变化,温度升高,较高的温度会使上对流层水蒸气含量升高,而上对流层水蒸气的变化与全球闪电活动呈正相关,雷电又是野火的主要火源之一,进而造成古野火事件频发,植物燃烧增强,陆地高等植物碳库减少等结果。由古野火产生的CO2,进一步加剧了温室效应。

  • (4)CAMP爆发还释放出大量H2S、SO2等气体,给陆地带来酸雨,这不仅导致土壤酸化,影响陆地植被的生长;而且会加强大陆风化作用,进一步促使海洋有机质的积累和海洋缺氧条件的形成,进而引发海洋生物灭绝。

  • 5 结论及展望

  • 在三叠系—侏罗系界线处,相关化石证据表明有80%的物种灭绝,包括53%的海洋属和50%的四足动物。最大的一次三叠纪末生物大灭绝(ETE)早于三叠纪—侏罗纪之交(TJB)发生。国内外学者一致认为,中大西洋火成岩省(CAMP)喷发是导致TJB生物大灭绝的直接诱因,火山喷发引发的海洋酸化、海洋缺氧、温室效应和古野火频发的综合作用是促使三叠纪末期生物大灭绝的直接原因。晚三叠世生物大灭绝虽然是全球事件,但并不是一次性完成的,具有分阶段性、非同步性、区域性和选择性等特点。前人的研究虽然已经取得了长足的进步,但TJB生物灭绝事件仍需在以下几个方面进行深入剖析:

  • (1)高精度年代框架重建晚三叠世生物多样性记录:探索TJB气候变化与生物环境协同关系需要以高精度年代学和大数据重建为支撑,因此TJB海相地层和陆相地层高精度年代学研究及地层对比仍是将来工作的重点。晚三叠世的陆相沉积地层,由于缺乏准确的定年数据,仅靠古生物资料很难实现全球TJB界线对比,生物灭绝和关键地层界线关系还有可能会出现循环论证,在恢复地球历史变迁、进而预测未来方面受到限制。

  • (2)不同纬度地区多种同位素数据仍需进一步丰富:虽然已在全球多个三叠纪—侏罗纪之交(TJB)剖面识别出3次明显的碳同位素负偏移,证实了晚三叠世生物灭绝具有分阶段性,但碳同位素负偏移与生物灭绝在时间一致性方面还存在争议。为解决该问题,全球范围内不同纬度、不同CAMP距离下TJB地层剖面中的同位素数据仍需要进一步丰富,不仅仅局限于碳同位素,还应涉及氧、汞等其他同位素。

  • (3)CAMP喷发与生物选择性灭绝内在联系还需进一步研究:国内外学者一致认为,中大西洋火成岩省(CAMP)喷发是引起TJB生物灭绝的直接诱因,但不同地区同时期生物灭绝具有显著的选择性,CAMP喷发的期次性与生物选择性灭绝之间的内在联系还没有明确的解释。在不同区域、不同地层(陆相和海相)的生物灭绝的直接原因可能不同,对于不同地区不同阶段海洋生物和陆地生物灭绝模式及与CAMP喷发之间的内在关联和相关机制还有待于进一步总结与分析。

  • 参考文献

    • 付修根, 王剑, 曾玉红, 宋春彦, 曾胜强. 2020. 羌塘中生代盆地大洋缺氧事件及全球对比. 地质论评, 66(5): 1130~1142.

    • 柯妍, 曾勇. 2016. 晚二叠世长兴期—三叠纪腕足动物多样性. 古生物学报, 55(4): 439~450.

    • 鲁宁. 2019. 四川盆地东部三叠—侏罗纪之交沉积环境与陆地古生态变化. 导师: 王永栋. 合肥: 中国科学技术大学博士学位论文: 1~136.

    • 沈树忠, 张华. 2017. 什么引起五次生物大灭绝? 科学通报, 62(11): 1119~1135.

    • 许媛媛, 鲁宁, 周宁, 王永栋. 2018. 三叠纪—侏罗纪之交陆生植物群组成特征及变化模式—以中国华南晚三叠世和早侏罗世时期植物群为例. 见: 中国古生物学会第十二次全国会员代表大会暨第29届学术年会论文摘要集: 87~88.

    • 张筱青, 张国权, 席书娜, 李丽琴, 邓春涛, 王岩, 周宁, 王永栋, 宋宜. 2016. 三叠系—侏罗系界线古火灾事件研究: 方法、进展及展望. 古生物学报, 55(3): 331~345.

    • 张新智, 吕沛宗, 方琳浩, 杨涵, 邓胜徽, 卢远征, 房亚男, 张小宇, 黄汝婷, 梁佳宝, 师生宝. 2022. 三叠纪—侏罗纪之交准噶尔盆地南缘野火记录及全球对比. 沉积学报, 40(2): 473~483.

    • Allen B J, Stubbs T L, Benton M J, Puttick M N, Mannion P. 2019. Archosauromorph extinction selectivity during the Triassic—Jurassic mass extinction. Palaeontology, 62(Pt. 2): 211~224.

    • Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the Cretaceous—Tertiary extinction. Science, 208(4448): 1095~1108.

    • Barash M S. 2016. Changes in environmental conditions as the cause of the marine biota great mass extinction at the Triassic—Jurassic boundary. Doklady Earth Sciences, 466(Pt. 2): 119~122.

    • Bartolini A, Guex J, Spangenberg J E, Schoene B, Taylor D G, Schaltegger U, Atudorei V. 2012. Disentangling the Hettangian carbon isotope record: Implications for the aftermath of the end‐Triassic mass extinction. Geochemistry, Geophysics, Geosystems, 13(1): 1~11.

