en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈晓轩,男,1989年生,工程师、硕士,主要从事油藏评价研究工作;E-mail: cxxsxs@petrochina.com.cn。

通讯作者:

赵晓东,男,1983年生,副教授、博士,主要从事油气地质的教学与研究工作;E-mail: zhaoxiaodong1984_1@126.com。

参考文献
白斌, 邹才能, 朱如凯, 张健, 谭嘉言, 张本健, 杨华, 崔景伟, 苏玲. 2012. 川西南部须二段致密砂岩储层构造裂缝特征及其形成期次. 地质学报, 86(11): 1841~1846.
参考文献
白斌, 朱如凯, 吴松涛, 杨文静, Jeff G, Allen G, 张响响, 苏玲. 2013. 利用多尺度CT成像表征致密砂岩微观孔喉结构. 石油勘探与开发, 40(3): 329~333.
参考文献
蔡正旗, 徐志明. 2001. 辽河盆地清水地区泥岩欠压实与油气层分布. 西南石油学院学报, 23(5): 1~3+5.
参考文献
陈建平, 王绪龙, 邓春萍, 梁狄刚, 张越迁, 赵喆, 倪云燕, 支东明, 杨海波, 王屿涛. 2016. 准噶尔盆地油气源、油气分布与油气系统. 地质学报, 90(3): 421~450.
参考文献
陈磊, 杨镱婷, 汪飞, 芦慧, 张译丹, 王鑫, 李艳平, 李臣. 2020. 准噶尔盆地勘探历程与启示. 新疆石油地质, 41(5): 505~518.
参考文献
丁文龙, 李超, 李春燕, 许长春, 久凯, 曾维特. 2012. 页岩裂缝发育主控因素及其对含气性的影响. 地学前缘, 19(2): 212~220.
参考文献
丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 2015. 致密砂岩储层裂缝研究进展. 地球科学进展, 30(7): 737~750.
参考文献
董少群, 曾联波, 车小花, 杜相仪, 徐辉, 冀春秋, 杨卫东, 李志华. 2023. 人工智能在致密储层裂缝测井识别中的应用. 地球科学, 48(7): 2443~2461.
参考文献
巩磊, 曾联波, 陈树民, 高帅, 张本健, 祖克威, 苗凤彬. 2016. 致密砾岩储层微观裂缝特征及对储层的贡献. 大地构造与成矿学, 40(1): 38~46.
参考文献
巩磊, 程宇琪, 高帅, 高志勇, 冯佳睿, 王洪涛, 宿晓岑, 卢崎, 王杰. 2023. 库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素. 地球科学, 48(7): 2475~2488.
参考文献
苟启洋, 徐尚, 郝芳, 杨峰, 王雨轩, 陆扬博, 张爱华, 程璇, 青加伟, 高梦天. 2019. 基于微米CT页岩微裂缝表征方法研究. 地质学报, 93(9): 2372~2382.
参考文献
郭佳, 宋双, 王一博, 詹路锋, 芮志峰. 2018. 准噶尔盆地吉木萨尔凹陷梧桐沟组层序地层划分. 地质学刊, 42(4): 558~567.
参考文献
郭小文, 何生, 郑伦举, 吴珍珍. 2011. 生油增压定量模型及影响因素. 石油学报, 32(4): 637~644.
参考文献
何江林, 付修根, 郭天旭, 孙涛. 2009. 羌塘盆地胜利河油页岩历史最大埋深. 大庆石油学院学报, 33(6): 11~18+115.
参考文献
何伶, 赵伦, 李建新, 马纪, 刘瑞林, 王淑琴, 赵文琪. 2014. 碳酸盐岩储集层复杂孔渗关系及影响因素——以滨里海盆地台地相为例. 石油勘探与开发, 41(2): 206~214.
参考文献
李长海, 赵伦, 刘波, 陈强, 陆成和, 孔悦. 2020. 微裂缝研究进展、意义及发展趋势. 天然气地球科学, 31(3): 402~416.
参考文献
李新宁, 刘震, 马昕箬, 焦立新, 周志超, 徐先静, 杨玉忠. 2023. 准噶尔盆地吉木萨尔凹陷二叠系超压成因及分布预测. 地球学报, 1~12.
参考文献
李学万, 宋柏荣, 高占琴, 王仁厚. 2005. 扫描电镜在辽河油田变质岩储层研究中的应用. 电子显微学报, 24(4): 335~336.
参考文献
刘卫彬, 张世奇, 李世臻, 周新桂, 王丹丹, 张文浩, 林燕华. 2018. 东濮凹陷沙三段储层微裂缝发育特征及意义. 地质通报, 37(S1): 496~502.
参考文献
吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 2020. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素——以红河油田长8储层为例. 天然气地球科学, 31(1): 37~46.
参考文献
南珺祥, 王素荣, 姚卫华, 卢燕. 2007. 鄂尔多斯盆地陇东地区延长组长6—8特低渗透储层微裂缝研究. 岩性油气藏, 19(4): 40~44.
参考文献
邵国勇, 熊伟, 沈瑞, 杨懿, 尚祯浩, 王国栋, 余昊. 2023. CT扫描技术在页岩油气储层微观结构表征中的应用进展. 应用化工, 52(6): 1785~1789+1799.
参考文献
童亨茂, 钱祥麟. 1994. 储层裂缝的研究和分析方法. 石油大学学报(自然科学版), 18(6): 14~20.
参考文献
万永平, 李园园, 梁晓. 2010. 基于流体包裹体的储层微裂缝研究——以陕北斜坡上古生界为例. 地质与勘探, 46(4): 711~715.
参考文献
汪吉林, 朱炎铭, 宫云鹏, 方辉煌. 2015. 重庆南川地区龙马溪组页岩微裂缝发育影响因素及程度预测. 天然气地球科学, 26(8): 1579~1586.
参考文献
王瑞飞, 陈明强, 孙卫. 2008. 特低渗透砂岩储层微裂缝特征及微裂缝参数的定量研究——以鄂尔多斯盆地沿25区块、庄40区块为例. 矿物学报, 28(2): 215~220.
参考文献
王瑞飞, 孙卫. 2009. 鄂尔多斯盆地姬塬油田上三叠统延长组超低渗透砂岩储层微裂缝研究. 地质论评, 55(3): 444~448.
参考文献
王维斌, 朱静, 马文忠, 冯顺彦, 刘艳妮, 赵静. 2017. 鄂尔多斯盆地周家湾地区长8致密砂岩储层特征及影响因素. 岩性油气藏, 29(1): 51~58.
参考文献
吴孔友, 查明, 王绪龙, 吴时国, 张立刚, 聂政荣. 2007. 准噶尔盆地成藏动力学系统划分. 地质论评, 53(1): 75~82.
参考文献
夏世威, 马强, 黄传炎, 张伟, 李潇鹏, 张宏, 马江浩, 彭亚中, 聂锋. 2023. 准噶尔盆地东部吉木萨尔一吉南凹陷构造演化及原型盆地恢复. 地质科技通报, 43(1): 170~179.
参考文献
许琳, 常秋生, 杨成克, 陶亲娥, 王仕莉, 费李莹, 徐士陆. 2019. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性. 石油与天然气地质, 40(3): 535~549.
参考文献
曾联波, 李跃纲, 王正国, 陈古明, 李梅. 2007. 邛西构造须二段特低渗透砂岩储层微观裂缝的分布特征. 天然气工业, 27(6): 45~47+150~151.
参考文献
曾联波, 巩磊, 宿晓岑, 毛哲. 2024. 深层-超深层致密储层天然裂缝分布特征及发育规律. 石油与天然气地质, 45(1): 1~14.
参考文献
张世华, 田军, 叶素娟, 杨映涛, 付菊. 2019. 断层输导型天然气成藏模式的动态成藏过程——以川西坳陷新场构造带上三叠统须二段气藏为例. 天然气工业, 39(7): 49~56.
参考文献
赵华伟, 宁正福, 段太忠, 廉培庆, 王鸣川. 2019. 基于微米CT扫描成像实验及格子Boltzmann模拟方法的致密砂岩孔隙结构表征. 东北石油大学学报, 43(5): 1~10+119.
参考文献
赵兰. 2022. 致密砂岩储层微裂缝发育特征及对物性的影响——以杭锦旗地区十里加汗区带为例. 油气藏评价与开发, 12(2): 285~291+312.
参考文献
支东明, 李建忠, 张伟, 王晓辉, 马强, 刘俊田, 杨帆. 2022. 准噶尔盆地吉木萨尔凹陷双吉构造带井井子沟组勘探突破及意义. 石油学报, 43(10): 1383~1394.
参考文献
Bai Bin, Zou Caineng, Zhu Rukai, Zhang Jian, Tan Jiayan, Zhang Benjian, Yang Hua, Cui Jingwei, Su Ling. 2012&. Characteristics and formation stage-times of structural fractures in tight sandstone reservoir of the 2nd member of Xujiahe Formation in southwestern Sichuan Basin. Acta Geologica Sinica, 86(11): 1841~1846.
参考文献
Bai Bin, Zhu Rukai, Wu Songtao, Yang Wenjing, Gelb J, Gu A, Zhang Xiangxiang, Su Ling. 2013&. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 40(3): 329~333.
参考文献
Cai Zhengqi, Xu Zhiming . 2001&. Under-compaction of mud rock versus distribution of oil and gas reservoirs in Qingshui Area of western depression of Liaohe Basin. Journal of Southwest Petroleum Institute, 23(5): 1~3+5.
参考文献
Chen Jianping, Wang Xulong, Deng Chunping, Liang Digang, Zhang Yueqian, Zhao Zhe, Ni Yunyan, Zhi Dongming, Yang Haibo, Wang Yutao. 2016&. Oil and gas source, occurrence and petroleum system in the Junggar Basin, Northwest China. Acta Geologica Sinica, 90(3): 421~450.
参考文献
Chen Lei, Yang Yiting, Wang Fei, Lu Hui, Zhang Yidan, Wang Xin, Li Yanping, Li Chen. 2020&. Exploration history and enlightenment in Junggar Basin. Xinjiang Petroleum Geology, 41(5): 505~518.
参考文献
Ding Wenlong, Li Chao, Li Chunyan, Xu Changchun, Jiu Kai, Zeng Weite. 2012&. Dominant factor of fracture development in shale and its relationship to gas accumulation. Earth Science Frontiers, 19(2): 212~220.
参考文献
Ding Wenlong, Wang Xinghua, Hu Qiujia, Yin Shuai, Cao Xiangyu, Liu Jianjun. 2015&. Progress in tight sandstone reservoir fractures research. Advances in Earth Science, 30(7): 737~750.
参考文献
Dong Shaoqun, Zeng Lianbo, Che Xiaohua, Du Xiangyi, Xu Hui, Ji Chunqiu, Yang Weidong, Li Zhihua. 2023&. Application of artificial intelligence in fracture identification using well logs in tight reservoirs. Earth Science, 48(7): 2443~2461.
参考文献
Ezati M, Azizzadeh M, Ali R M, Fattahpour V, Honarmand J. 2018. Characterization of micro-fractures in carbonate Sarvak Reservoir, using petrophysical and geological data, SW Iran. Journal of Petroleum Science and Engineering, 170: 675~695.
参考文献
Gong Lei, Zeng Lianbo, Chen Shumin, Gao Shuai, Zhang Benjian, Zu Kewei, Miao Fengbin. 2016&. Characteristics of micro-fractures and contribution to the compact conglomerate reservoirs. Geotectonica et Metallogenia, 40(1): 38~46.
参考文献
Gong Lei, Cheng Yuqi, Gao Shuai, Gao Zhiyong, Feng Jiarui, Wang Hongtao, Su Xiaocen, Lu Qi, Wang Jie. 2023&. Fracture connectivity characterization and its controlling factors in lower Jurassic tight sandstone reservoirs of eastern kuqa foreland basin. Earth Science, 48(7): 2475~2488.
参考文献
Gou Qiyang, Xu Shang, Hao Fang, Yang Feng, Wang Yuxuan, Lu Yangbo, Zhang Aihua, Cheng Xuan, Qing Jiawei, Gao Mengtian. 2019&. Study on characterization of micro-fracture of shale based on micro-CT. Acta Geologica Sinica, 93(9): 2372~2382.
参考文献
Guo Jia, Song Shuang, Wang Yibo, Zhan Lufeng, Rui Zhifeng. 2018&. Sequence stratigraphic division of the Wutonggou Formation in the Jimsar Sag of Junggar Basin. Journal of Geology, 42(4): 558~567.
参考文献
Guo Xiaowen, He Sheng, Zheng Lunju, Wu Zhenzhen. 2011&. A quantitative model for the overpressure caused by oil generation and its influential factors. Acta Petrolei Sinica, 32(4): 637~644.
参考文献
Guo Zhiqi, Qin Xiaoying, Liu Cai. 2023. Pore and microfracture characterization in tight gas sandstone reservoirs with a new rock-physics-based seismic attribute. Remote Sensing, 15(2): 289.
参考文献
He Jianglin, Fu Xiugen, Guo Tianxu, Sun Tao. 2009&. Maximum buried depth for the Shenglihe oil shale in the Qingtang Basin. Journal of Daqing Petroleum Institute, 33(6): 11~18+115.
参考文献
He Ling, Zhao Lun, Li Jianxin, Ma Ji, Liu Ruilin, Wang Shuqin, Zhao Wenqi. 2014&. Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors: A case of platform facies in Pre-Caspian Basin. Petroleum Exploration and Development, 41(2): 206~214.
参考文献
Hooker J N, Laubach S E, Marrett R. 2018. Microfracture spacing distributions and the evolution of fracture patterns in sandstones. Journal of Structural Geology, 108: 66~79.
参考文献
Li Changhai, Zhao Lun, Liu Bo, Chen Qiang, Lu Chenghe, Kong Yue. 2020&. Research status, significance and development trend of microfractures. Natural Gas Geoscience, 31(3): 402~416.
参考文献
Li Xinning, Liu Zhen, Ma Xinruo, Jiao Lixin, Zhou Zhichao, Xu Xianjing, Yang Yuzhong. 2023&. Mechanism of generation and Prediction of distribution of overpressure within the Permian strata in the Jimusar depression, Junggar Basin. Acta Geoscientica Sinica, 1~12.
参考文献
Li Xuewan, Song (BaiBo)(Rong), Gao Zhanqin, Wang Renhou. 2005#. Application of SEM on the study of metamorphic rock reservoir in Liaohe oil field. Journal of Chinese Electron Microscopy Society, 24(4): 335~336.
参考文献
Liu Weibin, Zhang Shiqi, Li Shizhen, Zhou Xingui, Wang Dandan, Zhang Wenhao, Lin Yanhua. 2018&. Development characteristics and geological significance of microfractures in the Es3 reservoirs of Dongpu depression. Geological Bulletin of China, 37(S1): 496~502.
参考文献
Lü Wenya, Zeng Lianbo, Zhou Sibin, Ji Yuanyuan, Liang Feng, Hui Chen, Yu Jiasheng. 2020&. Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: Case study of the eighth member of the Yanchang Formation in Honghe Oilfield. Natural Gas Geoscience, 31(1): 37~46.
参考文献
Nan Junxiang, Wang Surong, Yao Weihua, Lu Yan. 2007&. Micro-fractures in extra-low permeability reservoir of Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 19(4): 40~44.
参考文献
Nian Tao, Li Yanze, Hou Tao, Tan Chengqian, Liu Chao. 2020. Natural fractures at depth in the Lower Cretaceous Kuqa Depression tight sandstones: Identification and characteristics. Geological Magazine, 157(8): 1299~1315.
参考文献
Ougier S A, Renard F, Boehm C, Vidal G S. 2016. Microfracturing and microporosity in shales. Earth-Science Reviews, 162: 198~226.
参考文献
Sarout J, Guéguen Y. 2008. Anisotropy of elastic wave velocities in deformed shales: Part 1—Experimental results. Geophysics, 73(5): D75~D89.
参考文献
Shao Guoyong, Xiong Wei, Shen Rui, Yang Yi, Shang Zhenhao, Wang Guodong, Yu Hao. 2023&. Application progress of CT scanning technology in characterization of shale oil and gas reservoir microstructure. Applied Chemical Industry, 52(6): 1785~1789+1799.
参考文献
Tong Hengmao, Qian Xianglin. 1994&. Research and analysis on natural fracture. Journal of China University of Petroleum (Edition of Natural Science), 18(6): 14~20.
参考文献
Wan Yongping, Li Yuanyuan, Liang Xiao. 2010&. Fractures of reservoirs inferred from fluid inclusions: A case study on the upper Paleozoic of northern Shaanxi slope. Geology and Exploration, 46(4): 711~715.
参考文献
Wang Jilin, Zhu Yanming, Gong Yunpeng, Fang Huihuang. 2015&. Influential factors and forecast of microcrack development degree of longmaxi formation shales in Nanchuan Region, Chongqing. Natural Gas Geoscience, 26(8): 1579~1586.
参考文献
Wang Ruifei, Chen Mingqiang, Sun Wei. 2008&. Quantitative research on the characteristics of and parameters for micro cracks in ultra-low permeability sandstone reservoirs—Taking Yan 25 and Zhuang 40 areas in the Ordos Basin for example. Acta Mineralogica Sinica, 28(2): 215~220.
参考文献
Wang Ruifei, Sun Wei. 2009&. A study on micro cracks in super-low permeability sandstone reservoir of the Upper Triassic Yanchang Formation in the Ordos Basin. Geological Review, 55(3): 444~448.
参考文献
Wang Weibin, Zhu Jing, Ma Wenzhong, Feng Shunyan, Liu Yanni, Zhao Jing. 2017&. Characteristics and influencing factors of Chang 8 tight sandstone reservoir of Triassic Yanchang Formation in Zhoujiawan Area, Ordos Basin. Lithologic Reservoirs, 29(1): 51~58.
参考文献
Wu Kongyou, Zha Ming, Wang Xulong, Wu Shiguo, Zhang Ligang, Nie Zhengrong. 2007&. Pool-forming dynamic system division in Junggar Basin. Geological Review, 53(1): 75~82.
参考文献
Xia Shiwei, Ma Qiang, Huang Chuanyan, Zhang Wei, Li Xiaopeng, Zhang Hong, Ma Jianghao, Peng Yazhong, Nie Feng. 2023&. Tectonic evolution and prototype basins Reconstruction in the Jimsar and Jinan depressions, Eastern Junggar Basin. Bulletin of Geological Science and Technology, 43(1): 170~179.
参考文献
Xu Lin, Chang Qiusheng, Yang Chengke, Tao Qine, Wang Shili, Fei Liying, Xu Shilu. 2019&. Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation, Jimusaer Sag. Oil & Gas Geology, 40(3): 535~549.
参考文献
Yin Shuai, Lü Dawei, Ding W. 2018. New method for assessing microfracture stress sensitivity in tight sandstone reservoirs based on acoustic experiments. International Journal of Geomechanics, 18(4): 04018008.
参考文献
Zeng Lianbo, Li Yuegang, Wang Zhengguo, Chen Guming, Li Mei. 2007&. Distribution of microfractures in ultralow permeability sandstone reservoirs of the second member of Xujiahe Formation (t3x2) in qiongxi structure. Natural Gas Industry, 27(6): 45~47+150~151.
参考文献
Zeng Lianbo, Jiang Jianwei, Yang Yongli. 2010. Fractures in the low porosity and ultra-low permeability glutenite reservoirs: A case study of the late Eocene Hetaoyuan Formation in the Anpeng Oilfield, Nanxiang Basin, China. Marine and Petroleum Geology, 27(7): 1642~1650.
参考文献
Zeng Lianbo, Gong Lei, Su Xiaocen, Mao Zhe. 2024&. Natural fractures in deep to ultra-deep tight reservoirs: Distribution and development. Oil & Gas Geology, 45(1): 1~14.
参考文献
Zeng Lianbo, Gong Lei, Zhang Yunzhao, Dong Shaoqun, Lyu Wenya. 2023. A review of the genesis, evolution, and prediction of natural fractures in deep tight sandstones of China. AAPG Bulletin, 107(10): 1687~1721.
参考文献
Zhang Shihua, Tian Jun, Ye Sujuan, Yang Yingtao, Fu Ju. 2019&. Dynamic accumulation process of fault-translocation natural gas accumulation model: A case study on the gas reservoir of the second Member of Upper Triassic Xujiahe Fm in the Xinchang structural zone of the Western Sichuan Depression. Natural Gas Industry, 39(7): 49~56.
参考文献
Zhao Huawei, Ning Zhengfu, Duan Taizhong, Lian Peiqing, Wang Mingchuan. 2019&. Pore structure characterization of tight sandstones by X-ray computed tomography experiment combined with Lattice Boltzmann Method. Journal of Northeast Petroleum University, 43(5): 1~10+119.
参考文献
Zhao Lan. 2022&. Development characteristics of microfractures in tight sandstone reservoir and its influence on physical properties: A case study of Shiligiahan zone in Hangjinqi. Petroleum Reservoir Evaluation and Development, 12(2): 285~291+312.
参考文献
Zhi Dongming, Li Jianzhong, Zhang Wei, Wang Xiaohui, Ma Qiang, Liu Juntian, Yang Fan. 2022&. Exploration breakthrough and its significance of Jingjingzigou Formation in Shuangji tectonic zone of Jimsar Sag in Junggar Basin. Acta Petrolei Sinica, 43(10): 1383~1394.
目录contents