    • Beerling D J, Berner R A. 2002. Biogeochemical constraints on the Triassic—Jurassic boundary carbon cycle event. Global Biogeochemical Cycles, 16(3): 10-1~10-13.

    • Belcher C M, Mander L, Rein G, Jervis F X, Haworth M, Hesselbo S P, Glasspool I J, Mcelwain J C. 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience, 3(6): 426~429.

    • Bice D M, Newton C R, Mccauley S, Reiners P W, McRoberts C A. 1992. Shocked quartz at the Triassic—Jurassic boundary in Italy. Science, 255(5043): 443~446.

    • Blackburn T J, Olsen P E, Bowring S A, McLean N M, Kent D V, Puffer J, McHone G, Rasbury E T, Et-Touhami M. 2013. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science, 340(6135): 941~945.

    • Bonis N R, Kürschner W M. 2012. Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiology, 38(2): 240~264.

    • Bottini C, Jadoul F, Rigo M, Zaffani M, Artoni C, Erba E. 2016. Calcareous nannofossils at the Triassic/Jurassic boundary: stratigraphic and paleoceanographic characterization. Rivista Italiana di Paleontologia e Stratigrafia, 122(3): 141~164.

    • Capriolo M, Marzoli A, Aradi L E, Callegaro S, Corso J D, Newton R J, Mills B J W, Wignall P B, Bartoli O, Baker D R, Youbi N, Remusat L, Spiess R, Szabó C. 2020. Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 11: 1670.

    • Carter E S, Hori R S. 2005. Global correlation of the radiolarian faunal change across the Triassic—Jurassic boundary. Canadian Journal of Earth Sciences, 42(5): 777~790.

    • Cleveland D M, Nordt L C, Dworkin S I, Atchley S C. 2008. Pedogenic carbonate isotopes as evidence for extreme climatic events preceding the Triassic—Jurassic boundary: Implications for the biotic crisis? Geological Society of America Bulletin, 120(11~12): 281~288.

    • Cohen A S, Coe A L. 2002. New geochemical evidence for the onset of volcanism in the Central Atlantic magmatic province and environmental change at the Triassic—Jurassic boundary. Geology, 30(3): 267~270.

    • Cohen A S, Coe A L. 2007. The impact of the Central Atlantic Magmatic Province on climate and on the Sr- and Os- isotope evolution of seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1~4): 374~390.

    • Deenen M H L, Ruhl M, Bonis N R, Krijgsman W, Kuerschner W M, Reitsma M, Bergen M J V. 2010. A new chronology for the end-Triassic mass extinction. Earth and Planetary Science Letters, 291(1~4): 113~125.

    • Delfino M, Kustatscher E, Lavezzi F, Bernardi M. 2020. The end-Permian mass extinction: nature’s revolution. In: Martinetto E, Tschopp E and Gastaldo R A. eds. Virtual field trips through the nature of the past springer textbooks in earth sciences, geography and environment. Springer Nature Switzerland AG: 253~267.

    • Deng Shenghui, Lu Yuanzheng, Xu Daoyi. 2005. Progress and review of the studies on the end-Triassic mass extinction event. Science in China, 48(12): 2049~2060.

    • Du Yixing, Chiari M, Karádi V, Nicora A, Onoue T, Pálfy J, Roghi G, Tomimatsu Y, Rigo M. 2020. The asynchronous disappearance of conodonts: New constraints from Triassic—Jurassic boundary sections in the Tethys and Panthalassa. Earth-Science Reviews, 203: 103176.

    • Fang Yanan, Fang Linhao, Deng Shenghui, Lu Yuanzheng, Wang Bo, Zhao Xiangdong, Wang Yizhe, Zhang Haichun, Zhang Xinzhi, Sha Jingeng. 2021. Carbon isotope stratigraphy across the Triassic—Jurassic boundary in the high-latitude terrestrial Junggar Basin, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110559.

    • Felber R, Weissert H J, Furrer H, Bontognali T R R. 2015. The Triassic—Jurassic boundary in the shallow-water marine carbonates from the western northern calcareous Alps (Austria). Swiss Journal of Geosciences, 108(2~3): 213~224.

    • Fowell S J, Cornet B, Olsen P E. 1994. Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup. Geological Society of America Special Paper, 288: 197~206.

    • Fu Xiugen, Wang Jian, Zeng Yuhong, Song Chunyan, Zeng Shengqiang. 2020&. Oceanic anoxic events in the Mesozoic Qiangtang Basin and global comparison. Geological Review, 66(5): 1130~1142.

    • Fujisaki W, Sawaki Y, Yamamoto S, Sato T, Nishizawa M, Windley B F, Maruyama S. 2016. Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: Insights from redox-sensitive elements and nitrogen isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 449: 397~420.

    • Fujisaki W, Sawaki Y, Yokoyama T, Yamamoto S, Maruyama S. 2015. Constraints for the causes of mass extinction at the Triassic—Jurassic boundary based on high precision platinum group element analyses. Bunseki Kagaku, 64(5): 341~348.

    • Ge Yuzhu. 2021. Decoupled δ13Ccarb and δ13Corg records at Triassic—Jurassic boundary interval in eastern Tethys: Environmental implications for spatially different global response. Geoscience Frontiers, 12: 101146.

    • Gómez J J, Goy A, Barrón E. 2007. Events around the Triassic—Jurassic boundary in northern and eastern Spain: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1~4): 89~110.

    • Guex J. 2006. Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates. Earth and Planetary Science Letters, 242(3~4): 240~253.

    • Hallam A, Wignall P B. 1997. Mass extinctions and their aftermath. Oxford: Oxford University Press: 1~328.

    • Hallam A. 1981. The end-Triassic bivalve extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 35: 1~44.

    • Hautmann M. 2004. Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies, 50(2): 257~261.

    • Hesselbo S P, Mcroberts C A, Pálfy J. 2007. Triassic—Jurassic boundary events: Problems, progress, possibilities. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1~4): 1~10.

    • Hesselbo S P, Robinson S A, Surlyk F, Piasecki S. 2002. Terrestrial and marine extinction at the Triassic—Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology, 30(3): 251~254.

    • Hodych J P, Dunning G R. 1992. Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology, 20(1): 51~54.

    • Hönisch B, Ridgwell A, Schmidt D N, Thomas E. 2012. The geological record of ocean acidification. Science, 335: 1058~1063.

    • Hu Fangzhi, Fu Xiugen, Lin Li, Song Chunyan, Wang Zhongwei, Tian Kangzhi. 2019. Marine Late Triassic—Jurassic carbon-isotope excursion and biological extinction records: New evidence from the Qiangtang Basin, eastern Tethys. Global and Planetary Change, 185: 103093.

    • Ibarra Y, Corsetti F A, Greene S E, Bottjer D J. 2014. Microfacies of the cotham marble: A tubestone carbonate microbialite from the Upper Triassic southwestern UK: A reply. Palaios, 29(1): 885~899.

    • Jost A B, Bachan A, Schootbrugge B V D, Lau K V, Weaver K L, Maher K, Payne J L. 2017. Uranium isotope evidence for an expansion of marine anoxia during the end Triassic extinction. Geochemistry Geophysics Geosystems, 18(8): 3093~3108.

    • Ke Yan, Zeng Yong. 2016&. Global brachiopod diversity analysis from Changhsingian (Late Permian) to Late Triassic. Acta Palaeontologica Sinica, 55(4): 439~450.

    • Kiessling W, Simpson C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 17(1): 56~67.

    • Kozur H W, Mock R. 1991. New Middle Carnian and Rhaetian Conodonts from Hungary and the Alps. Stratigraphic Importance and Tectonic Implications for the Buda Mountains and Adjacent Areas. Jahrbuch der Geologischen Bundesanstalt, 134(2): 271~297.

    • Kozur H W, Weems R E. 2010. The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. Geological Society London Special Publications, 334(1): 315~417.

    • Lindstrom S, Schootbrugge B V D, Dybkjaer K, Pedersen G K, Fiebig J, Nielsen L H, Richoz S. 2012. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction. Geology, 40(6): 531~534.

    • Lu Ning. 2019&. Changes in sedimentary environment and terrestrial paleoecology across the Triassic—Jurassic transition in eastern Sichuan Basin. Supervisor: Wang Yongdong. Hefei: Doctoral Degree Dissertation of China University of Science and Technology: 1~136.

    • Lucas S G, Tanner L H. 2007. The nonmarine Triassic—Jurassic boundary in the Newark Supergroup of eastern North America. Earth-Science Reviews, 84(1): 1~20.

    • Lucas S G, Tanner L H. 2008. Reexamination of the end-Triassic mass. In: Elewa A M T. eds. Mass Extinction. Springer Verlag, 66~103.

    • Lucas S G, Tanner L H. 2015. End-Triassic nonmarine biotic events. Journal of Palaeogeography, 4(4): 331~348.

    • Lucas S G, Tanner L H. 2018. The missing mass extinction at the Triassic—Jurassic boundary. In: Tanner L H. eds. The Late Triassic World. Springer International Publishing AG, 721~785.

    • Luo Genming, Richoz S, Schootbrugge B V D, Algeo T J, Xie S, Ono S, Summons R E. 2018. Multiple sulfur-isotopic evidence for a shallowly stratified ocean following the Triassic—Jurassic boundary mass extinction. Geochimica et Cosmochimica Acta, 231: 73~87.

    • Ma Xueping, Gong Yiming, Chen Daizhao, Racki G, Chen Xiuqin, Liao Weihua. 2016. The Late Devonian Frasnian—Famennian event in South China — Patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 224~244.

    • Martindale R C, Berelson W M, Corsetti F A, Bottjer D J, West A J. 2012. Constraining carbonate chemistry at a potential ocean acidification event (the Triassic—Jurassic boundary) using the presence of corals and coral reefs in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 350~352: 114~123.

    • Marynowski L, Simoneit B. 2009. Widespread upper Triassic to lower Jurassic wildfire records from Poland: evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios, 24(11/12), 785~798.

    • Mcelwain J C, Beerling D J, Woodward F I. 1999. Fossil plants and global warming at the Triassic—Jurassic boundary. Science, 285(5432): 1386~1390.

    • Mcelwain J C, Popa M E, Hesselbo S P, Haworth M, Surlyk F. 2007. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology, 33(4): 547~573.

    • Miller K G, Kominz M A, Browning J V, Wright J D, Mountain G S, Katz M E, Sugarman P J, Cramer B S, Christie-Blick N, Pekar S F. 2005. The Phanerozoic record of global sea-level change. Science, 310(5752): 1293~1298.

    • Newell N D. 1963. Crises in the history of life. Scientific American, 208(2): 76~93.

    • Olsen P E, Shubin N H, Anders M H. 1987. New Early Jurassic tetrapod assemblages constrain Triassic—Jurassic tetrapod extinction event. Science, 237: 1025~1029.