    摘要

    笔者等利用岩芯、薄片、扫描电镜和分析化验等资料,开展了吉木萨尔凹陷井井子沟组致密砂岩储层微裂缝特征分析,并揭示了微裂缝成因。研究表明:①基于裂缝与颗粒之间的分布关系,将井井子沟组致密砂岩储层微裂缝分为粒内缝、粒缘缝和穿粒缝 3 种类型,其中粒内缝最发育,穿粒缝次之,粒缘缝最不发育;利用延伸长度、面密度和开度等参数评价了 3 种类型微裂缝分布,研究区开启性裂缝占 60%以上,以穿粒缝开启性最好。 ②微裂缝发育控制的因素主要有构造作用、岩石成分和结构等,微裂缝主要发育在中砂岩、细砂岩中,颗粒粒度越粗、分选越好,微裂缝越发育;储层抗压能力较弱,致使粒内缝和穿粒缝的成为主要微裂缝类型;点—线接触使得颗粒间的接触面积较小,有利于微裂缝发育。 ③研究区微裂缝成因主要为原生、成岩和构造成因,粒内缝为原生成因和成岩成因, 粒缘缝为成岩成因和构造成因,穿粒缝为构造成因,穿粒缝有助于储层渗流能力的发育,是优质储层发育的有利因素之一。研究成果对于准噶尔盆地致密砂岩储层微裂缝的成因及优质储层评价具有指导意义,并对类似地质条件的致密储层油气勘探可以起到一定的借鉴作用。

    Abstract

    Objective: It is generally believed that the tight sandstone reservoir has strong heterogeneity and poor physical properties, but the tight sandstone reservoir in the Jimsar Sag, Junggar Basin, has good oil and gas production. Through the core data photos, it is found that the reservoir fractures of the Jinjinzigou Formation (P2jj) in the study area are developed, most of which are filled with crude oil and calcite. Based on the microscopic thin sections and scanning electron microscope photos, it is found that most samples develop micro-fractures. Through the observation, measurement and calculation of micro-fractures under the microscope, combined with the core and regional tectonic background, the development characteristics, main controlling factors and genetic mechanism of micro-fractures were systematically analyzed, and the formation stages of micro-fractures were discussed. The research results have guiding significance for the genesis of micro-fractures in tight sandstone reservoirs and the evaluation of high-quality reservoirs in the Junggar Basin, and can be used as a reference for oil and gas exploration in tight reservoirs with similar geological conditions.