    • Olsen P E, Kent D V, Sues H D, Koeberl C. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic—Jurassic boundary. Science, 296(5571): 1305~1307.

    • Paálfy J, Mortensen J K, Carter E S, Smith P L, Friedman R M, Tipper H W. 2000. Timing the end-Triassic mass extinction: First on land, then in the sea? Geology, 28(1): 39~42.

    • Pearson D A B. 1977. Rhaetian brachiopods of Europe. Denkschriften der nature historisches Museum Wien, 1: 1~70.

    • Peterffy O, Calner M, Vajda V. 2016. Early Jurassic microbial mats—A potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 464: 76~85.

    • Petersen H I, Lindström S. 2012. Synchronous wildfire activity rise and mire deforestation at the Triassic-Jurassic boundary. Plos One, 7(10): 1~15.

    • Racki G. 1999. Silica-secreting biota and mass extinctions: survival patterns and processes. Palaeogeography, Palaeoclimatology, Palaeoecology, 154(1~2): 107~132.

    • Raup D M, Sepkoski J J. 1982. Mass extinctions in the marine fossil record. Science, 215(4539): 1501~1503.

    • Rigo M, Bertinelli A, Concheri G, Gattolin G. 2015. The Pignola—Abriola section (southern Apennines, Italy): A new GSSP candidate for the base of the Rhaetian Stage. Lethaia An International Journal of Palaeontology and Stratigraphy, 49(3): 1~20.

    • Ruhl M, Bonis N R, Reichart G J, Damste J S S, Kurschner W M. 2011. Atmospheric carbon injection linked to end-Triassic mass extinction. Science, 333(6041): 430~434.

    • Ruhl M, Kürschner W M. 2011. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic—Jurassic transition. Geology, 39(5): 431~434.

    • Ruhl M, Veld H, Kürschner W M. 2010. Sedimentary organic matter characterization of the Triassic—Jurassic boundary GSSP at Kuhjoch (Austria). Earth and Planetary Science Letters, 292(1~2): 17~26.

    • Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn T J. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology, 38(5): 387~390.

    • Schoene B, Samperton K M, Eddy M P, Keller G, Adatte T, Bowring S A, Khadri S F R, Gertsch B. 2015. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science, 347(6218): 1~8.

    • Schootbrugge B V D, Quan T M, Lindstrm S, Püttmann W, Heunisch C, Pross J, Fiebig J, Petschick R, Röhling H R, Richoz S, Rosenthal Y, Falkowski P G. 2009. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience, 2: 589~594.

    • Schopf T J M. 1974. Permo—Triassic extinctions: relation to sea-floor spreading. The Journal of Geology, 82(2): 129~143.

    • Sepkoski J J. 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. Journal of the Geological Society London, 146(1): 35~51.

    • Shen Jun, Yin Runsheng, Zhang Shuang, Algeo T J, Bottjer D J, Yu Jianxin, Xu Guozhen, Penman D, Wang Yongdong, Li Liqin, Shi Xiao, Planavsky N J, Feng Qinglai, Xie Shucheng. 2022. Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic—Jurassic transition. Nature Communications, 13: 299.

    • Shen Shuzhong, Zhang Hua. 2017&. What caused mass extinctions? Chinese Science Bulletin, 62(11): 1119~1135.

    • Song Yi, Algeo T J, Wu Wenjun, Luo Genming, Li Liqin, Wang Yongdong, Xie Shucheng. 2020. Distribution of pyrolytic PAHs across the Triassic—Jurassic boundary in the Sichuan Basin, southwestern China: Evidence of wildfire outside the Central Atlantic Magmatic Province. Earth-Science Reviews, 201: 102970.

    • Steinthorsdottir M, Jeram A J, Mcelwain J J C. 2011. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(3~4): 418~432.

    • Stramma L, Johnson G C, Sprintall J, Mohrholz V. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science, 320(5876): 655~658.

    • Tanner L H, Lucas S G, Chapman M G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews, 65(1~2): 103~139.

    • Thibodeau A M, Ritterbush K, Yager J A, West A J, Ibarra Y, Bottjer D J, Berelson W M, Bergquist B A, Corsetti F A. 2016. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nature Communications, 7: 1~8.

    • Walker X J, Baltzer J L, Cumming S G, Day N J, Mack M C. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 572(7770): 520~523.

    • Ward P D, Garrison G H, Haggart J W, Kring D A, Beattie M J. 2004. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction. Earth and Planetary Science Letters, 224(3~4): 589~600.

    • Whiteside J H, Ward P D. 2011. Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. Geology, 39(2): 99~102.

    • Wignall P B, Atkinson J W. 2020. A two-phase end-Triassic mass extinction. Earth-Science Reviews, 208: 103282.

    • Wignall P B, Bond D. 2008. The end-Triassic and Early Jurassic mass extinction records in the British Isles. Proceedings of the Geologists Association, 119(1): 73~84.

    • Williford K H, Grice K, Holman A, Mcelwain J C. 2014. An organic record of terrestrial ecosystem collapse and recovery at the Triassic—Jurassic boundary in East Greenland. Geochimica et Cosmochimica Acta, 127: 251~263.

    • Xu Yuanyuan, Lu Ning, Zhou Ning, Wang Yongdong. 2018#. Compositional characteristics and change patterns of terrestrial flora at the transition of Triassic—Jurassic boundary—Taking Late Triassic and Early Jurassic Flora of South China as an Example. Abstract Volume of Joint Meetings on the 12th National Congress of the Palaeontological Society of China (PSC) and the 29th Annual Conference of PSC: 87~88.

    • Yi Fan, Yi Haisheng, Xia Guoqing, Cai Zhanhu. 2018. Atmospheric carbon dioxide reconstruction and ocean acidification deduced from carbon isotope variations across the Triassic—Jurassic boundary in the Qiangtang area, Tibetan Plateau. Acta Geologica Sinica, 92(5): 2055~2057.

    • Zaffani M, Jadoul F, Rigo M. 2018. A new Rhaetian δ13Corg record: Carbon cycle disturbances, volcanism, end-Triassic mass extinction (ETE). Earth-Science Reviews, 178: 92~104.

    • Zhang Xiaoqing, Zhang Guoquan, Xi Shuna, Li Liqin, Deng Chuntao, Wang Yan, Zhou Ning, Wang Yongdong, Song Yi. 2016&. Wildfire event at the Triassic/Jurassic boundary: approaches, progress, and perspective. Acta Palaeontologica Sinica, 55(3): 331~345.

    • Zhang Xinzhi, L Peizong, Fang Linhao, Yang Han, Deng Shenghui, Lu Yuanzheng, Fang Yanan, Zhang Xiaoyu, Huang Ruting, Liang Jiabao, Shi Shengbao. 2022&. Wildfire records across the Triassic—Jurassic boundary in the Southern margin of the Junggar Basin, and global correlations. Acta Sedimentologica Sinica, 40(2): 473~483.

  • 参考文献

    • 付修根, 王剑, 曾玉红, 宋春彦, 曾胜强. 2020. 羌塘中生代盆地大洋缺氧事件及全球对比. 地质论评, 66(5): 1130~1142.

    • 柯妍, 曾勇. 2016. 晚二叠世长兴期—三叠纪腕足动物多样性. 古生物学报, 55(4): 439~450.

    • 鲁宁. 2019. 四川盆地东部三叠—侏罗纪之交沉积环境与陆地古生态变化. 导师: 王永栋. 合肥: 中国科学技术大学博士学位论文: 1~136.

    • 沈树忠, 张华. 2017. 什么引起五次生物大灭绝? 科学通报, 62(11): 1119~1135.

    • 许媛媛, 鲁宁, 周宁, 王永栋. 2018. 三叠纪—侏罗纪之交陆生植物群组成特征及变化模式—以中国华南晚三叠世和早侏罗世时期植物群为例. 见: 中国古生物学会第十二次全国会员代表大会暨第29届学术年会论文摘要集: 87~88.

    • 张筱青, 张国权, 席书娜, 李丽琴, 邓春涛, 王岩, 周宁, 王永栋, 宋宜. 2016. 三叠系—侏罗系界线古火灾事件研究: 方法、进展及展望. 古生物学报, 55(3): 331~345.

    • 张新智, 吕沛宗, 方琳浩, 杨涵, 邓胜徽, 卢远征, 房亚男, 张小宇, 黄汝婷, 梁佳宝, 师生宝. 2022. 三叠纪—侏罗纪之交准噶尔盆地南缘野火记录及全球对比. 沉积学报, 40(2): 473~483.

    • Allen B J, Stubbs T L, Benton M J, Puttick M N, Mannion P. 2019. Archosauromorph extinction selectivity during the Triassic—Jurassic mass extinction. Palaeontology, 62(Pt. 2): 211~224.

    • Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the Cretaceous—Tertiary extinction. Science, 208(4448): 1095~1108.

    • Barash M S. 2016. Changes in environmental conditions as the cause of the marine biota great mass extinction at the Triassic—Jurassic boundary. Doklady Earth Sciences, 466(Pt. 2): 119~122.

    • Bartolini A, Guex J, Spangenberg J E, Schoene B, Taylor D G, Schaltegger U, Atudorei V. 2012. Disentangling the Hettangian carbon isotope record: Implications for the aftermath of the end‐Triassic mass extinction. Geochemistry, Geophysics, Geosystems, 13(1): 1~11.

    • Beerling D J, Berner R A. 2002. Biogeochemical constraints on the Triassic—Jurassic boundary carbon cycle event. Global Biogeochemical Cycles, 16(3): 10-1~10-13.

    • Belcher C M, Mander L, Rein G, Jervis F X, Haworth M, Hesselbo S P, Glasspool I J, Mcelwain J C. 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience, 3(6): 426~429.

    • Bice D M, Newton C R, Mccauley S, Reiners P W, McRoberts C A. 1992. Shocked quartz at the Triassic—Jurassic boundary in Italy. Science, 255(5043): 443~446.

    • Blackburn T J, Olsen P E, Bowring S A, McLean N M, Kent D V, Puffer J, McHone G, Rasbury E T, Et-Touhami M. 2013. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science, 340(6135): 941~945.

    • Bonis N R, Kürschner W M. 2012. Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary. Paleobiology, 38(2): 240~264.

    • Bottini C, Jadoul F, Rigo M, Zaffani M, Artoni C, Erba E. 2016. Calcareous nannofossils at the Triassic/Jurassic boundary: stratigraphic and paleoceanographic characterization. Rivista Italiana di Paleontologia e Stratigrafia, 122(3): 141~164.

    • Capriolo M, Marzoli A, Aradi L E, Callegaro S, Corso J D, Newton R J, Mills B J W, Wignall P B, Bartoli O, Baker D R, Youbi N, Remusat L, Spiess R, Szabó C. 2020. Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nature Communications, 11: 1670.