    Methods: In order to study the distribution characteristics and genesis of micro-fractures in tight sandstone reservoirs of the Jinjinzigou Formation (P2jj) , cast thin sections, scanning electron microscopy (SEM) and Nano Measure software were used to observe and measure the reservoirs of the Jinjinzigou Formation (P2jj) in PetroChina Xinjiang Oilfield Company. Through the observation of 226 cast thin sections and SEM images, the characteristics and causes of micro-fractures were analyzed. Through the cutting relationship, development characteristics and regional tectonic background between micro-fractures, the formation stages of micro-fractures were discussed.

    Results: The results show that the micro-fractures in tight sandstone reservoirs of the P2jj in the Jimsar sag can be divided into three genetic types: tectonic origin, diagenetic origin and abnormal high-pressure origin. Based on the scale of micro-fractures and the relationship between micro-fractures and particles, the micro-fractures in the study area are divided into three basic types: intra-granular fractures, grain-edge fractures and penetrating fractures. Among them, intra-granular fractures are the most developed and the most important micro-fracture type in the reservoir. The second is the most developed grain-penetrating fracture. The development scale of grainpenetrating fracture in the study area is large, cutting through particles, and most of them are effective fractures. The grain boundary seam is less developed, which is mainly developed between the particles, and the connectivity is better. According to the microscopic analysis, the reservoir micro-fractures in the study area are effective, and the open micro-fractures account for more than 60%. Most of the filled fractures are filled with organic matter and crude oil.

    Conclusions: Based on the analysis, the micro-fractures in the reservoir of Jinjinzigou Formation (P2jj) are mainly affected by diagenesis and tectonism, and their development degree is mainly controlled by internal factors (sandstone grain size, rock debris composition, interstitial content and contact relationship between particles and particles) and external factors (tectonism). Based on the analysis of tectonic stages, there are at least 3 stages of micro-fractures in the study area, which are primary fractures, dissolution fractures, early filling fractures re-split fractures and late cutting fractures. In general, micro-fractures are not developed in tight sandstone reservoirs in the study area. In medium-fine sandstone, micro-fractures are developed in siltstone, and micro-fractures are more developed. In argillaceous siltstone, the development of micro-fractures is weak, and in mudstone, micro-fractures are basically not developed.

  • 吉木萨尔凹陷位于准噶尔盆地东部,早期勘探主要集中在东南斜坡的二叠系梧桐沟组砂砾岩和芦草沟组油页岩(陈建平等,2016; 郭佳等,2018; 许琳等,2019; 陈磊等,2020)。近年来,准噶尔盆地吉木萨尔凹陷二叠系井井子沟组致密砂岩储层规模领域相继获得突破(支东明等,2022),吉南 4 井区落实油藏规模 615 万吨,双吉构造带吉新 2 井落实探明地质储量 11.58 Mt,2023 年 10 月,新钻评价井吉 451 井在井井子沟组钻遇含油砂体,取心 16. 0 m 均见油浸、油迹良好油气显示,表明吉木萨尔凹陷二叠系井井子沟勘探潜力大。目前,研究区致密砂岩储层勘探程度低,储层评价主要以宏观认识为主,缺少微观储层研究,特别是研究区微裂缝尚未开展研究。

  • 前人在发育规模、成因类型、成岩特征等方面对微裂缝进行了定义和总结(王瑞飞等,2008; 丁文龙等,2012; 何伶等,2014; 汪吉林等,2015; Hooker et al.,2018)。根据前期文献调研,微裂缝分类方法较多,根据成因可将微裂缝分为构造微裂缝、成岩微裂缝和与异常流体压力相关的微裂缝(王瑞飞等,2009; Zeng Lianbo et al.,2010; 李长海等,2020); 根据微裂缝与周围颗粒间的相对关系,可将微裂缝分为粒内缝、穿粒缝和粒缘缝(曾联波等,2007; 吕文雅等,2020)。成因分类方法是目前应用最广泛且使用最普遍的方法,微裂缝与颗粒的相对位置关系的分类方法因其简便性和极强的实用性,也得到了较广泛应用,因此本文亦采用微裂缝成因、微裂缝与周围颗粒间的相对关系进行微裂缝的分类。当前,微裂缝直接识别手段为薄片鉴定和扫描电镜,间接手段有纵横超声波测试、微米 CT 成像技术和渗透率差异值法( Sarout et al.,2008; 白斌等,2013; Ougier et al.,2016; 苟启洋等,2019; 赵华伟等,2019; Zeng Lianbo et al.,2023)。针对致密砂岩储层,微裂缝的存在极大的改善了储层的结构,提高了储层的渗透能力并为油气的运移和存储提供了通道(南珺祥等,2007; 巩磊等,20162023; 刘卫彬等,2018; 张世华等,2019; Nian Tao et al.,2020; Guo Zhiqi et al.,2023; 邵国勇等,2023)。因此开展微裂缝发育特征、成因类型及控制因素的研究对致密砂岩储层评价以及指导致密油气勘探开发具有重要的意义。近年来,吉木萨尔凹陷二叠系井井子沟组致密砂层规模领域相继获得突破,目前吉木萨尔凹陷及周缘钻遇井井子沟组井 50 余口,展现出良好的勘探前景。笔者等通过对吉木萨尔凹陷的井井子沟组储层铸体薄片和扫描电镜观察,结合岩芯、测井、物性等资料,对研究区微裂缝的发育特征、控制因素及成因进行了研究,在系统研究井井子沟组致密砂岩储层微裂缝微观特征基础上,划分微裂缝的成因类型,讨论了微裂缝的发育因素和形成时期,研究认识对准噶尔盆地类似地质条件的致密储层油气勘探可以起到一定的借鉴作用。

  • 图1 准噶尔盆地吉木萨尔凹陷井井子沟组综合地质图:(a)准噶尔盆地构造区域图;(b)吉木萨尔凹陷研究区位置图;(c)井井子沟组综合柱状图

  • Fig.1 Comprehensive geological map of the Jinjinzigou Formation (P2jj) in the Jimsar Sag, Junggar Basin: (a) structural regional map; (b) location map of the study area; (c) comprehensive histogram of the P2jj

  • 1 地质背景

  • 吉木萨尔凹陷位于准噶尔盆地东部(图1a),占地面积约 1300 km 2,为三面断层控制的箕状凹陷,凹陷西高东低,发育受断裂控制的多个低幅度鼻隆(图1b)。受 NE—SW 向和近 NS 向断裂控制,井井子沟组自西向东发育吉新 1、双吉和吉东三大低幅度鼻凸发育带,吉东断控鼻凸排带发育 4 大低幅度鼻凸,延伸至生烃凹陷(吴孔友等,2007)。井井子沟组成藏主要受断层、低凸、砂体控制,具有断裂输导、低凸控聚的特征(支东明等,2022)。井井子沟组是芦草沟组优质湖相源岩层之下的第一套层系,以三角洲沉积为主,受沉积沟槽控制发育古西、吉南、三台和沙奇 4 大物源。井井子沟组主要发育两套砂体(图1c),由下到上划分为两段:井一段、井二段。其中井一段(P2jj1)岩性以褐色厚层状泥岩夹粉细砂岩、泥质粉砂岩为主,下层砂体厚度 15~30 m,连续性差,局部发育; 井二段(P2jj2)以灰色、深灰色砂岩为主,发育薄泥岩,上层砂体厚度 50 m 左右,砂岩连续性好。井一段和井二段分布稳定、砂体规模大、油气显示活跃。岩性以细砂岩、粉砂岩为主,井井子沟组储层普遍致密,孔隙度主要分布在 1.1%~12%,渗透率分布在(0. 01~0.253)×10-3μm 2 ,为典型的致密砂岩储层,在成岩和构造的共同作用下,裂缝较发育(曾联波等,2007; 何江林等,2009; 郭小文等,2011; 李新宁等,2023)。

  • 图2 准噶尔盆地吉木萨尔凹陷研究区裂缝类型和分布特征

  • Fig.2 Fracture types and distribution characteristics in the study area of Jimsar sag, Junggar Basin

  • (a)吉 451 井,3773 m,粒内缝;(b)吉 451 井,3769.1 m,穿粒缝;(c)吉 451 井,3767.5 m,粒缘缝;(d)吉 174 井,3434.72 m,粒内缝;(e)吉 174 井,3428 m,交代作用致使矿物裂开;(f)吉 174 井,3422.36 m,成岩收缩缝;( g)吉 174 井,3432.5~3432.7 m,构造成因缝;( h)吉 451 井,3781.35 m,顺层缝;(i)吉木萨尔凹陷井井子沟组致密砂岩储层微裂缝类型饼状图

  • (a) The Well Ji 451, 3773 m, intragranular fracture; (b) the Well Ji 451, 3769.1 m, grain penetrating fracture; (c) the Well Ji 451, 3767.5 m, grain edge fracture; (d) the Well Ji 174, 3434.72 m, intragranular fracture; ( e) the Well Ji 174, 3428 m, metasomatism causing mineral cracking; (f) the Well Ji 174, 3422.36 m, diagenetic shrinkage joint; (g) the Well Ji 174, 3432.5~3432.7 m, structural fracture; (h) the Well Ji 451, 3781.35 m, bedding fracture; (i) pie chart of microfracture types in tight sandstone reservoir of the P2jj in the Jimsar sag