    • Carter E S, Hori R S. 2005. Global correlation of the radiolarian faunal change across the Triassic—Jurassic boundary. Canadian Journal of Earth Sciences, 42(5): 777~790.

    • Cleveland D M, Nordt L C, Dworkin S I, Atchley S C. 2008. Pedogenic carbonate isotopes as evidence for extreme climatic events preceding the Triassic—Jurassic boundary: Implications for the biotic crisis? Geological Society of America Bulletin, 120(11~12): 281~288.

    • Cohen A S, Coe A L. 2002. New geochemical evidence for the onset of volcanism in the Central Atlantic magmatic province and environmental change at the Triassic—Jurassic boundary. Geology, 30(3): 267~270.

    • Cohen A S, Coe A L. 2007. The impact of the Central Atlantic Magmatic Province on climate and on the Sr- and Os- isotope evolution of seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1~4): 374~390.

    • Deenen M H L, Ruhl M, Bonis N R, Krijgsman W, Kuerschner W M, Reitsma M, Bergen M J V. 2010. A new chronology for the end-Triassic mass extinction. Earth and Planetary Science Letters, 291(1~4): 113~125.

    • Delfino M, Kustatscher E, Lavezzi F, Bernardi M. 2020. The end-Permian mass extinction: nature’s revolution. In: Martinetto E, Tschopp E and Gastaldo R A. eds. Virtual field trips through the nature of the past springer textbooks in earth sciences, geography and environment. Springer Nature Switzerland AG: 253~267.

    • Deng Shenghui, Lu Yuanzheng, Xu Daoyi. 2005. Progress and review of the studies on the end-Triassic mass extinction event. Science in China, 48(12): 2049~2060.

    • Du Yixing, Chiari M, Karádi V, Nicora A, Onoue T, Pálfy J, Roghi G, Tomimatsu Y, Rigo M. 2020. The asynchronous disappearance of conodonts: New constraints from Triassic—Jurassic boundary sections in the Tethys and Panthalassa. Earth-Science Reviews, 203: 103176.

    • Fang Yanan, Fang Linhao, Deng Shenghui, Lu Yuanzheng, Wang Bo, Zhao Xiangdong, Wang Yizhe, Zhang Haichun, Zhang Xinzhi, Sha Jingeng. 2021. Carbon isotope stratigraphy across the Triassic—Jurassic boundary in the high-latitude terrestrial Junggar Basin, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110559.

    • Felber R, Weissert H J, Furrer H, Bontognali T R R. 2015. The Triassic—Jurassic boundary in the shallow-water marine carbonates from the western northern calcareous Alps (Austria). Swiss Journal of Geosciences, 108(2~3): 213~224.

    • Fowell S J, Cornet B, Olsen P E. 1994. Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup. Geological Society of America Special Paper, 288: 197~206.

    • Fu Xiugen, Wang Jian, Zeng Yuhong, Song Chunyan, Zeng Shengqiang. 2020&. Oceanic anoxic events in the Mesozoic Qiangtang Basin and global comparison. Geological Review, 66(5): 1130~1142.

    • Fujisaki W, Sawaki Y, Yamamoto S, Sato T, Nishizawa M, Windley B F, Maruyama S. 2016. Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: Insights from redox-sensitive elements and nitrogen isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 449: 397~420.

    • Fujisaki W, Sawaki Y, Yokoyama T, Yamamoto S, Maruyama S. 2015. Constraints for the causes of mass extinction at the Triassic—Jurassic boundary based on high precision platinum group element analyses. Bunseki Kagaku, 64(5): 341~348.

    • Ge Yuzhu. 2021. Decoupled δ13Ccarb and δ13Corg records at Triassic—Jurassic boundary interval in eastern Tethys: Environmental implications for spatially different global response. Geoscience Frontiers, 12: 101146.

    • Gómez J J, Goy A, Barrón E. 2007. Events around the Triassic—Jurassic boundary in northern and eastern Spain: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1~4): 89~110.

    • Guex J. 2006. Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates. Earth and Planetary Science Letters, 242(3~4): 240~253.

    • Hallam A, Wignall P B. 1997. Mass extinctions and their aftermath. Oxford: Oxford University Press: 1~328.

    • Hallam A. 1981. The end-Triassic bivalve extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 35: 1~44.

    • Hautmann M. 2004. Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies, 50(2): 257~261.

    • Hesselbo S P, Mcroberts C A, Pálfy J. 2007. Triassic—Jurassic boundary events: Problems, progress, possibilities. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1~4): 1~10.

    • Hesselbo S P, Robinson S A, Surlyk F, Piasecki S. 2002. Terrestrial and marine extinction at the Triassic—Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology, 30(3): 251~254.

    • Hodych J P, Dunning G R. 1992. Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology, 20(1): 51~54.

    • Hönisch B, Ridgwell A, Schmidt D N, Thomas E. 2012. The geological record of ocean acidification. Science, 335: 1058~1063.

    • Hu Fangzhi, Fu Xiugen, Lin Li, Song Chunyan, Wang Zhongwei, Tian Kangzhi. 2019. Marine Late Triassic—Jurassic carbon-isotope excursion and biological extinction records: New evidence from the Qiangtang Basin, eastern Tethys. Global and Planetary Change, 185: 103093.

    • Ibarra Y, Corsetti F A, Greene S E, Bottjer D J. 2014. Microfacies of the cotham marble: A tubestone carbonate microbialite from the Upper Triassic southwestern UK: A reply. Palaios, 29(1): 885~899.

    • Jost A B, Bachan A, Schootbrugge B V D, Lau K V, Weaver K L, Maher K, Payne J L. 2017. Uranium isotope evidence for an expansion of marine anoxia during the end Triassic extinction. Geochemistry Geophysics Geosystems, 18(8): 3093~3108.

    • Ke Yan, Zeng Yong. 2016&. Global brachiopod diversity analysis from Changhsingian (Late Permian) to Late Triassic. Acta Palaeontologica Sinica, 55(4): 439~450.

    • Kiessling W, Simpson C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 17(1): 56~67.

    • Kozur H W, Mock R. 1991. New Middle Carnian and Rhaetian Conodonts from Hungary and the Alps. Stratigraphic Importance and Tectonic Implications for the Buda Mountains and Adjacent Areas. Jahrbuch der Geologischen Bundesanstalt, 134(2): 271~297.

    • Kozur H W, Weems R E. 2010. The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. Geological Society London Special Publications, 334(1): 315~417.

    • Lindstrom S, Schootbrugge B V D, Dybkjaer K, Pedersen G K, Fiebig J, Nielsen L H, Richoz S. 2012. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction. Geology, 40(6): 531~534.

    • Lu Ning. 2019&. Changes in sedimentary environment and terrestrial paleoecology across the Triassic—Jurassic transition in eastern Sichuan Basin. Supervisor: Wang Yongdong. Hefei: Doctoral Degree Dissertation of China University of Science and Technology: 1~136.

    • Lucas S G, Tanner L H. 2007. The nonmarine Triassic—Jurassic boundary in the Newark Supergroup of eastern North America. Earth-Science Reviews, 84(1): 1~20.

    • Lucas S G, Tanner L H. 2008. Reexamination of the end-Triassic mass. In: Elewa A M T. eds. Mass Extinction. Springer Verlag, 66~103.

    • Lucas S G, Tanner L H. 2015. End-Triassic nonmarine biotic events. Journal of Palaeogeography, 4(4): 331~348.

    • Lucas S G, Tanner L H. 2018. The missing mass extinction at the Triassic—Jurassic boundary. In: Tanner L H. eds. The Late Triassic World. Springer International Publishing AG, 721~785.

    • Luo Genming, Richoz S, Schootbrugge B V D, Algeo T J, Xie S, Ono S, Summons R E. 2018. Multiple sulfur-isotopic evidence for a shallowly stratified ocean following the Triassic—Jurassic boundary mass extinction. Geochimica et Cosmochimica Acta, 231: 73~87.

    • Ma Xueping, Gong Yiming, Chen Daizhao, Racki G, Chen Xiuqin, Liao Weihua. 2016. The Late Devonian Frasnian—Famennian event in South China — Patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 224~244.

    • Martindale R C, Berelson W M, Corsetti F A, Bottjer D J, West A J. 2012. Constraining carbonate chemistry at a potential ocean acidification event (the Triassic—Jurassic boundary) using the presence of corals and coral reefs in the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 350~352: 114~123.

    • Marynowski L, Simoneit B. 2009. Widespread upper Triassic to lower Jurassic wildfire records from Poland: evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios, 24(11/12), 785~798.

    • Mcelwain J C, Beerling D J, Woodward F I. 1999. Fossil plants and global warming at the Triassic—Jurassic boundary. Science, 285(5432): 1386~1390.

    • Mcelwain J C, Popa M E, Hesselbo S P, Haworth M, Surlyk F. 2007. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology, 33(4): 547~573.

    • Miller K G, Kominz M A, Browning J V, Wright J D, Mountain G S, Katz M E, Sugarman P J, Cramer B S, Christie-Blick N, Pekar S F. 2005. The Phanerozoic record of global sea-level change. Science, 310(5752): 1293~1298.

    • Newell N D. 1963. Crises in the history of life. Scientific American, 208(2): 76~93.

    • Olsen P E, Shubin N H, Anders M H. 1987. New Early Jurassic tetrapod assemblages constrain Triassic—Jurassic tetrapod extinction event. Science, 237: 1025~1029.

    • Olsen P E, Kent D V, Sues H D, Koeberl C. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic—Jurassic boundary. Science, 296(5571): 1305~1307.

    • Paálfy J, Mortensen J K, Carter E S, Smith P L, Friedman R M, Tipper H W. 2000. Timing the end-Triassic mass extinction: First on land, then in the sea? Geology, 28(1): 39~42.

    • Pearson D A B. 1977. Rhaetian brachiopods of Europe. Denkschriften der nature historisches Museum Wien, 1: 1~70.

    • Peterffy O, Calner M, Vajda V. 2016. Early Jurassic microbial mats—A potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 464: 76~85.

    • Petersen H I, Lindström S. 2012. Synchronous wildfire activity rise and mire deforestation at the Triassic-Jurassic boundary. Plos One, 7(10): 1~15.

    • Racki G. 1999. Silica-secreting biota and mass extinctions: survival patterns and processes. Palaeogeography, Palaeoclimatology, Palaeoecology, 154(1~2): 107~132.

    • Raup D M, Sepkoski J J. 1982. Mass extinctions in the marine fossil record. Science, 215(4539): 1501~1503.

    • Rigo M, Bertinelli A, Concheri G, Gattolin G. 2015. The Pignola—Abriola section (southern Apennines, Italy): A new GSSP candidate for the base of the Rhaetian Stage. Lethaia An International Journal of Palaeontology and Stratigraphy, 49(3): 1~20.