  • 2 微裂缝发育特征

  • 2.1 微裂缝类型

  • 通过对吉木萨尔凹陷井井子沟组取心井的 226 张铸体薄片和扫描电镜照片的观察,结合岩芯资料,发现微裂缝发育的样品共 138 张,占 61%。通过对镜下微裂缝的观察、测量和计算,并结合岩芯、测井、物性等资料,定性、定量地表征了微裂缝的类型、规模。根据微裂缝与颗粒之间的接触关系可以将吉木萨尔凹陷井井子沟组致密砂岩储层微裂缝分为粒内缝、粒缘缝和穿粒缝。粒内缝是井井子沟组发育最多的微裂缝类型,分布在颗粒的内部,延伸较短,不会切穿颗粒,常常被方解石和泥质所充填(图2a、 d),含量达到 50%之上(图2i); 穿粒缝发育数目仅次于粒内缝,其发育规模较大,延伸较长,常常切穿颗粒延伸,被原油、方解石所充填(图2b); 粒缘缝发育数目较少,主要表现为分布在矿物颗粒之间,沿着矿物颗粒边缘发育,规模中等,与穿粒缝交织呈网状分布(图2c)。另外在扫描电镜中可观察到成岩收缩缝(图2f),属于非构造缝,在岩芯中亦可观察到厘米级规模的裂缝,主要是构造裂缝(图2g)和顺层缝(图2h),构造裂缝较陡,倾角较大。

  • 2.2 微裂缝分布特征

  • 致密砂岩储层微裂缝特征参数包括:延伸长度、充填成分、充填程度、裂缝连通性、裂缝密度等(丁文龙等,2015; 董少群等,2023; 曾联波等,2024)。根据 78 块薄片资料统计分析,从延伸长度、面密度和开度等 3 个方面进行微裂缝的分布特征评价。吉木萨尔凹陷井井子沟组致密砂岩储层中微裂缝的面密度普遍小于 1.2 mm / mm 2。粒内缝的面密度主要集中在 0.2~0.6 mm / mm 2,一般小于 1.2 mm / mm 2(图3a)。穿粒缝的面密度主要分布在0~0 .2 mm / mm 2,通常小于 1. 0 mm / mm 2(图3b)。粒缘缝的面密度在 0. 04~0.12 mm / mm 2,一般少于 0.24 mm / mm 2(图3c)。研究区致密砂岩储层中粒内缝、穿粒缝比粒缘缝更发育,井井子沟组致密砂岩储层微裂缝发育程度较差,虽然微裂缝发育样品占总样品数较高,但单个样品下微裂缝发育数目较少。通过测量吉木萨尔凹陷井井子沟组储层粒内缝长度主要集中在 30~120 μm(图3d),穿粒缝长度集中在 50~150 μm(图3e),粒缘缝长度集中在 200~400 μm 范围内(图3f),粒内缝发育规模较小,穿粒缝发育规模中等,粒缘缝的发育规模最大。一般用面密度来表示微裂缝的发育程度(童亨茂等,1994),通过统计吉木萨尔凹陷井井子沟组致密砂岩储层粒内缝开度主要集中在 2~6 μm(图3g),穿粒缝主要集中在 2~10 μm(图3h),粒缘缝主要集中在 8~12 μm(图3i),粒内缝和粒缘缝的开度一般小于穿粒缝的开度,以穿粒缝开启性最好,含油性较好,而粒缘缝和粒内缝开启性一般,改善储层效果一般(表1)。吉木萨尔凹陷井井子沟组储层微裂缝有效性较好,开启性裂缝占 60% 以上,以穿裂缝为主,开启性裂缝被有机质、原油等充填,封闭性裂缝被方解石、黄铁矿等充填。

  • 图3 准噶尔盆地吉木萨尔凹陷井井子沟组致密砂岩储层微裂缝分布特征

  • Fig.3 Distribution characteristics of micro-fractures in tight sandstone reservoirs of the Jinjinzigou Formation (P2jj) in the Jimsar Sag, Junggar Basin

  • (a)粒内缝面密度频率分布图;(b)穿粒缝面密度频率分布图;(c)粒缘缝面密度频率分布图;(d)粒内缝长度频率分布图;(e)穿粒缝长度频率分布图;(f)粒缘缝长度频率分布图;(g)粒内缝开度频率分布图;(h)穿粒缝开度频率分布图;(i)粒缘缝开度频率分布图

  • (a) The density frequency distribution of intragranular fracture; (b) the density frequency distribution map of grain penetrating fracture; (c) the density frequency distribution map of grain edge fracture; ( d) frequency distribution of intragranular fracture length; ( e) frequency distribution of grain penetrating fracture length; (f) frequency distribution of grain edge fracture; (g) the frequency distribution of intragranular fracture seam opening; (h) the frequency distribution of grain penetrating fracture seam opening; (i) the frequency distribution of grain edge fracture seam opening

  • 表1 准噶尔盆地吉木萨尔凹陷井井子沟组微裂缝类型和特征

  • Table1 Types and characteristics of microfractures in the Jinjinzigou Formation (P2jj) in the Jimsar Sag, Junggar Basin

  • 3 微裂缝发育控制因素及形成期次讨论

  • 3.1 控制因素

  • 吉木萨尔凹陷井井子沟组断层比较发育,在强烈的构造应力作用下,不同位置、不同深度的地层中均可以见到裂缝发育。裂缝的形成不仅与构造作用相关,还受岩石的成分和结构影响。不同的砂岩粒度、岩石碎屑成分、填隙物含量和颗粒之间的接触关系都会对微裂缝的发育产生不同程度的影响(丁文龙等,2012; 王维斌等,2017; 赵兰,2022)。粒度较粗的砂岩颗粒相互间的接触面积小,单位面积上所受的压力较大,有利于微裂缝发育(南珺祥等,2007; 万永平等,2010; 赵兰,2022; 巩磊等,2023),吉木萨尔凹陷井井子沟组致密砂岩储层微裂缝主要发育在中砂岩、细砂岩中,含砾砂岩次之,粉砂岩最不发育(图4)。粒径主要分布在 0.34~1. 08 mm,且砂岩粒度越粗、分选越好,微裂缝越发育; 硬度较高的石英、长石和软性岩屑、填隙物在各个方向压力的作用下,容易在石英和长石周围发生位移和错动,当储层中砂岩塑性填隙物含量较低时,越容易产生微裂缝,井井子沟组致密砂岩储层碎屑成分主要以石英、长石和岩屑为主,填隙物主要为黄铁矿,喷出岩岩屑中填隙物主要为绿泥石和磁铁矿,总的来说,塑性填隙物含量较低,无法在石英颗粒、长石颗粒和岩屑周围承受外力作用的抗压,致使粒内缝和穿粒缝的成为研究区主要微裂缝类型; 井井子沟组致密砂岩储层主要以点—线接触为主,偶见点接触,点线接触和点接触的砂岩颗粒间的接触面积小,在单位面积上所受压力较大,有利于微裂缝的发育。宏观上,吉木萨尔凹陷井井子沟组致密砂岩储层微裂缝发育主要受成岩作用和构造作用影响。通过镜下薄片观察,井井子沟组致密砂岩储层普遍发育强压实,可见长石溶蚀现象,随着压实作用的增强,微裂缝发育程度也逐渐增大(图5b、c)。另外受构造应力的影响下,岩石可能发生剪切破裂,或沿着应力方向扩展形成构造成因的微裂缝,或者与成岩作用结合,形成构造—成岩微裂缝( 蔡正旗等,2001; Ezati et al.,2018; 吕文雅等,2020)。

  • 图4 准噶尔盆地吉木萨尔凹陷井井子沟组不同砂岩粒度微裂缝发育直方图

  • Fig.4 Micro-fracture development histogram of different sandstone grain size in the P2jj in the Jimsar sag, Junggar Basin

  • 图5 准噶尔盆地吉木萨尔凹陷井井子沟组微裂缝形成期次

  • Fig.5 Formation period of micro-fracture in the P2jj in the Jimsar sag, Junggar Basin

  • (a)吉 174 井,3430.9 m,泥质充填原生缝;(b)吉 451 井,3781.65 m,方解石溶蚀沟通粒缘缝;(c)吉 451 井,3767.53 m,早期充填又重新裂开;(d)吉 174 井,3435.8 m,晚期裂缝切割早期裂缝

  • (a) The Well Ji 174, 3430.9 m, muddy filling primary fracture; (b) the Well Ji 451, 3781.65 m, calcite dissolution communicates grain edge fractures; (c) the Well Ji 451, 3767.53 m, early filling and re-cracking; (d) the Well Ji 174, 3435.8 m, late fractures cut early fractures

  • 3.2 形成期次讨论

  • 通过镜下观察发现,薄片中存在微裂缝的充填和切割的现象,既有原生裂缝充填又有成岩裂缝充填,既有早期充填又再次裂开形成的裂缝又有一组裂缝切割另一组裂缝的现象(图5d)。微裂缝的形成期次和时间可以通过裂缝的充填顺序和裂缝间的切割关系来判断(李学万等,2005; 白斌等,2012)。结合研究区的构造演化和镜下薄片,研究区主要发育三期微裂缝(表2),分别为第一期的泥质充填的原生缝(图5a)、第二期的溶蚀成岩缝(图5b)和第三期的构造作用形成的构造缝(图5c)。其中构造缝根据裂缝切割关系和发育程度可进一步细分为三小期(表2)。吉木萨尔凹陷井井子沟组沉积后,主要经历了 3 次大的构造运动(刘卫彬等,2018; 夏世威等,2023),在晚二叠世—三叠纪,吉木萨尔凹陷处于周缘前陆盆地坳陷阶段,在挤压应力的作用下使得地层抬升,造成最小主应力降低,产生第一期构造微裂缝,以穿裂缝为主,由于该期构造应力较小,仅切开颗粒边缘; 在侏罗系沉积时期,吉木萨尔凹陷处于陆内坳陷阶段,盆地边缘收到挤压而坳陷内部在伸展应力的作用下发生隆升,吉木萨尔吉周缘处于南高北低的局势,产生第二期构造微裂缝,该期构造微裂缝以粒缘缝、穿粒缝为主,该期构造应力增强,表现为切穿颗粒、后期构造裂缝切割早期裂缝等特征; 在上白垩统沉积时期,断层活动相对薄弱,在挤压应力下隆升,产生大规模的抬升剥蚀; 古近系、新近系沉积时期,博格达山持续隆升,新近系之后,喜马拉雅运动使得博格达山强烈隆升并向南俯冲,构造应力增强产生第三期构造微裂缝,发育粒缘缝和穿粒缝,该期构造应力最强,表现为后期构造裂缝切割早期裂缝、早期沥青充填裂缝重新裂开的特征。

  • 表2 准噶尔盆地吉木萨尔凹陷井井子沟组三期微裂缝特征统计表

  • Table2 Statistics of three stages micro-fracture characteristics in the P2jj in the Jimsar sag, Junggar Basin