    • Ruhl M, Bonis N R, Reichart G J, Damste J S S, Kurschner W M. 2011. Atmospheric carbon injection linked to end-Triassic mass extinction. Science, 333(6041): 430~434.

    • Ruhl M, Kürschner W M. 2011. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic—Jurassic transition. Geology, 39(5): 431~434.

    • Ruhl M, Veld H, Kürschner W M. 2010. Sedimentary organic matter characterization of the Triassic—Jurassic boundary GSSP at Kuhjoch (Austria). Earth and Planetary Science Letters, 292(1~2): 17~26.

    • Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn T J. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology, 38(5): 387~390.

    • Schoene B, Samperton K M, Eddy M P, Keller G, Adatte T, Bowring S A, Khadri S F R, Gertsch B. 2015. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science, 347(6218): 1~8.

    • Schootbrugge B V D, Quan T M, Lindstrm S, Püttmann W, Heunisch C, Pross J, Fiebig J, Petschick R, Röhling H R, Richoz S, Rosenthal Y, Falkowski P G. 2009. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience, 2: 589~594.

    • Schopf T J M. 1974. Permo—Triassic extinctions: relation to sea-floor spreading. The Journal of Geology, 82(2): 129~143.

    • Sepkoski J J. 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. Journal of the Geological Society London, 146(1): 35~51.

    • Shen Jun, Yin Runsheng, Zhang Shuang, Algeo T J, Bottjer D J, Yu Jianxin, Xu Guozhen, Penman D, Wang Yongdong, Li Liqin, Shi Xiao, Planavsky N J, Feng Qinglai, Xie Shucheng. 2022. Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic—Jurassic transition. Nature Communications, 13: 299.

    • Shen Shuzhong, Zhang Hua. 2017&. What caused mass extinctions? Chinese Science Bulletin, 62(11): 1119~1135.

    • Song Yi, Algeo T J, Wu Wenjun, Luo Genming, Li Liqin, Wang Yongdong, Xie Shucheng. 2020. Distribution of pyrolytic PAHs across the Triassic—Jurassic boundary in the Sichuan Basin, southwestern China: Evidence of wildfire outside the Central Atlantic Magmatic Province. Earth-Science Reviews, 201: 102970.

    • Steinthorsdottir M, Jeram A J, Mcelwain J J C. 2011. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(3~4): 418~432.

    • Stramma L, Johnson G C, Sprintall J, Mohrholz V. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science, 320(5876): 655~658.

    • Tanner L H, Lucas S G, Chapman M G. 2004. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews, 65(1~2): 103~139.

    • Thibodeau A M, Ritterbush K, Yager J A, West A J, Ibarra Y, Bottjer D J, Berelson W M, Bergquist B A, Corsetti F A. 2016. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nature Communications, 7: 1~8.

    • Walker X J, Baltzer J L, Cumming S G, Day N J, Mack M C. 2019. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature, 572(7770): 520~523.

    • Ward P D, Garrison G H, Haggart J W, Kring D A, Beattie M J. 2004. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction. Earth and Planetary Science Letters, 224(3~4): 589~600.

    • Whiteside J H, Ward P D. 2011. Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. Geology, 39(2): 99~102.

    • Wignall P B, Atkinson J W. 2020. A two-phase end-Triassic mass extinction. Earth-Science Reviews, 208: 103282.

    • Wignall P B, Bond D. 2008. The end-Triassic and Early Jurassic mass extinction records in the British Isles. Proceedings of the Geologists Association, 119(1): 73~84.

    • Williford K H, Grice K, Holman A, Mcelwain J C. 2014. An organic record of terrestrial ecosystem collapse and recovery at the Triassic—Jurassic boundary in East Greenland. Geochimica et Cosmochimica Acta, 127: 251~263.

    • Xu Yuanyuan, Lu Ning, Zhou Ning, Wang Yongdong. 2018#. Compositional characteristics and change patterns of terrestrial flora at the transition of Triassic—Jurassic boundary—Taking Late Triassic and Early Jurassic Flora of South China as an Example. Abstract Volume of Joint Meetings on the 12th National Congress of the Palaeontological Society of China (PSC) and the 29th Annual Conference of PSC: 87~88.

    • Yi Fan, Yi Haisheng, Xia Guoqing, Cai Zhanhu. 2018. Atmospheric carbon dioxide reconstruction and ocean acidification deduced from carbon isotope variations across the Triassic—Jurassic boundary in the Qiangtang area, Tibetan Plateau. Acta Geologica Sinica, 92(5): 2055~2057.

    • Zaffani M, Jadoul F, Rigo M. 2018. A new Rhaetian δ13Corg record: Carbon cycle disturbances, volcanism, end-Triassic mass extinction (ETE). Earth-Science Reviews, 178: 92~104.

    • Zhang Xiaoqing, Zhang Guoquan, Xi Shuna, Li Liqin, Deng Chuntao, Wang Yan, Zhou Ning, Wang Yongdong, Song Yi. 2016&. Wildfire event at the Triassic/Jurassic boundary: approaches, progress, and perspective. Acta Palaeontologica Sinica, 55(3): 331~345.

    • Zhang Xinzhi, L Peizong, Fang Linhao, Yang Han, Deng Shenghui, Lu Yuanzheng, Fang Yanan, Zhang Xiaoyu, Huang Ruting, Liang Jiabao, Shi Shengbao. 2022&. Wildfire records across the Triassic—Jurassic boundary in the Southern margin of the Junggar Basin, and global correlations. Acta Sedimentologica Sinica, 40(2): 473~483.