  • 4 微裂缝成因

  • 岩芯、铸体薄片和扫描电镜分析结果显示了吉木萨尔凹陷井井子沟组致密砂岩储层微裂缝的分布特征,在成因上可分为原生、构造和成岩成因。原生成因微裂缝为储层沉积形成之前在母岩中已经存在的裂缝。吉木萨尔凹陷井井子沟组原生裂缝绝大部分被矿物以及泥质完全充填(图6a),属于无效裂缝,粒内缝主要为原生成因。构造成因的微裂缝主要表现为切穿石英长石等矿物颗粒,发育较平直,不受矿物颗粒的限制,规模较大、延伸较长,开度变化较大,多为有效裂缝,主要发育在细砂岩和粉砂岩等岩性中。构造成因是井井子沟组致密砂岩储层穿粒缝形成的关键因素,构造应力作用于岩体上产生了一系列分布相对均匀的细小微裂缝,然后随着周围地层压力的增大,岩石开始发生破裂,形成了大量的微裂缝。成岩成因的微裂缝主要表现为顺着层面发育,多发生在岩性界面上,呈树枝状,具有弯曲、断裂等特征。穿粒缝有助于储层渗流能力的发育,是优质储层发育的有利因素之一( Yin Shuai et al.,2018; 吕文雅等,2020)。另一方面构造作用与成岩作用共同控制着构造—成岩微裂缝的发育(图6b、c),吉木萨尔凹陷井井子沟组储层成岩作用以压实作用与溶蚀作用为主,交代作用次之。成岩序次为Ⅰ期方解石交代→ Ⅰ期绿泥石化→Ⅰ期长石溶蚀(图6d)。由于重结晶、压实、矿物交代等作用,储层中的岩石发生收缩、膨胀和矿物间的重新组合,发育了一系列的成岩收缩缝(图6e),主要包括粒缘缝和粒内缝,之后部分收缩缝还会进一步发生溶蚀形成溶蚀缝(图6f),溶蚀缝使储层内的孔隙得以连通,改善储层物性。

  • 图6 准噶尔盆地吉木萨尔凹陷井井子沟组 3 种成因微裂缝

  • Fig.6 Three genetic kinds of micro-fractures in the P2jj in the Jimsar Sag, Junggar Basin

  • (a)吉 174 井,3435.8 m,原生微裂缝;(b)吉 451 井,3772.37 m,构造成因充填缝和未充填缝;(c)吉 174 井,3430.9 m,构造成因未充填缝;(d)吉 451 井,3767.53 m,吉木萨尔凹陷井井子沟组储层成岩序次图;(e)吉 174 井,3426.1 m,成岩收缩缝;(f)吉 174 井,3436.68 m,成岩溶蚀缝

  • (a) The Well Ji 174, 3435.8 m, primary micro-fracture; (b) the Well Ji 451, 3430 m, structural origin filling fracture and unfilled fracture; (c) the Well Ji 174, 3430.9 m, tectonic origin unfilled fracture; (d) diagenetic sequence diagram of the Jinjinzigou Formation (P2jj) reservoir in the Jimsar sag, the Well Ji 451, 3767.53 m; (e) the Well Ji 174, 3426.1 m, diagenetic shrinkage joint; (f) the Well Ji 174, 3436.68 m, diagenetic dissolution fracture

  • 5 结论

  • (1)吉木萨尔凹陷井井子沟组致密砂岩储层微裂缝主要有粒内缝、穿粒缝和粒缘缝 3 种类型。穿粒缝开启性最好,含油性较好,而粒缘缝和粒内缝开启性一般,开启性裂缝占 60%以上,开启性裂缝被有机质、原油等充填。

  • (2)吉木萨尔凹陷井井子沟组致密砂岩储层微裂缝的发育程度受构造作用、岩石成分和结构等控制,并至少存在 3 期微裂缝,分别为原生缝、溶蚀缝、早期充填裂缝重新开启和因交代作用矿物裂开所形成的裂缝,微裂缝的形成时间与构造作用相对应。

  • (3)吉木萨尔凹陷井井子沟组致密砂岩储层微裂缝主要为原生、构造和成岩成因。原生成因是井井子沟组致密砂岩储层粒内缝的主要成因,大部分为无效裂缝,构造成因是井井子沟组致密砂岩储层穿粒缝形成的关键因素,穿粒缝是优质储层发育的有利因素之一,成岩作用主要形成成岩收缩缝,主要包括粒缘缝和粒内缝,部分成岩收缩缝发生溶解形成溶蚀缝,溶蚀缝改善储层物性。

  • 参考文献

    • 白斌, 邹才能, 朱如凯, 张健, 谭嘉言, 张本健, 杨华, 崔景伟, 苏玲. 2012. 川西南部须二段致密砂岩储层构造裂缝特征及其形成期次. 地质学报, 86(11): 1841~1846.

    • 白斌, 朱如凯, 吴松涛, 杨文静, Jeff G, Allen G, 张响响, 苏玲. 2013. 利用多尺度CT成像表征致密砂岩微观孔喉结构. 石油勘探与开发, 40(3): 329~333.

    • 蔡正旗, 徐志明. 2001. 辽河盆地清水地区泥岩欠压实与油气层分布. 西南石油学院学报, 23(5): 1~3+5.

    • 陈建平, 王绪龙, 邓春萍, 梁狄刚, 张越迁, 赵喆, 倪云燕, 支东明, 杨海波, 王屿涛. 2016. 准噶尔盆地油气源、油气分布与油气系统. 地质学报, 90(3): 421~450.

    • 陈磊, 杨镱婷, 汪飞, 芦慧, 张译丹, 王鑫, 李艳平, 李臣. 2020. 准噶尔盆地勘探历程与启示. 新疆石油地质, 41(5): 505~518.

    • 丁文龙, 李超, 李春燕, 许长春, 久凯, 曾维特. 2012. 页岩裂缝发育主控因素及其对含气性的影响. 地学前缘, 19(2): 212~220.

    • 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 2015. 致密砂岩储层裂缝研究进展. 地球科学进展, 30(7): 737~750.

    • 董少群, 曾联波, 车小花, 杜相仪, 徐辉, 冀春秋, 杨卫东, 李志华. 2023. 人工智能在致密储层裂缝测井识别中的应用. 地球科学, 48(7): 2443~2461.

    • 巩磊, 曾联波, 陈树民, 高帅, 张本健, 祖克威, 苗凤彬. 2016. 致密砾岩储层微观裂缝特征及对储层的贡献. 大地构造与成矿学, 40(1): 38~46.

    • 巩磊, 程宇琪, 高帅, 高志勇, 冯佳睿, 王洪涛, 宿晓岑, 卢崎, 王杰. 2023. 库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素. 地球科学, 48(7): 2475~2488.

    • 苟启洋, 徐尚, 郝芳, 杨峰, 王雨轩, 陆扬博, 张爱华, 程璇, 青加伟, 高梦天. 2019. 基于微米CT页岩微裂缝表征方法研究. 地质学报, 93(9): 2372~2382.

    • 郭佳, 宋双, 王一博, 詹路锋, 芮志峰. 2018. 准噶尔盆地吉木萨尔凹陷梧桐沟组层序地层划分. 地质学刊, 42(4): 558~567.

    • 郭小文, 何生, 郑伦举, 吴珍珍. 2011. 生油增压定量模型及影响因素. 石油学报, 32(4): 637~644.

    • 何江林, 付修根, 郭天旭, 孙涛. 2009. 羌塘盆地胜利河油页岩历史最大埋深. 大庆石油学院学报, 33(6): 11~18+115.

    • 何伶, 赵伦, 李建新, 马纪, 刘瑞林, 王淑琴, 赵文琪. 2014. 碳酸盐岩储集层复杂孔渗关系及影响因素——以滨里海盆地台地相为例. 石油勘探与开发, 41(2): 206~214.

    • 李长海, 赵伦, 刘波, 陈强, 陆成和, 孔悦. 2020. 微裂缝研究进展、意义及发展趋势. 天然气地球科学, 31(3): 402~416.

    • 李新宁, 刘震, 马昕箬, 焦立新, 周志超, 徐先静, 杨玉忠. 2023. 准噶尔盆地吉木萨尔凹陷二叠系超压成因及分布预测. 地球学报, 1~12.

    • 李学万, 宋柏荣, 高占琴, 王仁厚. 2005. 扫描电镜在辽河油田变质岩储层研究中的应用. 电子显微学报, 24(4): 335~336.

    • 刘卫彬, 张世奇, 李世臻, 周新桂, 王丹丹, 张文浩, 林燕华. 2018. 东濮凹陷沙三段储层微裂缝发育特征及意义. 地质通报, 37(S1): 496~502.

    • 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 2020. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素——以红河油田长8储层为例. 天然气地球科学, 31(1): 37~46.

    • 南珺祥, 王素荣, 姚卫华, 卢燕. 2007. 鄂尔多斯盆地陇东地区延长组长6—8特低渗透储层微裂缝研究. 岩性油气藏, 19(4): 40~44.

    • 邵国勇, 熊伟, 沈瑞, 杨懿, 尚祯浩, 王国栋, 余昊. 2023. CT扫描技术在页岩油气储层微观结构表征中的应用进展. 应用化工, 52(6): 1785~1789+1799.

    • 童亨茂, 钱祥麟. 1994. 储层裂缝的研究和分析方法. 石油大学学报(自然科学版), 18(6): 14~20.

    • 万永平, 李园园, 梁晓. 2010. 基于流体包裹体的储层微裂缝研究——以陕北斜坡上古生界为例. 地质与勘探, 46(4): 711~715.

    • 汪吉林, 朱炎铭, 宫云鹏, 方辉煌. 2015. 重庆南川地区龙马溪组页岩微裂缝发育影响因素及程度预测. 天然气地球科学, 26(8): 1579~1586.

    • 王瑞飞, 陈明强, 孙卫. 2008. 特低渗透砂岩储层微裂缝特征及微裂缝参数的定量研究——以鄂尔多斯盆地沿25区块、庄40区块为例. 矿物学报, 28(2): 215~220.

    • 王瑞飞, 孙卫. 2009. 鄂尔多斯盆地姬塬油田上三叠统延长组超低渗透砂岩储层微裂缝研究. 地质论评, 55(3): 444~448.

    • 王维斌, 朱静, 马文忠, 冯顺彦, 刘艳妮, 赵静. 2017. 鄂尔多斯盆地周家湾地区长8致密砂岩储层特征及影响因素. 岩性油气藏, 29(1): 51~58.

    • 吴孔友, 查明, 王绪龙, 吴时国, 张立刚, 聂政荣. 2007. 准噶尔盆地成藏动力学系统划分. 地质论评, 53(1): 75~82.

    • 夏世威, 马强, 黄传炎, 张伟, 李潇鹏, 张宏, 马江浩, 彭亚中, 聂锋. 2023. 准噶尔盆地东部吉木萨尔一吉南凹陷构造演化及原型盆地恢复. 地质科技通报, 43(1): 170~179.

    • 许琳, 常秋生, 杨成克, 陶亲娥, 王仕莉, 费李莹, 徐士陆. 2019. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性. 石油与天然气地质, 40(3): 535~549.

    • 曾联波, 李跃纲, 王正国, 陈古明, 李梅. 2007. 邛西构造须二段特低渗透砂岩储层微观裂缝的分布特征. 天然气工业, 27(6): 45~47+150~151.

    • 曾联波, 巩磊, 宿晓岑, 毛哲. 2024. 深层-超深层致密储层天然裂缝分布特征及发育规律. 石油与天然气地质, 45(1): 1~14.

    • 张世华, 田军, 叶素娟, 杨映涛, 付菊. 2019. 断层输导型天然气成藏模式的动态成藏过程——以川西坳陷新场构造带上三叠统须二段气藏为例. 天然气工业, 39(7): 49~56.

    • 赵华伟, 宁正福, 段太忠, 廉培庆, 王鸣川. 2019. 基于微米CT扫描成像实验及格子Boltzmann模拟方法的致密砂岩孔隙结构表征. 东北石油大学学报, 43(5): 1~10+119.

    • 赵兰. 2022. 致密砂岩储层微裂缝发育特征及对物性的影响——以杭锦旗地区十里加汗区带为例. 油气藏评价与开发, 12(2): 285~291+312.

    • 支东明, 李建忠, 张伟, 王晓辉, 马强, 刘俊田, 杨帆. 2022. 准噶尔盆地吉木萨尔凹陷双吉构造带井井子沟组勘探突破及意义. 石油学报, 43(10): 1383~1394.

    • Bai Bin, Zou Caineng, Zhu Rukai, Zhang Jian, Tan Jiayan, Zhang Benjian, Yang Hua, Cui Jingwei, Su Ling. 2012&. Characteristics and formation stage-times of structural fractures in tight sandstone reservoir of the 2nd member of Xujiahe Formation in southwestern Sichuan Basin. Acta Geologica Sinica, 86(11): 1841~1846.

    • Bai Bin, Zhu Rukai, Wu Songtao, Yang Wenjing, Gelb J, Gu A, Zhang Xiangxiang, Su Ling. 2013&. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 40(3): 329~333.

    • Cai Zhengqi, Xu Zhiming . 2001&. Under-compaction of mud rock versus distribution of oil and gas reservoirs in Qingshui Area of western depression of Liaohe Basin. Journal of Southwest Petroleum Institute, 23(5): 1~3+5.

    • Chen Jianping, Wang Xulong, Deng Chunping, Liang Digang, Zhang Yueqian, Zhao Zhe, Ni Yunyan, Zhi Dongming, Yang Haibo, Wang Yutao. 2016&. Oil and gas source, occurrence and petroleum system in the Junggar Basin, Northwest China. Acta Geologica Sinica, 90(3): 421~450.

    • Chen Lei, Yang Yiting, Wang Fei, Lu Hui, Zhang Yidan, Wang Xin, Li Yanping, Li Chen. 2020&. Exploration history and enlightenment in Junggar Basin. Xinjiang Petroleum Geology, 41(5): 505~518.

    • Ding Wenlong, Li Chao, Li Chunyan, Xu Changchun, Jiu Kai, Zeng Weite. 2012&. Dominant factor of fracture development in shale and its relationship to gas accumulation. Earth Science Frontiers, 19(2): 212~220.

    • Ding Wenlong, Wang Xinghua, Hu Qiujia, Yin Shuai, Cao Xiangyu, Liu Jianjun. 2015&. Progress in tight sandstone reservoir fractures research. Advances in Earth Science, 30(7): 737~750.

    • Dong Shaoqun, Zeng Lianbo, Che Xiaohua, Du Xiangyi, Xu Hui, Ji Chunqiu, Yang Weidong, Li Zhihua. 2023&. Application of artificial intelligence in fracture identification using well logs in tight reservoirs. Earth Science, 48(7): 2443~2461.

    • Ezati M, Azizzadeh M, Ali R M, Fattahpour V, Honarmand J. 2018. Characterization of micro-fractures in carbonate Sarvak Reservoir, using petrophysical and geological data, SW Iran. Journal of Petroleum Science and Engineering, 170: 675~695.

    • Gong Lei, Zeng Lianbo, Chen Shumin, Gao Shuai, Zhang Benjian, Zu Kewei, Miao Fengbin. 2016&. Characteristics of micro-fractures and contribution to the compact conglomerate reservoirs. Geotectonica et Metallogenia, 40(1): 38~46.

    • Gong Lei, Cheng Yuqi, Gao Shuai, Gao Zhiyong, Feng Jiarui, Wang Hongtao, Su Xiaocen, Lu Qi, Wang Jie. 2023&. Fracture connectivity characterization and its controlling factors in lower Jurassic tight sandstone reservoirs of eastern kuqa foreland basin. Earth Science, 48(7): 2475~2488.

    • Gou Qiyang, Xu Shang, Hao Fang, Yang Feng, Wang Yuxuan, Lu Yangbo, Zhang Aihua, Cheng Xuan, Qing Jiawei, Gao Mengtian. 2019&. Study on characterization of micro-fracture of shale based on micro-CT. Acta Geologica Sinica, 93(9): 2372~2382.

    • Guo Jia, Song Shuang, Wang Yibo, Zhan Lufeng, Rui Zhifeng. 2018&. Sequence stratigraphic division of the Wutonggou Formation in the Jimsar Sag of Junggar Basin. Journal of Geology, 42(4): 558~567.

    • Guo Xiaowen, He Sheng, Zheng Lunju, Wu Zhenzhen. 2011&. A quantitative model for the overpressure caused by oil generation and its influential factors. Acta Petrolei Sinica, 32(4): 637~644.

    • Guo Zhiqi, Qin Xiaoying, Liu Cai. 2023. Pore and microfracture characterization in tight gas sandstone reservoirs with a new rock-physics-based seismic attribute. Remote Sensing, 15(2): 289.

    • He Jianglin, Fu Xiugen, Guo Tianxu, Sun Tao. 2009&. Maximum buried depth for the Shenglihe oil shale in the Qingtang Basin. Journal of Daqing Petroleum Institute, 33(6): 11~18+115.

    • He Ling, Zhao Lun, Li Jianxin, Ma Ji, Liu Ruilin, Wang Shuqin, Zhao Wenqi. 2014&. Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors: A case of platform facies in Pre-Caspian Basin. Petroleum Exploration and Development, 41(2): 206~214.

    • Hooker J N, Laubach S E, Marrett R. 2018. Microfracture spacing distributions and the evolution of fracture patterns in sandstones. Journal of Structural Geology, 108: 66~79.

    • Li Changhai, Zhao Lun, Liu Bo, Chen Qiang, Lu Chenghe, Kong Yue. 2020&. Research status, significance and development trend of microfractures. Natural Gas Geoscience, 31(3): 402~416.

    • Li Xinning, Liu Zhen, Ma Xinruo, Jiao Lixin, Zhou Zhichao, Xu Xianjing, Yang Yuzhong. 2023&. Mechanism of generation and Prediction of distribution of overpressure within the Permian strata in the Jimusar depression, Junggar Basin. Acta Geoscientica Sinica, 1~12.

    • Li Xuewan, Song (BaiBo)(Rong), Gao Zhanqin, Wang Renhou. 2005#. Application of SEM on the study of metamorphic rock reservoir in Liaohe oil field. Journal of Chinese Electron Microscopy Society, 24(4): 335~336.

    • Liu Weibin, Zhang Shiqi, Li Shizhen, Zhou Xingui, Wang Dandan, Zhang Wenhao, Lin Yanhua. 2018&. Development characteristics and geological significance of microfractures in the Es3 reservoirs of Dongpu depression. Geological Bulletin of China, 37(S1): 496~502.

    • Lü Wenya, Zeng Lianbo, Zhou Sibin, Ji Yuanyuan, Liang Feng, Hui Chen, Yu Jiasheng. 2020&. Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: Case study of the eighth member of the Yanchang Formation in Honghe Oilfield. Natural Gas Geoscience, 31(1): 37~46.

    • Nan Junxiang, Wang Surong, Yao Weihua, Lu Yan. 2007&. Micro-fractures in extra-low permeability reservoir of Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 19(4): 40~44.

    • Nian Tao, Li Yanze, Hou Tao, Tan Chengqian, Liu Chao. 2020. Natural fractures at depth in the Lower Cretaceous Kuqa Depression tight sandstones: Identification and characteristics. Geological Magazine, 157(8): 1299~1315.

    • Ougier S A, Renard F, Boehm C, Vidal G S. 2016. Microfracturing and microporosity in shales. Earth-Science Reviews, 162: 198~226.

    • Sarout J, Guéguen Y. 2008. Anisotropy of elastic wave velocities in deformed shales: Part 1—Experimental results. Geophysics, 73(5): D75~D89.

    • Shao Guoyong, Xiong Wei, Shen Rui, Yang Yi, Shang Zhenhao, Wang Guodong, Yu Hao. 2023&. Application progress of CT scanning technology in characterization of shale oil and gas reservoir microstructure. Applied Chemical Industry, 52(6): 1785~1789+1799.

    • Tong Hengmao, Qian Xianglin. 1994&. Research and analysis on natural fracture. Journal of China University of Petroleum (Edition of Natural Science), 18(6): 14~20.

    • Wan Yongping, Li Yuanyuan, Liang Xiao. 2010&. Fractures of reservoirs inferred from fluid inclusions: A case study on the upper Paleozoic of northern Shaanxi slope. Geology and Exploration, 46(4): 711~715.

    • Wang Jilin, Zhu Yanming, Gong Yunpeng, Fang Huihuang. 2015&. Influential factors and forecast of microcrack development degree of longmaxi formation shales in Nanchuan Region, Chongqing. Natural Gas Geoscience, 26(8): 1579~1586.

    • Wang Ruifei, Chen Mingqiang, Sun Wei. 2008&. Quantitative research on the characteristics of and parameters for micro cracks in ultra-low permeability sandstone reservoirs—Taking Yan 25 and Zhuang 40 areas in the Ordos Basin for example. Acta Mineralogica Sinica, 28(2): 215~220.

    • Wang Ruifei, Sun Wei. 2009&. A study on micro cracks in super-low permeability sandstone reservoir of the Upper Triassic Yanchang Formation in the Ordos Basin. Geological Review, 55(3): 444~448.

    • Wang Weibin, Zhu Jing, Ma Wenzhong, Feng Shunyan, Liu Yanni, Zhao Jing. 2017&. Characteristics and influencing factors of Chang 8 tight sandstone reservoir of Triassic Yanchang Formation in Zhoujiawan Area, Ordos Basin. Lithologic Reservoirs, 29(1): 51~58.

    • Wu Kongyou, Zha Ming, Wang Xulong, Wu Shiguo, Zhang Ligang, Nie Zhengrong. 2007&. Pool-forming dynamic system division in Junggar Basin. Geological Review, 53(1): 75~82.

    • Xia Shiwei, Ma Qiang, Huang Chuanyan, Zhang Wei, Li Xiaopeng, Zhang Hong, Ma Jianghao, Peng Yazhong, Nie Feng. 2023&. Tectonic evolution and prototype basins Reconstruction in the Jimsar and Jinan depressions, Eastern Junggar Basin. Bulletin of Geological Science and Technology, 43(1): 170~179.

    • Xu Lin, Chang Qiusheng, Yang Chengke, Tao Qine, Wang Shili, Fei Liying, Xu Shilu. 2019&. Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation, Jimusaer Sag. Oil & Gas Geology, 40(3): 535~549.

    • Yin Shuai, Lü Dawei, Ding W. 2018. New method for assessing microfracture stress sensitivity in tight sandstone reservoirs based on acoustic experiments. International Journal of Geomechanics, 18(4): 04018008.

    • Zeng Lianbo, Li Yuegang, Wang Zhengguo, Chen Guming, Li Mei. 2007&. Distribution of microfractures in ultralow permeability sandstone reservoirs of the second member of Xujiahe Formation (t3x2) in qiongxi structure. Natural Gas Industry, 27(6): 45~47+150~151.

    • Zeng Lianbo, Jiang Jianwei, Yang Yongli. 2010. Fractures in the low porosity and ultra-low permeability glutenite reservoirs: A case study of the late Eocene Hetaoyuan Formation in the Anpeng Oilfield, Nanxiang Basin, China. Marine and Petroleum Geology, 27(7): 1642~1650.

    • Zeng Lianbo, Gong Lei, Su Xiaocen, Mao Zhe. 2024&. Natural fractures in deep to ultra-deep tight reservoirs: Distribution and development. Oil & Gas Geology, 45(1): 1~14.

    • Zeng Lianbo, Gong Lei, Zhang Yunzhao, Dong Shaoqun, Lyu Wenya. 2023. A review of the genesis, evolution, and prediction of natural fractures in deep tight sandstones of China. AAPG Bulletin, 107(10): 1687~1721.

    • Zhang Shihua, Tian Jun, Ye Sujuan, Yang Yingtao, Fu Ju. 2019&. Dynamic accumulation process of fault-translocation natural gas accumulation model: A case study on the gas reservoir of the second Member of Upper Triassic Xujiahe Fm in the Xinchang structural zone of the Western Sichuan Depression. Natural Gas Industry, 39(7): 49~56.

    • Zhao Huawei, Ning Zhengfu, Duan Taizhong, Lian Peiqing, Wang Mingchuan. 2019&. Pore structure characterization of tight sandstones by X-ray computed tomography experiment combined with Lattice Boltzmann Method. Journal of Northeast Petroleum University, 43(5): 1~10+119.

    • Zhao Lan. 2022&. Development characteristics of microfractures in tight sandstone reservoir and its influence on physical properties: A case study of Shiligiahan zone in Hangjinqi. Petroleum Reservoir Evaluation and Development, 12(2): 285~291+312.

    • Zhi Dongming, Li Jianzhong, Zhang Wei, Wang Xiaohui, Ma Qiang, Liu Juntian, Yang Fan. 2022&. Exploration breakthrough and its significance of Jingjingzigou Formation in Shuangji tectonic zone of Jimsar Sag in Junggar Basin. Acta Petrolei Sinica, 43(10): 1383~1394.

  • 参考文献

    • 白斌, 邹才能, 朱如凯, 张健, 谭嘉言, 张本健, 杨华, 崔景伟, 苏玲. 2012. 川西南部须二段致密砂岩储层构造裂缝特征及其形成期次. 地质学报, 86(11): 1841~1846.

    • 白斌, 朱如凯, 吴松涛, 杨文静, Jeff G, Allen G, 张响响, 苏玲. 2013. 利用多尺度CT成像表征致密砂岩微观孔喉结构. 石油勘探与开发, 40(3): 329~333.

    • 蔡正旗, 徐志明. 2001. 辽河盆地清水地区泥岩欠压实与油气层分布. 西南石油学院学报, 23(5): 1~3+5.

    • 陈建平, 王绪龙, 邓春萍, 梁狄刚, 张越迁, 赵喆, 倪云燕, 支东明, 杨海波, 王屿涛. 2016. 准噶尔盆地油气源、油气分布与油气系统. 地质学报, 90(3): 421~450.

    • 陈磊, 杨镱婷, 汪飞, 芦慧, 张译丹, 王鑫, 李艳平, 李臣. 2020. 准噶尔盆地勘探历程与启示. 新疆石油地质, 41(5): 505~518.

    • 丁文龙, 李超, 李春燕, 许长春, 久凯, 曾维特. 2012. 页岩裂缝发育主控因素及其对含气性的影响. 地学前缘, 19(2): 212~220.

    • 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 2015. 致密砂岩储层裂缝研究进展. 地球科学进展, 30(7): 737~750.

    • 董少群, 曾联波, 车小花, 杜相仪, 徐辉, 冀春秋, 杨卫东, 李志华. 2023. 人工智能在致密储层裂缝测井识别中的应用. 地球科学, 48(7): 2443~2461.

    • 巩磊, 曾联波, 陈树民, 高帅, 张本健, 祖克威, 苗凤彬. 2016. 致密砾岩储层微观裂缝特征及对储层的贡献. 大地构造与成矿学, 40(1): 38~46.

    • 巩磊, 程宇琪, 高帅, 高志勇, 冯佳睿, 王洪涛, 宿晓岑, 卢崎, 王杰. 2023. 库车前陆盆地东部下侏罗统致密砂岩储层裂缝连通性表征及其主控因素. 地球科学, 48(7): 2475~2488.

    • 苟启洋, 徐尚, 郝芳, 杨峰, 王雨轩, 陆扬博, 张爱华, 程璇, 青加伟, 高梦天. 2019. 基于微米CT页岩微裂缝表征方法研究. 地质学报, 93(9): 2372~2382.

    • 郭佳, 宋双, 王一博, 詹路锋, 芮志峰. 2018. 准噶尔盆地吉木萨尔凹陷梧桐沟组层序地层划分. 地质学刊, 42(4): 558~567.

    • 郭小文, 何生, 郑伦举, 吴珍珍. 2011. 生油增压定量模型及影响因素. 石油学报, 32(4): 637~644.

    • 何江林, 付修根, 郭天旭, 孙涛. 2009. 羌塘盆地胜利河油页岩历史最大埋深. 大庆石油学院学报, 33(6): 11~18+115.

    • 何伶, 赵伦, 李建新, 马纪, 刘瑞林, 王淑琴, 赵文琪. 2014. 碳酸盐岩储集层复杂孔渗关系及影响因素——以滨里海盆地台地相为例. 石油勘探与开发, 41(2): 206~214.

    • 李长海, 赵伦, 刘波, 陈强, 陆成和, 孔悦. 2020. 微裂缝研究进展、意义及发展趋势. 天然气地球科学, 31(3): 402~416.

    • 李新宁, 刘震, 马昕箬, 焦立新, 周志超, 徐先静, 杨玉忠. 2023. 准噶尔盆地吉木萨尔凹陷二叠系超压成因及分布预测. 地球学报, 1~12.

    • 李学万, 宋柏荣, 高占琴, 王仁厚. 2005. 扫描电镜在辽河油田变质岩储层研究中的应用. 电子显微学报, 24(4): 335~336.

    • 刘卫彬, 张世奇, 李世臻, 周新桂, 王丹丹, 张文浩, 林燕华. 2018. 东濮凹陷沙三段储层微裂缝发育特征及意义. 地质通报, 37(S1): 496~502.

    • 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 2020. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素——以红河油田长8储层为例. 天然气地球科学, 31(1): 37~46.

    • 南珺祥, 王素荣, 姚卫华, 卢燕. 2007. 鄂尔多斯盆地陇东地区延长组长6—8特低渗透储层微裂缝研究. 岩性油气藏, 19(4): 40~44.

    • 邵国勇, 熊伟, 沈瑞, 杨懿, 尚祯浩, 王国栋, 余昊. 2023. CT扫描技术在页岩油气储层微观结构表征中的应用进展. 应用化工, 52(6): 1785~1789+1799.

    • 童亨茂, 钱祥麟. 1994. 储层裂缝的研究和分析方法. 石油大学学报(自然科学版), 18(6): 14~20.

    • 万永平, 李园园, 梁晓. 2010. 基于流体包裹体的储层微裂缝研究——以陕北斜坡上古生界为例. 地质与勘探, 46(4): 711~715.

    • 汪吉林, 朱炎铭, 宫云鹏, 方辉煌. 2015. 重庆南川地区龙马溪组页岩微裂缝发育影响因素及程度预测. 天然气地球科学, 26(8): 1579~1586.

    • 王瑞飞, 陈明强, 孙卫. 2008. 特低渗透砂岩储层微裂缝特征及微裂缝参数的定量研究——以鄂尔多斯盆地沿25区块、庄40区块为例. 矿物学报, 28(2): 215~220.

    • 王瑞飞, 孙卫. 2009. 鄂尔多斯盆地姬塬油田上三叠统延长组超低渗透砂岩储层微裂缝研究. 地质论评, 55(3): 444~448.

    • 王维斌, 朱静, 马文忠, 冯顺彦, 刘艳妮, 赵静. 2017. 鄂尔多斯盆地周家湾地区长8致密砂岩储层特征及影响因素. 岩性油气藏, 29(1): 51~58.

    • 吴孔友, 查明, 王绪龙, 吴时国, 张立刚, 聂政荣. 2007. 准噶尔盆地成藏动力学系统划分. 地质论评, 53(1): 75~82.

    • 夏世威, 马强, 黄传炎, 张伟, 李潇鹏, 张宏, 马江浩, 彭亚中, 聂锋. 2023. 准噶尔盆地东部吉木萨尔一吉南凹陷构造演化及原型盆地恢复. 地质科技通报, 43(1): 170~179.

    • 许琳, 常秋生, 杨成克, 陶亲娥, 王仕莉, 费李莹, 徐士陆. 2019. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性. 石油与天然气地质, 40(3): 535~549.

    • 曾联波, 李跃纲, 王正国, 陈古明, 李梅. 2007. 邛西构造须二段特低渗透砂岩储层微观裂缝的分布特征. 天然气工业, 27(6): 45~47+150~151.

    • 曾联波, 巩磊, 宿晓岑, 毛哲. 2024. 深层-超深层致密储层天然裂缝分布特征及发育规律. 石油与天然气地质, 45(1): 1~14.

    • 张世华, 田军, 叶素娟, 杨映涛, 付菊. 2019. 断层输导型天然气成藏模式的动态成藏过程——以川西坳陷新场构造带上三叠统须二段气藏为例. 天然气工业, 39(7): 49~56.

    • 赵华伟, 宁正福, 段太忠, 廉培庆, 王鸣川. 2019. 基于微米CT扫描成像实验及格子Boltzmann模拟方法的致密砂岩孔隙结构表征. 东北石油大学学报, 43(5): 1~10+119.

    • 赵兰. 2022. 致密砂岩储层微裂缝发育特征及对物性的影响——以杭锦旗地区十里加汗区带为例. 油气藏评价与开发, 12(2): 285~291+312.

    • 支东明, 李建忠, 张伟, 王晓辉, 马强, 刘俊田, 杨帆. 2022. 准噶尔盆地吉木萨尔凹陷双吉构造带井井子沟组勘探突破及意义. 石油学报, 43(10): 1383~1394.

    • Bai Bin, Zou Caineng, Zhu Rukai, Zhang Jian, Tan Jiayan, Zhang Benjian, Yang Hua, Cui Jingwei, Su Ling. 2012&. Characteristics and formation stage-times of structural fractures in tight sandstone reservoir of the 2nd member of Xujiahe Formation in southwestern Sichuan Basin. Acta Geologica Sinica, 86(11): 1841~1846.

    • Bai Bin, Zhu Rukai, Wu Songtao, Yang Wenjing, Gelb J, Gu A, Zhang Xiangxiang, Su Ling. 2013&. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 40(3): 329~333.

    • Cai Zhengqi, Xu Zhiming . 2001&. Under-compaction of mud rock versus distribution of oil and gas reservoirs in Qingshui Area of western depression of Liaohe Basin. Journal of Southwest Petroleum Institute, 23(5): 1~3+5.

    • Chen Jianping, Wang Xulong, Deng Chunping, Liang Digang, Zhang Yueqian, Zhao Zhe, Ni Yunyan, Zhi Dongming, Yang Haibo, Wang Yutao. 2016&. Oil and gas source, occurrence and petroleum system in the Junggar Basin, Northwest China. Acta Geologica Sinica, 90(3): 421~450.

    • Chen Lei, Yang Yiting, Wang Fei, Lu Hui, Zhang Yidan, Wang Xin, Li Yanping, Li Chen. 2020&. Exploration history and enlightenment in Junggar Basin. Xinjiang Petroleum Geology, 41(5): 505~518.

    • Ding Wenlong, Li Chao, Li Chunyan, Xu Changchun, Jiu Kai, Zeng Weite. 2012&. Dominant factor of fracture development in shale and its relationship to gas accumulation. Earth Science Frontiers, 19(2): 212~220.

    • Ding Wenlong, Wang Xinghua, Hu Qiujia, Yin Shuai, Cao Xiangyu, Liu Jianjun. 2015&. Progress in tight sandstone reservoir fractures research. Advances in Earth Science, 30(7): 737~750.

    • Dong Shaoqun, Zeng Lianbo, Che Xiaohua, Du Xiangyi, Xu Hui, Ji Chunqiu, Yang Weidong, Li Zhihua. 2023&. Application of artificial intelligence in fracture identification using well logs in tight reservoirs. Earth Science, 48(7): 2443~2461.

    • Ezati M, Azizzadeh M, Ali R M, Fattahpour V, Honarmand J. 2018. Characterization of micro-fractures in carbonate Sarvak Reservoir, using petrophysical and geological data, SW Iran. Journal of Petroleum Science and Engineering, 170: 675~695.

    • Gong Lei, Zeng Lianbo, Chen Shumin, Gao Shuai, Zhang Benjian, Zu Kewei, Miao Fengbin. 2016&. Characteristics of micro-fractures and contribution to the compact conglomerate reservoirs. Geotectonica et Metallogenia, 40(1): 38~46.

    • Gong Lei, Cheng Yuqi, Gao Shuai, Gao Zhiyong, Feng Jiarui, Wang Hongtao, Su Xiaocen, Lu Qi, Wang Jie. 2023&. Fracture connectivity characterization and its controlling factors in lower Jurassic tight sandstone reservoirs of eastern kuqa foreland basin. Earth Science, 48(7): 2475~2488.

    • Gou Qiyang, Xu Shang, Hao Fang, Yang Feng, Wang Yuxuan, Lu Yangbo, Zhang Aihua, Cheng Xuan, Qing Jiawei, Gao Mengtian. 2019&. Study on characterization of micro-fracture of shale based on micro-CT. Acta Geologica Sinica, 93(9): 2372~2382.

    • Guo Jia, Song Shuang, Wang Yibo, Zhan Lufeng, Rui Zhifeng. 2018&. Sequence stratigraphic division of the Wutonggou Formation in the Jimsar Sag of Junggar Basin. Journal of Geology, 42(4): 558~567.

    • Guo Xiaowen, He Sheng, Zheng Lunju, Wu Zhenzhen. 2011&. A quantitative model for the overpressure caused by oil generation and its influential factors. Acta Petrolei Sinica, 32(4): 637~644.

    • Guo Zhiqi, Qin Xiaoying, Liu Cai. 2023. Pore and microfracture characterization in tight gas sandstone reservoirs with a new rock-physics-based seismic attribute. Remote Sensing, 15(2): 289.

    • He Jianglin, Fu Xiugen, Guo Tianxu, Sun Tao. 2009&. Maximum buried depth for the Shenglihe oil shale in the Qingtang Basin. Journal of Daqing Petroleum Institute, 33(6): 11~18+115.

    • He Ling, Zhao Lun, Li Jianxin, Ma Ji, Liu Ruilin, Wang Shuqin, Zhao Wenqi. 2014&. Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors: A case of platform facies in Pre-Caspian Basin. Petroleum Exploration and Development, 41(2): 206~214.

    • Hooker J N, Laubach S E, Marrett R. 2018. Microfracture spacing distributions and the evolution of fracture patterns in sandstones. Journal of Structural Geology, 108: 66~79.

    • Li Changhai, Zhao Lun, Liu Bo, Chen Qiang, Lu Chenghe, Kong Yue. 2020&. Research status, significance and development trend of microfractures. Natural Gas Geoscience, 31(3): 402~416.

    • Li Xinning, Liu Zhen, Ma Xinruo, Jiao Lixin, Zhou Zhichao, Xu Xianjing, Yang Yuzhong. 2023&. Mechanism of generation and Prediction of distribution of overpressure within the Permian strata in the Jimusar depression, Junggar Basin. Acta Geoscientica Sinica, 1~12.

    • Li Xuewan, Song (BaiBo)(Rong), Gao Zhanqin, Wang Renhou. 2005#. Application of SEM on the study of metamorphic rock reservoir in Liaohe oil field. Journal of Chinese Electron Microscopy Society, 24(4): 335~336.

    • Liu Weibin, Zhang Shiqi, Li Shizhen, Zhou Xingui, Wang Dandan, Zhang Wenhao, Lin Yanhua. 2018&. Development characteristics and geological significance of microfractures in the Es3 reservoirs of Dongpu depression. Geological Bulletin of China, 37(S1): 496~502.

    • Lü Wenya, Zeng Lianbo, Zhou Sibin, Ji Yuanyuan, Liang Feng, Hui Chen, Yu Jiasheng. 2020&. Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: Case study of the eighth member of the Yanchang Formation in Honghe Oilfield. Natural Gas Geoscience, 31(1): 37~46.

    • Nan Junxiang, Wang Surong, Yao Weihua, Lu Yan. 2007&. Micro-fractures in extra-low permeability reservoir of Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 19(4): 40~44.

    • Nian Tao, Li Yanze, Hou Tao, Tan Chengqian, Liu Chao. 2020. Natural fractures at depth in the Lower Cretaceous Kuqa Depression tight sandstones: Identification and characteristics. Geological Magazine, 157(8): 1299~1315.

    • Ougier S A, Renard F, Boehm C, Vidal G S. 2016. Microfracturing and microporosity in shales. Earth-Science Reviews, 162: 198~226.

    • Sarout J, Guéguen Y. 2008. Anisotropy of elastic wave velocities in deformed shales: Part 1—Experimental results. Geophysics, 73(5): D75~D89.

    • Shao Guoyong, Xiong Wei, Shen Rui, Yang Yi, Shang Zhenhao, Wang Guodong, Yu Hao. 2023&. Application progress of CT scanning technology in characterization of shale oil and gas reservoir microstructure. Applied Chemical Industry, 52(6): 1785~1789+1799.

    • Tong Hengmao, Qian Xianglin. 1994&. Research and analysis on natural fracture. Journal of China University of Petroleum (Edition of Natural Science), 18(6): 14~20.

    • Wan Yongping, Li Yuanyuan, Liang Xiao. 2010&. Fractures of reservoirs inferred from fluid inclusions: A case study on the upper Paleozoic of northern Shaanxi slope. Geology and Exploration, 46(4): 711~715.

    • Wang Jilin, Zhu Yanming, Gong Yunpeng, Fang Huihuang. 2015&. Influential factors and forecast of microcrack development degree of longmaxi formation shales in Nanchuan Region, Chongqing. Natural Gas Geoscience, 26(8): 1579~1586.

    • Wang Ruifei, Chen Mingqiang, Sun Wei. 2008&. Quantitative research on the characteristics of and parameters for micro cracks in ultra-low permeability sandstone reservoirs—Taking Yan 25 and Zhuang 40 areas in the Ordos Basin for example. Acta Mineralogica Sinica, 28(2): 215~220.

    • Wang Ruifei, Sun Wei. 2009&. A study on micro cracks in super-low permeability sandstone reservoir of the Upper Triassic Yanchang Formation in the Ordos Basin. Geological Review, 55(3): 444~448.

    • Wang Weibin, Zhu Jing, Ma Wenzhong, Feng Shunyan, Liu Yanni, Zhao Jing. 2017&. Characteristics and influencing factors of Chang 8 tight sandstone reservoir of Triassic Yanchang Formation in Zhoujiawan Area, Ordos Basin. Lithologic Reservoirs, 29(1): 51~58.

    • Wu Kongyou, Zha Ming, Wang Xulong, Wu Shiguo, Zhang Ligang, Nie Zhengrong. 2007&. Pool-forming dynamic system division in Junggar Basin. Geological Review, 53(1): 75~82.

    • Xia Shiwei, Ma Qiang, Huang Chuanyan, Zhang Wei, Li Xiaopeng, Zhang Hong, Ma Jianghao, Peng Yazhong, Nie Feng. 2023&. Tectonic evolution and prototype basins Reconstruction in the Jimsar and Jinan depressions, Eastern Junggar Basin. Bulletin of Geological Science and Technology, 43(1): 170~179.

    • Xu Lin, Chang Qiusheng, Yang Chengke, Tao Qine, Wang Shili, Fei Liying, Xu Shilu. 2019&. Characteristics and oil-bearing capability of shale oil reservoir in the Permian Lucaogou Formation, Jimusaer Sag. Oil & Gas Geology, 40(3): 535~549.

    • Yin Shuai, Lü Dawei, Ding W. 2018. New method for assessing microfracture stress sensitivity in tight sandstone reservoirs based on acoustic experiments. International Journal of Geomechanics, 18(4): 04018008.

    • Zeng Lianbo, Li Yuegang, Wang Zhengguo, Chen Guming, Li Mei. 2007&. Distribution of microfractures in ultralow permeability sandstone reservoirs of the second member of Xujiahe Formation (t3x2) in qiongxi structure. Natural Gas Industry, 27(6): 45~47+150~151.

    • Zeng Lianbo, Jiang Jianwei, Yang Yongli. 2010. Fractures in the low porosity and ultra-low permeability glutenite reservoirs: A case study of the late Eocene Hetaoyuan Formation in the Anpeng Oilfield, Nanxiang Basin, China. Marine and Petroleum Geology, 27(7): 1642~1650.

    • Zeng Lianbo, Gong Lei, Su Xiaocen, Mao Zhe. 2024&. Natural fractures in deep to ultra-deep tight reservoirs: Distribution and development. Oil & Gas Geology, 45(1): 1~14.

    • Zeng Lianbo, Gong Lei, Zhang Yunzhao, Dong Shaoqun, Lyu Wenya. 2023. A review of the genesis, evolution, and prediction of natural fractures in deep tight sandstones of China. AAPG Bulletin, 107(10): 1687~1721.

    • Zhang Shihua, Tian Jun, Ye Sujuan, Yang Yingtao, Fu Ju. 2019&. Dynamic accumulation process of fault-translocation natural gas accumulation model: A case study on the gas reservoir of the second Member of Upper Triassic Xujiahe Fm in the Xinchang structural zone of the Western Sichuan Depression. Natural Gas Industry, 39(7): 49~56.

    • Zhao Huawei, Ning Zhengfu, Duan Taizhong, Lian Peiqing, Wang Mingchuan. 2019&. Pore structure characterization of tight sandstones by X-ray computed tomography experiment combined with Lattice Boltzmann Method. Journal of Northeast Petroleum University, 43(5): 1~10+119.

    • Zhao Lan. 2022&. Development characteristics of microfractures in tight sandstone reservoir and its influence on physical properties: A case study of Shiligiahan zone in Hangjinqi. Petroleum Reservoir Evaluation and Development, 12(2): 285~291+312.

    • Zhi Dongming, Li Jianzhong, Zhang Wei, Wang Xiaohui, Ma Qiang, Liu Juntian, Yang Fan. 2022&. Exploration breakthrough and its significance of Jingjingzigou Formation in Shuangji tectonic zone of Jimsar Sag in Junggar Basin. Acta Petrolei Sinica, 43(10): 1383~1394.